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Abstract

This paper is concerned with time reversal in photoacoustic tomog-

raphy (PAT) of dissipative media that are similar to water. Under
an appropriate condition, it is shown that the time reversal method
in [23, 2] based on the non-causal thermo-viscous wave equation can
be used if the non-causal data is replaced by a time shifted set of
causal data. We investigate a similar imaging functional for time re-
versal and an operator equation with the time reversal image as right
hand side. If required, an enhanced image can be obtained by solving
this operator equation. Although time reversal (for noise-free data)
does not lead to the exact initial pressure function, the theoretical and
numerical results of this paper show that regularized time reversal in
dissipative media similar to water is a valuable method. We note that
the presented time reversal method can be considered as an alterna-
tive to the causal approach in [11] and a similar operator equation
may hold for their approach.

1 Introduction

Photoacoustic tomography [6, 7, 8, 17, 21, 25, 26, 27] is a very promising
medical imaging method that is currently improved by taking into account
more complicated tissue properties . In this paper we focus on a time reversal
method in dissipative media [2, 3, 5, 9, 11, 14, 16, 20, 22, 23] and show that
under an appropriate condition
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• the imaging functional in [2] based on the non-causal thermo-viscous
wave equation can be used for time reversal if the non-causal data is
replaced by a time shifted set of causal pressure data and that

• a similar imaging functional can be used for time reversal, which can be
improved by solving an operator equation with the time reversal result
as right hand side.

We note that the time shift relation between causal and non-causal pressure
data holds only approximately, but in principle the non-causal data can be
calculated from the causal one. However the use of the time shift relation is
less computational expensive and, in addition, it explains the successful use of
the non-causal thermo-viscous wave equation. Consider a fixed experimental
set-up for which many experiments are performed. It seems natural that the
experimenter performs - as a matter of routine - one and the same pressure
data offsets to all data. If this data offset corresponds to the mentioned time
shift, then causality is approximately ”restored” and causality violations due
to the thermo-viscous wave equation may not be observed.

To outline the contents of this paper, we start with a basic description of
the inverse problem of PAT in dissipative media.

1.1 The PAT problem in dissipative media

The goal of PAT is to estimate the function ϕ : R3 → R with supp(ϕ) ⊆ Ω
from pressure data p measured at a boundary, say ∂Ω, in which p and ϕ are
related by (cf. [14, 16])

(1) ∆p−
(

D∗ +
1

c0

∂

∂t

)2

p = −ϕ

c20
δ′(t) on R

4 with p|t<0 = 0 ,

where c0 denotes the speed of sound, D∗ is a time convolution operator with
kernel F−1{α∗} and α∗ is the complex attenuation law of the medium in
which the wave propagates. We focus on the following complex attenuation
laws

(2) αksb
∗ (ω) :=

(−iω)

c0
√

1 + (−i τ1 ω)
+ α2 (−iω) (α2 ≥ 0)

and

(3) αtv
∗ (ω) :=

(−iω)

c0
√

1 + (−i τ1ω)
− (−iω)

c0
(c0, τ1 > 0) .
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Here τ1 denotes the relaxation time. Only the first one obeys causality, i.e.
the respective pressure function pksb has a finite wave front speed (cf. [15, 16])

cF =
c0

1 + α2 c0
≤ c0 .

As mentioned above, it will be sown that

ptv(x, t) ≈ pksb
(

x, t +
|x|
c0

+ α2 |x|
)

for x ∈ ∂Ω, t ∈ R

holds under an appropriate condition. Hence all results based on the non-
causal thermo-viscous wave equation can be applied to time shifted causal
data. For this setting we introduce an imaging functional for estimating the
initial pressure function ϕ.

1.2 The imaging functional

Let ptv be the solution of (1) with (3) and ϕ ∈ L2(Ω),

φT := ptv|t=T , β := ptv|∂Ω and ΦT : (φT |Ω, β) 7→ ptv|t=T .

Moreover, let qtv denote the solution of the regularized time reversed thermo-
viscous wave equation

(4)

(

Id− τ1
∂

∂t

)

∆ q − 1

c20

∂2q

∂t2
=

RD (φT )

c20

(

Id− τ2
∂

∂t

)

δ′(t) ,

where RD is a regularization operator1 that guarantees the existence of the
time reversal for ϕ ∈ L2(Ω). With these notations, we introduce the func-
tionals

(5) F [RD φT ] := qtv|t=T and F1[φT |Ω, β] := 2F [RD ΦT (φT |Ω, β)] .

In this paper we show under the assumption

(6) supp(ϕ) ⊆ B2 c0 T (x) for all x ∈ Ω

that the imaging functional F1 satisfies for D > 0

lim
τ1→0

F1[φT |Ω, β] = RDϕ = F1[φT |Ω, β]|τ1=0 on Ω ,

1A good practical choice is a convolution with a Gaussian function with expected value
0 and variance 2D with the necessary side condition D > τ1 c

2

0
T .
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in particular

(7) F1[φT |Ω, β] ∼ RD ϕ for sufficiently small τ1 > 0 ,

and that RD ϕ satisfies the operator equation

(8)
(

Id + τ 21 c
2
0∆

)2 RD ϕ+ c20∆JT RD ϕ =
1

2
F1[φT |Ω, β] on ∈ Ω ,

where Jt ξ is defined as the solution of

(9) ∆w +
τ 21 c

2
0

4
∆4w − 1

c21

∂2w

∂t2
= −2 ξ

c21
on R

3 × [0, T ] (c1 := 2 c0) .

Subsequently, the properties of operator equation (8) and wave equation (9)
are investigated.

We interpret the appearance of the regularization RD with restriction
D > τ1 c

2
0 T as a resolution limit for the noise-free case. Stronger attenua-

tion or a larger domain (larger T ) only permit the estimation of a stronger
smoothed version of the initial pressure function ϕ. For tissue similar to
water we have c0 ≈ 1500 m

s
, τ1 ≈ 10−9 s (cf. [12]) and if the diameter of Ω is

d = 0.5m, i.e. T = 0.5m
c0

, then we get

D > 7.5 · 10−7m.

If T is four times as large, then D > 3 · 10−6m, which is from the practical
point of view not a limitation for PAT.

In [2] and [11] similar imaging functionals were considered for non-causal
and causal data, respectively, and a result analogous to (7) was shown via
approximation in the frequency-space domain. One goal of this paper is to
get an expression for a reasonable imaging functional without cutting off
frequencies or wave vectors, because the cut off values are not known in gen-
eral. In addition, we want to show how an approach based on non-causal
thermo-viscous data can be used if real causal data are available. Moreover,
it seems less computational expensive to solve a time reversed partial differ-
ential equation than an time reversed integro-differential equation. However,
in the long run, it seems indispensable to base some of the high quality imag-
ing methods on causal integro-differential equations (cf. [11]). We consider
the work presented in this paper as a trade off between the approaches [2]
and [11].

This paper is organized as follows: In Section 2 the properties of dis-
sipative waves propagating forward and backward in time are investigated.
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Afterwards, it is shown that the operator JT is well-defined and compact.
The operator equation (8) is derived in Section 4 and its properties are inves-
tigated in the subsequent section. In Section 6 it is shown that the imaging
functional converges to the initial pressure function for τ1 → 0. Numeri-
cal simulations of the imaging functional are presented in Section 7 and the
paper is concluded with the section Conclusions.

2 Properties of waves in thermo-viscous me-

dia

This section investigate waves in thermo-viscous media that propagates for-
ward and backward in time.

2.1 Waves forward in time

Until Lemma 2 of this section, p̂(·, ω) and F{p}(·, ω) denote the Fourier
transform of p(·, t) with respect to t.

Dissipative pressure waves for PAT can be modeled as the solution of the
integro-differential equation (1), where α∗ : R → C is such that

(A1) ℜ(α∗) is even, non-negative and increasing on (0,∞),

(A2) ℑ(α∗) is odd,

(A3) a spherical wave has a finite wave front speed smaller or equal to c0,
i.e. (cf. [14, 16])

F−1{e−α∗(·)}(t) = 0 for t ≤ 0 .

The real part of α∗ : R → C is called the attenuation law and α∗ is called the
complex attenuation law. The first two conditions guarantee that the Green
function is real valued and the second is a causality condition on the Green
function.

First we focus on the Green function of wave equation (1) for general
complex attenuation laws and for the two special cases (2) and (3).

Theorem 1. Let T > 0, α∗ satisfy properties (A1)-(A3) and ϕ ∈ L2(R3).
Then the direct problem (1) has a unique solution and the Green function is
given by

(10) Ĝ(x, ω) =
1√
2 π

ei k(ω) |x|

4 π |x| with k(ω) = iα∗(ω) +
ω

c
.
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Moreover, causality condition (A3) is satisfied for αksb
∗ defined as in (2), but

not for αtv
∗ defined as in (3).

Proof. The proof of these facts can be found in [14] and [16].

Because the identity

(1 + (−i τ1 ω))

(

αtv
∗ +

(−iω)

c0

)2

=
(−iω)2

c20
ω ∈ R

in the frequency domain is equivalent to the operator identity

(

Id + τ1
∂

∂t

) (

Dtv
∗ +

1

c0

∂

∂t

)2

=
1

c20

∂2

∂t2
,

we see that wave equation (1) with complex attenuation law (3) is equivalent
to the thermo-viscous wave equation:

(11)

(

Id + τ1
∂

∂t

)

∆ p− 1

c20

∂2p

∂t2
= − ϕ

c20

(

Id + τ2
∂

∂t

)

δ(t)

with τ2 = τ1. Because the operator
(

Id + τ2
∂
∂t

)

is usually neglected in the
literature, we distinguish between τ1 and τ2 in the following. This allows us
to consider the approximate case τ2 = 0, too.

The following Lemma shows that the Green functions of (1) with α∗

defined by (2) and (3), respectively, are related by a space dependent time
shift.

Lemma 1. Let Gksb and Gtv denote the Green functions of (1) with α∗

defined by (2) and (3), respectively and

(12) T1(x) :=
|x|
c1

with
1

c1
:=

1

c0
+ α2 .

Then

(13) Gtv(x, t− T1(x)) = Gksb (x, t) for x ∈ R
3, t ∈ R .

Proof. According to (2) and (3), we have

αksb
∗ (ω) = αtv

∗ (ω) +

(

1

c0
+ α2

)

(−iω)

and thus inserting these laws in (10) yields

Ĝksb(x, ω) =
√
2 π Ĝtv(x, ω)

e
iω

(

|x|
c0

+α2 |x|
)

√
2 π

.
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The claim follows by employing the convolution theorem

F{f g} =
√
2 π f̂ ĝ and F−1

{

e
iω

|x|
c1√

2 π

}

(t) = δ

(

t− |x|
c1

)

.

We note that Gtv satisfies a partial differential equation, but Gksp does
not. As a consequence, pksb := Gksp ∗x,t f satisfies an integro-differential
equation with forcing term f .

Now we are ready to prove that if the size of supp(ϕ) is much smaller than
its distance to the detectors on ∂Ω, then the non-causal and causal pressures
ptv and pksb are related by

(14) ptv(x, t) ≈ pksb (x, t+ T1(x)) for x ∈ ∂Ω, t ∈ R

with T1 defined as in (12). This enables us to avoid the integro-differential
equation for pksb.

Proposition 1. Let pksb and ptv denote the solutions of (1) with α∗ defined
by (2) and (3), respectively. If

(15) T1(x) ≈ T1(x− y) for all x ∈ ∂Ω, y ∈ supp(ϕ) ,

then (14) holds. For example, condition (15) holds, if

T1(y) << T1(x) for all x ∈ ∂Ω, y ∈ supp(ϕ) .

Proof. Let condition (15) hold and d(x, t) := δ (t + T1(x)). Then we infer
from Lemma 1 that

c20 p
ksb ∗t d =

∫

∂Gksb

∂t
(· − y, ·)ϕ(y) dy ∗t d =

∫

∂Gksb

∂t
(· − y, ·+ T1(·)) ϕ(y) dy

≈
∫

∂Gtv

∂t
(· − y, ·+ T1 (· − y)) ϕ(y) dy = Gtv ∗x ϕ = c20 p

tv ,

which proves the first claim. Now for the second one. Let x ∈ ∂Ω and
y ∈ supp(ϕ). From the assumption,

T1(x) :=
|x|
c1

with
1

c1
:=

1

c0
+ α2

and the two triangle inequalities, it follows that

T1(x− y) ≤ T1(x) + T1(y) ≈ T1(x)

and
T1(x− y) ≥ |T1(x)− T1(y)| ≈ T1(x) ,

i.e. T1(x− y) ≈ T1(x).
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Remark 1. Under appropriate conditions Proposition 1 with

c1 := c0

(√

τ1
τ̃1

− 1

)−1

holds for the causal wave equation of Nachman, Smith and Waag in [19], if
τ̃1 ≈ 1

2
(3−

√
5) τ1. This follows from the fact that the complex attenuation law

αnsw
∗ (ω) (cf. [16]) of the Nachman, Smith and Waag model is approximately

the same as αtv
∗ (ω) +

(−iω)
c1

for small frequencies. As a demonstration of the
quality of this relation, we have plotted the real and imaginary parts of both
laws in Fig. 1 for the parameter values τ1 = 10−9 s, τ̃1 := 1

2
(3 −

√
5) τ1 and

c0 =
3
2
· 103 m

s
(cf. [12, 24]).
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Figure 1: Comparison of the real and imaginary parts of αnsw
∗ (ω) (dashed)

and αtv
∗ (ω)+

(−iω)
c1

(full) for the frequency ranges [0 , 7 · 105]MHz and [0 , 3 ·
106] MHz. Acoustic frequencies can be measured up to about 60MHz.

For the rest of this paper, p̂(k, ·) and F{p}(k, ·) denote the Fourier trans-
form of p(x, ·) with respect to x. To derive the operator equation (8) we
require a representation of the solution of the thermo-viscous wave equation
and its time reverse in the wave vector - time domain.

Lemma 2. Let

(16)

c0, τ1 > 0, τ2 ≥ 0, kc :=
2

τ1 c0
, µ(k) := c0

k2

kc
and

ϑ(k) := c0 k

√

1− k2

k2
c

for k > 0 .
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If p solves

(

Id+ τ1
∂

∂t

)

∆ p− 1

c20

∂2p

∂t2
= − φ

c20

(

Id+ τ2
∂

∂t

)

δ(t)

and x 7→ p(x, t) is tempered for t ∈ R, then

p̂(k, t) = φ̂(k)

(

Id+ τ2
∂

∂t

)(

e−µ(k) t

(2 π)3/2
sin(ϑ(k) t)

ϑ(k)
H(t)

)

for k := |k| with k ∈ R
3. Here H(t) denotes the Heaviside function.

Proof. First we consider the case τ2 = 0. Fourier transform of the wave
equation with respect to the space variable yields

−k2

(

Id + τ1
∂

∂t

)

p̂− 1

c20

∂2p̂

∂t2
= − φ̂

c20
δ(t) .

With Variation of Constants we obtain the characteristic equation

λ2 + τ1 c
2
0 k

2 λ+ c20 k
2 = 0

which has the solution

λ1,2 = −µ(k)± iϑ(k)

with µ and ϑ as in (16). The ansatz

C1 e
λ1 t H(t) + C2 e

λ2 tH(t)

yields the following solution in the wave number - time domain

p̂(k, t) = φ̂(k)
e−µ(k) t

(2 π)3/2
sin(ϑ(k) t)

ϑ(k)
H(t) .

The solution for the case τ2 6= 0 is obtained by application of the operator
(

Id + τ2
∂
∂t

)

to the last result, which proves the lemma.

2.2 Waves backward in time

Because the time reversed wave equation is obtained by the substitution
t → −t, the proof of Lemma 2 implies the following lemma.

9



Lemma 3. Let (16) hold. If q solves

(

Id− τ1
∂

∂t

)

∆ q − 1

c20

∂2q

∂t2
= − φ

c20

(

Id− τ2
∂

∂t

)

δ(t)

and x 7→ q(x, t) is tempered for t ∈ R, then

q̂(k, t) = −φ̂(k)

(

Id− τ2
∂

∂t

)(

eµ(k) t

(2 π)3/2
sin(ϑ(k) t)

ϑ(k)
H(t)

)

for k := |k| with k ∈ R3.

Remark 2. From this lemma we see that time reversal is equivalent to the
following substitutions:

µ → −µ, τ1 → −τ1 and φ̂ → −φ̂

in the wave vector-time domain.

In order to guarantee the solvability of the time reversed wave equation,
either φ is required to satisfy a ”source” condition or φ is regularized. For
this purpose we introduce the following spaces GD

• for D > 0

(17) φ ∈ GD :⇔ ∃ϕ∗ ∈ L2(R3) such that φ = φ∗ ∗x gD ,

• for D < 0

(18) φ ∈ GD :⇔ φ∗ := φ ∗x g−D exists and φ∗ ∈ L2(R3) ,

where gD denotes the Gaussian function

(19) gD(x) := (4 πD)−3/2 e−
|x|2

4D (D > 0) .

For D > 0 it follows that GD ⊂ L2(R3) and for D < 0 φ ∈ GD means formally
that the Fourier transform of φ with respect to the space variable x has a
factor that is exponentially increasing with respect to the norm of the wave
vector |k|. Moreover, we introduce the following regularization operator for
D > 0 by

(20) RD ϕ := gD ∗x ϕ for ϕ ∈ L2(Ω) .

For ϕ ∈ L2(Ω) we have RD ϕ ∈ GD and ϕ = (RD ϕ)∗.
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Lemma 4. Let (16) hold, τ2 = τ1,

(21) ǫ, T > 0, D := 2

(

c0
kc

+ ǫ

)

T

and φ ∈ GD. Then the solution q of wave equation in Lemma 3 exists on the
interval [0, T ] and q(·, t) ∈ L2(R3) for t ∈ [0, T ].

Proof. Let k := |k| for k ∈ R3. We recall that ĝD(k) = (2 π)−3/2 e−D |k|2. For
φ ∈ GD and every t ∈ [0, T ] we have

q̂(k, t) = −φ̂∗(k) e
−Dk2 eµ(k) t

(2 π)3/2

[

(1− τ1 µ(k))
sin(ϑ(k) t)

ϑ(k)
− τ1 cos(ϑ(k) t)

]

according to Lemma 3. The functions k 7→ sin(ϑ(k) t)
ϑ(k)

and k 7→ cos(ϑ(k) t)

are real valued and bounded on Dc := {k ∈ R3 | |k| ≤ kc}. On R3\Dc these
functions are real valued but not bounded. Because of

iϑ0(k) := ϑ(k) = i c0 k

√

k2

k2
c

− 1 for k > kc ,

sin(i x) =
i

2
(ex − e−x) and cos(i x) =

1

2
(ex + e−x) ,

we have

sin(ϑ t)

ϑ
=

eϑ0 t − e−ϑ0 t

2 ϑ0

and cos(ϑ t) =
1

2
(eϑ0 t + e−ϑ0 t)

on R
3\Dc. Thus q̂ has the following representation on R

3\Dc:

(22) q̂(·, t) = −φ̂∗
e(µ+ϑ0) t−Dk2

(2 π)3/2

[

1− τ1 µ

2 ϑ0

(1− e−2ϑ0 t)− τ1
2
(1 + e−2ϑ0 t)

]

.

From this and

e(µ(k)+ϑ0(k)) t−Dk2 = O
(

e−ǫ T k2
)

for k → ∞ ,

we infer that q̂(·, t) ∈ L2(R3) for t ∈ [0, T ], as was to be shown.

It is surprising, that in contrast to non-dissipative media, time reversal
in dissipative media requires regularized data.
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Remark 3. a) Let ϕ ∈ L2(R3). We note that analogously as in Lemma 4,
it follows that the solution p in Lemma 2 satisfies (µ → −µ, τ1 → −τ1 and
ϕ̂ → −ϕ̂ cf. Remark 2)

p̂(·, t) = ϕ̂
e(−µ+ϑ0) t

(2 π)3/2

[

1− τ1 µ

2 ϑ0
(1− e−2ϑ0 t) +

τ1
2
(1 + e−2 ϑ0 t)

]

.

Here the first exponential term is bounded but not exponentially decreasing
and thus, in general, φT := p|t=T is not an element of GD for D as in (21).
Of course if ϕ̂ oscillates appropriately, then φT ∈ GD is possible. As a con-
sequence, in general, the time reversal exists only for regularized data.
b) For PAT the time reversed wave qPAT is given by ∂q

∂t
, where q is as in

Lemma 4. From (22), it follows that

∂q

∂t
∈ L2(R3) ⇔ φ̂T ∗ k

2 e(µ+ϑ0) t−Dk2 ∈ L2(R3) ⇔ φT ∈ GD

for D := 2
(

c0
kc

+ ǫ
)

T and therefore the time reversal problem for PAT with

the regularized data RD φT has a solution if ϕ ∈ L2(Ω).

Remark 4. We note that a different and challenging regularization can be
used that modifies φT only at wave vectors k with large norm such that the
oscillations in φ̂T guarantee time reversal and supp(R(φT )) ⊆ Ω. But this
issue is beyond the scope of this paper.

3 The operator JT : GD → L2(R3)

Let GD be defined as in (17) and (18). For J ∈ G−D and φ ∈ GD, we have
formally

F{J ∗x φ} = Ĵ φ̂ = J∗ ĝ−1
D ∗x φ∗ ĝD = J∗ ∗x φ∗ .

Because J∗, φ∗ ∈ L2(R3), the last product as well as its inverse Fourier
transform exist. Hence we define the convolution of J ∈ G−D and φ ∈ GD by

(23) J ∗x φ := J∗ ∗x φ∗ = F−1{Ĵ∗ φ̂∗} .
and consider J as the convolution kernel of an operator J : GD → L2(R3).

Proposition 2. Let (16) hold, T , D be as in Lemma 4 and

(24) Ĵ(k) := (2 π)−3/2 sin
2(ϑ(k) T )

ϑ2(k)
for k ∈ R

3 .

Then Ĵ := ŵ(·, T ) holds, where w is the solution of wave equation (9) with
ξ(x) = δ(x) and J ∈ G−D. If ξ ∈ GD, then the solution of (9) satisfies
w(·, t) = Jt ξ ∈ L2(R3) for t ∈ [0, T ].

12



Proof. The first claim follows from the fact that ŵ solves

−|k|2 ŵ +
τ 21 c

2
0

4
|k|4 ŵ − 1

c21

∂2ŵ

∂t2
= − 2

(2 π)3/2 c21
with c1 := 2 c0 ,

which is equivalent to wave equation (9) with ξ(x) = δ(x).

For the second claim. Let ǫ > 0, D := 2
(

c0
kc

+ ǫ
)

T and k := |k| for
k ∈ R3. Because

• ϑ(k) =: iϑ0(k) is real for k ≤ kc,

• ϑ(k) is imaginary for k > kc and sin(i x) = i sinh(x) and

• a(k) := limk→∞

(

k
√

k2

k2c
− 1− k2

kc

)

= −kc
2
,

it follows that

b(k) := lim
k→∞

2 ϑ0 T −Dk2 = 2 c0 T a(k)− 2 ǫ T k2 = −c0 kc T − 2 ǫ T k2

and

Ĵ(k) = Ĵ∗(k) eD |k|2 with Ĵ∗(k) := (2 π)−3/2 sin
2(ϑ(k) T )

ϑ2(k)
e−D |k|2

holds, where Ĵ∗ is oscillating similarly as sin2(ϑ(k))
ϑ2(k)

for k < kc and decreases

exponentially like eb(k) for k > kc. From this and ǫ > 0, it follows that

‖Ĵ∗‖2L2 = 4 π

∞
∫

0

∣

∣

∣

∣

sin2(ϑ(k))

ϑ2(k)

∣

∣

∣

∣

e−D |k|2 k2 dk < ∞ ,

which proves J ∈ G−D. The last claim follows from the fact that the convo-
lution is well-defined by (23) and Jt ξ ∈ L2(R3) for t ∈ [0, T ] and ξ ∈ GD.

Proposition 3. Let (16) hold and T , D be as in Lemma 4. Then the operator
JT : GD → L2(Ω) defined by (23) is compact if GD is endowed with the
L2−norm.

Proof. Because the operator φ∗ 7→ J∗ ∗x φ∗ maps L2(R3) into L2(R3) and its
kernel J∗ lies L2(R3), JT is a Hilbert-Schmidt operator and thus is compact
(cf. [1]).
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4 Derivation of the operator equation

In this section we derive the operator equation (8). Throughout this section

(AD 1) (15), (16), (21) hold, ϕ ∈ L2(Ω) with Ω ⊂ R3 open and bounded, J is
defined as in Proposition 2 and

(25) φT := φT (ϕ) := ptv|t=T ,

where ptv denotes the solutions of (1) with α∗ defined by (3). Moreover,
F [φT ] is defined by (5).

In particular, this means that the regularized time reversed thermo-viscous
wave equation has a solution in L2(R3) (cf. Remark 3), the operator JT is
well-defined and compact and

ptv|t=T ≈ pksb (·, T + T1(·))

holds according to Proposition 1. Here pksb denotes the causal solutions
of (1) with α∗ defined by (2). That is to say, the following results hold
approximately if time shifted causal data are used instead of the non-causal
one.

For the convenience of the reader we recall that F [RD φT ] := q|t=T , where
q solves the regularized time reversed thermo-viscous wave equation

(

Id− τ1
∂

∂t

)

∆ q − 1

c20

∂2q

∂t2
=

RD (φT )

c20

(

Id− τ2
∂

∂t

)

δ′(t) .

Notice that the substitution t → −t leads to δ′(−t) = −δ′(t), i.e. the right
hand side in the time reversed wave equation must have a positive sign for
PAT. It is best to start with the simplified case τ2 = 0.

Lemma 5. If (AD 1) holds and τ2 = 0, then

F [RD φT ] = (Id+ c20∆JT )RD ϕ .

Proof. According to Remark 3, RD (φT ) ∈ GD with D := 2
(

c0
kc

+ ǫ
)

T im-

plies that q(·, t) exists for t ∈ [0, T ] and q(·, T ) ∈ L2(R3). Let Ĝ± denote the
solutions of

(26) −|k|2
(

Id± τ1
∂

∂t

)

Ĝ± − 1

c20

∂2Ĝ±

∂t2
= ∓ 1

c20

δ(t)

(2 π)3/2
.

14



For convenience we set (φ̂T )D := RD φ̂T and ϕ̂D := RD ϕ̂. From the convo-
lution theorem

F{f g}(k) = (2 π)3/2 f̂(k) ĝ(k) k ∈ R
3 ,

we get

(27) (φ̂T )D = (2 π)3/2 Ĝ+|t=T ϕ̂D and q̂|t=T = (2 π)3/2 Ĝ−|t=T (φ̂T )D

and consequently

q̂|t=T = (2 π)3

[

∂Ĝ−

∂t

∂Ĝ+

∂t

]

t=T

ϕ̂D .

From Lemma 2 and Lemma 3, it follows for t > 0 that

∂Ĝ−

∂t

∂Ĝ+

∂t
=

1

(2 π)3
∂

∂t

(

eµ t sin(ϑ t)

ϑ

)

∂

∂t

(

e−µ t sin(ϑ t)

ϑ

)

=
1

(2 π)3

(

1 + (cos2(ϑ t)− 1)− µ2 sin
2(ϑ t)

ϑ2

)

.

With cos2(ϑ t)−1 = − sin2(ϑ t) and ϑ2+µ2 = c20 |k|2, the last result simplifies
to

∂Ĝ−

∂t

∂Ĝ+

∂t
=

1

(2 π)3

(

1− c20 |k|2
sin2(ϑ t)

ϑ2

)

.

With

(28) − F−1

{ |k|2
(2 π)3/2

}

(x) ∗x = ∆ ,

we obtain finally

F [RD φT ] = q|t=T =

(

δ(x) + c20∆F−1

{

sin2(ϑ t)

(2 π)3/2 ϑ2

})

∗x ϕD ,

which concludes the proof.

We now come to the case τ2 = τ1 ≥ 0.

Theorem 2. If (AD 1) holds and τ2 = 0 or τ2 = τ1, then

F [RD φT ] =
(

Id+ τ 22 c
2
0∆

)2 RD ϕ+ c20∆JT RD ϕ

15



Proof. According to Remark 3, RD (φT ) ∈ GD with D := 2
(

c0
kc

+ ǫ
)

T im-

plies that q(·, t) exists for t ∈ [0, T ] and q(·, T ) ∈ L2(R3). As in the proof of
Lemma 5, it follows that

(29) q̂|t=T = (2 π)3 [A−A+]t=T ϕ̂D ,

where

A± :=

(

Id± τ1
∂

∂t

)

∂Ĝ±

∂t
.

and G± are defined by (26). From the Lemmata 2 and 3, it follows for t > 0
that

(2 π)3/2 e±µ tA± = ±[−µ + τ1 µ
2 − τ1 ϑ

2]
sin(ϑ t)

ϑ
+ [1− 2 τ1 µ] cos(ϑ t) ,

which implies with

(a− b) (a+ b) = a2 − b2 and cos2(ϑ t) = 1− ϑ2 sin
2(ϑ t)

ϑ2

that

(2 π)3A− A+ = [1− 2 τ1 µ]
2 −

{

[−µ+ τ1 µ
2 − τ1 ϑ

2]2 + [1− 2 τ1 µ]
2 ϑ2

} sin2(ϑ t)

ϑ2
.

Employing µ2 + ϑ2 = c2 |k|2 to the last result yields

(2 π)3A−A+ = [1− 2 τ1 µ]
2 − (µ2 + ϑ2)

sin2(ϑ t)

ϑ2
.

Inserting this in (29) results in

F [RD φT ] = q̂|t=T = [1− 2 τ1 µ]
2 ϕ̂D − (µ2 + ϑ2)

sin2(ϑT )

ϑ2
ϕ̂D ,

which is due to (28) and

F−1

{

µ2 + ϑ2

(2 π)3/2

}

∗x = −c20∆

is equivalent to

F [RD φT ] = [1 + τ 21 c
2
0∆]2 RD ϕ+ c20∆JT RD ϕ .

As was to be shown.
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5 Properties of the operator equation

Operator equation (8), which follows from Theorem 2, can be written as
follows

(30) A(RD ϕ) = f ,

where f := F1[φT |Ω, β] and the operator A : GD → L2(R3) is defined by

(31) A := (Id + τ 21 c
2
0∆)2 + c20∆JT .

Here GD and G−D are defined as in (17) and (18), respectively. Because the
kernel of the operator JT defined by (24) is an element of G−D for

(32) D := 2

(

c0
kc

+ ǫ

)

T with ǫ > 0

and JT ξ is well-defined only if ξ ∈ GD (cf. Section 3), it is required that
RD ϕ ∈ GD. But this means nothing else than ϕ ∈ L2(Ω). Moreover,
∆2 RD ϕ exists and lies in L2(R3). Hence we get the following proposition.

Proposition 4. A necessary condition for the solvability of operator equa-
tion (30) is that

ϕ ∈ L2(Ω) with D defined as in (32).

The next two propositions discuss the injectivity and surjectivity of the
operator A.

Proposition 5. If (AD 1) holds, then A◦RD : L2(Ω) → L2(R3) is injective.

Proof. We show that the null space N (A ◦RD) contains only the zero func-
tion. We note that gD defined as in (19) satisfies ĝD(x) := (2 π)−3/2 e−Dk2

for k = |k| with k ∈ R3 and that kc :=
2

τ1 c0
. Because the Fourier transform

is an isometry on L2(R3), it follows that ϕ ∈ N (A ◦RD) if and only if

(33) ϕ ∈ L2(Ω) and

[

(

1− 4
k2

k2
c

)2

− c20 k
2 Ĵ2(k)

]

e−4D |k|2 ϕ̂ = 0

with

Ĵ(k) :=
sin(ϑ(k) T )

ϑ(k)
for k ∈ R

3 .

17



We assume that ϕ is not the zero function and prove a contradiction. Because
ϕ has compact support, the Paley-Wiener Theorem (cf. [10]) implies that the
set Z of zeros of ϕ̂ cannot contain an open ball B ⊂ R

3 and thus
(

1− 4
k2

k2
c

)2

− c20 k
2 sin

2(ϑ(k) T )

ϑ(k)2
= 0 for k ∈ B\Z

follows. But this is equivalently to

(34)

(

1− 4
k2

k2
c

)2 (

1− k2

k2
c

)

= sin2(ϑ(k) T ) for k ∈ B\Z .

We recall that sin2(ϑ(k) T ) (cf. Lemma 4) oscillates between ±1 for |k| ≤ kc
and increases exponentially for |k| > kc. Hence (34) has finite many zeros
on [0, kc] but no zeros on (kc,∞), consequently identity (34) is not true for
k ∈ B\Z, where B is an open ball in R3. Hence the assumption ϕ 6= 0 is
false, which proves the claim.

Proposition 6. If (AD 1) holds, then A : GD → L2(R3) is not surjective.

Proof. Let f ∈ L2(R3) and ϕ solve A(ϕ) = f . Then from (31), we infer for
k := |k| with k ∈ R

3 that

ϕ̂(k) =
f̂(k)

ĥ(k)
with ĥ(k) := (1− τ 21 c

2
0 k

2)2 + c20 k
2 Ĵ2(k) ,

where ĥ(k) has zeros lying on a finite (but large) number of spheres. Hence
ϕ̂(k) ∈ L2(R3) implies that a zero kj of ĥ of order nj is a zero of f̂ of order
≥ nj. Because this is a real restriction on the space L2(R3), A cannot be
surjective.

6 Properties of the imaging functional

Now we show under the assumption (6) that

(35) F1[φT |Ω, β]|Ω = RDϕ|Ω for τ1 = 0

and

(36) lim
τ1→0

F1[φT |Ω, β]|Ω = RDϕ|Ω

hold for D > 0, where RD is defined as in (20). We recall that φT := p|t=T

and β := p|∂Ω, where p denotes the solution of (1) with complex attenu-
ation law (3) and ϕ ∈ L2(Ω). Loosely speaking identity (35) means that
F1[φT |Ω, β]Ω is similar to RD ϕ if the attenuation is weak.

18



Theorem 3. Let ϕ ∈ L2(Ω). If D > 0 and assumption (6) holds, then
identity (35) is true.

Proof. Let τ1 = 0 and w(·, t) := Jt ϕ satisfy (9). Then w solves the standard
wave equation

∆w − 1

c21

∂2w

∂t2
= −2ϕ

c21
on R3 × [0, T ] with c1 := 2 c0 .

Consequently, w can be written as

w(x, T ) =
2

c21

∫

R3

∞
∫

0

δ
(

T − s− |x−y|
c1

)

4 π |x− y| ϕ(y) ds dy =
2

c21

∫

R3

χBc1 T (x)(y)

4 π |x− y| ϕ(y) dy ,

where we have used that

∞
∫

0

δ

(

T − s− |x− y|
c1

)

ds = 1 if and only if y ∈ Bc1 T (x) .

Employing assumption (6), c1 = 2 c0 and ∆ 1
|x−y|

= −4 π δ(x− y) to our last
result yields

c20 [∆JT ϕ]Ω = c20 [∆w(x, T )]Ω =
1

8 π
∆

∫

supp(ϕ)

ϕ(y)

|x− y| dy = −1

2
ϕ ,

which proves our claim.

Theorem 4. Let ϕ ∈ L2(Ω). If D > 0 and assumption (6) holds, then
identity (37) is true.

Proof. Because RD ϕ is bounded for ϕ ∈ L2(Ω), it follows

lim
τ1→0

a(τ1)∆RD ϕ = ∆ lim
τ1→0

a(τ1)RD ϕ = 0 if lim a(τ1) → 0 .

Hence we have

lim
τ1→0

(

Id + τ 21 c
2
0∆

)2 RD ϕ = RD ϕ in L2(R3) .

It remains to show that

lim
τ1→0

c20 [∆JT RD ϕ]Ω = −1

2
[RD ϕ]Ω in L2(R3) .
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Due to Theorem 3 and its proof, this is equivalent to

lim
τ1→0

c20 [∆wτ1(x, T )]Ω = c20 [∆w0(x, T )]Ω in L2(R3) ,

where wτ1 solves (9) with ξ̂ := ĝD ϕ̂, i.e. (cf. Proposition 2)

ŵτ1(k, T ) = ĝD(k)
sin2(ϑ(|k|) T )

ϑ2(|k|) with ϑ(|k|) = c0 |k|
(

1− τ 21 c
2
0

4
k2

)

.

Notice ϑ(|k|) = c0 |k| for τ1 = 0. Now we estimate ‖ŵτ − ŵ0‖2L2 . Let ǫ > 0
be arbitrary. Because ŵτ1, ŵ0 ∈ L2(R3), there exists kǫ > 0 such that

∫

R3\Vǫ

ĝ2D(k) |ŵτ1(k, T )|2 dk ≤ ǫ

8
for τ1 ∈ (0, τ0) ,

where τ0 is sufficiently small and Vǫ := Bkǫ(0). Because ŵτ0(k, T ) converges
to ŵ0(k, T ) pointwise for τ1 → 0 and V̄ǫ is compact, it follows that

|ŵτ1(·, T )− ŵ0(·, T )|2 ≤
ǫ

2 |Vǫ|
on V̄ǫ for sufficiently small τ1.

With these two inequalities and |a − b|2 ≤ 4 max(|a|2, |b|2) for a b ∈ C, we
get

‖ŵτ − ŵ0‖2L2 ≤ ǫ

2 |Vǫ|

∫

Vǫ

dk + 4
ǫ

8
= ǫ for sufficiently small τ1.

Therefore wτ converges to w0 in L2(R3). Because ∆gD is a linear combination
of Gaussians, it follows that ∆wτ converges to ∆w0 in L2(R3), as was to be
shown.

7 Simulation of the imaging functional

In Section 6 we showed that

(37) lim
τ1→0

F1[φT |Ω, β]|Ω = [RDϕ]Ω

holds under an appropriate assumption, which means that the time reversal
image (in the noise-free case) gives a good estimation of the initial pressure
function if τ1 is sufficiently small. The goal of this section is to demonstrate
that the parameter τ1 ≈ 10−9 s for tissue similar to water is sufficiently small
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Figure 2: The first row shows a visualization of the set-up with L = 0.5m
and an example of the initial pressure function ϕ. The second row shows the
time reversal image I for τ1 = 10−9 s (water) and τ1 = 8.5 · 10−7 s (fictive),
respectively. Small features are not well mapped by the time reversal image
in case of strong dissipation.

to ensure strong similarity between the initial pressure function ϕ and the
time reversal image

(38) I := 2
(

Id + τ 21 c
2
0∆

)2
ϕ+∆ I0 with I0 := 2 c20 JT ϕ .

In order to save computation time we focus on the two dimensional case for
which the results derived in this paper hold, too.

The chosen set-up is visualized in Fig. 2. For our simulations we have
dropped the regularization operator RD and Jt ϕ = w(·, t) was calculated by
solving the wave equation

(39) ∆w+
τ 21 c

2
0

4
∆4w− 1

c21

∂2w

∂t2
= −2ϕ

c21
on R3 × [0, T ] (c1 := 2 c0) .
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Figure 3: The first row shows the initial pressure functions ϕ and the re-
spective time reversal image I for τ1 = 10−9 s. The function I0 which is up
to a constant the solution of wave equation (39) and its Laplacian ∆ I0 are
visualized in the last row.

via the forward Euler method on [0, 4L]2 × [0, T ] with L = 0.5m, T = 4L
c0
,

∆t =
1

2

∆x

c1
and ∆x = ∆y =

L0

1020
.

We note that the CFL-condition is satisfies for τ1 = 0.

Example 1. The first example is visualized in Fig. 2. The circular peaks in
ϕ are C∞−functions of the form

x 7→ f(a− |x− b|2) with f(s) := e−1/s, b ∈ Ω and

a ∈ {3.6, 14.4, 32.4, 57.6}mm. The right picture in the first row in Fig. 2
shows the initial pressure function ϕ and the second row shows the time
reversal images for τ1 = 10−9 s (water) and τ1 = 8.5 · 10−7 s (fictive). We
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see that the smallest features is not well mapped for strong dissipation, it is
twice as thick and its maximum intensity is about 30 percent of the correct
maximum intensity. Numerical simulations show that the time reversal image
blows up for τ1 = 10−6 s, even if the time step size is decreased by the factor
1/8.

Example 2. A second numerical example for a piecewise constant function
ϕ is presented in Fig. 3. The last row shows I0 which is up to a constant
the solution of wave equation (39) and its Laplacian ∆ I0. We note that
non-smooth initial pressure functions and stronger dissipation causes more
artifacts in the solution of ∆ I0. As in the first example the time reversal
image blows up for τ1 = 10−6 s.

8 Conclusions

In this paper we showed that a method for solving PAT based on the non-
causal thermo-viscous wave equation can be used if

• the non-causal data are replaced by appropriately time shifted causal
data and

• the size of supp(ϕ) is much smaller than its distance to the detectors.

In other words, performing an appropriate time shift of causal data per-
mits the use of the non-causal thermo-viscous wave equation. Moreover, we
showed that

• strictly speaking the time reversal image exists only if the data are reg-
ularized, e.g. by the operator RD for restriction D > τ1 c

2
0 T (cf. (20))

and that

• the regularized time reversal image for the case of dissipative media
like water is very similar to a smoothed version of the initial pressure
function ϕ.

If required, the time reversal image can be improved by solving operator
equation (30) with the time reversal image as right hand side.

Above all, we would like to emphasize that this paper has analyzed the
quality of an idealized estimation (noise-free case), but did not discussed the
quality of a reconstruction using real noisy data.
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