
MODEL REDUCTION WITH MAPREDUCE-ENABLED TALL AND
SKINNY SINGULAR VALUE DECOMPOSITION

PAUL G. CONSTANTINE∗, DAVID F. GLEICH† , YANGYANG HOU‡ , AND

JEREMY TEMPLETON§

Abstract. We present a method for computing reduced-order models of parameterized partial
differential equation solutions. The key analytical tool is the singular value expansion of the parame-
terized solution, which we approximate with a singular value decomposition of a parameter snapshot
matrix. To evaluate the reduced-order model at a new parameter, we interpolate a subset of the right
singular vectors to generate the reduced-order model’s coefficients. We employ a novel method to
select this subset that uses the parameter gradient of the right singular vectors to split the terms in
the expansion yielding a mean prediction and a prediction covariance—similar to a Gaussian process
approximation. The covariance serves as a confidence measure for the reduce order model.

We demonstrate the efficacy of the reduced-order model using a parameter study of heat transfer
in random media. The high-fidelity simulations produce more than 4TB of data; we compute the sin-
gular value decomposition and evaluate the reduced-order model using scalable MapReduce/Hadoop
implementations. We compare the accuracy of our method with a scalar response surface on a set of
temperature profile measurements and find that our model better captures sharp, local features in
the parameter space.

Key words. model reduction, simulation informatics, MapReduce, Hadoop, tall and skinny
SVD

1. Introduction & motivation. High-fidelity simulations of partial differential
equations are typically too expensive for design optimization and uncertainty quantifi-
cation, where many independent runs are necessary. Cheaper reduced-order models
(ROMs) that approximate the map from simulation inputs to quantities of interest
may replace expensive simulations to enable such parameter studies. These ROMs are
constructed with a relatively small set of high-fidelity runs chosen to cover a range of
input parameter values. Each evaluation of the ROM is a linear combination of basis
functions derived from the outputs of the high-fidelity runs; ROM constructions differ
in their choice of basis functions and method for computing the coefficients of the
linear combination. Projection-based methods project the residual of the governing
equations (i.e., a Galerkin projection) to create a relatively small system of equa-
tions for the coefficients; see the recent preprint [4] for a survey of projection-based
techniques. Alternatively, one may derive a closely related optimization problem to
compute the coefficients [9, 10, 14]. These two formulations can provide a measure
of confidence along with the ROM. However, they are often difficult to implement in
existing solvers since they need access to the equation’s operators or residual.

To bypass the implementation difficulties, one may use response surfaces—e.g.,
collocation [3, 32] or Gaussian process regression [29]—which are essentially inter-
polation methods applied to the high-fidelity outputs. They do not need access to
the differential operators or residuals and are therefore relatively easy to implement.
However, measures of confidence are more difficult to formulate and compute. Several

∗Colorado School of Mines Applied Mathematics and Statistics, Golden, Colorado 80401
(paul.constantine@mines.edu).
†Purdue CS, West Lafayette, Indiana 47907 (dgleich@purdue.edu).
‡Purdue CS, West Lafayette, Indiana 47907 (hou13@purdue.edu).
§Sandia National Laboratories, Livermore, California (jatempl@sandia.gov). Sandia National

Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.

1

ar
X

iv
:1

30
6.

46
90

v2
 [

m
at

h.
N

A
]

 1
0

O
ct

 2
01

3

2 P. G. CONSTANTINE, D. F. GLEICH, Y. HOU, AND J. TEMPLETON

works have explored using interpolation instead of projection or optimization to com-
pute the ROM coefficients. This approach is justified when the governing equations
are unknown or only a set of PDE solutions are available [24]. It is also useful when
nonlinearities in the governing equations prohibit a theoretically sound Galerkin pro-
jection [1, 2]. For these reasons, it has been applied to several problems in aerospace
engineering [8, 22, 17, 27].

In this paper, we extend these ideas by equipping an interpolation-based ROM
with a novel parameter-dependent confidence measure. We first view the ROM from
the perspective of the singular value expansion (SVE) of the parameterized PDE solu-
tion, where the left singular functions depend on space and time, and the right singular
functions depend on the input parameters. We approximate these functions with the
components of a singular value decomposition (SVD) of a tall, dense matrix of solu-
tions computed at a set of input parameter values, i.e., parameter snapshots. Many
reduced basis methods use the left singular vectors of the snapshot matrix for the
ROM basis, where each snapshot represents a spatially varying solution. In contrast,
each column of our snapshot matrix contains the full spatio-temporal solution for a
given parameter. We have observed interesting behavior in the right singular vectors
in several applications: as the index of the singular vector increases, its components—
when viewed as evaluations of a parameter-dependent function—become more oscil-
latory. This is consistent with the common use of the phrase “higher order modes”
to describe the singular vectors with large indices. More importantly, the rate that
the singular vectors become oscillatory depends on the parameter. In particular, the
singular vectors become oscillatory faster in regions of the parameter space where the
PDE solution changes rapidly with small parameter perturbations.

We exploit this observation to devise a heuristic for choosing the subset of the left
singular vectors comprising ROM; instead of selecting all left singular vectors whose
corresponding singular value is above a chosen threshold, we examine the gradients
of the right singular vectors at the parameter value where we wish to evaluate the
ROM. After some critical index, the right singular vectors are too irregular to safely
interpolate. For each ROM evaluation, the right singular vectors are divided into two
categories: (i) those that are sufficiently smooth for interpolation, and (ii) those that
oscillate too rapidly. The first category identifies the left singular vectors used in
the ROM, and the coefficients are computed with interpolation. The remaining left
singular vectors are used to compute a measure of confidence similar to the prediction
variance in Gaussian process regression. The number of left singular vectors in each
category may be different for different ROM evaluations depending on the irregularity
of the right singular vectors at the interpolation point; we explore this in the numerical
examples. The heuristics we employ to categorize the right singular vectors are based
on the work of Hansen in the context of ill-posed inverse problems [19]. We describe
the ROM methodology in Section 2.

In Section 4, we demonstrate the ROM and its confidence measure with a param-
eter study of heat transfer in random media. A brick is heated on one side, and we
measure how much heat transfers to the opposite side given the parameterized ther-
mal conductivity of the material. The high-fidelity simulations use Sandia National
Laboratories’ finite element production code Aria [26] on its capacity cluster with
a mesh containing 4.2M elements. The study uses 8192 simulations, which produce
approximately 4 terabytes of data. We study the effectiveness of the reduced-order
model and compare its predictions with a response surface on two relevant scalar
quantities of interest computed from the full temperature distribution.

MAPREDUCE-ENABLED MODEL REDUCTION 3

Given the data-intensive computing requirements of this and similar applications,
we have chosen to implement the ROM in the popular Hadoop distribution [12] of
MapReduce [15]. By expressing each step of the ROM construction in the MapRe-
duce framework, we take advantage of its built-in parallelism and fault tolerance.
MapReduce’s scalability enables us to compute the SVD of a snapshot matrix with 64
columns and roughly five billion rows—approximately 2.3 terabytes of data—without
the custom hard disk I/O that would be necessary to use standard parallel routines
such as Scalapack [7]. The algorithm we use for the SVD in MapReduce is based
on the communication-avoiding QR decomposition [16] as described in our previous
work [13]. We present the implementation of the ROM in Section 3.

2. A reduced-order modeling approach. Let f = f(x, s) be the solution of
a partial differential equation (PDE), where x ∈ X ⊂ R4 are the space and time co-
ordinates (three spatial dimensions and a temporal dimension), and s ∈ S ⊂ R is an
input parameter. We restrict our attention to models with a single scalar parameter
to keep the presentation simple. The ROM employs both interpolation and approxi-
mations of derivatives in the parameter space S. While these operations are possible
with more than one parameter, challenges arise in higher dimensions—e.g., the choice
of interpolation nodes and the accuracy of derivatives—that we will avoid. If one is
willing to address the difficulties of interpolation and approximating derivatives in
multiple dimensions, then our approach can be extended.

The interpretation of f as the solution of a PDE is important for two reasons.
First, the solution of many PDE models can be shown to be a smooth function
of both the space/time variables and the parameter, and we restrict our attention
to sufficiently smooth solutions. Second, computational tools will compute f at all
values of x given an input s. In other words, we cannot evaluate f at a specific x
without evaluating it for every x. We will not discuss refinement of the ROM—i.e.,
which parameter values to run a new set of high-fidelity runs to best improve an initial
ROM—but our heuristic offers a natural criterion for such a selection. We assume that
computing f(x, s) for a particular s is computationally expensive. We want to use
the outputs from a few expensive computations at a chosen set of input parameters to
approximate f(x, s) at some other s in a manner that is less computationally expensive
than solving the differential equation.

We assume that f is continuous and square-integrable (
∫
X
∫
S f

2 ds dx < ∞).
In practice, the techniques we use will perform better if f is smooth, e.g., admits
continuous derivatives up to some order. Since f is continuous, it admits a uniformly
convergent series representation known as the singular value expansion (SVE); see [18]
for more details on the SVE:

f(x, s) =

∞∑
k=1

µk uk(x) vk(s). (2.1)

The singular functions uk(x) and vk(s) are continuous and orthonormal,∫
X
uk1 uk2 dx =

∫
S
vk1 vk2 ds = δk1,k2 . (2.2)

The singular values are positive and ordered in decreasing order,

µ1 ≥ µ2 ≥ · · · ≥ 0. (2.3)

4 P. G. CONSTANTINE, D. F. GLEICH, Y. HOU, AND J. TEMPLETON

Hansen discusses methods for approximating the factors of the SVE using the singular
value decomposition. We will employ his construction [18, Section 5], which ultimately
uses point evaluations of the function f to construct a matrix suited for the SVD.

Let x1, . . . , xM with xi ∈ X be the points of a discretization of the spatio-temporal
domain. A run of the PDE solver produces an approximate solution at these points in
the domain for a given input s. We assume that the spatio-temporal discretization is
sufficient to produce an accurate approximation of the PDE solution for all values of s;
in practice, such an assumption should be verified. Let s1, . . . , sN with sj ∈ S be a set
of input parameters where the approximate PDE solution will be computed; we call
these the training runs. The number N is the budget of simulations, and we expect
that N �M for most cases. In other words, we assume that the number of nodes in
the spatio-temporal discretization is much larger than the budget of simulations.

From these approximate solutions, we construct the tall, dense matrix

F =

 f(x1, s1) · · · f(x1, sN)
...

. . .
...

f(xM , s1) · · · f(xM , sN)

 . (2.4)

Next we compute the thin SVD,

F = UΣV T , Σ = diag (σ1, . . . , σN), (2.5)

where, following [18], we treat σk ≈ µk and

U ≈

 u1(x1) · · · uN (x1)
...

. . .
...

u1(xM) · · · uN (xM)

 , V ≈

 v1(s1) · · · vN (s1)
...

. . .
...

v1(sN) · · · vN (sN)

 (2.6)

In other words, we treat the entries of the left and right singular vectors as evaluations
of the singular functions at the points xi and sj , respectively.

2.1. Oscillations in the singular vectors. We will leverage the work of Hansen
[20, 19] on computational methods for linear, ill-posed inverse problems to develop
the heuristics for the ROM. He observed that, for a broad class of integral equation
kernels found in practice, the singular functions become more oscillatory (i.e., cross
zero more frequently) as the index k increases. Rigorous proofs of this observation
are available for some special cases. However, it is easy to construct kernels whose
singular functions do not behave this way. For example, take a kernel whose singular
functions become more oscillatory with increasing k and shuffle the singular functions.
Such counterexamples offer evidence that a general statement is difficult to formulate.

We have observed similar phenomena for functions f = f(x, s) coming from pa-
rameterized partial differential equations. This observation is corroborated by many
studies in coherent structures based on the closely related proper orthogonal decom-
position [23]. Additionally, we have observed that these oscillations may not increase
uniformly over the parameter domain. In particular, the rate of increasing oscilla-
tions may be greater in regions of the parameter space where f has large parameter
gradients; we provide two illustrative examples below.

The components of the singular vectors inherit the observed oscillating behavior
of the singular functions. In particular, the oscillations increase as the index k in-
creases, and they increase more rapidly in regions corresponding to large differences
in the elements of the data matrix F . These rapid oscillations manifest as an increase

MAPREDUCE-ENABLED MODEL REDUCTION 5

with k in the magnitude of the difference between entries of the singular vectors corre-
sponding to evaluations of the singular functions that are nearby in parameter space.
For example, the difference between V j,k+1 ≈ vk+1(sj) and V j′,k+1 ≈ vk+1(sj′) with
sj neighboring sj′ will be greater than the difference between V j,k ≈ vk(sj) and
V j′,k ≈ vk(sj′). (Note that when the model contains more than one parameter,
the notion of neighboring becomes more complicated.) However, since there is finite
resolution in the parameter space, there is typically some k after which the discretiza-
tion is insufficient to represent the oscillations, and this pattern breaks down. The
phenomenon is similar to approximating a sequence of sine waves with increasing fre-
quency using the same grid. We formalize this notion in the following assumption.

Assumption 1. Let S = [s1, sN] be a closed interval with a discretization si =
s1 + (i − 1)∆s, where ∆s = (sN − s1)/(N − 1), and let V be defined as in (2.6).
There is an R = Ri ≤ N such that the sequence of difference magnitudes between
neighboring right singular vector entries will increase for k from 1 to R, i.e.,

|V i+1,k+1 − V i,k+1| > |V i+1,k − V i,k|. (2.7)

For k > R, the relationship becomes unpredictable due to the finite resolution in the
parameter space S.

Note our restriction to a single parameter and a uniform discretization of the
parameter space. These restrictions can be relaxed with appropriate discretizations of
a multivariate space. We will use Assumption 1 to justify a heuristic that distinguishes
between singular functions that can be resolved and those that cannot given the
discretization.

Next we give two concrete examples of the observed behavior in the right singular
vectors. The first is a steady state advection-diffusion type boundary value problem,

df

dx
+ s

d2f

dx2
= −1, x ∈ [−10, 10], s ∈ [2, 20], (2.8)

with homogeneous boundary conditions. The solution is given by

f(x, s) =
exp(20s−1)(x− 10) + 20 exp(s−1(10− x))− x− 10

1− exp(20s−1)
(2.9)

The parameter s represents the ratio of diffusion to advection. Figure 2.1 shows the
results the SVD approximation to the SVE factors for a overresolved model (1999
points in the discretization of the parameter space) and an underresolved model (15
points in the parameter space). Observe how the first seven singular functions scaled
by their respective singular values become oscillatory at different rates in different
regions of the parameter space. In particular, the singular functions oscillate more
rapidly in regions of the parameter space corresponding to more advection. Also note
how the underresolved approximations deviate from the overresolved approximations
in regions of high oscillations.

The second example is another second order boundary value problem with spa-
tially varying coefficients,

− d

dx

(
a
df

dx

)
= 1, x ∈ [0, 1], (2.10)

with homogeneous boundary condtions, and

a = a(x, s) = 1 + 4s(x2 − x), s ∈ [0.1, 0.9], (2.11)

6 P. G. CONSTANTINE, D. F. GLEICH, Y. HOU, AND J. TEMPLETON

(a) Surface

2 4 6 8 10 12 14 16
10

−20

10
−15

10
−10

10
−5

10
0

(b) Singular values

5 10 15 20
50

100

150

200

250

300

350

400

(c) σ1v1(s)

5 10 15 20
−40

−20

0

20

40

60

80

(d) σ2v2(s)

5 10 15 20
−6

−4

−2

0

2

4

6

8

10

12

(e) σ3v3(s)

5 10 15 20
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(f) σ4v4(s)

5 10 15 20
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(g) σ5v5(s)

5 10 15 20
−6

−4

−2

0

2

4

6

8

10

12
x 10

−3

(h) σ6v6(s)

5 10 15 20
−4

−2

0

2

4

6

8

10
x 10

−4

(i) σ7v7(s)

Fig. 2.1: The top left figure shows the solution f(x, s) to the advection-diffusion
equation (2.8). The figure to its right shows the singular values of a finely resolved
F with 1999 columns (blue x’s) and a coarsely resolved F with 15 columns (red o’s).
Each are scaled by the maximum singular value from each set. The remaining figures
show the approximations of the singular functions v1(s) through v7(s) scaled by the
respective singular values for F with 1999 columns (blue lines) and 15 columns (red
o’s). (Colors are visible in the electronic version.)

The solution is

f(x, s) = − 1

8s
log
(
1 + 4s(x2 − x)

)
, (2.12)

which is plotted in the top left of Figure 2.2. Outside the domain, f has a singu-
larity at (x = 0.5, s = 1), which causes f to grow rapidly along the line x = 0.5

MAPREDUCE-ENABLED MODEL REDUCTION 7

near the boundary s = 0.9. This local feature of the solution results in more rapid
oscillations of the singular functions vk(s) near the boundary s = 0.9. The first seven
singular functions, scaled by the singular values, are plotted in Figure 2.2. The rapid
oscillations near the parameter boundary s = 0.9 are clearly visible. In those same
figures, we plot the components of the corresponding singular vectors, scaled by the
singular values, for a data matrix F with columns computed at eleven equally spaced
parameter values in the interval [0.1, 0.9]. Notice how the components of the singular
vectors deviate from the singular functions as k increases, particularly in the regions
of rapid oscillations.

In the next sections, we will exploit the observation of non-uniformly increasing
oscillations in the right singular vectors to devise a heuristic for the ROM.

2.2. Constructing the reduced-order model. Recall that the goal is to ap-
proximate f(x, s) for some input s that was not used to compute a training run. We
can use the existence of the SVE to justify the following approach. Since we treat the
components of the right singular vectors V as evaluations of the singular functions
vk(s), we can interpolate between the singular vector components to approximate the
singular functions at new values of s. More precisely, define

ṽk(s) = I(s; vk(s1), . . . , vk(sN)) (2.13)

where I is an interpolation operator that takes a value of s and the components of
the singular vector as arguments. The form of the interpolant may depend on the
selection of the points sj . For example, if these points are the Chebyshev points or the
nodes of a Gaussian quadrature rule, then high order global polynomial interpolation
is possible. If the points are uniformly spaced, then one may use piecewise polynomials
or radial basis functions.

Unfortunately, the increasingly oscillatory character of the functions vk(s) as k
increases combined with the fixed discretization sj causes concern for any chosen
interpolation procedure as k approaches N . In other words, the smoothness of vk(s)
decreases as k increases, which diminishes confidence in the interpolation accuracy.
Therefore, we seek to divide the right singular vectors into two groups: those that
are smooth enough to accurately interpolate and those that are not. Specifically,
we seek an R = R(s) with R ≤ N such that for k ≤ R we have confidence in the
accuracy of the interpolant ṽk(s). We treat the remaining interpolations with k > R
as unpredictable, and we model them with a random variable. We will discuss the
choice of R in the next section.

Given R, we model the PDE output at the space-time coordinate xi for the new
parameter value s as

f̃(xi, s) =

R∑
k=1

σk uk(xi) ṽk(s) +

N∑
k=R+1

σk uk(xi) ηk−R, (2.14)

where ηk are uncorrelated random variables with mean zero and variance one; these
represent the uncertainty in the interpolation procedure for increasingly oscillatory
functions. Under this construction, the vector of values f(xi, s) is a random vector

8 P. G. CONSTANTINE, D. F. GLEICH, Y. HOU, AND J. TEMPLETON

(a) Surface

2 4 6 8 10 12 14 16
10

−15

10
−10

10
−5

10
0

(b) Singular values

0.2 0.4 0.6 0.8
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

(c) σ1v1(s)

0.2 0.4 0.6 0.8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

(d) σ2v2(s)

0.2 0.4 0.6 0.8
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

(e) σ3v3(s)

0.2 0.4 0.6 0.8
−0.015

−0.01

−0.005

0

0.005

0.01

(f) σ4v4(s)

0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

1

1.5

2
x 10

−3

(g) σ5v5(s)

0.2 0.4 0.6 0.8
−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

−4

(h) σ6v6(s)

0.2 0.4 0.6 0.8
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−5

(i) σ7v7(s)

Fig. 2.2: The top left figure shows the solution f(x, s) to the boundary value problem
(2.10). The figure to its right shows the singular values of a finely resolved F with
1999 columns (blue x’s) and a coarsely resolved F with 11 columns (red o’s). Each are
scaled by the maximum singular value from each set. The remaining figures show the
approximations of the singular functions v1(s) through v7(s) scaled by the respective
singular values for F with 1999 columns (blue lines) and 11 columns (red o’s). (Colors
are visible in the electronic version.)

with mean and covariance,

E
[
f̃(xi, s)

]
=

R∑
k=1

σk uk(xi) ṽk(s),

Cov
[
f̃(xi, s), f̃(xj , s)

]
=

N∑
k=R+1

σ2
k uk(xi)uk(xj).

(2.15)

MAPREDUCE-ENABLED MODEL REDUCTION 9

The reduced-order model we propose is the mean of this random vector,

f(xi, s) ≈ E
[
f̃(xi, s)

]
. (2.16)

The diagonal components of the covariance matrix provide a measure of confidence for
the reduced-order model at each xi similar to the predication variance of a Gaussian
process regression model [29].

Next we show the reduced-order model is equivalent to applying the interpolation
procedure independently to the rows of a low rank approximation of the matrix F .
To set up the notation, partition

U =
[
U1 U2

]
, Σ =

[
Σ1

Σ2

]
, V =

[
V 1 V 2

]
, (2.17)

where U1, Σ1, and V 1 contain R columns. Then

F = UΣV T

= U1Σ1V
T
1 + U2Σ2V

T
2

= F 1 + F 2

=

 f
(1)(x1, s1) · · · f (1)(x1, sN)

...
. . .

...
f (1)(xM , s1) · · · f (1)(xM , sN)

+

 f
(2)(x1, s1) · · · f (2)(x1, sN)

...
. . .

...
f (2)(xM , s1) · · · f (2)(xM , sN)

 .
(2.18)

Then we have the following proposition.

Proposition 1. If I from (2.13) is a linear operation, then

E
[
f̃(xi, s)

]
= I

(
s; f (1)(xi, s1), . . . , f (1)(xi, sN)

)
,

Cov
[
f̃(xi, s), f̃(xj , s)

]
=

N∑
k=R+1

f (2)(xi, sk) f (2)(xj , sk).
(2.19)

Proof. For a function g = g(s) with evaluations g(sj) the linear interpolation can
be written

I(s; g(s1), . . . , g(sN)) =

N∑
j=1

wj g(sj) (2.20)

10 P. G. CONSTANTINE, D. F. GLEICH, Y. HOU, AND J. TEMPLETON

for some set of weights wj = wj(s). Then,

E
[
f̃(xi, s)

]
=

R∑
k=1

σk uk(xi) ṽk(s)

=

R∑
k=1

σk uk(xi)

 N∑
j=1

wj vk(sj)

=

N∑
j=1

wj

(
R∑
k=1

σk uk(xi) vk(sj)

)

=

N∑
j=1

wj f
(1)(xi, sj)

= I
(
s; f (1)(xi, s1), . . . , f (1)(xi, sN)

)
,

(2.21)

as required. The covariance expression is easily proved using the linear algebra nota-

tion. Define the N ×N matrix Cij = Cov
[
f̃(xi, s), f̃(xj , s)

]
. Then by the orthogo-

nality of the columns of V 2,

C = U2Σ
2
2U

T
2 = U2Σ2V

T
2 V 2Σ

T
2 U

T
2 = F 2F

T
2 . (2.22)

as required.

2.3. Choosing R. We must still choose R that determines the split between
smooth and non-smooth singular vectors. We will exploit the observation of the
oscillating singular vectors from Section 2.1 and make use of Assumption 1. We
define the following variation metric,

τ(r, s) =

r∑
k=1

∣∣∣∣V j+1,k − V j,k

∆s

∣∣∣∣ , for sj ≤ s < sj+1. (2.23)

By Assumption 1, τ is an increasing function of r up to some R = R(s). Loosely,
if τ is too large, then we have entered the range of k where interpolations of vk(sj)
are not to be trusted. We will quantify this with a threshold τ̄ . Given τ̄ , we choose
R = R(s, τ̄) to be the largest r such that τ(r, s) ≤ τ̄ .

To determine the appropriate threshold τ̄ , we use a set of PDE evaluations f` =
f(x, s`) with ` = 1, . . . , L for testing, where s` is not in the training set (i.e., s` 6= sj
for any ` or j). We choose a set of candidate thresholds τ̄m. For each testing models
and each candidate threshold, we compute the relative error

E(s`, τ̄m) =

 M∑
i=1

(
f(xi, s`)−

R∑
k=1

σk uk(xi) ṽk(s`)

)2/ M∑
i=1

f(xi, s`)
2

1/2

(2.24)

where R = R(s`, τ̄m). These errors can be visualized, and the final threshold is chosen
so that the error in the testing set is relatively small.

We demonstrate this process using the boundary value problem from (2.10). The
training models consist of solutions computed at eleven equally spaced values of the
parameter s in the range [0.1, 0.9]. We compute a test model at the midpoint of each

MAPREDUCE-ENABLED MODEL REDUCTION 11

τ̄

s

10 20 30 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

Fig. 2.3: The log of the relative error in
the mean prediction of the ROM as a func-
tion of s and τ̄ . (Colors are visible in the
electronic version.)

s R(s, τ̄) E(s, τ̄)
0.0545 4 0.0006
0.1435 5 0.0007
0.2325 6 0.0008
0.3215 6 0.0010
0.4105 5 0.0013
0.4995 6 0.0017
0.5885 4 0.0023
0.6775 5 0.0034
0.7665 3 0.0059
0.8555 2 0.0129

Table 2.1: The split and the correspond-
ing ROM error for τ̄ = 6.84 and different
values of s.

interval [sj , sj+1], where sj was used to compute the training models. The range
of the variation metric τ from (2.23) for these testing sites is roughly 0.1 to 42.8.
We choose 20 candidate thresholds τ̄m in this range and compute the error in the
reduced-order model at the testing sites (see (2.24)) for each candidate threshold.
These errors are displayed in Figure 2.3. We want to choose the split R such that
the ROM uses the fewest left singular vectors with the maximal accuracy; using fewer
singular vectors reduces the computational work and produces a simpler model. The
errors in Figure 2.3 show that the reduced-order model is as accurate as possible for
each testing site after the fourth candidate threshold, which is roughly τ̄ = 6.84. For
this threshold, Table 2.1 displays the split R between the right singular vectors that
admit an accurate interpolant and those that are modeled with a random variable for
each of the testing sites. Notice that the number of smooth right singular vectors is
smaller for testing sites near the boundary s = 0.9 of the parameter domain, which is
precisely what we would have expected.

We can compare the splitting strategy based on R = R(s) with a standard trun-
cation strategy based on the magnitudes of the singular values of F . The mean of the
random vector (2.16) is equivalent to interpolating a truncated SVD approximation
of the data matrix F , as shown in Proposition 1. However, the magnitudes of the
singular values provide no insight into the uncertainty in the interpolation procedure.
Our splitting strategy chooses a different truncation for the mean (2.16) for each s
based on the capability of the interpolation procedure to accurately approximate the
right singular functions vk(s) at the point s. The singular values that are not in the
mean contribute to the covariance-based confidence measure from (2.15). A global
truncation based on the singular values would create the same prediction variance for
every s, and it would always be on the order of the largest truncated singular value.
In other words, it provides no information on how the confidence in the prediction
changes as s varies.

3. Implementation in Hadoop. Constructing the ROM for highly resolved
simulations (i.e., large M) requires significant data processing. We have implemented
the construction in the MapReduce framework, which enables us to take advantage
of Hadoop for large-scale distributed data processing. To construct the reduced-order

12 P. G. CONSTANTINE, D. F. GLEICH, Y. HOU, AND J. TEMPLETON

model, the outputs from the high-fidelity simulations are sent to and stored in the
Hadoop cluster. Our implementation then proceeds in three steps:

1. Create the tall-and-skinny matrix F from the simulation data.
2. Compute the singular value decomposition of F .
3. Generate the coefficients of the reduced-order model and evaluate solutions

from the ROM.

In what follows, we give a very brief overview of the MapReduce framework, and then
we describe each step of the implementation in Hadoop.

3.1. MapReduce/Hadoop. Google devised MapReduce because of the frustra-
tion programmers experienced as they constantly juggled the complexity of developing
distributed, fault-tolerant data computational algorithms [15]. Early data-intensive
computing at Google was a complex mix of ad hoc scripts. Their solution was the
MapReduce computation model: a simple, general interface for a common template
behind their data analysis tasks that hides the details of the parallel implementations
from the programmer. Due to its generality, the MapReduce computation model
has also been an effective paradigm for parallelizing tasks on GPUs [21], multi-core
systems [30], and traditional HPC clusters [28].

The MapReduce model consists of two elements inspired by functional program-
ming: a map operation to transform the input into a key/value pair and a reduce
operation to process information with the same key. The user provides both func-
tions, which cannot have any side effects. A MapReduce implementation executes the
map function on the entire dataset in parallel; see Figure 3.1. A canonical MapRe-
duce dataset is a terabyte-sized text file split into individual lines. In this case, each
map function receives only a few thousand lines from the enormous file, which it pro-
cesses and sends via shuffle to the appropriate reduce function. The shuffle operation
groups map outputs by the key, and the reduce function processes all outputs with
the same key—e.g., counting the number of times a word appears in a large collection
of documents.

Google’s implementation of MapReduce is proprietary. An alternative, open
source implementation named Hadoop has become the industry standard for large-
scale data processing. More information on Hadoop can be found at the Cloudera
website [31]. The Hadoop Distributed File System (HDFS) is a fault-tolerant, repli-
cated, block file system designed to run using inexpensive, consumer grade hard disk
drives on a large set of nodes.

3.2. Assembling the matrix from simulation outputs. The first step in the
construction of the ROM is to reorganize the data into the tall-and-skinny matrix F .
This step is particularly communication intensive as it requires reorganizing the data
from the columns (the natural outputs of the simulations) to rows for the tall-and-
skinny SVD routine. To do this in Hadoop we create a text file where each line is a
path to a file containing the outputs of one simulation stored in HDFS. Then the map
function reads simulation data from HDFS and outputs the data keyed on the row of
matrix F . The reduce function aggregates all the entries in the row and outputs the
realized row. The outcome of this first MapReduce iteration is the matrix F stored
by rows on the distributed file system. More explicit descriptions of the functions are
given in Figure 3.2

From a matrix perspective, each mapper processes a subset of the entries of F .
For example, assume the disjoint index sets Ω1, Ω2, Ω3, and Ω4 contain the indices of

MAPREDUCE-ENABLED MODEL REDUCTION 13

data
Map

data
Map

data
Map

data
Map

key

value

key

value

key

value

key

value

key

value

key

value

()

Shuffle

key

value

value

dataReduce

key

value

value

value

dataReduce

key

value dataReduce

Fig. 3.1: The MapReduce system by Google is inspired by a functional programming
paradigm and consists of three phases: transform data (map), aggregate results (shuf-
fle), and compute and store (reduce). All map and reduce functions are independent,
which allows the system to schedule them in parallel.

Map(key= simulation id, value= empty)

Read simulation data based on the simulation id
Emit each point in a simulation as a record
where the key is the row of the matrix F—
constructed from the spatial location and time
step—and the value contains both the column
id in the matrix—given by the value of the pa-
rameter s—and the value from the simulation
data.

Reduce(key= row id, values={column id, Fij})

Read all of the values, and emit the combined
row as a record where the key is the row id and
the value is the array fTi .

Fig. 3.2: Map and Reduce functions to assemble the matrix F from simulation data.

F . Then the following diagram shows four mappers processing the simulation data:

{Fij | (i, j) ∈ Ω1} −−−→
Map

{(i︸︷︷︸
Key

, j, Fij︸ ︷︷ ︸
Value

) | (i, j) ∈ Ω1}

{Fij | (i, j) ∈ Ω2} −−−→
Map

{(i︸︷︷︸
Key

, j, Fij︸ ︷︷ ︸
Value

) | (i, j) ∈ Ω2}

{Fij | (i, j) ∈ Ω3} −−−→
Map

{(i︸︷︷︸
Key

, j, Fij︸ ︷︷ ︸
Value

) | (i, j) ∈ Ω3}

{Fij | (i, j) ∈ Ω4} −−−→
Map

{(i︸︷︷︸
Key

, j, Fij︸ ︷︷ ︸
Value

) | (i, j) ∈ Ω4}

︸ ︷︷ ︸
Map Stage

(1, {F1,:}) −−−→
Red.

(1, fT1)

(2, {F2,:}) −−−→
Red.

(2, fT2)

...
(m, {Fm,:}) −−−→

Red.
(m, fTm)︸ ︷︷ ︸

Reduce Stage

Hadoop assigns the reducers randomly to nodes of the cluster. If we have four nodes,
then the output from those four reducers will all be stored together,

F =
{
{F 1}, {F 2}, {F 3}, {F 4}

}
.

where each F i is a random subset of rows of the original matrix. Each of these blocks

14 P. G. CONSTANTINE, D. F. GLEICH, Y. HOU, AND J. TEMPLETON

F i also stores the id’s of each row it contains.

3.3. TSQR and SVD in Hadoop. Once we have the matrix F stored by rows
on disk, we compute its tall-and-skinny QR (TSQR) factorization [5]. The basis for the
MapReduce TSQR algorithm is the communication-avoiding QR factorization [16].
The strategy is to divide the tall-and-skinny matrix F into many smaller, tall matrices
to be decomposed independently via the QR factorization. This process is repeated
on the new matrix formed by all the R factors computed in the previous step until
there is only a single R left. This algorithm was shown to have superior numerical
stability to a large Householder-style procedure [25]. The HDFS stores the matrix in
small chunks according to its internal splitting procedure. Each map function reads a
small submatrix and computes a QR factorization. To record the association between
this QR factorization and all other QR factorizations computed in the Map stage, we
create a small tag φ that’s a universally unique identifier. The map function then
writes the Q factor back to disk with this small tag φ. Finally, it outputs the R
factor and the same tag φ with key 0. All map functions output their R factor with
that same key. Because of this, the outputs all go to the same reducer. This single
reducer was not a limitation for our applications, but a recursive procedure in [5]
is possible if the reduce becomes burdensome on a single node. The diagram below
and the description that follows demonstrates the procedure when F is split into four
blocks.

{F 1}
QR−−−→
Map

{(φ1,Q1)}, (0 ,R1, φ1)

{F 2}
QR−−−→
Map

{(φ2,Q2)}, (0 ,R2, φ2)

{F 3}
QR−−−→
Map

{(φ3,Q3)}, (0 ,R3, φ3)

{F 4}
QR−−−→
Map

{(φ4,Q4)}︸ ︷︷ ︸
To Disk

, (0︸︷︷︸
Key

,R4, φ4︸ ︷︷ ︸
Value

)

︸ ︷︷ ︸
Map Stage

(0,

φ1 R1

φ2 R2

φ3 R3

φ4 R4

︸ ︷︷ ︸

Values

)
QR−−→ {R}︸︷︷︸

Disk

,

(φ1,Q1,1)
(φ2,Q2,1)
(φ3,Q3,1)
(φ4,Q4,1)

︸ ︷︷ ︸
Reduce Stage

There are two types of outputs represented in the diagram above: (i) those surrounded
by curly braces {. . .} are written to disk for processing in the future and (ii) those
surrounded by parentheses (. . .) are used in the next stage. The tag φi uniquely
identifies each map function. The output from this first MapReduce job is the matrix
R. The identifiers and factors (φi,Qi,1) are fed to the next MapReduce job that
computes the matrix U of left singular vectors. To form U , we follow the R-SVD
procedure described in [11]. We compute the SVD of the small matrix R = URΣV T

on one node and store Σ and V on disk. With another map and reduce, we distribute
the matrix UR to all tasks and combine it with both the input (φi,Qi) and the stored
output (φi,Qi,1) from the last stage. The shuffle moves all data with the same key to
the same reducer, which uses the tags φi to align the blocks of Qi computed in the
first map stage with those output in the first reduce stage. Then in the reduce, we
read all outputs with the same tag φi and compute the products QiQi,1UR to get

MAPREDUCE-ENABLED MODEL REDUCTION 15

U i. The picture is:

Distribute UR︸ ︷︷ ︸
Launch phase

(φ1,Q1)
Iden.−−−→
Map

(φ1︸ ︷︷ ︸
Key

, Q1︸︷︷︸
Value

)

(φ1,Q1,1)
Iden.−−−→
Map

(φ1︸ ︷︷ ︸
Key

,Q1,1︸︷︷︸
Value

)

...

(φ4,Q4)
Iden.−−−→
Map

(φ1︸ ︷︷ ︸
Key

, Q4︸︷︷︸
Value

)

(φ4,Q4,1)
Iden.−−−→
Map

(φ1︸ ︷︷ ︸
Key

,Q4,1︸︷︷︸
Value

)

︸ ︷︷ ︸
Map Stage

(φ1, {Q1,Q1,1}) −−−→
Red.

{(row ids,Q1Q1,1UR)} = {U1}
(φ2, {Q2,Q2,1}) −−−→

Red.

{(row ids,Q2Q2,1UR)} = {U2}
(φ3, {Q3,Q3,1}) −−−→

Red.

{(row ids,Q3Q3,1UR)} = {U3}
(φ4, {Q4,Q4,1}) −−−→

Red.

{(row ids,Q4Q4,1UR)} = {U4}

This is a numerically stable computation of U in the SVD of F stored in HDFS. For
more details about the map and reduce functions see [5]. The codes for computing
the TSQR and SVD can be found at github.com/arbenson/mrtsqr.

3.4. Evaluating the reduced-order model in MapReduce. Next we de-
scribe the procedure for evaluating the ROM in MapReduce for a given parameter
value s. If one needs to evaluate the ROM at many values of s, this can be done in
parallel with our existing codes.

There are two steps involved in evaluating the ROM. The first step is evaluating
the interpolated function ṽk(s) at s. Since V is small, this step is executed on a single
node. The second step is estimating the ROM prediction and its variance via

E
[
f̃(xi, s)

]
=

R∑
k=1

uk(xi)σk ṽk(s), Var
[
f̃(xi, s)

]
=

N∑
k=R+1

σ2
k uk(xi)

2. (3.1)

Recall that R = R(s) is the splitting of the singular value expansion at the point s
described in 2.3. Further, recall, that the matrix U computed in the SVD of F holds
the coefficients uk(xi). We can evaluate the ROM at all points xi by computing the
matrix-vector product:

f(s) = U(:, 1:R) ṽ(s), (3.2)

where

f(s) =

E
[
f̃(x1, s)

]
...

E
[
f̃(xM , s)

]
 , ṽ(s) =

 σ1ṽ1(s)
...

σRṽR(s)

 . (3.3)

Since the matrices F and U are tall, we can compute such matrix-vector products
in Hadoop by distributing the small vector ṽ to a map function that will compute a
subset of the entries of the matrix-vector product. A subsequent reduce collects each
submatrix-vector product into a single file. Viewed schematically for U stored in four

github.com/arbenson/mrtsqr

16 P. G. CONSTANTINE, D. F. GLEICH, Y. HOU, AND J. TEMPLETON

Map(key= row id, value= uT
i)

For each s and ṽ(s) that were distributed, emit
the index of the value of s as the key and the
value as uT

i s̃ and Var
[
uT
i ṽ(s)

]
based on equa-

tion (3.1).

Reduce(key= s, values= ROM evaluation)
Assemble the ROM predictions and confidence
measure into a single output and store that on
disk.

Fig. 3.3: Map and Reduce functions to compute our interpolants

blocks,

Distribute ṽ(s)︸ ︷︷ ︸
Launch phase

{U1} −−−→
Map

(s , f1(s),Var [f1(s)])

{U2} −−−→
Map

(s , f2(s),Var [f2(s)])

{U3} −−−→
Map

(s , f3(s),Var [f3(s)])

{U4} −−−→
Map

(s︸︷︷︸
Key

, f4(s),Var [f4(s)]︸ ︷︷ ︸
Value

)

︸ ︷︷ ︸
Map Stage

(3.4)

(
s,

f1(s), f2(s), f3(s), f4(s),
Var [f1(s)] ,Var [f2(s)] ,
Var [f3(s)] ,Var [f4(s)]

)
Join−−−−→

Reduce
(f(s),Var [f(s)])

︸ ︷︷ ︸
Reduce Stage

(3.5)

Although we illustrate this function with a single interpolation point s, which results
in a single reduce with one key, our implementations are designed to handle around
one-to-two thousand points s simultaneously. Thus, we actually distribute s and ṽ(s)
for all of the one-to-two thousand points simultaneously. In this case, we would have
one reducer for each value s. Our codes for manipulating the simulations and per-
forming the interpolation are found at github.com/dgleich/simform in the branch
simform-sisc.

4. Numerical experiment. In this section we apply the model reduction method
to a parameter study with a large-scale heat transfer model in random heterogeneous
media. In what follows, we describe the physical model, the parameter study, and
the construction of the ROM. We compare the ROM’s predictions for the quantity of
interest with a standard response surface approach. We close this section with some
remarks on the computational issues we encountered working with four terabytes of
data from the simulations.

4.1. Heat transfer model. We consider a partial differential equation model
for bulk conductive heat transfer of a temperature field T = T (x, t),

∂

∂t
(ρcpT) = ∇ · (κ∇T), (x, y, z) ∈ D, t ∈ [0, tf]. (4.1)

The spatial domain D is a rectangular brick of size 20 × 10 × 10 cm3 centered at
the origin. The brick contains two materials roughly corresponding to foam (ρ =

319 kg/m
3
) and stainless steel (ρ = 7900 kg/m

3
) chosen for their contrast in thermal

conductivity. The values for temperature-dependent specific heat cp and conductivity
κ are shown in Tables 7.2 and 7.1 in the appendix. The distribution of these two

github.com/dgleich/simform

MAPREDUCE-ENABLED MODEL REDUCTION 17

298

1000

500

750

temp (K)

(a)

298

1000

500

750

temp (K)

(b)

Fig. 4.1: Representative temperature fields at time tf = 2000 s for bubble radius
s = 0.390 cm (left) and s = 2.418 cm (right). Distortions in the temperature field due
to the presence of bubbles are clearly visible in the latter. (Colors are visible in the
electronic version.)

materials within the brick is realized by the following procedure: (i) set the material
in the entire brick to steel, (ii) choose 128 locations within the brick uniformly at
random, (iii) for each location, find all points in the brick within a given radius s
and set the material to foam. The result is a steel brick with randomly distributed,
potentially overlapping foam bubbles of radius s.

A given brick begins (t = 0) at room temperature T = 298 ◦K with a Dirichlet
boundary condition of 1000 ◦K on the face x = 10 cm. The temperature field advances
to the final time tf = 2000 s, and the quantities of interest are measured at the face
opposite the prescribed boundary condition (the far face) at x = −10 cm. We are
interested in two quantities: (i) the average temperature on the far face and (ii) the
proportion of the temperature on the far face that exceeds 475 ◦K.

The finite element simulation uses Sandia Labs’ SIERRA Multimechanics Module:
Aria [26] with a regular mesh of 256×128×128 elements constructed with CUBIT [6].
One simulation takes approximately four hours on a 8-core node of Sandia’s Red Sky
capacity cluster (Dual Xeon 5500-series, 2.93 GHz, 2GB per core). The simulation
outputs contain the full temperature field at nine uniformly spaced times between
t = 1200 s and tf = 2000 s, which are stored in the Exodus II binary file format. Each
simulation output file is approximately 500MB. Two representative temperature fields
are shown in Figure 4.1.

4.2. Parameter study. We use the heat transfer model to study the effects of
the bubble radius parameter s on the temperature distribution on the far face via
the quantities of interest. Intuitively, as s increases, more of the brick becomes foam,
and we expect a lower temperature on the far face x = −10 cm due to foam’s lower
conductivity.

To address the variability in random media, we choose 128 random realizations of
the 128 locations for the bubble centers. For a given radius s, we run 128 simulations—
one for each realization of the bubble locations. We use these simulations to compute
Monte Carlo estimates of the mean of each quantity of interest. Note that there are
384 random variables (three components per location) characterizing the locations of
the bubbles, so Monte Carlo estimates are the only feasible option.

18 P. G. CONSTANTINE, D. F. GLEICH, Y. HOU, AND J. TEMPLETON

0 10 20 30 40 50 60
250

300

350

400

450

500

550

Bubble radius

A
v
e

ra
g

e
 t

e
m

p
.

o
v
e

r
fa

c
e

 (
K

)

(a)

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bubble radius
P

ro
p

o
rt

io
n

 o
f

te
m

p
.

>
 4

7
5

 K

(b)

Fig. 4.2: Monte Carlo estimates of the mean of the average far face temperature as a
function of the bubble radius (left). The mean of the proportion of the temperature
that exceeds 475 ◦ K as a function of the bubble radius. (Colors are visible in the
electronic version.)

For each realization of the bubble locations, we run 64 simulations varying s
uniformly between 0.039 cm and 2.496 cm. This results in a total of 8192 simulations—
128 bubble realizations × 64 values for s. For each simulation, we compute the two
quantities of interest: (i) the average temperature over the far face, and (ii) the
proportion of the far face temperature that exceeds 475 ◦K. We then approximate the
mean over the bubble realizations with Monte Carlo. Finally, we plot the estimates
of the mean as a function of the radius s. With 128 realizations, the 95% confidence
intervals are within 1% of the mean, so we do not plot them. These results are
shown in Figure 4.2. As expected, the propagation of the temperature decreases as
s increases. However, the decrease is qualitatively different for the two quantities
of interest: the average far face temperature decreases smoothly as a function of s
while the proportion of the temperature above a threshold has a dramatic change as
a function of s. In the next section, we test the ability of the reduced-order model to
reproduce these results.

4.3. Approximating the SVE. Before testing the ROM, we use all of the
simulation data to study the components of the SVE of the parameterized temperature
field. In the notation of Section 2, f = f(x, s) now carries the following interpretation:
f is the temperature; x contains the three spatial coordinates, the time coordinate,
and an identifier for the realization of the random bubble locations; and s is the
bubble radius. The matrix F from (2.4) has 64 columns corresponding to the 64
values of the bubble radius. Each column contains 128 independent simulations—one
for each realization of the bubble locations. This translates to 4926801024 rows (257
x nodes × 129 y nodes × 129 z nodes × 9 times × 128 bubble locations), which is
approximately 2.3 terabytes of data.

The singular values normalized by the largest singular value and the first eight
right singular vectors scaled by the singular values are shown in Figure 4.3 with the

MAPREDUCE-ENABLED MODEL REDUCTION 19

blue x’s. The rapid decay of the singular values indicates the tremendous correlation
amongst components of the temperature fields as the radius varies. More importantly,
we see the more rapid increase in the oscillations of the right singular vectors for larger
values of s. This reflects the fact that temperature fields with similar bubble radii
have larger differences for larger values of the radius s. This also means we expect a
more accurate ROM for smaller values of s.

We computed this SVD and all other MapReduce-based analyses of this dataset
on a 10-node Hadoop cluster at Stanford University’s Institute for Computational and
Mathematical Engineering. Each node in the cluster has 6 2TB hard drives, one Intel
Core i7-960, and 24 GB of RAM. The 2.3 TB matrix took approximately 12 hours.
Below, we discuss the time required for additional pre- and post-processing work.

4.4. Contruction and validation of the ROM. We use a subset of the sim-
ulations as the training set for the ROM. In particular, we choose sj = 0.039 j for
j = 1, 5, 9, . . . , 61 as the values of s whose corresponding simulations are used to build
the ROM. Thus, the matrix F for constructing the ROM contains 16 columns and the
same roughly five billion rows, i.e., the same locations in the domain of space, time,
and the locations of the bubble centers. This matrix contains approximately 600 GB
of data, and the SVD step took approximately 8 hours on the Hadoop cluster. The
singular values normalized by the largest singular value and the components of the
first eight right singular vectors scaled by their respective singular values of F are
plotted in Figure 4.3 with red o’s.

To choose the threshold τ̄ that defines the splitting described in Section 2.3, we
use a subset of the simulations as a testing set. In particular, we choose sj = 0.039 j
with j = 3, 7, 11, . . . , 59 as the values of s whose simulations we will use for testing.
Note that these correspond to the midpoints of the intervals defined by the values of
s used for training. Figure 4.4 shows the errors as a function of the bubble radius s
and the variation threshold τ̄ . After τ̄ = 0.55, the approximation does not improve
with more terms (i.e., larger R in (2.14)), so we choose τ̄ = 0.55 since we want a ROM
with the fewest terms. Table 4.1 displays the splitting R and the associated error E
for the different values of s using variation threshold τ̄ .

Finally, we visually compare the error in the ROM with the space-time varying
confidence measure. Figure 4.5 displays the ROM error and the confidence measure
at the final time tf for one realization of the bubble locations and two values of the
bubble radius, s = 0.39 cm and s = 1.95 cm. Both measures are larger near the
bubble boundaries and larger near the face containing the heat source. Visualizing
these measures enables such qualitative observations and comparisons.

4.5. Comparison with a response surface. One question that arises fre-
quently in the context of reduced-order modeling is, if one is only interested in a
scalar quantity of interest from the full PDE solution, then what is the advantage
of approximating the full solution with a reduced-order model? Why not just use a
scalar response surface to approximate the quantity of interest as a function of the
parameters? To address this question, we compare two approaches for the parameter
study in Section 4.2:

1. Use a response surface to interpolate the means of each of the two quantities
of interest over a range of bubble radii. We use the quantities of interest at
bubble radii sj = 0.039 j for j = 3, 7, 11, . . . , 59 to decide the form of the
response surface: piecewise linear, nearest neighbor, cubic spline, or piece-
wise cubic Hermite interpolation (PCHIP). The response surface form with
the lowest testing error is constructed from the mean quantities of interest

20 P. G. CONSTANTINE, D. F. GLEICH, Y. HOU, AND J. TEMPLETON

10 20 30 40 50 60
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(a) Singular values

10 20 30 40 50 60

−8

−6

−4

−2

0

2

4

6

8

x 10
7

20 40 60
2.5

3

3.5

4

4.5

5
x 10

7

(b) σ1v1(s)

10 20 30 40 50 60
−8

−6

−4

−2

0

2

4

6

8
x 10

6

(c) σ2v2(s)

10 20 30 40 50 60

−3

−2

−1

0

1

2

3

x 10
6

(d) σ3v3(s)

10 20 30 40 50 60

−1

−0.5

0

0.5

1

x 10
6

(e) σ4v4(s)

10 20 30 40 50 60

−6

−4

−2

0

2

4

6

x 10
5

(f) σ5v5(s)

10 20 30 40 50 60

−4

−3

−2

−1

0

1

2

3

4

x 10
5

(g) σ6v6(s)

10 20 30 40 50 60

−3

−2

−1

0

1

2

3

x 10
5

(h) σ7v7(s)

10 20 30 40 50 60

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10
5

(i) σ8v8(s)

Fig. 4.3: The top left figure shows the singular values of a finely resolved F with 64
columns (blue x’s) and a coarsely resolved F with 16 columns (red o’s). Each are
scaled by the maximum singular value from each set. The remaining figures show the
approximations of the singular functions v1(s) through v8(s) scaled by the respective
singular values for F with 64 columns (blue x’s) and 16 columns (red o’s). (Colors
are visible in the electronic version.)

for bubble radii sj = 0.039 j for j = 1, 5, 9, . . . , 61—which are the same val-
ues whose simulations are used to construct the ROM. The response surface
prediction is then computed for j = 1, 2, 3, . . . , 61.

2. Use the ROM to approximate the temperature field on the far face at the
final time for each realization of the bubble location. Then compute the two

MAPREDUCE-ENABLED MODEL REDUCTION 21

τ̄

s

0 0.2 0.4 0.6 0.8

3

7

11

15

19

23

27

31

35

39

43

47

51

55

59

−3.5

−3

−2.5

−2

−1.5

−1

Fig. 4.4: The log of the relative error in
the mean prediction of the ROM as a func-
tion of s and the threshold τ̄ . (Colors are
visible in the electronic version.)

s R(s, τ̄) E(s, τ̄)
0.08 16 1.00e-04
0.23 15 2.00e-04
0.39 14 4.00e-04
0.55 13 6.00e-04
0.70 13 8.00e-04
0.86 12 1.10e-03
1.01 11 1.50e-03
1.17 10 2.10e-03
1.33 9 3.10e-03
1.48 8 4.50e-03
1.64 8 6.50e-03
1.79 7 8.20e-03
1.95 7 1.07e-02
2.11 6 1.23e-02
2.26 6 1.39e-02

Table 4.1: The split and the correspond-
ing ROM error for τ̄ = 0.55 and different
values of s.

quantities of interest for each approximated far face temperature distribu-
tion, and compute a Monte Carlo approximation of the mean (i.e., a simple
average).

The results of this study are shown in Figure 4.6. For the first quantity of interest
(the average temperature over the far face), the cubic spline response surface approach
adequately captures the behavior as a function of the bubble radius due to the relative
smoothness of the response. However, the PCHIP response surface approximation of
the second quantity of interest (the proportion of far face temperature that exceeds
475 ◦K) is substantially less accurate than the ROM due to the sharp transition and
the low resolution in the parameter space. A global polynomial or radial basis function
approximation would fare worse (e.g., exhibit Gibbs oscillations near the transition)
due to the global nature of the basis. We conclude that the choice of ROM versus
response surface depends on the quantity of interest. Broadly speaking, if the quantity
of interest is a smooth function of the parameters, then a response surface is likely
sufficient. However, if the quantity of interest is a highly nonlinear or discontinuous
function of the full PDE solution, then computing such a quantity from the ROM
approximation will yield better results. While it was not pertinent to this example,
the ROM-based approach also provides the 95% confidence bounds for the Monte
Carlo estimates, since the temperature distribution for each realization of the bubble
locations is approximated.

4.6. Computational considerations. We end this section with a few notes on
the experience of running 8192 large-scale simulations, transferring them to a Hadoop
cluster, and building the reduced-order model.

Each heat transfer simulation took approximately four hours using eight pro-
cessors on Sandia’s Red Sky. Communication times were negligible, but some runs
required multiple tries due to occasional network failures. Also, some runs had to be
duplicated due to node failures and changes in the code paths. Each mesh with its

22 P. G. CONSTANTINE, D. F. GLEICH, Y. HOU, AND J. TEMPLETON

1

error

0

2

(a) Error, s = 0.39 cm

1

std

0

2

(b) Std, s = 0.39 cm

10

error

0

20

(c) Error, s = 1.95 cm

10

std

0

20

(d) Std, s = 1.95 cm

Fig. 4.5: Absolute error in the reduce order model compared with the prediction
standard deviation for one realization of the bubble locations at the final time for two
values of the bubble radius, s = 0.39 and s = 1.95 cm. (Colors are visible in the
electronic version.)

own conductivity field took approximately twenty minutes to construct using Cubit
after substantial optimizations. Unreliable network data transmissions and bursty
data write patterns (e.g., one hundred jobs on Red Sky simultaneously transferring
data to the Stanford cluster) forced us to write custom codes to validate the data
transfer.

Working with the simulation data involved a few pre- and post-processing steps,
such as interpreting 4TB of Exodus II files from Aria. The preprocessing steps took
approximately 8-15 hours. We collected precise timing information, but we do not
report it as these times are from a multi-tenant, unoptimized Hadoop cluster where
other jobs with sizes ranging between 100GB and 2TB of data sometimes ran con-
currently. Also, during our computations, we observed failures in hard disk drives
and issues causing entire nodes to fail. Given that the cluster has 40 cores, these
calculations consumed at most 2400 cpu-hours—compared with the 262144 cpu-hours
it took to compute 8192 heat transfer simulations on Red Sky. Thus, evaluating the
ROM was about 100 times faster than computing a full simulation.

We did not compare our Hadoop implementation with an MPI implementation.
The dominant bottleneck in the evaluation of the ROM is the data I/O involved in
processing 4TB of simulation data into a 2.3TB matrix, computing its SVD, writing
it to disk, computing the interpolants, and writing those outputs back to Exodus II

MAPREDUCE-ENABLED MODEL REDUCTION 23

0 10 20 30 40 50 60
250

300

350

400

450

500

550

Bubble radius

A
v
e
ra

g
e

 t
e
m

p
.
o
v
e

r
fa

c
e

 (
K

)

True

ROM

RS

(a)

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bubble radius
P

ro
p
o
rt

io
n
 o

f
te

m
p
.
>

 4
7
5
 K

15 20 25

0

0.5

1

True

ROM

RS

(b)

Fig. 4.6: Comparing ROM with response surface in the UQ study. (Colors are visible
in the electronic version.)

files. We expect that any MPI implementation would take at least 3-4 hours based on
pure I/O considerations (assuming around 1GB/sec sustained data transfer speeds).
It would also be substantially more complicated to implement. We used Hadoop
primarily for the ease of use of its programming model.

Although MapReduce is an appealing paradigm for computing factorizations of
tall matrices, the Hadoop MapReduce ecosystem has not developed simple tools for
working with large databases of spatio-temporal data. For instance, writing ad hoc
utilities to extract data from Exodus II files and utilities for simply stated queries
like, retrieve all values of temperature with x = −0.1 and t = 2000, occupied much
of the second and third authors’ time (see the mr-exodus2farface.py code in the
online code for this particular script). We see many opportunities for high-impact
software designed to address the mundane details of manipulating and analyzing large
databases of spatio-temporal simulation data.

5. Summary & conclusions. We presented a method for building a reduced-
order model of the solution of a parametererized partial differential equation. The
method is based on approximating the factors of a singular value expansion of the so-
lution using the elements of a singular value decomposition of a matrix whose columns
are spatio-temporally discretized solutions at different parameter values. The SVD
step compares to reduced basis methods, which project the governing equations with
a subset of the left singular vectors to create small system whose solution yields the
coefficients of the reduced-order model. In contrast, our method interpolates the right
singular vectors in the parameter space to compute the coefficients of the ROM. By ex-
amining the gradient of the right singular vectors as the index increases, we determine
a separation between factors we can accurately interpolate and those whose oscilla-
tions are too rapid to be represented on the parameter grid. This separation yields
a mean prediction and a prediction covariance for each point in the spatio-temporal
domain—similar to Gaussian process regression models. We use Hadoop/MapReduce
to implement the ROM including the communication-avoiding, tall-and-skinny SVD,

24 P. G. CONSTANTINE, D. F. GLEICH, Y. HOU, AND J. TEMPLETON

which enables the computation to scale to outputs from large-scale high-fidelity mod-
els.

We tested the model reduction method on a parameter study of large-scale heat
transfer in random media. We compared the results of the ROM with a standard
response surface method for approximating the scalar quantities of interest, and we
found that while the cheaper response surface was appropriate for a smooth quantity
of interest, the ROM was better at approximating a quantity of interest with a sharp
transition in the parameter space. The 8192 heat transfer simulations used in the
study generated approximately 4 TB of data. In the course of the study, we applied
the MapReduce-based SVD computation to a matrices with approximately 600 GB
and 2.2 TB of data. We found that existing MapReduce tools for working with such
large-scale simulation data lack robustness and generality. There is an opportunity
in computational science to create better tools to further simulation-based scientific
exploration.

6. Acknowledgments. We thank the anonymous reviewers for helpful com-
ments and suggestions. We also thank Margot Gerritsen at Stanford’s Institute for
Computational and Mathematical Engineering for procurement of and access to the
Hadoop cluster. We thank Austin Benson at Stanford for his superb code development
for the TSQR and TSSVD. We thank Joe Ruthruff at Sandia for his efforts developing
the infrastructure to run the Aria cases. Finally, we thank David Rogers at Sandia
and acknowledge the funding of Sandia’s Computer Science Applied Research (CSAR)
and the Advanced Simulation and Computing (ASC) programs. Sandia is a multi-
program laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

7. Appendix. The tables with material properties for foam and steel.

Foam (ρ = 319 kg/m
3
)

T (K) κ (W/mK)
303 0.0486
523 0.0706

Steel (ρ = 7900 kg/m
3
)

T (K) κ (W/mK)
273 13.4
373 16.3
773 21.8
973 26.0

Table 7.1: Thermal conductivity κ. Linear interpolation is used between specified
values. Constant values are used outside of the bounds.

MAPREDUCE-ENABLED MODEL REDUCTION 25

Foam (ρ = 319 kg/m
3
)

T (K) cp (J/kgK)
296 1269
323 1356
373 1497
423 1843
473 1900
523 2203

Steel (ρ = 7900 kg/m
3
)

T (K) cp (J/kgK)
273 502
673 565

Table 7.2: Specific heat capacity cp. Linear interpolation is used between specified
values. Constant values are used outside of the bounds.

REFERENCES

[1] C Audouze, F De Vuyst, and PB Nair, Reduced-order modeling of parameterized pdes using
time-space-parameter principal component analysis, International journal for numerical
methods in engineering, 80 (2009), pp. 1025–1057.

[2] Christophe Audouze, Florian De Vuyst, and Prasanth B Nair, Nonintrusive reduced-
order modeling of parametrized time-dependent partial differential equations, Numerical
Methods for Partial Differential Equations, (2013).

[3] Ivo Babuška, Fabio Nobile, and Raúl Tempone, A stochastic collocation method for elliptic
partial differential equations with random input data, SIAM Journal on Numerical Analysis,
45 (2007), pp. 1005–1034.

[4] Peter Benner, Serkan Gugercin, and Karen Willcox, A survey of model reduction meth-
ods for parametric systems, tech. report, Max Planck Institute Magdeburg, 2013.

[5] Austin Benson, David F. Gleich, and James Demmel, Direct tall-and-skinny QR factoriza-
tions in mapreduce architectures, arXiv, cs.DC (2012), p. 1301.1071.

[6] Ted D Blacker, WJ Bohnhoff, and TL Edwards, Cubit mesh generation environment.
volume 1: Users manual, tech. report, Sandia National Labs., Albuquerque, NM (United
States), 1994.

[7] L Susan Blackford, ScaLAPACK user’s guide, vol. 4, Society for Industrial and Applied
Mathematics, 1997.

[8] T. Bui-Thanh, K. Willcox, and M. Damodaran, Applications of proper orthogo-
nal decomposition for inviscid transonic aerodynamics, tech. report, MIT, 2003.
http://hdl.handle.net/1721.1/3694.

[9] Tan Bui-Thanh, Karen Willcox, and Omar Ghattas, Model reduction for large-scale sys-
tems with high-dimensional parametric input space, SIAM Journal on Scientific Computing,
30 (2008), pp. 3270–3288.

[10] Kevin Carlberg, Charbel Farhat, Julien Cortial, and David Amsallem, The GNAT
method for nonlinear model reduction: effective implementation and application to com-
putational fluid dynamics and turbulent flows, Journal of Computational Physics, (2013).

[11] Tony F Chan, An improved algorithm for computing the singular value decomposition, ACM
Transactions on Mathematical Software (TOMS), 8 (1982), pp. 72–83.

[12] Cloudera, Hadoop version 0.20.2 in cloudera hadoop distribution version cdh3u4. http:

//www.cloudera.com, 2012.
[13] Paul G Constantine and David F Gleich, Tall and skinny qr factorizations in mapreduce

architectures, in Proceedings of the second international workshop on MapReduce and its
applications, ACM, 2011, pp. 43–50.

[14] Paul G Constantine and Qiqi Wang, Residual minimizing model interpolation for param-
eterized nonlinear dynamical systems, SIAM Journal on Scientific Computing, 34 (2012),
pp. A2118–A2144.

[15] Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplied data processing on large clus-
ters, in Proceedings of the 6th Symposium on Operating Systems Design and Implemen-
tation (OSDI2004), 2004, pp. 137–150.

[16] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou, Communication-
optimal parallel and sequential qr and lu factorizations, SIAM Journal on Scientific Com-
puting, 34 (2012), pp. A206–A239.

http://www.cloudera.com
http://www.cloudera.com

26 P. G. CONSTANTINE, D. F. GLEICH, Y. HOU, AND J. TEMPLETON

[17] Jennifer Goss and Kamesh Subbarao, Inlet shape optimization based on pod model reduction
of the euler equations, AIAA, 5809 (2008), p. 2008.

[18] PC Hansen, Computation of the singular value expansion, Computing, 40 (1988), pp. 185–199.
[19] Per Christian Hansen, Discrete inverse problems: insight and algorithms, vol. 7, Society for

Industrial and Applied Mathematics, 2010.
[20] Per Christian Hansen, Misha Elena Kilmer, and Rikke Høj Kjeldsen, Exploiting resid-

ual information in the parameter choice for discrete ill-posed problems, BIT Numerical
Mathematics, 46 (2006), pp. 41–59.

[21] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and Tuyong Wang,
Mars: a mapreduce framework on graphics processors, in Proceedings of the 17th inter-
national conference on Parallel architectures and compilation techniques, PACT ’08, New
York, NY, USA, 2008, ACM, pp. 260–269.

[22] Kyunghoon Lee, Taewoo Nam, Christopher Perullo, and Dimitri N Mavris, Reduced-
order modeling of a high-fidelity propulsion system simulation, AIAA journal, 49 (2011),
pp. 1665–1682.

[23] John L Lumley, Gahl Berkooz, and Clarence W Rowley, Turbulence, coherent structures,
dynamical systems and symmetry, Cambridge University Press, 2012.

[24] Hung V Ly and Hien T Tran, Modeling and control of physical processes using proper or-
thogonal decomposition, Mathematical and computer modelling, 33 (2001), pp. 223–236.

[25] Daisuke Mori, Yusaku Yamamoto, and Shao-Liang Zhang, Backward error analysis of
the allreduce algorithm for householder qr decomposition, Japan Journal of Industrial and
Applied Mathematics, 29 (2012), pp. 111–130.

[26] P.K. Notz, S.R. Subia, M.M. Hopkins, H.K. Moffat, and D.R. Noble, Aria 1.5: User
manual, Tech. Report SAND2007-2734, Sandia National Laboratories, Albuquerque, NM
87185 and Livermore, CA 94551, Apr. 2007.

[27] Ziemowit Ostrowski, Ryszard A Bia lecki, and Alain J Kassab, Estimation of constant
thermal conductivity by use of proper orthogonal decomposition, Computational Mechanics,
37 (2005), pp. 52–59.

[28] Steven J. Plimpton and Karen D. Devine, Mapreduce in mpi for large-scale graph algo-
rithms, Parallel Computing, 37 (2011), pp. 610–632.

[29] Carl Edward Rasmussen, Gaussian processes for machine learning, (2006).
[30] Justin Talbot, Richard M. Yoo, and Christos Kozyrakis, Phoenix++: modular mapre-

duce for shared-memory systems, in Proceedings of the second international workshop
on MapReduce and its applications, MapReduce ’11, New York, NY, USA, 2011, ACM,
pp. 9–16.

[31] Various, Hadoop version 0.20, cloudera cdh3. http://hadoop.apache.org, http://cloudera.
com, 2010.

[32] Dongbin Xiu and Jan S Hesthaven, High-order collocation methods for differential equations
with random inputs, SIAM Journal on Scientific Computing, 27 (2005), pp. 1118–1139.

http://hadoop.apache.org
http://cloudera.com
http://cloudera.com

