
ar
X

iv
:1

41
1.

74
18

v2
 [

m
at

h.
N

A
]

 5
 F

eb
 2

01
5

A Multiscale Butterfly Algorithm for Multidimensional Fourier

Integral Operators

Yingzhou Li♯, Haizhao Yang†∗and Lexing Ying†♯

† Department of Mathematics, Stanford University

♯ ICME, Stanford University

Nov 2014

Abstract

This paper presents an efficient multiscale butterfly algorithm for computing Fourier integral
operators (FIOs) of the form (Lf)(x) =

∫
Rd a(x, ξ)e

2πıΦ(x,ξ)f̂(ξ)dξ, where Φ(x, ξ) is a phase
function, a(x, ξ) is an amplitude function, and f(x) is a given input. The frequency domain is
hierarchically decomposed into a union of Cartesian coronas. The integral kernel a(x, ξ)e2πıΦ(x,ξ)

in each corona satisfies a special low-rank property that enables the application of a butterfly
algorithm on the Cartesian phase-space grid. This leads to an algorithm with quasi-linear
operation complexity and linear memory complexity. Different from previous butterfly methods
for the FIOs, this new approach is simple and reduces the computational cost by avoiding extra
coordinate transformations. Numerical examples in two and three dimensions are provided to
demonstrate the practical advantages of the new algorithm.

Keywords. Fourier integral operators, the butterfly algorithm, hierarchical decomposition,
separated representation.

AMS subject classifications: 44A55, 65R10 and 65T50.

1 Introduction

This paper is concerned with the rapid application of Fourier integral operators (FIOs), which are
defined as

(Lf)(x) =
∫

Rd

a(x, ξ)e2πıΦ(x,ξ)f̂(ξ)dξ, (1)

where

• a(x, ξ) is an amplitude function that is smooth both in x and ξ,

• Φ(x, ξ) is a phase function that is smooth in (x, ξ) for ξ 6= 0 and obeys the homogeneity
condition of degree 1 in ξ, namely, Φ(x, λξ) = λΦ(x, ξ) for each λ > 0;

• f̂ is the Fourier transform of the input f defined by

f̂(ξ) =

∫

Rd

e−2πıx·ξf(x)dx.

∗Corresponding author. Email address: haizhao@math.stanford.edu.

1

http://arxiv.org/abs/1411.7418v2

The computation of Fourier integral operators appears quite often in the numerical solution of
wave equations and related applications in computational geophysics. In a typical setting, it is
often assumed that the problem is periodic (i.e., a(x, ξ), Φ(x, ξ), and f(x) are all periodic in x) or
the function f(x) decays sufficiently fast so that one can embed the problem in a sufficiently large
periodic cell. A simple discretization in two dimensions considers functions f given on a Cartesian
grid

X =
{
x =

(n1

N
,
n2

N

)
, 0 ≤ n1, n2 < N with n1, n2 ∈ Z

}
(2)

in a unit square and defines the discrete Fourier integral operator by

(Lf)(x) =
∑

ξ∈Ω

a(x, ξ)e2πıΦ(x,ξ)f̂(ξ), x ∈ X,

where

Ω =

{
ξ = (n1, n2),−

N

2
≤ n1, n2 <

N

2
with n1, n2 ∈ Z

}
, (3)

and f̂ is the discrete Fourier transform of f

f̂(ξ) =
1

N2

∑

x∈X

e−2πıx·ξf(x).

In most examples, since a(x, ξ) is a smooth symbol of order zero and type (1, 0) [3, 6, 14, 17, 24],
a(x, ξ) is numerically low-rank in the joint X and Ω domain and its numerical treatment is relatively
easy. Therefore, we will simplify the problem by assuming a(x, ξ) = 1 in the following analysis and
the algorithm description. [7] is referred to for discussion on how to deal with a non-constant
amplitude function. Under this assumption, the discrete FIO discussed in this paper takes the
following form:

(Lf)(x) =
∑

ξ∈Ω

e2πıΦ(x,ξ)f̂(ξ), x ∈ X. (4)

A direct computation of (4) takes O(N4) operations, which is quadratic in the number of DOFs N2.
Hence, a practical need is to design efficient and accurate algorithms to evaluate (4). This research
topic is of great interest for computing wave equations especially in geophysics [15, 18, 23, 25].

1.1 Previous work

An earlier method for the rapid computation of general FIOs is the algorithm for two dimensional
problems proposed in [6]. This method starts by partitioning the frequency domain Ω into O(

√
N)

wedges of equal angle. The integral (4) restricted to each wedge is then factorized into two compo-
nents, both of which can be handled efficiently. The first one has a low-rank structure that leads to
an O(N2 logN) fast computation, while the second one is a non-uniform Fourier transform which
can be evaluated in O(N2 logN) steps with the algorithms developed in [1, 16, 22]. Summing the
computational cost over all O(

√
N) wedges gives an O(N2.5 logN) computational cost.

Shortly after, an algorithm with quasilinear complexity for general FIOs was proposed in [7]
using the framework of the butterfly algorithms in [20, 21]. This approach introduces a polar co-
ordinate transformation in the frequency domain to remove the singularity of Φ(x, ξ) at ξ = 0,
proves the existence of low-rank separated approximations between certain pairs of spatial and
frequency domains, and implements the low-rank approximations with oscillatory Chebyshev inter-
polations. The resulting algorithm evaluates (4) with O(N2 logN) operations and O(N2) memory,
both essentially linear in terms of the number of unknowns.

2

Another related research direction seeks for sparse representations of the FIOs using modern
basis functions from harmonic analysis. A sparse representation allows fast matrix-vector products
in the transformed domain. Local Fourier transforms [2, 4, 11], wavelet-packet transforms [19], the
curvelet transform [5, 8, 9, 10], and the wave atom frame [12, 13] have been investigated for the
purpose of operator sparsification. In spite of favorable asymptotic behaviors, the actual represen-
tations of the FIOs typically have a large pre-factor constant in terms of both the computational
time and the memory requirement. This makes them less competitive compared to the approaches
in [6, 7].

1.2 Motivation

The main motivation of the current work is to improve the performance of the butterfly algorithm in
[7]. As we pointed out earlier, this algorithm starts by applying a polar coordinate transformation
in the frequency domain to remove the singularity of the phase function at ξ = 0. For this reason,
we refer to this algorithm as the polar Butterfly algorithm. More precisely, the polar butterfly
algorithm introduces a polar-Cartesian coordinate transformation T : (p1, p2) → (ξ1, ξ2) such that

ξ = (ξ1, ξ2) =

√
2

2
Np1e

2πıp2 , e2πıp2 = (cos 2πp2, sin 2πp2). (5)

Let P = T−1(Ω). By definition, each point p = (p1, p2) ∈ P belongs to [0, 1]2. The new phase
function Ψ(x, p) in the p variable is now given by

Ψ(x, p) :=
1

N
Φ(x, ξ) =

√
2

2
Φ(x, e2πıp2)p1, (6)

where the last identity comes from the homogeneity of Φ(x, ξ) in ξ. Thus, computing (4) is equiv-
alent to evaluate

(Lf)(x) =
∑

ξ∈Ω

e2πıΦ(x,ξ)f̂(ξ) =
∑

p∈P

e2πıNΨ(x,p)f̂(T (p)). (7)

The new phase function Ψ(x, p) is smooth in the whole domain (x, p) ⊂ [0, 1]2× [0, 1]2, since Φ(x, ξ)
is smooth in (x, ξ) for ξ 6= 0. This smoothness guarantees a low-rank separated approximation of
e2πıNΨ(x,p) when x and p are properly restricted to certain subdomains in X × P under certain
geometric configuration. This low-rank property allows for the application of the butterfly algorithm
in [26] and results in a fast algorithm with an O(N2 logN) computational complexity and an O(N2)
memory complexity.

However, the application of this polar-Cartesian transformation comes with several drawbacks,
which result in a large pre-factor of the computational complexity. First, due to the polar grid
in the frequency domain, the points in P for the butterfly algorithm are irregularly distributed
and a separate Chebyshev interpolation matrix is required for the evaluation at each point. In
order to avoid the memory bottleneck from storing these interpolation matrices, the polar butterfly
algorithm generates these interpolation matrices on-the-fly during the evaluation. This turns out
to be expensive in the operation count. Second, since the amplitude and phase functions are often
written in the Cartesian coordinates, the polar butterfly algorithm applies the polar-Cartesian
transformation for each kernel evaluation. Finally, in order to maintain a reasonable accuracy,
the polar butterfly algorithm divides the frequency domain into multiple parts and applies the
same butterfly algorithm to each part separately. This also increases the actual running time by a
non-trivial constant factor.

3

1.3 Our contribution

Those drawbacks of the polar Butterfly algorithm motivate us to propose a multiscale butterfly
algorithm using a Cartesian grid both in the spatial and frequency domain. To deal with the
singularity of the kernel Φ(x, ξ) at ξ = 0, we hierarchically decompose the frequency domain into
a union of non-overlapping Cartesian coronas with a common center ξ = 0 (see Figure 1). More
precisely, define

Ωj =

{
(n1, n2) :

N

2j+1
< max(|n1|, |n2|) ≤

N

2j

}
∩Ω

for j = 1, . . . , logN − s, where s is just a small constant integer. The domain Ωd = Ω \ ∪jΩj is the
remaining square grid at the center of constant size. Following this decomposition of the frequency
domain, one can write (4) accordingly as

(Lf)(x) =
∑

j

∑

ξ∈Ωj

e2πıΦ(x,ξ)f̂(ξ)

+

∑

ξ∈Ωd

e2πıΦ(x,ξ)f̂(ξ). (8)

Ω1 Ω2

· · ·

· · · ΩlogN−s Ωd

Figure 1: This figure shows the frequency domain decomposition of Ω. Each sub-domain Ωj,
j = 1, . . . , logN − s, is a corona and Ωd is a small square domain near the origin.

The kernel function of (8) is smooth in each sub-domain Ωj and a Cartesian butterfly algorithm
is applied to evaluate the contribution from Ωj. For the center square Ωd, since it contains only
a constant number of points, a direct summation is used. Because of the mutiscale nature of
the frequency domain decompositions, we refer to this algorithm as the multiscale butterfly

algorithm. As we shall see, the computational and memory complexity of the multiscale butterfly
algorithm are still O(N2 logN) and O(N2), respectively. On the other hand, the pre-factors are
much smaller, since the multiscale butterfly is based on the Cartesian grids and requires no polar-
Cartesian transformation.

1.4 Organization

The rest of this paper is organized as follows. Section 2 presents the overall structure of a but-
terfly algorithm. Section 3 proves a low-rank property that is essential to the multiscale butterfly
algorithm. Section 4 combines the results of the previous two sections and describes the multiscale
butterfly algorithm in detail. In Section 5, numerical results of several examples are provided to
demonstrate the efficiency of the multiscale butterfly algorithm. Finally, we conclude this paper
with some discussion in Section 6.

4

2 The Butterfly Algorithm

This section provides brief description of the overall structure of the butterfly algorithm. In this
section, X and Ω refer to two general sets of M points in R

2, respectively. We assume the points
in these two sets are distributed quasi-uniformly but they are not necessarily the sets defined in
(2) and (3).

Given an input {g(ξ), ξ ∈ Ω}, the goal is to compute the potentials {u(x), x ∈ X} defined by

u(x) =
∑

ξ∈Ω

K(x, ξ)g(ξ), x ∈ X,

where K(x, ξ) is a kernel function. Let DX ⊃ X and DΩ ⊃ Ω be two square domains containing
X and Ω respectively. The main data structure of the butterfly algorithm is a pair of quadtrees
TX and TΩ. Having DX as its root box, the tree TX is built by recursive dyadic partitioning
of DX until each leaf box contains only a few points. The tree TΩ is constructed by recursively
partitioning in the same way. With the convention that a root node is at level 0, a leaf node is at
level L = O(logM) under the quasi-uniformity condition about the point distributions, where M
is the number of points in X and Ω. Throughout, we shall use A and B to denote the square boxes
of TX and TΩ with ℓA and ℓB denoting their levels, respectively.

At the heart of the butterfly algorithm is a special low-rank property. Consider any pair of
boxes A ∈ TX and B ∈ TΩ obeying the condition ℓA + ℓB = L. The butterfly algorithm assumes
that the submatrix {K(x, ξ)}x∈A,ξ∈B to be approximately of a constant rank. More precisely, for
any ǫ, there exists a constant rǫ independent of M and two sets of functions {αAB

t (x)}1≤t≤rǫ and
{βAB

t (ξ)}1≤t≤rǫ such that the following holds
∣∣∣∣∣K(x, ξ)−

rǫ∑

t=1

αAB
t (x)βAB

t (ξ)

∣∣∣∣∣ ≤ ǫ, ∀x ∈ A,∀ξ ∈ B. (9)

The number rǫ is called the ǫ-separation rank. The exact form of the functions {αAB
t (x)}1≤t≤rǫ and

{βAB
t (ξ)}1≤t≤rǫ of course depends on the problem to which the butterfly algorithm is applied.
For a given square B in DΩ, define uB(x) to be the restricted potential over the sources ξ ∈ B

uB(x) =
∑

ξ∈B

K(x, ξ)g(ξ).

The low-rank property gives a compact expansion for {uB(x)}x∈A as summing (9) over ξ ∈ B with
weights g(ξ) gives

∣∣∣∣∣∣
uB(x)−

rǫ∑

t=1

αAB
t (x)

∑

ξ∈B

βAB
t (ξ)g(ξ)

∣∣∣∣∣∣
≤

∑

ξ∈B

|g(ξ)|

 ǫ, ∀x ∈ A.

Therefore, if one can find coefficients {δAB
t }1≤t≤rǫ obeying

δAB
t ≈

∑

ξ∈B

βAB
t (ξ)g(ξ), 1 ≤ t ≤ rǫ, (10)

then the restricted potential {uB(x)}x∈A admits a compact expansion

∣∣∣∣∣u
B(x)−

rǫ∑

t=1

αAB
t (x)δAB

t

∣∣∣∣∣ ≤

∑

ξ∈B

|g(ξ)|

 ǫ, ∀x ∈ A.

5

A key point of the butterfly algorithm is that for each pair (A,B), the number of terms in the
expansion is independent of M .

Computing {δAB
t }1≤t≤rǫ by means of (10) for all pairs A,B is not efficient when B is a large

box because for each B there are many paired boxes A. The butterfly algorithm, however, comes
with an efficient way for computing {δAB

t }1≤t≤rǫ recursively. The general structure of the algorithm
consists of a top down traversal of TX and a bottom up traversal of TΩ, carried out simultaneously.

1. Construct the trees TX and TΩ with root nodes DX and DΩ.

2. Let A be the root of TX . For each leaf box B of TΩ, construct the expansion coefficients
{δAB

t }1≤t≤rǫ for the potential {uB(x)}x∈A by simply setting

δAB
t =

∑

ξ∈B

βAB
t (ξ)g(ξ), 1 ≤ t ≤ rǫ. (11)

3. For ℓ = 1, 2, . . . , L, visit level ℓ in TX and level L− ℓ in TΩ. For each pair (A,B) with ℓA = ℓ
and ℓB = L−ℓ, construct the expansion coefficients {δAB

t }1≤t≤rǫ for the potential {uB(x)}x∈A
using the low-rank representation constructed at the previous level (ℓ = 0 is the initialization
step). Let P be A’s parent and C be a child of B. Throughout, we shall use the notation
C ≻ B when C is a child of B. At level ℓ − 1, the expansion coefficients {δPC

s }1≤s≤rǫ of
{uC(x)}x∈P are readily available and we have

∣∣∣∣∣u
C(x)−

rǫ∑

s=1

αPC
s (x)δPC

s

∣∣∣∣∣ ≤

∑

ξ∈C

|g(ξ)|

 ǫ, ∀x ∈ P.

Since uB(x) =
∑

C≻B uC(x), the previous inequality implies that

∣∣∣∣∣u
B(x)−

∑

C≻B

rǫ∑

s=1

αPC
s (x)δPC

s

∣∣∣∣∣ ≤

∑

ξ∈B

|g(ξ)|

 ǫ, ∀x ∈ P.

Since A ⊂ P , the above approximation is of course true for any x ∈ A. However, since ℓA +
ℓB = L, the sequence of restricted potentials {uB(x)}x∈A also has a low-rank approximation
of size rǫ, namely,

∣∣∣∣∣u
B(x)−

rǫ∑

t=1

αAB
t (x)δAB

t

∣∣∣∣∣ ≤

∑

ξ∈B

|g(ξ)|

 ǫ, ∀x ∈ A.

Combining the last two approximations, we obtain that {δAB
t }1≤t≤rǫ should obey

rǫ∑

t=1

αAB
t (x)δAB

t ≈
∑

C≻B

rǫ∑

s=1

αPC
s (x)δPC

s , ∀x ∈ A. (12)

This is an over-determined linear system for {δAB
t }1≤t≤rǫ when {δPC

s }1≤s≤rǫ,C≻B are avail-
able. Instead of computing {δAB

t }1≤t≤rǫ with a least-square method, the butterfly algorithm
typically uses an efficient linear transformation approximately mapping {δPC

s }1≤s≤rǫ,C≻B into
{δAB

t }1≤t≤rǫ . The actual implementation of this step is very much application-dependent.

6

Figure 2: Hierarchical domain trees of the 2D butterfly algorithm. Left: TX for the spatial domain
DX . Right: TΩ for the frequency domain DΩ. The interactions between subdomains A ⊂ DX and
B ⊂ DΩ are represented by left right arrow lines.

4. Finally, ℓ = L and set B to be the root node of TΩ. For each leaf box A ∈ TX , use the
constructed expansion coefficients {δAB

t }1≤t≤rǫ to evaluate u(x) for each x ∈ A,

u(x) =

rǫ∑

t=1

αAB
t (x)δAB

t . (13)

A schematic illustration of this algorithm is provided in Figure 2. We would like to emphasize
that the strict balance between the levels of the target boxes A and source boxes B maintained
throughout this procedure is the key to obtain the accurate low-rank separated approximations.

3 Low-rank approximations

In this section, the set X and Ω refer to the sets defined in (2) and (3). In order to apply
the algorithm in Section 4, one would require the existence of the following low-rank separated
representation

e2πıΦ(x,ξ) ≈
rǫ∑

t=1

αAB
t (x)βAB

t (ξ)

for any pair of boxes A and B such that ℓA + ℓB = L. However, this is not true for a general FIO
kernel e2πıΦ(x,ξ) due to the singularity of Φ(x, ξ) at the origin ξ = 0, i.e., when the square B in Ω is
close to the origin of the frequency domain. However, if the frequency domain B is well-separated
from the origin ξ = 0 in a relative sense, one can prove a low-rank separated representation.

In order to make it more precise, for two given squares A ⊂ X and B ⊂ Ω, we introduce a new
function called the residue phase function

RAB(x, ξ) := Φ(x, ξ)− Φ(cA, ξ)− Φ(x, cB) + Φ(cA, cB), (14)

where cA and cB are the centers of A and B respectively. Using this new definition, the kernel can
be written as

e2πıΦ(x,ξ) = e2πıΦ(cA,ξ)e2πıΦ(x,cB)e−2πıΦ(cA,cB)e2πıR
AB(x,ξ). (15)

Theorem 3.1. Suppose Φ(x, ξ) is a phase function that is real analytic for x and ξ away from
ξ = 0. There exists positive constants ǫ0 and N0 such that the following is true. Let A and B be

7

two squares in X and Ω, respectively, obeying wAwB ≤ 1 and dist(B, 0) ≥ N
4 . For any positive

ǫ ≤ ǫ0 and N ≥ N0, there exists an approximation

∣∣∣∣∣e
2πıRAB(x,ξ) −

rǫ∑

t=1

α̃AB
t (x)β̃AB

t (ξ)

∣∣∣∣∣ ≤ ǫ

for x ∈ A and ξ ∈ B with rǫ . log4(1ǫ). Moreover,

• when wB ≤
√
N , the functions {β̃AB

t (ξ)}1≤t≤rǫ can all be chosen as monomials in (ξ − cB)
with a degree not exceeding a constant times log2(1/ǫ),

• and when wA ≤ 1/
√
N , the functions {α̃AB

t (x)}1≤t≤rǫ can all be chosen as monomials in
(x− cA) with a degree not exceeding a constant times log2(1/ǫ).

In Theorem 3.1, wA and wB denote the side lengths of A and B, respectively; dist(B, 0) denotes
the distance between the square B and the origin 0 in the frequency domain. The distance is given
by dist(B, 0) = minξ∈B ‖ξ − 0‖. Throughout this paper, when we write O(·), . and &, the implicit
constant is independent of N and ǫ.

Proof. Since wAwB ≤ 1, we either have wA ≤ 1/
√
N or wB ≤

√
N or both.

Let us first consider the case wB ≤
√
N . Then

RAB(x, ξ) = Φ(x, ξ)− Φ(cA, ξ)− Φ(x, cB) + Φ(cA, cB)

= [Φ(x, ξ)− Φ(cA, ξ)]− [Φ(x, cB)− Φ(cA, cB)]

= H(x, ξ)−H(x, cB),

where H(x, ξ) := Φ(x, ξ)−Φ(cA, ξ). The function RAB(x, ξ) inherits the smoothness from Φ(x, ξ).
Applying the multi-variable Taylor expansion of degree k in ξ centered at cB gives

RAB(x, ξ) =
∑

1≤|i|<k

∂i
ξH(x, cB)

i!
(ξ − cB)

i +
∑

|i|=k

∂i
ξH(x, ξ∗)

i!
(ξ − cB)

i, (16)

where ξ∗ is a point in the segment between cB and ξ. Here i = (i1, i2) is a multi-index with
i! = i1!i2!, and |i| = i1 + i2. Let us first choose the degree k so that the second sum in (16) is
bounded by ǫ/(4π). For each i with |i| = k, the definition of H(x, ξ) gives

∂i
ξH(x, ξ∗) =

∑

|j|=1

∂j
x∂

i
ξΦ(x

∗, ξ∗)(x− cA)
j ,

for some point x∗ in the segment between cA and x. Using the fact that Φ(x, ξ) is real-analytic
over |ξ| = 1 gives that there exists a radius R such that

|∂j
x∂

i
ξΦ(x, ξ)| ≤ Ci!j!

1

R|i+j|
= Ci!j!

1

Rk+1
,

for ξ with |ξ| = 1. Here the constant C is independent of k. Since Φ(x, ξ) is homogeneous of degree
1 in ξ, a scaling argument shows that

|∂j
x∂

i
ξΦ(x

∗, ξ∗)| ≤ Ci!j!
1

Rk+1|ξ∗|k−1
.

8

Since dist(B, 0) ≥ N/4 and wAwB ≤ 1, we have

∣∣∣∣∣
∂i
ξH(x, ξ∗)

i!
(ξ − cB)

i

∣∣∣∣∣ ≤
2Ci!j!

i!

1

Rk+1|ξ∗|k−1
wAw

k
B ≤ 2C

Rk+1

(
4√
N

)k−1

.

Combining this with (16) gives

∣∣∣∣∣∣
RAB(x, ξ)−

∑

1≤|i|<k

∂i
ξH(x, cB)

i!
(ξ − cB)

i

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

|i|=k

∂i
ξH(x, ξ∗)

i!
(ξ − cB)

i

∣∣∣∣∣∣
≤ 2C(k + 1)

Rk+1

(
4√
N

)k−1

.

Therefore, for a sufficient large N0(R), if N > N0(R), choosing k = kǫ = O(log(1/ǫ)) ensures that
the difference is bounded by ǫ/(4π).

The special case k = 1 results in the following bound for RAB(x, ξ)

|RAB(x, ξ)| ≤ 4C

R2
.

To simplify the notation, we define

RAB
ǫ (x, ξ) :=

∑

1≤|i|<kǫ

∂i
ξH(x, cB)

i!
(ξ − cB)

i,

i.e., the first sum on the right hand side of (16) with k = kǫ. The choice of kǫ together with (16)
implies the bound

|RAB
ǫ (x, ξ)| ≤ 4C

R2
+ ǫ.

Since RAB
ǫ (x, ξ) is bounded, a direct application of Lemma 3.2 of [7] gives

∣∣∣∣∣∣
e2πıR

AB
ǫ (x,ξ) −

dǫ∑

p=0

(2πıRAB
ǫ (x, ξ))p

p!

∣∣∣∣∣∣
≤ ǫ/2, (17)

where dǫ = O(log(1/ǫ)). Since RAB
ǫ (x, ξ) is a polynomial in (ξ − cB), the sum in (17) is also a

polynomial in (ξ − cB) with degree bounded by kǫdǫ = O(log2(1/ǫ)). Since our problem is in 2D,
there are at mostO(log4(1/ǫ)) possible monomial in (ξ−cB) with degree bounded by kǫdǫ. Grouping
the terms with the same multi-index in ξ results in an O(log4(1/ǫ)) term ǫ-accurate separated

approximation for e2πıR
AB
ǫ (x,ξ) with the factors {β̃AB

t (ξ)}1≤t≤rǫ being monomials of (ξ − cB).
Finally, from the inequality |eıa − eıb| ≤ |a − b|, it is clear that a separated approximation

for e2πıR
AB
ǫ (x,ξ) with accuracy ǫ/2 is also one for e2πıR

AB(x,ξ) with accuracy ǫ/2 + ǫ/2 = ǫ. This
completes the proof for the case wB ≤

√
N .

The proof for the case wA ≤ 1/
√
N is similar. The only difference is that we now group with

RAB(x, ξ) = [Φ(x, ξ)− Φ(x, cB)]− [Φ(cA, ξ)− Φ(cA, cB)]

and apply the multivariable Taylor expansion in x centered at cA instead. This results anO(log4(1/ǫ))

term ǫ-accurate separated approximation for e2πıR
AB(x,ξ) with the factors {α̃AB

t (x)}1≤t≤rǫ being
monomials of (x− cA).

9

Though the above proof is constructive, it is cumbersome to construct the separated approx-
imation this way. On the other hand, the proof shows that when wB ≤

√
N , the ξ-dependent

factors in the low-rank approximation of e2πıR
AB(x,ξ) are all monomials in (ξ− cB). Similarly, when

wA ≤ 1/
√
N , the x-dependent factors are monomials in (x− cA). This suggests to use Chebyshev

interpolation in x when wA ≤ 1/
√
N and in ξ when wB ≤

√
N . For this purpose, we associate with

each box a Chebyshev grid as follows.
For a fixed integer q, the Chebyshev grid of order q on [−1/2, 1/2] is defined by

{
zi =

1

2
cos

(
iπ

q − 1

)}

0≤i≤q−1

.

A tensor-product grid adapted to a square with center c and side length w is then defined via
shifting and scaling as

{c+ w(zi, zj)}i,j=0,1,...,q−1

In what follows, MB
t is the 2D Lagrange interpolation polynomial on the Chebyshev grid adapted

to the square B (i.e., using c = cB and w = wB).

Theorem 3.2. Let A and B be as in Theorem 3.1. Then for any ǫ ≤ ǫ0 and N ≥ N0 where ǫ0 and
N0 are the constants in Theorem 3.1, there exists qǫ . log2(1/ǫ) such that

• when wB ≤
√
N , the Lagrange interpolation of e2πıR

AB(x,ξ) in ξ on a qǫ × qǫ Chebyshev grid
{gBt }1≤t≤rǫ adapted to B obeys

∣∣∣∣∣e
2πıRAB(x,ξ) −

rǫ∑

t=1

e2πıR
AB(x,gBt)MB

t (ξ)

∣∣∣∣∣ ≤ ǫ, ∀x ∈ A,∀ξ ∈ B, (18)

• when wA ≤ 1/
√
N , the Lagrange interpolation of e2πıR

AB(x,ξ) in x on a qǫ× qǫ Chebyshev grid
{gAt }1≤t≤rǫ adapted to A obeys

∣∣∣∣∣e
2πıRAB(x,ξ) −

rǫ∑

t=1

MA
t (x)e2πıR

AB (gAt ,ξ)

∣∣∣∣∣ ≤ ǫ, ∀x ∈ A,∀ξ ∈ B. (19)

Both (18) and (19) provide a low-rank approximation with rǫ = q2ǫ . log4(1/ǫ) terms.

The proof for this follows exactly the one of Theorem 3.3 of [7].
Finally, we are ready to construct the low-rank approximation for the kernel e2πıΦ(x,ξ), i.e.,

e2πıΦ(x,ξ) ≈
rǫ∑

t=1

αAB
t (x)βAB

t (ξ). (20)

When wB ≤
√
N , one multiply (18) with e2πıΦ(cA,ξ)e2πıΦ(x,cB)e−2πıΦ(cA,cB), which gives that ∀x ∈

A,∀ξ ∈ B ∣∣∣∣∣e
2πıΦ(x,ξ) −

rǫ∑

t=1

e2πıΦ(x,gBt)
(
e−2πıΦ(cA,gBt)MB

t (ξ)e2πıΦ(cA,ξ)
)∣∣∣∣∣ ≤ ǫ.

In terms of the notations in (20), the expansion functions are given by

αAB
t (x) = e2πıΦ(x,gBt), βAB

t (ξ) = e−2πıΦ(cA,gBt)MB
t (ξ)e2πıΦ(cA,ξ), 1 ≤ t ≤ rǫ. (21)

10

This is a special interpolant of the function e2πıΦ(x,ξ) in the ξ variable, which pre-factors the
oscillation, performs the interpolation, and then remodulates the outcome. When wA ≤ 1/

√
N ,

multiply (19) with e2πıΦ(cA,ξ)e2πıΦ(x,cB)e−2πıΦ(cA,cB) and obtain that ∀x ∈ A,∀ξ ∈ B
∣∣∣∣∣e

2πıΦ(x,ξ) −
rǫ∑

t=1

(
e2πıΦ(x,cB)MA

t (x)e−2πıΦ(gAt ,cB)
)
e2πıΦ(gAt ,ξ)

∣∣∣∣∣ ≤ ǫ.

The expansion functions are now

αAB
t (x) = e2πıΦ(x,cB)MA

t (x)e−2πıΦ(gAt ,cB), βAB
t (ξ) = e2πıΦ(gAt ,ξ), 1 ≤ t ≤ rǫ. (22)

Due to the presence of the demodulation and remodulation steps in the definitions (21) and
(22), we refer to them as oscillatory Chebyshev interpolations.

4 Multiscale Butterfly Algorithm

In this section, we combine the low-rank approximations described in Section 3 with the butterfly
algorithm in Section 2. Due to the restriction on the distance between B and the origin, we
decompose (4) into a multiscale summation

(Lf)(x) =
∑

ξ∈Ωd

e2πıΦ(x,ξ)f̂(ξ) +
∑

j

∑

ξ∈Ωj

e2πıΦ(x,ξ)f̂(ξ), (23)

where

Ωj =

{
(n1, n2) :

N

2j+1
< max(|n1|, |n2|) ≤

N

2j

}
∩Ω

for j = 1, . . . , logN − s, s is a constant, and Ωd = Ω \ ∪jΩj.
The term of Ωd can be evaluated directly since |Ωd| = O(1). Let us now fix an Ωj. Since any

square B in Ωj always stays away from the origin, the results in Section 3 applies to the term for
Ωj in (23). Therefore, the butterfly algorithm as described in Section 2 can be adapted to evaluate

∑

ξ∈Ωj

e2πıΦ(x,ξ)f̂(ξ)

for the Cartesian domains X and Ωj. In contrast to the polar Butterfly algorithm that works in
the polar coordinates for Ω, we refer to this one as the Cartesian butterfly algorithm.

4.1 Cartesian butterfly algorithm

To make it more explicit, let us first consider the interaction between (X,Ω1), with the low-rank
approximation implemented using the oscillatory Chebyshev interpolation discussed in Section 3.

1. Preliminaries. Construct two quadtrees TX and TΩ1
for X and Ω1 by uniform hierarchical

partitioning. Let b be a constant greater than or equal to 4 and define N1 = N .

2. Initialization. For each square A ∈ TX of width 1/b and each square B ∈ TΩ1
of width b, the

low-rank approximation functions are

αAB
t (x) = e2πıΦ(x,gBt), βAB

t (ξ) = e−2πıΦ(cA,gBt)MB
t (ξ)e2πıΦ(cA ,ξ), 1 ≤ t ≤ rǫ. (24)

Hence, we can define the expansion weights {δAB
t }1≤t≤rǫ with

δAB
t :=

∑

ξ∈B

βAB
t (ξ)f̂(ξ) = e−2πıΦ(cA,gBt)

∑

ξ∈B

(
MB

t (ξ)e2πıΦ(cA ,ξ)f̂(ξ)
)
. (25)

11

3. Recursion. Go up in tree TΩ1
and down in tree TX at the same time until we reach the level

such that wB =
√
N1. At each level, visit all the pairs (A,B). We apply the Chebyshev

interpolation in variable ξ and still define the approximation functions given in (24). Let
{δPC

s }1≤s≤rǫ denote the expansion coefficients available in previous steps, where P is A’s
parent, C is a child of B, and s indicates the Chebyshev grid points in previous domain pairs.
We define the new expansion coefficients {δAB

t }1≤t≤rǫ as

δAB
t := e−2πıΦ(cA,gBt)

∑

C≻B

rǫ∑

s=1

MB
t (gCs)e

2πıΦ(cA,gCs)δPC
s , (26)

where we recall that the notation C ≻ B means that C is a child of B.

4. Switch. For the levels visited, the Chebyshev interpolation is applied in variable ξ, while the
interpolation is applied in variable x for levels l > log(N1)/2. Hence, we are switching the
interpolation method at this step. Now we are still working on level l = log(N1)/2 and the
same domain pairs (A,B) in the last step. Let δAB

s denote the expansion weights obtained by
Chebyshev interpolation in variable ξ in the last step. Correspondingly, {gBs }s are the grid
points in B in the last step. We take advantage of the interpolation in variable x in A and
generate grid points {gAt }1≤t≤rǫ in A. Then we can define new expansion weights

δAB
t :=

rǫ∑

s=1

e2πıΦ(gAt ,gBs)δAB
s .

5. Recursion. Go up in tree TΩ1
and down in tree TX at the same time until we reach the level

such that wB = N1/b. We construct the approximation functions by Chebyshev interpolation
in variable x as follows:

αAB
t (x) = e2πıΦ(x,cB)MA

t (x)e−2πıΦ(gAt ,cB), βAB
t (ξ) = e2πıΦ(gAt ,ξ). (27)

We define the new expansion coefficients {δAB
t }1≤t≤rǫ as

δAB
t :=

∑

C≻B

e2πıΦ(gAt ,cC)
rǫ∑

s=1

(
MP

s (gAt)e
−2πıΦ(gPs ,cC)δPC

s

)
, (28)

where again P is A’s parent and C is a child box of B.

6. Termination. Finally, we reach the level that wB = N1/b. For each B on this level and for
each square A ∈ TX of width b/N1, we apply the approximation functions given by (27) and
obtain

uB(x) := e2πıΦ(x,cB)
rǫ∑

t=1

(
MA

t (x)e−2πıΦ(gAt ,cB)δAB
t

)
(29)

for each x ∈ A. Finally, summing over all B on this level, we have

uΩ1(x) :=
∑

B

uB(x) (30)

for each x ∈ A.

12

We would like to emphasize that the center part of the tree TΩj
is always empty since Ωj is a

corona. Accordingly, the algorithm skips this empty part.
For a general Ωj , the interaction between (X,Ωj) follows a similar algorithm, except that

we replace Ω1 with Ωj, u
Ω1(x) with uΩj (x), N1 with Nj = N/2j−1, and stop at the level that

wB = Nj/b.
Finally, (23) is evaluated via

(Lf)(x) = uΩd(x) +
∑

j

uΩj (x). (31)

4.2 Complexity analysis

The cost of evaluating the term of Ωd takes at most O(N2) steps since |Ωd| = O(1). Let us now
consider the cost of the terms associated with {Ωj}.

For the interaction between X and Ω1, the computation consists of two parts: the recursive
evaluation of {δAB

t } and the final evaluation of uΩ1(x). The recursive part takes O(q3N2 logN)
since there are at most O(N2 logN) pairs of squares (A,B) and the evaluation of {δAB

t } for each
pair takes O(q3) steps via dimension-wise Chebyshev interpolation. The final evaluation of uΩ1(x)
clearly takes O(q2N2) steps as we spend O(q2) on each point x ∈ X.

For the interaction between X and Ωj, the analysis is similar. The recursive part takes now
O(q3N2

j logNj) steps (with Nj = N/2j−1) as there are at most O(N2
j logNj) pairs of squares

involved. The final evaluation still takes O(q2N2) steps.
Summing these contributions together results in the total computational complexity

O(q3N2 logN) +O(q2N2 logN) = O(q3N2 logN) = O(r3/2ǫ N2 logN).

The multiscale butterfly algorithm is also highly efficient in terms of memory as the Cartesian but-
terfly algorithm is applied sequentially to evaluate (29) for each Ωj. The overall memory complexity

is O(N
2

b2), only
1
b2 of that the original Cartesian butterfly algorithm.

5 Numerical results

This section presents several numerical examples to demonstrate the effectiveness of the multiscale
butterfly algorithm introduced above. In truth, FIOs usually have non-constant amplitude func-
tions. Nevertheless, the main computational difficulty is the oscillatory phase term. We refer to [7]
for detailed fast algorithms to deal with non-constant amplitude functions. Our MATLAB imple-
mentation can be found on the authors’ personal homepages. The numerical results were obtained
on a desktop with a 3.5 GHz CPU and 32 GB of memory. Let {ud(x), x ∈ X}, {um(x), x ∈ X} and
{up(x), x ∈ X} be the results of a discrete FIO computed by a direct matrix-vector multiplication,
the multiscale butterfly algorithm and the polar butterfly algorithm [7], respectively. To report on
the accuracy, we randomly select a set S of 256 points from X and evaluate the relative errors of
the multiscale butterfly algorithm and the polar butterfly algorithm by

ǫm =

√∑
x∈S|ud(x)− um(x)|2∑

x∈S|ud(x)|2
and ǫp =

√∑
x∈S |ud(x)− up(x)|2∑

x∈S |ud(x)|2
. (32)

According to the description of the multiscale butterfly algorithm in Section 4, we recursively
divide Ω into Ωj, j = 1, 2, . . . , logN−s, where s is 5 in the following examples. This means that the
center square Ωd is of size 2

5×25 and the interaction from Ωd is evaluated via a direct matrix-vector

13

multiplication. Suppose qǫ is the number of Chebyshev points in each dimension. There is no sense
to use butterfly algorithms to construct {δAB

t } when the number of points in B is fewer than q2ǫ .
Hence, the recursion step in butterfly algorithms starts from the squares B that are a couple of
levels away from the bottom of TΩ such that each square contains at least q2ǫ points. Similarly, the
recursion stops at the squares in TX that are the same number of levels away from the bottom. In
the following examples, we start from level logN − 3 and stop at level 3 (corresponding to b = 23

defined in Section 4) which matches with qǫ (4 to 11).
In order to make a fair comparison, we compare the MATLAB versions of the polar butterfly

algorithm and the multiscale butterfly algorithm. Hence, the running time of the polar butterfly
algorithm here is slower than the one in [7], which was implemented in C++.

Example 1. The first example is a generalized Radon transform whose kernel is given by

Φ(x, ξ) = x · ξ +
√

c21(x)ξ
2
1 + c22(x)ξ

2
2 ,

c1(x) = (2 + sin(2πx1) sin(2πx2))/3,

c2(x) = (2 + cos(2πx1) cos(2πx2))/3.

(33)

We assume the amplitude of this example is a constant 1. Now the FIO models an integration over
ellipses where c1(x) and c2(x) are the axis lengths of the ellipse centered at the point x ∈ X. Table 1
summarize the results of this example given by the polar butterfly algorithm and the multiscale
butterfly algorithm.

Multiscale Butterfly Polar Butterfly

N, qǫ ǫm Tm(sec) N, qǫ ǫp Tp(sec) Tp/Tm

256,5 7.89e-02 6.96e+01 256,5 4.21e-02 4.84e+02 6.96e+00
512,5 9.01e-02 3.62e+02 512,5 5.54e-02 2.34e+03 6.46e+00

1024,5 9.13e-02 1.81e+03 1024,5 4.26e-02 1.14e+04 6.31e+00
2048,5 9.47e-02 8.79e+03 2048,5 - - -

256,7 6.95e-03 8.20e+01 256,7 5.66e-03 5.97e+02 7.28e+00
512,7 8.43e-03 4.16e+02 512,7 5.89e-03 2.82e+03 6.79e+00

1024,7 8.45e-03 2.03e+03 1024,7 4.84e-03 1.35e+04 6.64e+00
2048,7 8.42e-03 1.04e+04 2048,7 - - -

256,9 3.90e-04 1.10e+02 256,9 8.25e-04 7.74e+02 7.04e+00
512,9 3.42e-04 5.39e+02 512,9 6.78e-04 3.57e+03 6.61e+00

1024,9 7.61e-04 2.74e+03 1024,9 4.18e-04 1.67e+04 6.09e+00
2048,9 4.82e-04 1.25e+04 2048,9 - - -

256,11 2.15e-05 1.84e+02 256,11 3.69e-05 1.15e+03 6.27e+00
512,11 1.89e-05 8.60e+02 512,11 5.53e-05 5.10e+03 5.93e+00
1024,11 1.96e-05 4.27e+03 1024,11 2.042e-05 2.30e+04 5.39e+00
2048,11 1.50e-05 1.82e+04 2048,11 - - -

Table 1: Comparison of the multiscale butterfly algorithm and the polar butterfly algorithm for
the phase function in (33). Tm is the running time of the multiscale butterfly algorithm; Ta is the
running time of the polar butterfly algorithm; and Tm/Tp is the speedup factor.

Example 2. Next, we provide an FIO example with a smooth amplitude function,

u(x) =
∑

ξ∈Ω

a(x, ξ)e2πıΦ(x,ξ)f̂(ξ), (34)

14

where the amplitude and phase functions are given by

a(x, ξ) = (J0(2πρ(x, ξ)) + ıY0(2πρ(x, ξ)))e
−πıρ(x,ξ) ,

Φ(x, ξ) = x · ξ + ρ(x, ξ),

ρ(x, ξ) =
√
c21(x)ξ

2
1 + c22(x)ξ

2
2 ,

c1(x) = (2 + sin(2πx1) sin(2πx2))/3,

c2(x) = (2 + cos(2πx1) cos(2πx2))/3.

Here, J0 and Y0 are Bessel functions of the first and second kinds. We refer to [6] for more details
of the derivation of these formulas. As discussed in [7], we compute the low rank approximation of
the amplitude functions a(x, ξ) first:

a(x, ξ) ≈
sǫ∑

t=1

gt(x)ht(ξ).

In the second step, we apply the multiscale butterfly algorithm to compute

ut(x) =
∑

ξ∈Ω

e2πıΦ(x,ξ)f̂(ξ)ht(ξ),

and sum up all gt(x)ut(x) to evaluate

u(x) =
∑

t

gt(x)ut(x).

Table 2 summarizes the results of this example given by the direct method and the multiscale
butterfly algorithm.

N, qǫ ǫm Td(sec) Tm(sec) Td/Tm

256,7 5.10e-03 3.78e+03 6.07e+02 6.23e+00
512,7 7.29e-03 3.71e+04 3.50e+03 1.06e+01

1024,7 6.16e-03 6.42e+05 1.70e+04 3.77e+01

256,9 4.49e-04 2.34e+03 7.88e+02 2.97e+00
512,9 4.04e-04 3.66e+04 4.64e+03 7.90e+00

1024,9 3.88e-04 6.21e+05 2.17e+04 2.86e+01

256,11 1.86e-05 2.48e+03 1.33e+03 1.86e+00
512,11 1.80e-05 3.60e+04 6.94e+03 5.18e+00
1024,11 2.39e-05 5.96e+05 2.83e+04 2.11e+01

Table 2: Numerical results given by the multiscale butterfly algorithm for the FIO in (34). Td is the
running time of the direct evaluation; Tm is the running time of the multiscale butterfly algorithm;
and Td/Tm is the speedup factor.

Note that the accuracy of the multiscale butterfly algorithm is well controlled by the number of
Chebyshev points qǫ. This indicates that our algorithm is numerically stable. Another observation
is that the relative error improves on average by a factor of 12 every time qǫ is increased by a
factor of 2. As we can see in those tables, for a fixed kernel and a fixed qǫ, the accuracy is
almost independent of N . Hence, in practical applications, one can increase the value of qǫ until
a desired accuracy is reached in the problem with a small N . In the comparison in Table 1, the

15

multiscale butterfly algorithm and the polar butterfly algorithm use qǫ = {5, 7, 9, 11} and achieve
comparable accuracy. Meanwhile, as we observed from Table 1, the relative error decreasing rate of
the multiscale butterfly algorithm is larger than the decreasing rate of the polar butterfly algorithm.
This means if a high accuracy is desired, the multiscale butterfly algorithm requires a smaller qǫ to
achieve it comparing to the polar butterfly algorithm.

The second concern about the algorithm is the asymptotic complexity. From the Tm column of
Table 1 and 2, we see that Tm almost quadrupled when the problem size doubled under the same
qǫ. According to this, we are convinced that the empirical running time of the multiscale butterfly
algorithm follows the O

(
N2 logN

)
asymptotic complexity. Note that the speedup factor over the

polar butterfly algorithm is about 6 and the multiscale butterfly algorithm obtains better accuracy.
This makes the multiscale butterfly algorithm quite attractive to practitioners who are interested
in evaluating an FIO with a large N .

Example 3. Extending the multiscale butterfly algorithm to higher dimensions is straight-
forward. There are two main modifications: higher dimensional multiscale domain decomposition
and Chebyshev interpolation. In three dimensions, the frequency domain is decomposed into cubic
shells instead of coronas. The kernel interpolation is applied on a three dimensional Chebyshev
grids. We apply our three-dimensional multiscale butterfly algorithm to a simple example inte-
grating over spheres with different radii. We assume a constant amplitude function and the kernel
function is given by

Φ(x, ξ) = x · ξ + c(x)
√

ξ21 + ξ22 , c(x) = (3 + sin(2πx1) sin(2πx2) sin(2πx3))/4. (35)

Table 3 summarizes the results of this example given by the direct method and the multiscale
butterfly algorithm.

N, qǫ ǫm Td(sec) Tm(sec) Td/Tm

64,5 9.41e-02 1.82e+04 2.50e+03 7.31e+00
128,5 7.57e-02 6.21e+05 2.42e+04 2.57e+01
256,5 8.23e-02 3.91e+07 2.35e+05 1.66e+02

64,7 1.20e-02 1.83e+04 7.32e+03 2.50e+00
128,7 1.03e-02 6.03e+05 4.48e+04 1.35e+01
256,7 8.13e-03 4.39e+07 3.81e+05 1.15e+02

Table 3: Numerical results given by the multiscale butterfly algorithm for the phase function in
(35).

6 Conclusion

A simple and efficient multiscale butterfly algorithm for evaluating FIOs is introduced in this paper.
This method hierarchically decomposes the frequency domain into multiscale coronas in order to
avoid possible singularity of the phase function Φ(x, ξ) at ξ = 0. A Cartesian butterfly algorithm is
applied to evaluate the FIO over each corona. Many drawbacks of the original butterfly algorithm
based on a polar-Cartesian transform in [7] can be avoided. The new multiscale butterfly algorithm
has an O(N2 logN) operation complexity with a smaller pre-factor, while keeping the same O(N2)
memory complexity.

Acknowledgments. This work was partially supported by the National Science Foundation
under award DMS-1328230 and the U.S. Department of Energys Advanced Scientific Computing
Research program under award DE-FC02-13ER26134/DE-SC0009409.

16

References

[1] C. Anderson and M. D. Dahleh. Rapid computation of the discrete Fourier transform. SIAM
J. Sci. Comput., 17(4):913–919, July 1996.

[2] A. Averbuch, E. Braverman, R. Coifman, M. Israeli, and A. Sidi. Efficient computation of
oscillatory integrals via adaptive multiscale local Fourier bases. Applied and Computational
Harmonic Analysis, 9(1):19 – 53, 2000.

[3] G. Bao and W. Symes. Computation of pseudo-differential operators. SIAM Journal on
Scientific Computing, 17(2):416–429, 1996.

[4] B. Bradie, R. Coifman, and A. Grossmann. Fast numerical computations of oscillatory integrals
related to acoustic scattering, I. Applied and Computational Harmonic Analysis, 1(1):94 – 99,
1993.

[5] E. Candès, L. Demanet, D. Donoho, and L. Ying. Fast discrete curvelet transforms. Multiscale
Model. Simul., 5(3):861–899, 2006.

[6] E. Candès, L. Demanet, and L. Ying. Fast computation of Fourier integral operators. SIAM
Journal on Scientific Computing, 29(6):2464–2493, 2007.

[7] E. Candès, L. Demanet, and L. Ying. A fast butterfly algorithm for the computation of Fourier
integral operators. Multiscale Modeling and Simulation, 7(4):1727–1750, 2009.

[8] E. Candès and D. L. Donoho. New tight frames of curvelets and optimal representations of
objects with piecewise C2 singularities. Comm. Pure Appl. Math., 57(2):219–266, 2004.

[9] E. Candès and D. L. Donoho. Continuous curvelet transform. I. Resolution of the wavefront
set. Appl. Comput. Harmon. Anal., 19(2):162–197, 2005.

[10] E. Candès and D. L. Donoho. Continuous curvelet transform. II. Discretization and frames.
Appl. Comput. Harmon. Anal., 19(2):198–222, 2005.

[11] E. Cordero, F. Nicola, and L. Rodino. Sparsity of Gabor representation of Schrödinger prop-
agators. Applied and Computational Harmonic Analysis, 26(3):357 – 370, 2009.

[12] L. Demanet and L. Ying. Wave atoms and sparsity of oscillatory patterns. Appl. Comput.
Harmon. Anal., 23(3):368–387, 2007.

[13] L. Demanet and L. Ying. Scattering in flatland: Efficient representations via wave atoms.
Found. Comput. Math., 10(5):569–613, Oct. 2010.

[14] L. Demanet and L. Ying. Discrete symbol calculus. SIAM Review, 53(1):71–104, 2011.

[15] L. Demanet and L. Ying. Fast wave computation via Fourier integral operators. Math. Com-
put., 81(279), 2012.

[16] A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM Journal on
Scientific Computing, 14(6):1368–1393, 1993.

[17] L. Hörmander. Fourier integral operators. I. Acta Mathematica, 127(1):79–183, 1971.

17

[18] J. Hu, S. Fomel, L. Demanet, and L. Ying. A fast butterfly algorithm for generalized Radon
transforms. Geophysics, 78(4):U41–U51, June 2013.

[19] D. Huybrechs and S. Vandewalle. A two-dimensional wavelet-packet transform for matrix
compression of integral equations with highly oscillatory kernel. Journal of Computational
and Applied Mathematics, 197(1):218 – 232, 2006.

[20] E. Michielssen and A. Boag. A multilevel matrix decomposition algorithm for analyzing scatter-
ing from large structures. Antennas and Propagation, IEEE Transactions on, 44(8):1086–1093,
Aug 1996.

[21] M. P. O’Neil. A New Class of Analysis-based Fast Transforms. PhD thesis, New Haven, CT,
USA, 2007. AAI3293360.

[22] D. Potts, G. Steidl, and M. Tasche. Fast Fourier transforms for nonequispaced data: A tutorial,
2001.

[23] D. O. Trad, T. J. Ulrych, and M. D. Sacchi. Accurate interpolation with high-resolution
time-variant radon transforms. Geophysics, 67(2):644–656, 2002.

[24] H. Yang and L. Ying. A fast algorithm for multilinear operators. Applied and Computational
Harmonic Analysis, 33(1):148 – 158, 2012.

[25] B. Yazici, L. Wang, and K. Duman. Synthetic aperture inversion with sparsity constraints.
In Electromagnetics in Advanced Applications (ICEAA), 2011 International Conference on,
pages 1404–1407, Sept 2011.

[26] L. Ying. Sparse Fourier transform via butterfly algorithm. SIAM J. Sci. Comput., 31(3):1678–
1694, Feb. 2009.

18

	1 Introduction
	1.1 Previous work
	1.2 Motivation
	1.3 Our contribution
	1.4 Organization

	2 The Butterfly Algorithm
	3 Low-rank approximations
	4 Multiscale Butterfly Algorithm
	4.1 Cartesian butterfly algorithm
	4.2 Complexity analysis

	5 Numerical results
	6 Conclusion

