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Abstract. This article presents a general and novel approach to the automation of goal-oriented
error control in the solution of nonlinear stationary finite element variational problems. The approach
is based on automated linearization to obtain the linearized dual problem, automated derivation and
evaluation of a posteriori error estimates, and automated adaptive mesh refinement to control the
error in a given goal functional to within a given tolerance. Numerical examples representing a
variety of different discretizations of linear and nonlinear partial differential equations are presented,
including Poisson’s equation, a mixed formulation of linear elasticity, and the incompressible Navier–
Stokes equations.
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1. Introduction. For any numerical method, it is of critical importance that
the accuracy of computed solutions may be assessed. For the numerical solution of
differential equations, the accuracy is typically assessed manually by computing a
sequence of solutions using successive refinement until it is judged that the solution
has “converged”. This approach is unreliable as well as time-consuming. It may also
be impossible, since computing resources may be exhausted long before convergence
has been reached.

For finite element discretizations, classic a posteriori error analysis provides a
framework for controlling the approximation error measured in some Sobolev norm,
cf. [1]. Over the last two decades, goal-oriented error control has been developed as
an extension of the classic a posteriori analysis [9, 12]. The problem of goal-oriented
error control for stationary variational problems can be posed as follows. Consider
the following canonical variational problem: find u ∈ V such that

F (u; v) = 0 ∀ v ∈ V̂ , (1.1)

where F : V × V̂ → R is a semilinear form (linear in v) on a pair of trial and
test spaces (V, V̂ ). A goal-oriented adaptive algorithm seeks to find an approximate
solution uh ≈ u of (1.1) such that

η = |M(u)−M(uh)| ≤ ε,

where M : V → R is a given goal functional, ε > 0 is a given tolerance, and η is here
defined as the error in the given goal functional. In other words, goal-oriented error
control allows the construction of an adaptive algorithm that targets a simulation to
the efficient computation of a specific quantity of interest.

The framework developed in [9, 12] provides a general method for deriving an
a posteriori estimate of the error and adaptive refinement indicators, based on the
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solution of an auxiliary linearized adjoint (dual) problem. This framework is directly
applicable to a large class of finite element variational problems. However, a certain
level of expertise is required to derive the error estimate for a particular problem and
to implement the corresponding adaptive solver. In particular, the derivation of the
dual problem involves the linearization of a possibly complicated nonlinear problem.
Furthermore, both the derivation and evaluation of the a posteriori error estimate
remain nontrivial (at least in practice). Moreover, each derivation must be carried
out on a problem-by-problem basis. As a result, goal-oriented error control remains
a tool for experts and usually requires a substantial effort to implement.

In this work, we seek to automate goal-oriented error control. We present a fully
automatic approach for computation of error estimates and adaptive refinement; that
is, without any manual analysis, preparation, or intervention. To our knowledge, no
such automation has previously been presented, and in particular not realized. The
strategy presented here requires a minimal amount of input and expert knowledge;
the only input required by our adaptive algorithm is the semilinear form F , the func-
tional M, and the tolerance ε. Based on the given input, the adaptive algorithm
automatically generates the dual problem, the a posteriori error estimate, and at-
tempts to compute an approximate solution uh that meets the given tolerance for
the given functional. In particular, problem-tuned error estimates and indicators are
generated without any manual derivations. This has the potential of rendering state-
of-the-art goal-oriented error control fully accessible to non-experts at no additional
implementational cost.

We emphasize that although one may, in principle, manually carry out the nec-
essary analysis and implementation in any particular case, automation plays an im-
portant role since it (i) makes expert knowledge accessible to non-experts, (ii) speeds
up development cycles, and (iii) enables more complex problems to be tackled which
would otherwise require considerable effort to analyze and implement. A similar and
successful automation effort as part of the FEniCS Project [27, 19, 20, 29] has led to
the development of methodology and tools that automate the discretization of a large
class of partial differential equations by the finite element method.

In this paper, we limit the discussion to stationary variational problems. The
error estimates and indicators generated by the automated algorithm can be viewed
as a version of the dual-weighted-residual estimates of [9]. We emphasize that the
main target of this paper is to present an automation of a method for goal-oriented
error control; in particular, it is not our intention to improve the method theoretically
nor in detail examine the cases where the method is known to work poorly. Also, the
question of automated error control for time-dependent problems will be considered
in later works.

The remainder of this introduction describes the organization of the paper. The
first two sections, Sections 2 and 3, establish the abstract problem setting by defining
notation and summarizing the well-established goal-oriented error estimation frame-
work for linear variational problems. The linear setting is discussed first for the sake
of clarity and brevity: the extension to the nonlinear case is summarized in Section 6.
The primary novel contributions of this paper are contained in Sections 4, 5, and 7:
the main result of this paper is an automated strategy for the computation of error
estimates and indicators. This strategy relies on two key components: first, a proce-
dure, applicable to a general class of stationary variational problems, for the derivation
of a strong residual representation from a weak residual representation (Section 4).
Second, the evaluation of the error estimates relies on a dual approximation: an af-
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fordable strategy for obtaining an improved dual approximation by extrapolation for
a general class of finite element spaces is described in Section 5.

Combining the goal-oriented error estimation framework with the automated tech-
niques introduced in Section 4 and 5, yields the automated adaptive algorithm de-
scribed in Section 7. A realization of this automated algorithm has been implemented
as part of the FEniCS Project, and is, in particular, available through both the
Python and C++ versions of the DOLFIN library. A simple example of its use and
some aspects of the implementation are also discussed in this section. In Section 8, we
apply the presented framework to three examples of varying complexity: the Poisson
equation, a three-field mixed formulation for the linear elasticity equations, and the
stationary Navier–Stokes equations. Finally, we conclude and discuss further work in
Section 9.

2. Notation. Throughout this paper, Ω ⊂ Rd denotes an open, bounded domain
with boundary ∂Ω. We will generally assume that Ω is polyhedral such that it can be
exactly represented by an admissible, simplicial tessellation Th. The boundary will
typically be the union of two disjoint parts, denoted ∂ΩD and ∂ΩN .

In general, the notation V (X;Y ) is used to denote the space of fields X → Y
with regularity properties specified by V . If Y = R, this argument is omitted. For
L2(K;Rd); that is, the space of d-vector fields on K ⊆ Ω in which each component
is square integrable, the inner product reads 〈·, ·〉K , and the norm is denoted || · ||K .
If K = Ω, the subscript is omitted. For m = 1, 2, . . . , Hm(Ω) denotes the space
of square integrable functions with m square integrable distributional derivatives.
Also, H1

g,Γ = {u ∈ H1(Ω) : u|Γ = g}. Similarly, H(div,Ω) denotes the space of square
integrable vector fields with square integrable divergence. Note that both the gradient
of a vector field and the divergence of a matrix field are applied row-wise.

A form a : W1 × · · · ×Wn × Vρ × · · · × V1 → R, written a(w1, . . . , wn; vρ, . . . , v1),
is (possibly) nonlinear in all arguments preceding the semi-colon, but linear in all
arguments following the semi-colon.

3. A framework for goal-oriented error control. In this section, we present
a general framework for goal-oriented error control for conforming finite element dis-
cretizations of stationary variational problems. The framework is a summary of the
paradigm developed in [9, 12]. For clarity, we restrict our attention to linear vari-
ational problems and linear goal functionals. Extensions to nonlinear problems and
nonlinear goal functionals are made in Section 6.

Let V and V̂ be Hilbert spaces of functions or fields defined on a domain Ω ⊂ Rd
for d = 1, 2, 3. In this section, we consider the following linear variational problem:
find u ∈ V such that

a(u, v) = L(v) ∀ v ∈ V̂ . (3.1)

We assume that a : V × V̂ → R is a continuous, bilinear form, and that L : V̂ → R
is a continuous, linear form. We shall further assume that the problem is well-posed;
that is, there exists a unique solution u that depends continuously on any given data.
The variational problem defined by (3.1) will be referred to as the primal problem
and u will be referred to as the primal solution.

Let Th be an admissible simplicial tessellation of Ω (to be determined) and assume
that Vh ⊂ V and V̂h ⊂ V̂ are finite element spaces defined relative to Th. The finite
element approximation of (3.1) then reads: find uh ∈ Vh such that

a(uh, v) = L(v) ∀ v ∈ V̂h. (3.2)
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We assume that the spaces Vh and V̂h satisfy an appropriate discrete inf–sup condition
such that a unique discrete solution exists. The problem (3.2) will be referred to as
the discrete primal problem and uh the discrete primal solution.

We are interested in estimating the magnitude of the error in a given goal func-
tionalM : V → R. Moreover, for a given tolerance ε > 0, we aim to find (Vh, V̂h) such
that the corresponding finite element approximation uh, as defined by (3.2), satisfies

η ≡ |M(u)−M(uh)| ≤ ε. (3.3)

In addition, we would like to compute the value of the goal functional M(uh) effi-
ciently, ideally using a minimal amount of work.

In order to estimate the magnitude of the error η, we first define the (weak)
residual relative to the approximation uh,

r(v) = L(v)− a(uh, v). (3.4)

Some remarks are in order. First, r is a bounded, linear functional by the continuity
and linearity of a and L. Second, as a consequence of the Galerkin orthogonality
implied by V̂h ⊂ V̂ , the residual vanishes on V̂h. In other words,

r(v) = 0 ∀ v ∈ V̂h. (3.5)

Next, we define the (weak) dual problem: find z ∈ V ∗ such that

a∗(z, v) =M(v) ∀ v ∈ V̂ ∗, (3.6)

where (V ∗, V̂ ∗) is the pair of dual trial and test spaces, and a∗ denotes the adjoint of a;
that is, a∗(v, w) = a(w, v). We shall assume that the dual problem (3.6) is well-posed,
and that there thus exists a dual solution z solving (3.6) with continuous dependence
on the input data. Moreover, we assume that the dual trial and test spaces are chosen
such that u − uh ∈ V̂ ∗ and z ∈ V̂ . This holds if V̂ ∗ = V0 = {v − w : v, w ∈ V } and
V ∗ = V̂ .

Combining (3.6), (3.4), and (3.1), we find that

M(u)−M(uh) = a∗(z, u− uh) = a(u− uh, z) = L(z)− a(uh, z) ≡ r(z).

The error M(u) − M(uh) is thus equal to the (weak) residual r evaluated at the
dual solution z. By the Galerkin orthogonality (3.5), we obtain the following error
representation:

M(u)−M(uh) = r(z) = r(z − πhz). (3.7)

Here, πhz ∈ V̂h is an arbitrary test space field, typically an interpolant of the dual
solution.

An identical error representation is obtained for nonlinear variational problems
and nonlinear goal functionals with a suitable definition of the dual problem. We re-
turn to this issue in Section 6. It follows that if one can compute (or approximate) the
solution of the dual problem, one may estimate the size of the error by a direct eval-
uation of the residual. However, some concerns remain that require special attention.
First, the error representation (3.7) is not directly useful as an error indicator. The
derivation of an a posteriori error estimate and corresponding error indicators from
the error representation has traditionally required manual analysis, typically involving
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some form of integration by parts and a redistribution of boundary terms (fluxes) over
cell facets. Second, for (3.7) to give a useful estimate of the size of the error, care must
be taken when solving the dual problem (3.6). In particular, the error representation
evaluates to zero if the dual solution is approximated in V̂h. Finally, the derivation of
the dual problem may involve the differentiation of a nonlinear variational form. We
discuss how each of these issues can be automated in the subsequent sections.

4. Automated derivation of error estimates and error indicators. This
section presents a novel approach to the derivation of an a posteriori error estimate
and corresponding error indicators for a general class of stationary variational prob-
lems. The starting point is the general abstract error representation (3.7). The
proposed generic representation for the estimate and indicators is motivated and in-
troduced in Section 4.1, followed by a strategy for computing this representation in
Sections 4.2–4.3. The key idea is the computation of a problem-tuned strong residual
representation using only ingredients from the general abstract form; this concept
constitutes one of the pillars for the complete automated strategy. We emphasize
that the resulting error estimate coincides with classical duality-based error estimates
that may be derived manually (using integration by parts) for standard problems
such as the Poisson problem. However, we present here an approach that allows these
error estimates to be generated and evaluated automatically. We also note that the
automatically derived error indicators differ from the standard duality-based error
estimates resulting from an integration by parts followed by one or more inequalities.

4.1. A generic residual representation. For motivational purposes, we start
by considering the standard derivation of a dual-weighted residual error estimator for
Poisson’s equation: −∆u = f and its corresponding variational problem defined by
a(u, v) = 〈gradu, grad v〉 and L(v) = 〈f, v〉 on V = V̂ = H1

0 (Ω). By integrating the
weak residual by parts cell-wise, one obtains

r(z) ≡ L(z)− a(uh, z) ≡ 〈f, z〉 − 〈graduh, grad z〉

=
∑
T∈T
〈f, z〉T − 〈graduh, grad z〉T =

∑
T∈T
〈f + ∆uh, z〉T + 〈−∂nuh, z〉∂T

=
∑
T∈T
〈f + ∆uh, z〉T + 〈[−∂nuh], z〉∂T ,

where [−∂nuh] denotes an appropriate redistribution of the flux over cell facets.
Several choices are possible, see for example [1, Chap. 6], but we here make the
simplest possible choice and distribute the flux equally. In particular, we define
[∂nuh]|S = 1

2 (graduh|T · n + graduh|T ′ · n′) over all internal facets S shared by two
cells T and T ′, and [∂nuh]|S = ∂nuh|S on external facets (facets on the boundary of
Ω). Hence, one may estimate the error by

|M(u)−M(uh)| ≤
∑
T∈T

ηT , (4.1)

where the error indicator ηT is given by

ηT = |〈f + ∆uh, z − πhz〉T + 〈[−∂nuh], z − πhz〉∂T |. (4.2)

We note that although one may in principle use ηT = |〈f, z〉T −〈graduh, grad z〉T |
as an error indicator (without integrating by parts and redistributing the normal
derivative), that indicator is much less efficient than the error indicator defined
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in (4.2). Both indicators will sum up to the same value (if taken with signs), but
only as a result of cancellation. The error indicator (4.2) is generally smaller in mag-
nitude, scales better with mesh refinement, and gives a sharper error bound when
summed without signs. See [39] for an extended discussion.

Estimates similar to (4.1) have been derived by hand (originally for use with
norm-based error indicators) for a variety of equations. A non-exhaustive list of
examples (including purely norm-based indicators) includes standard finite element
discretizations of the Poisson equation [3], various mixed formulations for the Stokes
equations and stationary Navier–Stokes equations [37], H(div)-based discretizations
of the mixed Poisson and mixed elasticity equations [10, 30], and H(curl)-based dis-
cretizations for problems in electromagnetics [7]. Duality-based goal-oriented error
estimates have been derived for a number of applications, including ordinary differ-
ential equations [13], plasticity [32], hyperbolic systems [22], reactive compressible
flow [36], systems of nonlinear reaction–diffusion equations [14, 35], eigenvalue prob-
lems [17], wave propagation [4], radiative transfer [33], nonlinear elasticity [25], the
incompressible Navier–Stokes equations [8, 18], variational multiscale problems [24],
and multiphysics problems [23].

These estimates share a common factor, namely that the error is expressed as a
sum of contributions from the cells and the facets of the mesh. Moreover, each of these
estimates has been derived manually for the specific problem at hand. Here, we aim
to demonstrate that for a large class of variational problems, one may automatically
compute an equivalent residual representation. The representation takes the following
generic form:

r(v) =
∑
T∈Th

〈RT , v〉T + 〈R∂T , v〉∂T =
∑
T∈Th

〈RT , v〉T + [〈R∂T , v〉∂T ], (4.3)

where

[〈R∂T , v〉∂T ] =
∑

S⊂∂T∩Ω

1

2
(〈R∂T , v|T 〉S + 〈R∂T ′ , v|T ′〉S) +

∑
S⊂∂T∩∂Ω

〈R∂T , v〉S .

It follows that one may use as error indicators

ηT = |〈RT , z − πhz〉T + [〈R∂T , z − πhz〉∂T ]|. (4.4)

In these expressions, RT denotes a residual contribution evaluated over the domain of a
cell T , whereas R∂T denotes a residual contribution evaluated over a cell boundary ∂T .

4.2. Automatic computation of the residual representation. We shall
focus our attention on a class of residuals r satisfying the following assumptions:
A1 (Global decomposition) The residual is a sum of local contributions:

r =
∑
T∈Th

rT .

A2 (Local decomposition) Each local residual rT offers a local decomposition:

rT (v) = 〈RT , v〉T + 〈R∂T , v〉∂T ∀ v ∈ V̂ |T . (4.5)

We note that A1 is satisfied if the bilinear and linear forms a and L are expressed
as integrals over the cells and facets of the tessellation Th. We also note that A2 is
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Fig. 4.1. The bubble function bT .

satisfied if the variational problem (3.1) has been derived by testing a partial differ-
ential equation against a test function and (possibly) integrating by parts to move
derivatives onto the test function.

For the sake of a simplified analysis, we also make the following assumption:
A3 (Polynomial representation) The residual contributions (or, in the case of vector

or tensor fields, each scalar component of these) are piecewise polynomial:

RT ∈ Pp(T ), R∂T |S ∈ Pq(S) ∀S ∈ ∂T ∀T ∈ Th, p, q ∈ N.

We discuss the implications of this assumption below, but note that one of the nu-
merical examples presented does not satisfy this assumption.

In the following, we shall show that a residual representation may be automatically
computed if assumptions A1–A2 are satisfied. More precisely, if assumptions A1–A3
are satisfied, we shall show that one may automatically compute the exact residual rep-
resentation (4.3) for a given variational problem (3.1). In particular, one may directly
compute the cell and facet residuals RT and R∂T by solving a set of local problems on
each cell T of the tessellation Th. If A3 fails; that is, if only assumptions A1–A2 are
satisfied, the automated procedure computes weighted L2-projections of the residual
decomposition terms and hence an approximate residual representation.

To compute the cell residual RT , let {φi}mi=1 be a basis for Pp(T ) and let bT
denote the bubble function on T . We recall that for a simplex T ⊂ Rd, the bubble
function bT is defined by

bT =

d+1∏
i=1

λTxi

where λTxi
is the barycentric coordinate function on T associated with vertex xi (the

ith linear Lagrange nodal basis function on T ). Note that bT vanishes on the boundary
of T . See Figure 4.1 for an illustration. Testing the local residual rT against bTφi,
we obtain the following local problem for the cell residual RT : find RT ∈ Pp(T ) such
that

〈RT , bTφi〉T = rT (bTφi), i = 1, . . .m. (4.6)

To obtain a local problem for the facet residual R∂T , we define for each facet S
on T the cone function βTS by

βTS =
∏
i∈ITS

λTxi
, (4.7)
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Fig. 4.2. The cone function βT
S .

where ITS is a suitably defined index set such that βTS |f ≡ 0 on all facets f of T but S.
For an illustration, see Figure 4.2. Clearly, βTS |S = bS . Next, let {φi}ni=1 be a basis
for Pq(T ). Testing the local residual rT against βTS φi, we obtain the following local
problem for each facet residual: find R∂T |S ∈ Pq(S) such that

〈R∂T |S , βTS φi〉S = rT (βTS φi)− 〈RT , βTS φi〉T ∀ i ∈ ITS . (4.8)

We prove below that by assumptions A1–A3, the local problems (4.6) and (4.8)
uniquely define the cell and facet residuals RT and R∂T of the residual represen-
tation (4.3).

One may thus compute the residual representation (4.3) by solving a set of local
problems on each cell T . First, one local problem for the cell residual RT , and
then local problems for the facet residual R∂T restricted to each facet of T . If the
test space is vector-valued, the local problems are solved for each scalar component.
We emphasize that the computation of the residual representation (4.3) and thus
the error indicator (4.4) may be computed automatically given only the variational
problem (3.1) in terms of the pair of bilinear and linear forms a and L. In particular,
the derivation of the error indicators does not involve any manual analysis.

We remark that the use of bubble and cone functions to localize the weak residual
is a standard technique for proving reliability and efficiency for norm-based error
estimates (see e.g. [38]). The crucial observation here is that this technique can also
be used to automatically generate the residual decomposition given only the weak
residual. We also remark that the local problems (4.6) and (4.8) are different from the
local problems that were introduced in [6] to represent the cell and facet residuals RT
and R∂T as a single residual.

4.3. Solvability of the local problems. To prove that the local problems (4.6)
and (4.8) uniquely determine the cell and facet residuals, we recall the following result
regarding bubble-weighted L2-norms. For a proof, we refer to [1, Theorems 2.2, 2.4].

Lemma 4.1. Let T be a d-simplex and let bT denote the bubble function on T .
There exist positive constants c and C, independent of T , such that

c||φ||2T ≤ 〈bTφ, φ〉T ≤ C||φ||2T (4.9)

for all φ ∈ Pp(T ).

We may now prove the following theorem.
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Theorem 4.1. If assumptions A1–A3 hold, then the cell and facet residuals of
the residual representation (4.3) are uniquely determined by the local problems (4.6)
and (4.8).

Proof. Consider first the cell residual RT . Take v = bTφi in (4.5) for i = 1, . . . ,m.
Since v vanishes on the cell boundary ∂T , we obtain (4.6). By assumption, RT ∈
Pp(T ) and is thus a solution of the local problem (4.6). It follows from Lemma 4.1,
that it is the unique solution. We similarly see that the facet residual R∂T is a solution
of the local problem (4.8) and uniqueness follows again from Lemma 4.1.

In the cases where A3 fails, such as if the variational problem contains non-
polynomial data, the local problems (4.6) and (4.8) uniquely determine the projections
of RT and R∂T |S onto Pp(T ) and Pq(S) respectively. The accuracy of the approxi-
mation may then be controlled by the polynomial degrees p and q. In the numerical
examples presented in Section 8, we let p = q be determined by the polynomial degree
of the finite element space. We have not observed any significant errors introduced
by this approximation in our numerical experiments.

Looking back at the special case of Poisson’s equation (4.2), the cell and facet
residuals derived by hand are given by RT = f + ∆uh and R∂T = −∂nuh, respec-
tively. We emphasize that, by what is just shown, this indeed coincides with the
representation defined by (4.6) and (4.8) if f is polynomial.

5. Approximating the dual solution. In order to evaluate the error repre-
sentation (3.7) and to compute the error indicators (4.4), one must compute, or in
practice approximate, the solution z of the dual problem (3.6). The natural discretiza-
tion of (3.6) reads: find zh ∈ V ∗h = V̂h such that

a∗(zh, v) =M(v) ∀ v ∈ V̂ ∗h = Vh,0. (5.1)

However, since the residual r vanishes on V̂h, zh is, for the purpose of error estimation,
highly unsuitable as an approximation of the dual solution.

An immediate alternative is to solve the dual problem using a higher order
method. If the dual solution is sufficiently regular, a higher order method would
be expected to give a more accurate dual approximation. It is observed in practice
that a more accurate dual approximation gives a better error estimate [9], although
complete reliability cannot be guaranteed [31]. Other alternatives include approxima-
tion by hierarchic techniques [1, 5] or approximating the dual problem on a different
mesh. In this work, we suggest a new alternative based on solving (5.1) using the
same mesh and polynomial order as the primal problem and then extrapolating the
computed solution zh to a higher order function space. This strategy can be compared
to the higher order interpolation procedure presented in [9] for regular quadrilater-
al/hexahedral meshes. The strategy presented here extends that of [9] however, as it
can be applied to almost arbitrary (admissible) simplicial tessellations.

To define the extrapolation procedure, let Vh be a finite element space on a tes-
sellation Th and let Wh ⊃ Vh be a higher order finite element space on the same
tessellation Th. Furthermore, let {φTj }nj=1 be a local basis for Wh on T and let

{φj}Nj=1 be the corresponding global basis. For vh ∈ Vh, we define the extrapola-
tion operator E : Vh → Wh as described in Algorithm 1. This algorithm computes
the extrapolation by fitting local polynomials to the finite element function vh on
local patches. This yields a global multi-valued function which is then averaged to
obtain the extrapolation Evh. We illustrate the extrapolation algorithm in Figure 5.1
for a one-dimensional case.
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Algorithm 1 Extrapolation

1. (Lifting) For each cell T ∈ Th:
(a) Define a patch of cells ωT ⊃ T of sufficient size and let {`i}mi=1 be the

collection of degrees of freedom for Vh on the patch. The size of the
patch ωT should be such that the number of degrees of freedom m is
greater than or equal to the local dimension n of Wh|T .

(b) Let {φωT
j }nj=1 be a smooth extension of {φTj }nj=1 to the patch ωT .

(c) Define Aij = `i(φ
ωT
j ) and bi = `i(vh) for i = 1, . . . ,m, j = 1, . . . , n.

(d) Compute the least-squares approximation ξT of the (overdetermined)
m× n system AξT = b.

2. (Smoothing)
(a) For each global degree of freedom j, let Xj be the set of corresponding

local expansion coefficients determined on each cell T by the local vector
ξT . Define ξj = 1

|Xj |
∑
x∈Xj

x. We note that |Xj | > 1 for degrees of

freedom that are shared between cells.
(b) Define Evh =

∑N
j=1 ξjφj .

Algorithm 1 may be used to compute a higher order approximation of the dual
solution z as follows. First, we compute an approximation zh ∈ V̂h of the dual solution
by solving (5.1). We then compute the extrapolation Ezh ∈Wh where Wh is the finite
element space on Th obtained by increasing the polynomial degree by one. We then
estimate the error by

η ≡ |M(u)−M(uh)| = |r(z)| ≈ |r(Ezh)| ≡ ηh.

6. Extensions to nonlinear problems and goal functionals. We now turn
to consider nonlinear variational problems and goal functionals. We consider the
following general nonlinear variational problem: find u ∈ V such that

F (u; v) = 0 ∀ v ∈ V̂ . (6.1)

For a given nonlinear goal functional M : V → R, we define the following dual
problem: find z ∈ V ∗ such that

F ′
∗
(z, v) =M′(v) ∀ v ∈ V̂ ∗, (6.2)

where, as before, V̂ ∗ = V0 and V ∗ = V̂ . The bilinear form F ′ is an appropriate

average of the Fréchet derivative F ′(u; δu, v) ≡ ∂F (u;v)
∂u δu of F ,

F ′(·, ·) =

∫ 1

0

F ′(su+ (1− s)uh; ·, ·) ds. (6.3)

We note that by the chain rule, we have F ′(u− uh, ·) = F (u; ·)−F (uh; ·). The linear
functional M ′ is defined similarly. Note that (6.2) reduces to (3.6) in the linear case
where F (u; v) = a(u, v)− L(v).

The following error representation now follows directly from the definition of the
dual problem:

M(u)−M(uh) =M′(u− uh) = F ′
∗
(z, u− uh) = F ′(u− uh, z)

= F (u; z)− F (uh; z) = −F (uh; z) ≡ r(z).
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Fig. 5.1. Extrapolation of a continuous piecewise linear function vh to a continuous piecewise
quadratic function Evh. The extrapolation is computed by first fitting a quadratic polynomial on each
patch. In one dimension, each patch is a set of three intervals and each local quadratic polynomial
is computed by solving an overdetermined 4× 3 linear system. The continuous piecewise quadratic
extrapolation Evh is then computed by averaging at the end-points of each interval.

We thus recover the error representation (3.7).

In practice, the exact solution u is not known and must be approximated by
the approximate solution uh; that is, the linear operator F ′ is approximated by the
derivative of F evaluated at u = uh. The resulting linearization error may for the sake
of simplicity be neglected, as we shall in this exposition, but doing so may reduce the
accuracy (and reliability) of the computed error estimates. For a further discussion on
the issue of linearization errors in the definition of the dual problem, we refer to [9].

It follows that the techniques described in Section 4 and 5 directly apply to the
residual r and the dual approximation zh also for the nonlinear case.

7. A complete algorithm for automated goal-oriented error control.
Based on the above discussion, we may now phrase the complete algorithm for auto-
mated adaptive goal-oriented error control in Algorithm 2.
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Algorithm 2 Adaptive algorithm

Let F : V × V̂ → R be a given semilinear form, let M : V → R be a given goal
functional, and let ε > 0 be a given tolerance.

1. Select an initial tessellation Th of the domain Ω and construct the correspond-
ing trial and test spaces Vh ⊂ V and V̂h ⊂ V̂ (for a given fixed finite element
family and degree).

2. Compute the finite element solution uh ∈ Vh of the primal problem (6.1)
satisfying F (uh; v) = 0 for all v ∈ V̂h.

3. Compute the finite element solution zh ∈ V ∗h of the dual problem (6.2) satis-

fying F ′
∗
(z, v) =M′(v) for all v ∈ V̂ ∗h .

4. Extrapolate zh 7→ Ezh using Algorithm 1.
5. Evaluate the error estimate ηh = |F (uh;Ezh)|.
6. If |ηh| ≤ ε, accept the solution uh and break. (Stopping criterion)
7. Compute the cell and facet residuals RT and R∂T of the residual representa-

tion (4.3) by solving the local problems (4.6) and (4.8).
8. Compute the error indicators
ηT = |〈RT , Ezh − πhEzh〉T + [〈R∂T , Ezh − πhEzh〉∂T ]|.

9. Sort the error indicators in order of decreasing size and mark the first M
cells for refinement where M is the smallest number such that

∑M
i=1 ηTi ≥

α
∑
T∈Th ηT , for some choice of α ∈ (0, 1]. (Dörfler marking [11])

10. Refine all cells marked for refinement (and propagate refinement to avoid
hanging nodes).

11. Go back to step 2.

Algorithm 2 has been implemented within the FEniCS project [27, 26, 29], a
collaborative project for the development of concepts and software for automated
solution of differential equations. The implementation is freely available, and dis-
tributed as part of DOLFIN (version 0.9.11 and onwards). We discuss some of the
features of the implementation here and provide a simple use case. More details of
the implementation will be discussed in future work [34].

For the specification of variational problems, the Python interface of DOLFIN
accepts as input variational forms expressed in the form language UFL [2]. Forms
expressed in the UFL language are automatically passed to the FEniCS form com-
piler FFC [20, 21, 28] which generates efficient C++ code for finite element assembly
of the corresponding discrete operators. For a detailed discussion, see [29]. Stationary
discrete variational problems can be solved in DOLFIN by calling the solve function
accepting as input a variational problem specified by a variational equation expressed
by two variational forms (defining the left- and right-hand sides), the solution func-
tion u and any boundary conditions bcs. Our implementation adds the possibility
of solving such problems adaptively with goal-oriented error control by adding a goal
functional M and an error tolerance, say 1e-6:

solve(a == L, u, bcs , tol=1.e-6, M=M) # Linear case

solve(F == 0, u, bcs , tol=1.e-6, M=M) # Nonlinear case

A simple complete example is listed in Figure 7.1. A number of optional parameters
may be specified to control the behavior of the adaptive algorithm, including the
marking strategy and the refinement fraction. The default marking strategy is Dörfler
marking [11] with a refinement fraction of α = 0.5.

Internally, the adaptive algorithm relies on the capabilities of the form lan-
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from dolfin import *

mesh = UnitSquare(4, 4)

V = FunctionSpace(mesh , "CG", 1)

u = Function(V)

v = TestFunction(V)

f = Constant(1.0)

F = inner((1 + u**2)*grad(u), grad(v))*dx - f*v*dx

bc = DirichletBC(V, 0.0, "near(x[0], 0.0)")

M = u*dx

solve(F == 0, u, bc , tol=1.e-3, M=M)

Fig. 7.1. Complete code for the automated adaptive solution of a nonlinear Poisson-like problem
on the unit square with f = 1.0, homogeneous Dirichlet boundary conditions on the left boundary and
homogeneous Neumann conditions on the remaining boundary, with goal functional M =

∫
Ω u dx.

guage UFL for generating the dual problem, the local problems for the cell and facet
residuals, and the computation of error indicators. As an illustration, we show here
the code for generating the bilinear form a∗ = F ′∗ of the dual problem (6.2):

a_star = adjoint(derivative(F, u))

8. Numerical examples. In this section, we aim to investigate the performance
of the automated algorithm. Since the theoretical properties of the proposed extrapo-
lation procedure are largely unknown, the investigation here focuses on the quality of
the error estimate and the sum of the error indicators on adaptively refined meshes.
The total computational efficiency of the automated adaptive algorithm will be inves-
tigated in later works [34].

We present three numerical examples from three different application areas, aim-
ing to illustrate different characteristics and varying levels of complexity. We begin
by considering a basic example: a standard discretization of the Poisson equation,
and evaluate the quality of the error estimates; the results show that the algorithm
gives error indicators close to the optimal value of one. The second example is a
discretization of a weakly symmetric formulation for linear elasticity. This discretiza-
tion involves a nontrivial finite element space, namely, a mixed finite element space
consisting of multiple Brezzi–Douglas–Marini elements, and multiple discontinuous
and continuous elements. As far as the authors are aware, this is the first demon-
stration of goal-oriented error control for the discretization presented. The results
show that the algorithm produces error estimates of optimal quality also for this far
more complicated case. Finally, we consider a nonlinear, nonsmooth example of wide-
spread use: a mixed discretization of the incompressible Navier–Stokes equations and
evaluate both the quality of the error estimates and the performance of the adaptive
algorithm.

8.1. The Poisson equation. We begin by considering the Poisson equation:

−∆u = f in Ω, (8.1a)

u = 0 on ∂ΩD, (8.1b)

∂nu = g on ∂ΩN . (8.1c)
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The standard variational formulation of (8.1) fits the framework of Section 3 with
V = V̂ = H1

0,∂ΩD
(Ω) and

a(u, v) = 〈gradu, grad v〉, (8.2a)

L(v) = 〈f, v〉+ 〈g, v〉∂ΩN
. (8.2b)

We consider the discretization of (8.2) using the space of continuous piecewise linear
polynomials that satisfy the essential boundary condition for Vh = V̂h.

As a test case, we consider a three-dimensional L-shaped domain,

Ω = ((−1, 1)× (−1, 1) \ (−1, 0)× (−1, 0))× (−1, 0),

with Dirichlet boundary ∂ΩD = {(x, y, z) : x = 1 or y = 1} and Neumann boundary
∂ΩN = ∂Ω \ ∂ΩD. Let f(x, y, z) = −2(x − 1) and let g = G · n with G(x, y, z) =(
(y − 1)2, 2(x− 1)(y − 1), 0

)
. The exact solution is then given by

u(x, y, z) = (x− 1)(y − 1)2. (8.3)

As a goal functional, we take the average value of the solution on the left boundary
Γ = {(x, y, z) : x = −1}; that is,

M(u) =

∫
Γ

uds. (8.4)

It follows that the exact value of the goal functional is M(u) = −2/3.
Figure 8.1 shows errors η, error estimates ηh, the sum of the error indicators∑

T ηT , and efficiency indices ηh/η and
∑
T ηT /η for a series of adaptively (and auto-

matically) refined meshes. We first note that the error estimate ηh is very close to the
error η. On the coarsest mesh, the efficiency index is ηh/η ≈ 0.89 and as the mesh
is refined, the efficiency index quickly approaches ηh/η ≈ 1. We further note that
the sum of the error indicators tends to overestimate the error, but only by a small
constant factor. This demonstrates that the automatically computed error indicators
are good indicators for refinement. We emphasize that since the error indicators are
not used as a stopping criterion for the adaptive refinement, it is not important that
they sum up to the error.

8.2. Weakly symmetric linear elasticity. As a more challenging test prob-
lem, we consider a three-field formulation for linear isotropic elasticity enforcing the
symmetry of the stress tensor weakly. This gives rise to a mixed formulation that
involves H(div)- and L2-conforming spaces. For a domain Ω ⊂ R2, the unknowns
are the stress tensor σ ∈ H(div,Ω;R2×2), the displacement u ∈ L2(Ω;R2), and the
rotation γ ∈ L2(Ω). The bilinear and linear forms read

a((σ, u, γ), (τ, v, η)) = 〈Aσ, τ〉+ 〈div σ, v〉+ 〈u,div τ〉+ 〈σ, η〉+ 〈γ, τ〉, (8.5a)

L((τ, v, η)) = 〈g, v〉+ 〈u0, τ · n〉∂Ω. (8.5b)

Here, g is a given body force, u0 is a prescribed boundary displacement field, and
A is the compliance tensor. For isotropic, homogeneous elastic materials with shear
modulus µ and stiffness λ, the action of A reduces to

Aσ =
1

2µ

(
σ − λ

2(µ+ λ)
(tr σ)I

)
. (8.6)



AUTOMATED GOAL-ORIENTED ERROR CONTROL I 15

(a) Errors

(b) Efficiency indices

Fig. 8.1. Errors, error estimates, and summed error indicators (top) and efficiency indices
(bottom) versus the number of degrees of freedom N for adaptively refined meshes for the Poisson
problem. Note the excellent agreement between the error η (dashed black curve) and the error
estimate ηh (solid red curve), as well as the convergence of the efficiency index ηh/η towards 1.

We consider the discretization of these equations by a mixed finite element space
Vh = V̂h consisting of the tensor fields composed of two first-order Brezzi–Douglas–
Marini elements for the stress tensor, piecewise constant vector fields for the displace-
ment, and continuous piecewise linears for the rotation [15, 16].

We consider the domain Ω = (0, 1) × (0, 1) and the exact solution u(x, y) =
(xy sin(πy), 0) for µ = 1 and λ = 100, and insert

g = divA−1ε(u) =

(
πµ(2x cos(πy)− πxy sin(πy))

µ(πy cos(πy) + sin(πy)) + λ(πy cos(πy) + sin(πy))

)
.

As a goal functional, we take a weighted measure of the average shear stress on the
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right boundary,

M((σ, u, γ)) =

∫
Γ

σ · n · (ψ, 0) ds ≈ −0.06029761071,

where Γ = {(x, y) : x = 1} and ψ = y(y − 1).
The resulting errors, error estimates, error indicators, and efficiency indices are

plotted in Figure 8.2. Again, we note that the error estimate ηh is very close to
the actual error η. We also note the good performance of the error indicators that
overestimate the error by around a factor of 2−4. This is remarkable, considering that
that the error estimate and error indicators are derived automatically for a non-trivial
mixed formulation and involve automatic extrapolation of the dual solution from a
mixed [BDM1]2 ×DG0 × P1 space to a mixed [BDM2]2 ×DG1 × P2 space. As far as
the authors are aware, this is the first demonstration of goal-oriented error control for
this discretization of the formulation (8.5).

8.3. The stationary incompressible Navier–Stokes equations. Finally,
we consider a stationary pressure-driven Navier–Stokes flow in a two-dimensional
channel with an obstacle. We let Ω = ΩC\ΩO, where ΩC = (0, 4) × (0, 1) and
ΩO = (1.4, 1.6)× (0, 0.5). We let ΩN = {(x, y) ∈ ∂Ω, x = 0 or x = 4} denote the Neu-
mann (inflow/outflow) boundary and let ΩD = Ω \ ΩN denote the Dirichlet (no-slip)
boundary.

We consider the following nonlinear variational problem for the solution of the
stationary incompressible Navier–Stokes equations: find (u, p) ∈ V such that

F ((u, p); (v, q)) = 0

for all (v, q) ∈ V̂ , where

F ((u, p); (v, q)) = ν〈gradu, grad v〉+ 〈gradu ·u, v〉−〈p,div v〉+ 〈div u, q〉+ 〈p̄n, v〉∂ΩN
.

Here, p̄ is a given boundary condition at the inflow/outflow boundary.
The trial and test spaces are given by V = V̂ = H1

0,∂ΩD
(Ω;R2) × L2(Ω). We let

the (kinematic) viscosity be ν = 0.02 and take p̄ = 1 at x = 0 (inflow) and p̄ = 0 at
x = 4 (outflow). The quantity of interest is the outflux at x = 4,

M(u, p) =

∫
x=4

u · nds ≈ 0.40863917.

The system is discretized using a Taylor–Hood elements; that is, the velocity space is
discretized using continuous piecewise quadratic vector fields and the pressure space
is discretized using continuous piecewise linears. The nonlinear system is solved using
a standard Newton iteration.

The results for this case are shown in Figure 8.3. As seen in this figure, the error
estimate is not as accurate as for the two previous test cases. The efficiency index os-
cillates in the range 0.2−1.0. This is not surprising, considering that (i) a linearization
error is introduced when linearizing the dual problem around the computed approxi-
mate solution uh, rather than computing the average (6.3), and (ii) both the primal
and dual problems exhibit singularities at the reentrant corners making the higher-
order extrapolation procedure suboptimal for approximating the exact dual solution.
Still, we obtain reasonably good error estimates and error indicators. Furthermore,
the adaptive algorithm performs very well when comparing the convergence obtained
with the adaptively refined sequence of meshes to that of uniform refinement, cf. Fig-
ure 8.4. The final mesh is shown in Figure 8.5, and we note that it is heavily refined
in the vicinity of the reentrant corners.
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(a) Errors

(b) Efficiency indices

Fig. 8.2. Errors, error estimates, and summed error indicators (top) and efficiency indices
(bottom) versus the number of degrees of freedom N for adaptively refined meshes for the mixed
elasticity problem. Note the excellent agreement between the error η (dashed black curve) and the
error estimate ηh (solid red curve), as well as the convergence of the efficiency index ηh/η towards 1.

9. Conclusions. We have demonstrated a new strategy for automated, adaptive
solution of finite element variational problems. The strategy is implemented and freely
available as part of the DOLFIN finite element library [29]; accessible both through
the Python and C++ interfaces.

The strategy and its implementation are currently limited to stationary nonlinear
variational problems. Another limitation is the restriction to conforming finite element
discretizations. These are both issues that we plan to consider in future extensions
of this work. Additionally, we have assumed that the dual problem is well-posed.
This assumption may fail in cases where the primal problem has been stabilized by
the introduction of additional terms; the adjoint (linearized) dual problem is then not
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(a) Errors

(b) Efficiency indices

Fig. 8.3. Errors, error estimates, and summed error indicators (top) and efficiency indices (bot-
tom) versus the number of degrees of freedom N for adaptively refined meshes for the Navier–Stokes
problem. This is a detail of the full convergence plot shown in Figure 8.4, where the convergence of
the adaptive algorithm is contrasted to the convergence obtained with uniform refinement.

necessarily well-posed. Automated error control for such formulations is an interesting
topic for further research, but is beyond the scope of the present work.

Although the implementation has been tested on a number of model problems
with convincing results, the effect of the linearization error (approximating u ≈ uh
in (6.3)) is unknown. As a consequence, the computed error estimates typically un-
derestimate the error for nonlinear problems. The effect of the linearization error and
its proper treatment remains an open (and fundamental) question. Also, the extrap-
olation algorithm proposed and numerically tested here should be examined from a
theoretical viewpoint.

We remark that the techniques described in this paper could also be used for
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Fig. 8.4. Convergence for adaptively and uniformly refined meshes for the Navier–Stokes prob-
lem. Adaptive refinement outperforms uniform refinement by 1–2 orders of magnitude.

Fig. 8.5. Final mesh for the Navier–Stokes problem.

norm-based error estimation. A posteriori error estimates for energy or other Sobolev
norms typically rely on computing appropriately weighted norms of cell and averaged
facet residuals. Hence, the strategy described here provides a starting-point for the
automatic generation of norm-based error estimators.
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[33] S. Richling, E. Meinköhn, N. Kryzhevoi, and G. Kanschat, Radiative transfer with finite
elements, Astronomy and Astrophysics, 380 (2001), pp. 776–788.

[34] M. E. Rognes and A. Logg, Efficient implementation of automated goal-oriented error control
for stationary variational problems, (2012). In preparation.

[35] R. Sandboge, Adaptive finite element methods for systems of reaction-diffusion equations,



AUTOMATED GOAL-ORIENTED ERROR CONTROL I 21

Computer Methods in Applied Mechanics and Engineering, 166 (1998), pp. 309–328.
[36] , Adaptive finite element methods for reactive compressible flow, Mathematical Models

and Methods in Applied Sciences, 9 (1999), pp. 211–242.
[37] R. Verfürth, A posteriori error estimators for the Stokes equations, Numerische Mathematik,

55 (1989), pp. 309–325.
[38] , A review of a posteriori error estimation techniques for elasticity problems, Computer

Methods in Applied Mechanics and Engineering, 176 (1999), p. 419440.
[39] A. Wahlberg, Evaluation and comparison of Duality-Based a posteriori error estimates, Mas-

ter’s thesis, Lund University, Technical Faculty, 2009.


