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Abstract. We prove lower bounds on the expected size of the maximum agreement subtree
of two random binary phylogenetic trees under both the uniform distribution and Yule-Harding
distribution and prove upper bounds under the Yule-Harding distribution. This positively answers a
question posed in earlier work. Determining tight upper and lower bounds remains an open problem.

1. Introduction. Leaf-labelled trees are a canonical model for evolutionary his-
tories of sets of species [10]. Let T1 and T2 be two trees with the same set of leaf labels
X (interior vertices are unlabelled). Following [10], a rooted tree is a tree that has
exactly one distinguished vertex called the root. A subset S ⊆ X yields an agreement
subtree of T1 and T2 if T1|S = T2|S where for a tree T , T |S is the tree restricted to
the leaf label set S and is obtained by supressing all vertices of degree 2 (excepting
the root, if T1 and T2 are rooted). A maximum agreement subtree is a subtree that
is an agreement subtree of the maximal size in T1 and T2 (see Figure 1.1). We note
that there might be multiple maximum agreement subtrees for the pair T1 and T2.
Let MAST(T1, T2) denote the number of leaves of a maximum agreement subtree of
T1 and T2, which can be computed in polynomial time in |X| [13].

Let T1 and T2 be two unrooted binary trees with n leaves. It is known that
MAST(T1, T2) = Ω(

√
log n) for any pair of trees [9], and there is always a pair of trees

T1 and T2 such that MAST(T1, T2) = O(log n). Closing the gap on this worst case
behaviour is a lingering open problem. This worst case behaviour is quite different if
the two input trees are rooted (for rooted trees any agreement subtree is also required
to respect the induced rooting); in this case, it is easily seen that, for any n ≥ 2 there
is always a pair of trees T1 and T2 such that MAST(T1, T2) = 2.

Of practical interest is to understand what the expected size of the maximum
agreement subtree when T1 and T2 are drawn from a suitable distribution on the set
of all binary trees. For example, de Vienne, Giraud, and Martin [4] proposed using
the maximum agreement subtree as a measure of the congruence between two trees.
Understanding the distribution of this statistic can be used in hypothesis tests of the
null hypothesis that the two trees were generated at random [7]. For example, the
deviation from the null hypothesis between a host tree and a parasite tree could be
used as evidence of co-speciation [6].

The mathematical study of the distribution of the size of the maximum agreement
subtree was initiated in the work of Bryant, McKenzie, and Steel [2]. They specifically
focused on the expectation fu(n) = E[MAST(T1, T2)] and fY H(n) = E[MAST(T1, T2)]
where in first case the trees are drawn independently from the uniform distribution
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Fig. 1.1. Two rooted phylogenetic trees, T1 and T2, on 6 leaves and a maximum agreement
subtree (MAST) for T1 and T2. The MAST illustrated is a caterpillar with leaves encoding the
subsequence, (1, 3, 2, 4).

on rooted binary phylogenetic trees with n leaves, and the second case, from the
Yule-Harding distribution on rooted binary phylogenetic trees with n leaves (for a
formal definition of this distribution, see [10], Section 2.5). Their simulations, for
trees with up to n = 1024 leaves, suggest that under both the uniform distribution on
binary trees and the Yule-Harding distribution [5], the expected size of the maximum
agreement subtree is of order Θ(na) with a ≈ 1/2, and they also proved that fu(n) =
O(n1/2).

In the special case when both random trees are caterpillar trees, finding the max-
imum agreement subtree is essentially equivalent to finding the longest increasing
subsequence in a random permutation. This problem has a long history, and it is
well-known that the expected size of the longest increasing subsequence is asymptoti-
cally 2

√
n, and that the (appropriately rescaled) distribution of the longest increasing

subsequence is the Tracy-Widom distribution (see [1] for a survey of results). The
distribution of the maximum agreement subtree is a natural extension of the longest
increasing subsequence problem to trees.

Bryant, McKenzie, and Steel [2] posed the question, and again suggested the prob-
lem at the 2007 Newton Institute program on Phylogenetics, of finding any exponent
a > 0 such that fu(n) = Ω(na) or fY H(n) = Ω(na). The main results of this note are,
for rooted binary trees, to derive the conjectured (power law type) lower bounds for
the expected size of the maximum agreement subtree for both the uniform and Yule-
Harding distributions, and an upper bound of the form O(n1/2) for the Yule-Harding
distribution.

Note that the uniform and Yule-Harding distribution satisfy two fundamental
properties, namely exchangeability and sampling consistency. Exchangeability means
that if two trees T1 and T2 differ only by a permutation of the leaves, then Ps(T1) =
Ps(T2). Sampling consistency is the condition that for any subset S of X if we generate
a rooted binary tree T on leaf set X under either model (uniform or Yule-Harding)
then the induced tree T |S is described by the same model (uniform or Yule-Harding,
respectively). For further details see [2].

2. Uniform Trees. To show our lower bound results for rooted binary trees cho-
sen from a uniform distribution, we rely on classical results on the expected largest
increasing subsequence in a random permutation of numbers. For trees of size n
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(both unrooted and rooted) we show that the expected length of a caterpillar sub-
tree is Ω(

√
n). We can then show that for two trees T1, T2 chosen independently

and uniformly at random from RB(n) there is a subset, S′ ⊆ [n] of Ω(n1/4) leaves
which induce rooted caterpillars of T1 and T2. Restricting to this subset S′, we
can view T1|S′ and T2|S′ as permutations of the elements of S′ and apply the clas-
sical results of Aldous and Diaconis [1] to yield a common subsequence of length

|S′|1/2 = Ω((n1/4)1/2) = Ω(n1/8).
Let RB(n) denote the set of rooted binary phylogenetic trees with leaf label set

[n] := {1, 2, 3, . . . , n}. Similarly, B(n) denotes the set of unrooted binary phylogenetic
trees with leaf label set [n]. Note that |RB(n)| = (2n−3)!! = 1×3×5×· · ·×(2n−3),
and b(n) = |B(n)| = (2n− 5)!!. In this section, we consider the uniform distribution
on RB(n), and the function fu(n) = E[MAST(T1, T2)] where T1 and T2 are generated
uniformly and independently from RB(n).

Theorem 2.1. For any λ < 21/4(1 − e−1/4

2 )2 ≈ .443 there is a value m so that,
for all n ≥ m,

fu(n) ≥ λn1/8.

Let T be an unrooted binary tree with leaves labeled by [n]. Then for i, j ∈ [n],
dn(i, j) denotes the number of edges on the unique path from leaf i to leaf j.

Proposition 2.2. Let T selected uniformly at random from B(n). For leaves
i, j ∈ [n], i 6= j, the probability that dn(i, j) = m is:

P(dn(i, j) = m) =
(n− 2)!

(2n− 4)!
· 2m−1(m− 1)(2n−m− 4)!

(n−m− 1)!
.

Proof. Let D(m,n) denote the number of [n]-trees where dn(i, j) = m. If T is an
unrooted [n]-tree with dn(i, j) = m, then we can draw T as follows:

i

T

t1 t2

//

tm−1

j

dn(i, j) = m

...

thus giving us a bijection between the set of trees where dn(i, j) = m, and the set of
ordered forests consisting of rooted binary trees on n−2 leaves (as noted by [12] for a
different calculation). Now, the set of ordered forests on m−1 rooted binary trees and
n− 2 leaves is just (m− 1)!N(n− 2,m− 1) where N(r, k) is the number of unordered

forests of k rooted binary trees and r leaves. Now, N(r, k) = (2r−k−1)!
(r−k)!(k−1)!2r−k for r ≥ k

and 0 if r < k, as stated in Lemma 4 of [3]. This result can be derived by observing
that:

N(r, k) = r! · [xr]B(x)k, (2.1)

where B(x) = 1 −
√

1− 2x is the exponential generating function for the number of
rooted binary trees on k non-root leaves, and applying the Lagrange inversion formula,
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together with the identity B(x) = x(1− 1
2B(x))−1, to determine the RHS of (2.1) (for

further details, see [10], Section 2.8). This gives the following expression for D(m,n):

D(m,n) =
(m− 1) · (2n−m− 4)!

2n−m−1 · (n−m− 1)!
.

Dividing the above by b(n) = (2n − 5)!! = (2n−4)!
(n−2)!·2n−2 gives the desired formula for

P (dn(i, j) = m).
Using Proposition 2.2, we calculate the probability that the path length between

two leaves, i and j exceeds
√
n:

Lemma 2.3. lim
n→∞

P(dn(i, j) ≥
√
n) ≥

(
1− e−1/4

2

)
= c ≈ 0.61.

Proof. For a fixed n,

P(dn(i, j) = m+1)−P(dn(i, j) = m) =
2m−1(2n−m− 5)!(n− 2)!

(n−m− 1)!(2n− 4)!
(−m2+m+2n−4),

which is positive whenever m ≤
√

2n. Therefore, we have,

P(dn(i, j) <
√
n) =

d
√
n−1e∑
m=1

P(dn(i, j) = m)

≤
√
n(P(dn(i, j) =

√
n).

Using Stirling’s approximation for all factorials we have:

√
n(P(dn(i, j) =

√
n) ∼ e

2

n2
√
n(n− 2)n−2(2n−

√
n− 4)2n−

√
n−4

(2n− 4)2n−4(n−
√
n− 1)n−

√
n−1

∼ e

2

(
2n−

√
n− 4

2n− 4

)2n(
n− 2

n−
√
n− 1

)n(
2n− 2

√
n− 2

2n−
√
n− 4

)√n
∼ e

2

(
1− 3n− 8

4(n− 2)(n−
√
n− 1)

)n(
1−

√
n− 2

2n−
√
n− 4

)√n
∼ e

2
e−3/4e−1/2 =

e−1/4

2
.

Hence, lim
n→∞

P(dn(i, j) <
√
n) ≤ e−1/4

2
.

Since P(dn(i, j) ≥
√
n) = 1− P (dn(i, j) <

√
n), we have

lim
n→∞

P(dn(i, j) ≥
√
n) ≥

(
1− e−1/4

2

)
.

Recall that a rooted caterpillar on n leaves is any rooted binary phylogenetic tree
for which the induced subtree on the interior vertices forms a path graph with the root
at one end of the path. We show that two trees, chosen uniformly and independently
from rooted binary trees on n leaves, have a common rooted caterpillar of height at
least Ω(n1/4) leaves:

Lemma 2.4. Let T1, T2 be rooted n-leaf trees chosen uniformly and independently

from RB(n). If n is sufficiently large, then with probability greater than (1− e−1/4

2 )2 =
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c2, there exists S′ ⊂ [n] with |S′| ≥ 1
2
√
2
n1/4 such that both T1|S′ and T2|S′ are rooted

caterpillar trees.
Proof. Let T1 and T2 be chosen uniformly and independently from RB(n). Choose

leaves i and j uniformly at random and temporarily regard T1 as an unrooted tree
by suppressing the root vertex. If dij is the distance between i and j in the unrooted
tree, then, in the rooted tree, the distance from the root vertex to either i or j must be
greater than or equal to 1

2dij . Therefore, the probability that T1 has height at least m
is greater than or equal to the probability that dij ≥ 2m. If T1 has height k then we
can choose S ⊂ [n] with |S| = k so that T1|S is a rooted caterpillar. By Lemma 2.3, the
probability of finding S ⊂ [n] with |S| ≥ 1

2n
1/2 such that T1|S is a rooted caterpillar

is greater than c. If such an S exists, then since T2 was chosen uniformly from RB(n)
and independently from T1, T2|S is a tree chosen uniformly from RB(|S|). Applying
Lemma 2.3 again, the probability that there exists an S′ ⊂ [|S|] with |S′| ≥ 1

2

√
|S|

such that T2|S′ is a rooted caterpillar tree is also greater than c. Since the restriction
of a rooted caterpillar is a rooted caterpillar the result follows.

Now let (T1, T2) be a pair of trees satisfying the conditions of Lemma 2.4. Select
the set S′ with |S′| = q(n) := b 1

2
√
2
n1/4c and relabel the leaves of both T1 and T2

so that when drawn with the leaf vertex adjacent to the root on the left, the leaf
labels of T1|S′ increase from left to right. Draw T2 in the same way picking either
representation for the leaves of the cherry in T2 with equal probability. The order of
the leaves of T2 gives a permutation uniformly chosen from the set of permutations
of [q]. From Aldous and Diaconis [1], we have:

Theorem 2.5. [1, Theorem 2] Let πn be a uniform random permutation of [n].
Define the integer valued random variable Ln := l(πn) where l(π) is the length of the
longest increasing subsequence of π. Then E[Ln]∼2n1/2 as n→∞.

Observe that if σ is the permutation of [q(n)] given by T2|S′ and s(σ) is the
set of elements of an increasing subsequence of σ, then T1|s(σ) = T2|s(σ) implying
M(T1, T2) ≥ l(σ). In other words, P(MAST(T1, T2) = i) is at least the product of the
probability that T1 and T2 restrict to a rooted caterpillar of size q(n) and P(Lq(n) = i).
This is the key observation that will allow us to prove Theorem 2.1.

Proof. [of Theorem 2.1]: By Lemma 2.3 and Theorem 2.5 and the observations
above, as n→∞

fu(n) >

q(n)∑
i=1

iP(M(T1, T2) = i)

>

q(n)∑
i=1

i(c2P(Lq(n) = i))

= c2E[Lq(n)].

∼ 21/4c2n1/8.

3. Yule-Harding Trees: Lower Bounds. In this section we derive our lower
bounds on the expected size of the maximum agreement subtree under the Yule-
Harding distribution [5]. The Yule-Harding distribution is a probability distribution
on the set of rooted binary trees that is defined in a constructive manner, by building
up a tree on n leaves by successively adjoining leaves. A Yule-Harding tree on n leaves
is obtained from a Yule-Harding tree on n− 1 leaves by choosing a leaf uniformly at
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randomly and branching that leaf into two new leaves. Leaf labels for the (n− 1)-leaf
tree are chosen as a uniformly random subset of size n − 1 from [n]. Let fY H(n)
denote the expected size of the maximum-agreement subtree between two trees from
RB(n) sampled independently from the Yule-Harding distribution.

Theorem 3.1. Let a be the unique positive root of the equation 22−a = (a +
1)(a + 2) (approximately a = .344184...). Then for any ε > 0, fY H(n) = Ω(na−ε).
We abbreviate fY H(n) = f(n) in the arguments below. We first establish a number
of preliminary results that are needed for the proof of Theorem 3.1.

Lemma 3.2. Let b ≥ 0. Then

1

b+ 1
kb+1 ≤

k∑
i=1

ib ≤ 1

b+ 1
(k + 1)b+1.

Proof. This follows by applying the left and right end-point rules for the integral

of
∫ k
0
xbdx.

Next we calculate lower bounds on the overlap of any two splits of [n] (bipartitions
of the leaves):

Lemma 3.3. Let A1|B1 and A2|B2 be two splits of [n] with |A1| = i, |A2| = j
and i ≤ j ≤ n/2. Then either

|A1 ∩A2| ≥ di/2e and |B1 ∩B2| ≥ j − bi/2c or

|A1 ∩B2| ≥ di/2e and |B1 ∩A2| ≥ j − bi/2c.

Proof. Make a 2× 2 matrices whose entries are the four intersection values:

M =

(
|A1 ∩A2| |A1 ∩B2|
|B1 ∩A2| |B1 ∩B2|

)
.

The row sums of M are i, n − i and the column sums are j, n − j. So either M11 or
M12 are ≥ di/2e. If M11 ≥ di/2e then M22 ≥ n− j−bi/2c ≥ j−bi/2c, since j ≤ n/2.
If M12 ≥ di/2e then M21 ≥ j − bi/2c.

We can use Lemma 3.3 in a worst case analysis to get lower bounds on f(n).
Lemma 3.4. Let n = 2k + 1 be odd. Then

f(2k + 1) ≥ 8

(n− 1)2

∑
1≤i<j≤k

(f(di/2e) + f(j − bi/2c)) +
8

(n− 1)2

∑
1≤i≤k

f(di/2e).

Let n = 2k be even. Then

f(2k) ≥ 8

(n− 1)2

∑
1≤i<j<k

(f(di/2e) + f(j − bi/2c)) +
8

(n− 1)2

∑
1≤i<k

f(di/2e)

+
4

(n− 1)2

∑
1≤i<k

(f(di/2e) + f(k − bi/2c)) +
2

(n− 1)2
f(dk/2e)

Proof. For two discrete random variables X and Y , the law of total expectation
says

E[X] =
∑
y

P (Y = y)E[X|Y = y]. (3.1)
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We use this identity to get lower bounds on f(n). In particular, we condition on
the event that the daughter subtrees of the root in T1 and T2 have sizes (i, n− i) and
(j, n− j) respectively, and so we apply (3.1) with Y = (i, j) and X = MAST(T1, T2).
Since we are sampling from the Yule-Harding model, the size of the daughter subtrees
of T1 (and of T2) follows a uniform distribution (see [11] and also follows directly from
basic Pólya Urn theory [8]). Thus, the probability of the conditioning event is 1

(n−1)2

for any i, j ∈ [n− 1].
By the symmetry of the problem, it suffices to look at pairs 1 ≤ i ≤ j ≤ bn/2c.

This is where the factor of 8 comes from in the various expressions. Once we fix i and
j, we are restricting to the case where two random Yule-Harding trees have daughter
subtrees of the root A1|B1 and A2|B2 where |A1| = i and |A2| = j. To get a lower
bound on the conditional expectations, we can reduce to the two subtrees on either
A1∩A2 and B1∩B2 or A1∩B2 and B1∩A2, depending on which one satisfies the size
requirements from Lemma3.3. On those two induced subtrees we have an expected
MAST of size at least f(di/2e) and f(j − bi/2c) respectively. Combining those trees
together through the common root gives a MAST of expected size f(di/2e) + f(j −
bi/2c). The formulas follow by analysis by cases with attention to double counting
and the boundary cases of i = j, i < j = n/2 and i = j = n/2.

As a direct application, we have by counting the number of occurrences of f(i):
Corollary 3.5.

f(n) ≥ 8

(n− 1)2

bn/2c∑
i=1

(n− 2i)f(i).

The lower bound for the Yule-Harding case follows by induction on the inequality
of Corollary 3.5:

Proof. [of Theorem 3.1] We use the inequality from Corollary 3.5, together with
induction. Clearly f(1) = 1 ≥ c× 1a for c = 1. Assume that f(k) ≥ cka for all k < n,
then we have:

f(n) ≥ 8

(n− 1)2

bn/2c∑
i=1

(n− 2i)× cia.

Applying Lemma 3.2 we deduce

f(n) ≥ 8

(n− 1)2
· c ·

(
n

a+ 1
bn

2
c
a+1
− 2

a+ 2
bn

2
+ 1c

a+2
)

=
22−a

(a+ 1)(a+ 2)
· c ·

(a+ 2)n(2bn2 c)
a+1 − (a+ 1)(2bn2 + 1c)a+2

(n− 1)2
.

Note that the rightmost expression in the product is asymptotic to na, converging
to it from below. In particular, for any δ > 0, there exists an N such that for all
n > N , we have

(a+ 2)n(2bn2 c)
a+1 − (a+ 1)(2bn2 + 1c)a+2

(n− 1)2
> (1− δ)na.

This yields

f(n) ≥ 22−a

(a+ 1)(a+ 2)
(1− δ)× cna.

7



To complete the induction we must have

22−a

(a+ 1)(a+ 2)
(1− δ) ≥ 1.

Since we can take δ arbitrarily small, this completes the result.
Note that in this argument the value of c will depend on δ (through the interaction

with N). Hence, we cannot use the proof argument to take ε = 0 in the statement.
Remark 1. Further modifications to the above argument can be made to get slight

improvements on the exponent. For example, when i is very small, instead of taking
the subsets of size ≥ di/2e and ≥ j − bi/2c, passing to a single subset of size n − i
(throwing out the subset of size i) can yield an improvement in the bounds. That is,
if i is small then

f(di/2e) + f(j − bi/2c) ≤ f(n− i)

when f(n) = nα and α bounded away from 0. Using this reasoning coupled with the ar-
guments above, we were able to increase the exponent in the theorem to approximately
.384.

4. Yule-Harding Trees: Upper Bounds. In this section, we derive O(n1/2)
upper bounds on the expected size of the maximum agreement subtree for any distri-
bution on trees that is exchangeable and satisfies sampling consistency (described at
the end of the Introduction) based on ideas from [2]. We just need the crucial Lemma
4.1 from that paper. For a fixed distribution on trees let Ps(t) be the probability of
the tree t which has s leaves.

Lemma 4.1. [2, Lemma 4.1] Suppose that phylogenetic trees T1 and T2 on a leaf
set L of size n are randomly generated under a model that satisfies exchangeability
and sampling consistency. Then

P[MAST(T1, T2) ≥ s] ≤ ψn,s =

(
n

s

) ∑
t∈RB(s)

Ps(t)2.

From here, we choose a function s = g(n) so that
(
n
s

)∑
t∈RB(s) Ps(t)2 tends

rapidly to zero with n, to deduce that E[MAST(T1, T2)] = O(g(n)).
Proposition 4.2. Let Ps be any exchangeable distribution on rooted binary trees.

Then ∑
t∈RB(s)

Ps(t)2 ≤
2s−1

s!
.

Proof. Let Ps be any exchangeable distribution on rooted binary trees. Note that
if 0 < x ≤ y then

x2 + y2 ≤ (x− ε)2 + (y + ε)2 = x2 + y2 + 2ε2 + 2ε(y − x).

This implies that if we take Qs(t) to be the probability distribution that puts zero
mass on trees that have a shape different from a tree t′ that maximizes Ps(t′), we will
have ∑

t∈RB(s)

Ps(t)2 ≤
∑

t∈RB(s)

Qs(t)2.
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By exchangeability, when Qs(t) 6= 0, it is 1
NT (t) where NT (t) is the number of rooted

trees with tree shape t. Thus,∑
t∈RB(s)

Qs(t)2 =
1

NT (t)2
+ · · ·+ 1

NT (t)2
(NT (t) times) =

1

NT (t)
.

To maximize this quantity, we choose a tree shape with the fewest number of trees
with that tree shape. The number of trees of a given shape t is s!/2m where m is the
number of internal vertices of t that are symmetry vertices (i.e. vertices of t for which
the two daughter subtrees have the same shape [10]). Since a rooted binary tree with
s leaves has s− 1 internal vertices, m ≤ s− 1. Thus, NT (t) ≥ s!/2s−1.

Theorem 4.3. Let T1 and T2 be generated from any exchangeable, sampling
consistent distribution on rooted binary trees with n leaves. For any λ > e

√
2 there is

a value m such that, for all n ≥ m,

E[MAST(T1, T2)] ≤ λ
√
n.

Proof. We explore the asymptotic behaviour of the quantity φn,s =
(
n
s

)
2s−1

s! .

Using the inequality
(
n
s

)
≤ ns

s! and Stirling’s approximation, we have:

φn,s ≤
1

4πs

(
2e2n

s2

)s
θ(s)

where θ(s) ∼ 1. Hence, φn,s tends to zero as an exponential function of n as n→∞.
Since φn,s ≥ ψn,s we see that P[MAST(T1, T2) > λ

√
n] tends to zero as an exponential

function of n. Since MAST(T1, T2) ≤ n, this implies that E[MAST(T1, T2)] ≤ λ
√
n.
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