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Variational Approach for Restoring Blurred Images with Cauchy Noise∗

Federica Sciacchitano†, Yiqiu Dong†, and Tieyong Zeng‡

Abstract. The restoration of images degraded by blurring and noise is one of the most important tasks in
image processing. In this paper, based on the total variation (TV) we propose a new variational
method for recovering images degraded by Cauchy noise and blurring. In order to obtain a strictly
convex model, we add a quadratic penalty term, which guarantees the uniqueness of the solution.
Due to the convexity of our model, the primal dual algorithm is employed to solve the minimization
problem. Experimental results show the effectiveness of the proposed method for simultaneously
deblurring and denoising images corrupted by Cauchy noise. Comparison with other existing and
well-known methods is provided as well.
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1. Introduction. Image deblurring and image denoising are fundamental problems in the
applied mathematics community; see, for instance, [4, 5]. Most of the literature deals with the
restoration of images corrupted by additive Gaussian noise [10, 12, 22, 54, 60]. Unfortunately,
in many engineering applications the noise has a very impulsive character, and thus it cannot
be modeled by this kind of noise. The most common example of impulsive noise is given by the
impulse noise [13, 45, 46], which can be caused, for instance, by analogue-to-digital converter
errors, by malfunctioning pixel elements in the camera sensors, and so on. Another impulsive
degradation is given by Cauchy noise, which appears frequently in atmospheric and underwater
acoustic noises, radar and sonar applications, air turbulence, wireless communication systems,
biomedical images, and synthetic aperture radar (SAR) images. For an overview we refer the
reader to [36, 39, 40, 49, 50, 52] and references therein.

Mathematically speaking, the degraded image f in the presence of blurring and Cauchy
noise is given by f = Ku + v, where u is the original image defined on the image domain
Ω ⊂ R2, K is the blurring operator, and v is some Cauchy noise. A random variable V follows
the Cauchy distribution if it has density

(1.1) g(v) =
1
π

γ

γ2 + (v − δ)2
,
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where γ > 0 is the scale parameter and δ ∈ R is called the localization parameter. The scale
parameter determines the spread of the distribution around δ and plays a role similar to that
of the variance in the Gaussian distribution, while the localization parameter corresponds to
the median of the distribution.

Recently, several approaches have been proposed to deal with Cauchy noise; for instance,
Chang et al. [16] used recursive Markov random field models for reconstructing images under
Cauchy noise. Achim and Kuruoğlu [1] proposed a method for denoising a image degraded
by Cauchy noise in the complex wavelet domain. Wan, Canagarajah, and Achim [59] studied
a segmentation technique for noisy color images corrupted by Cauchy noise. As far as we
know, in the literature, no one has ever studied a variational model for removing Cauchy
noise. Hence, our contribution is to propose a variational model for deblurring and denoising
degraded images with Cauchy noise.

One of the most famous variational models is the ROF model [54]. This approach was
introduced in 1992 by Rudin, Osher, and Fatemi, and it is defined as follows:

(1.2) inf
u∈BV (Ω)

J(u) +
λ

2

∫

Ω
(f − u)2dx,

where J(u) =
∫
Ω |Du| is the total variation (TV) regularization term, BV is the space of the

functions of bounded variation (see [4] or below), the last term is the data fidelity term, and
λ > 0 is the regularization parameter, which represents the trade-off between a good fit of
f and a smoothness due to the TV regularization term. Due to its capability of preserving
sharp edges, it is a very successful and popular approach for denoising image corrupted by
additive Gaussian noise.

Over the years, many variational models based on TV have been introduced for removing
other noises, such as multiplicative noise [3, 21, 53], impulse noise [13, 46, 62], Poisson noise
[19, 24, 41, 51, 56], etc. In our work, inspired by the above studies, we introduce a variational
model, based on TV as the regularization term, for restoring images with blur and Cauchy
noise. In particular, we propose the following problem for removing Cauchy noise:

(1.3) inf
u∈BV (Ω)

J(u) +
λ

2

∫

Ω
log
(
γ2 + (u − f)2

)
dx,

where γ > 0 is the scale parameter; see (1.1). As one can see, we keep the same regularization
term as in the ROF model, but we adapt the data fidelity term to the Cauchy noise, introducing
one that is suitable for such a type of noise. We emphasize that TV regularization is a very
useful tool for preserving edges but is not so good for texture recovery; thus, clearly, the
proposed model can be extended to other modern regularization terms such as nonlocal TV
[26, 58, 63], high order TV [61], dictionary learning [22, 33], or a tight-frame approach [8, 38].

Unfortunately, since the data fidelity term is not convex, the restored results depend on the
initialization and the numerical scheme. Hence, to overcome this problem we use a quadratic
penalty function technique; in particular, we introduce the following minimization problem:

(1.4) inf
u∈BV (Ω)

J(u) +
λ

2

(∫

Ω
log
(
γ2 + (u − f)2

)
dx + μ‖u − u0‖

2
2

)

,
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where u0 is the image obtained by applying the median filter [5] to the noisy image. Under
some assumptions on μ, we are able to prove that (1.4) is convex and there exists a unique
solution of (1.4). We employ the median filter in the quadratic penalty term, since it has
been shown that it works well for removing impulse noise [13], and the Cauchy degradation
has some similarities with the impulse degradation.

Readily, we can also generalize our model for restoring a blurred image corrupted by
Cauchy noise. Given a linear blurring operator K, we consider the following convex model for
deblurring and denoising simultaneously:

(1.5) inf
u∈BV (Ω)

J(u) +
λ

2

(∫

Ω
log
(
γ2 + (Ku − f)2

)
dx + μ‖Ku − u0‖

2
2

)

.

The minimization problem in (1.5) could be solved by the primal dual algorithm proposed by
Chambolle and Pock in [11] or other efficient optimization algorithms [15, 17, 26, 61, 62].

Numerical results show the potential and the effectiveness of the proposed method for
restoring blurred images degraded by Cauchy noise. Furthermore, we compare the recon-
structed images obtained by our method with those given by the ROF model [54], the median
filter [25], the myriad filter [29], the BM3D [18], the SURE-LET [43], the wavelet shrinkage [5],
and the L1-TV model [46].

The rest of the paper is organized as follows. In section 2, we describe the alpha-stable
distribution, focusing on the Cauchy distribution. Using the MAP estimator, in section 3 we
derive our model for simultaneously deblurring and denoising an image and we analyze some
theoretical properties of this model. Adding a quadratic penalty term, which depends on the
median filter, in section 4, we propose a convex model to restore blurred and degraded images
by Cauchy noise and we prove the existence and uniqueness of the solution. In section 5, using
the primal dual algorithm, we show some numerical results and we compare them with the
reconstructions obtained with other existing approaches. Finally, in section 6, we draw some
conclusions.

2. Cauchy noise modeling. Many studies in image and signal processing rely on the
fundamental assumption that the noise follows a Gaussian distribution. This hypothesis is
justified due to the existence of the central limit theorem; see [31]. Unfortunately, most of
the real world problems cannot be modeled by Gaussian distribution, since the noise is much
more impulsive than the one that is modeled by additive Gaussian noise. Examples of these
applications can be found in the radar and sonar applications, where there are atmospheric
and underwater acoustic noises, in biomedical images, in SAR images, and so on. These types
of noise follow the so called alpha-stable distributions [47, 48, 55].

The alpha-stable distributions are closed under additions; i.e., the sum of two alpha-stable
random variables is still an alpha-stable random variable. Moreover, the alpha-stable random
variables obey to the generalized central limit theorem [48]. But, this class of random variables
has no close formula for densities and distribution functions (apart from Gaussian, Cauchy,
and Lévy distributions). The distributions of this class are all bell-shaped, with increasing
density on the left and decreasing density on the right. The heaviness of the distribution tails
is controlled by the parameter α ∈ (0, 2]; i.e., the tails grow thicker as α becomes smaller.

In Figure 1, we show the probability density functions (PDFs) of alpha-stable distributions
with different values of α. The distribution with α = 2 corresponds to the well-known Gaussian
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Figure 1. Comparison of the PDFs of alpha-stable distributions with α = 0.5, α = 1, α = 1.5, and α = 2.
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(a) Noise free signal.
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(b) Degraded by Gaussian noise.
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(c) Degraded by Cauchy noise.

Figure 2. Alpha-stable noise in one dimension: notice that the y-axis has different scales (scale between 30
and 120 on (a) and (b) and −100 and 400 on (c)). (a) one-dimensional noise-free signal; (b) signal degraded
by an additive Gaussian noise; (c) signal degraded by an additive Cauchy noise. The Cauchy noise is more
impulsive than the Gaussian noise.

distribution, and the one with α = 1 corresponds to the Cauchy distribution. Comparing the
PDFs, we see that the tails of the bells become heavier as α decreases. In fact, the Cauchy
bell (α = 1) has a thicker tail than the Gaussian distribution (α = 2). Thus, the rare events
have more probability of occurring in the Cauchy bell curve than in the Gaussian bell curve,
and for this reason, the noise generated from the Cauchy distribution is more impulsive than
the Gaussian one. For instance, the Cauchy noise can contain powerful noise spikes that can
be more than a hundred times the magnitude of the humbler Gaussian noise spikes.

In order to illustrate the difference between the Gaussian noise and the Cauchy noise, in
Figure 2 we show a one-dimensional noise-free signal and the corresponding degraded signal by
the Gaussian noise and the Cauchy noise. The noisy signal corrupted by the Gaussian noise has
been obtained simply by adding random values from a Gaussian distribution. From [47, 48],
we know that the Cauchy noise can be obtained from the ratio of two independent Gaussian
variables. Hence, to create the noisy signal with the Cauchy noise, first we generate two vectors
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containing random values from the Gaussian distribution, and then we add the ratio between
these two vectors to the original signal. From the figures, one can see that the Cauchy noise
is much more impulsive than the Gaussian noise, since the rare events have more probability
to occur. Note that the vertical scale goes from 30 to 120 for the original signal and the one
degraded by the Gaussian noise, while it goes from −100 to 400 for the signal degraded by
the Cauchy noise.

Finally, we now describe how Cauchy noise influences the clean image. Given the original
image u : Ω → R, with Ω ⊂ R2 being a bounded, open, and connected set with compact
Lipschitz boundary, the noisy image f : Ω → R is given by

f = u + v,

where v represents the random noise that models a Cauchy distribution. A random variable
V follows the Cauchy distribution, V ∼ Cauchy(γ, δ), if it has density as in (1.1). Without
loss of generality, from now on, in our analysis we consider δ = 0.

3. Variational model. In this section we analyze a variational model for deblurring and
denoising images corrupted by Cauchy noise. In the first part, we focus only on the denoising
case and using the maximum a posteriori (MAP) estimator (see [31]) to derive a variational
model. Then, we study some properties of the restoration model, i.e., the existence of a
minimizer and the minimum maximum principle. Later, we incorporate a blurring operator
K in our variational model for simultaneously deblurring and denoising an image corrupted
by Cauchy noise.

3.1. Variational model via MAP estimator. Our goal is to find a variational model to
restore an image corrupted by Cauchy noise; in particular, we want to recover the original
image u, given the noisy image f = u + v, where v follows the Cauchy noise. Based on [3], we
derive our model using the Bayes rule and the MAP estimator; see [31]. In the following, we
denote the random variables with the uppercase letters F , U , and V , the respective instances
with the lowercase letters f , u, and v, and the respective density functions with gF , gU , and
gV .

As already said in the previous section, we assume that v follows a “zero-centered” Cauchy
law, and thus its density function is defined as follows:

gV (v) =
1
π

γ

γ2 + v2
.

Given the noisy image F , for restoring the original image U , we have to maximize the
conditional probability P (U |F ). From Bayes’s rule [31], we know that

(3.1) P (U |F ) =
P (F |U)P (U)

P (F )
.

Based on (3.1), we can equivalently minimize

(3.2) − log(P (U |F )) = − log(P (F |U)) − log(P (U)) + log(P (F )).

Since the quantity P (F ) is constant with respect to the variable U , we just need to minimize
− log(P (F |U)) − log(P (U)).
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The pixels of our image are corrupted by Cauchy noise; thus for x ∈ Ω, with Ω the set of
the pixels of the image, we have

P (f(x)|u(x)) = Pu(x)(f(x)) =
γ

π
(
γ2 + (u(x) − f(x))2

) .

Inspired by [3], we assume that U follows a Gibbs prior:

gU (u) =
1
Z

exp(−βJ(u)),

where Z is the normalization factor, β > 0, and J is a nonnegative given function such as
J(u) =

∫
Ω |Du| (the notation will be explained in the next section).

Now, since the pixels x ∈ Ω are mutually independent and identically distributed (i.i.d.),
we have P (U) =

∏
x∈Ω P (U(x)), where U(x) is the instance of the random variable U at the

pixels x. Hence, minimizing (3.2) is equivalent to minimizing

(3.3) − log(P (F |U)) = −
∫

Ω

(
log
(
P (F (x)|U(x))

)
+ log

(
P (U(x))

))
.

Substituting the explicit expressions of log P (F (x)|U(x)) and log P (U(x)) in (3.3), we can
easily write (3.3) as follows:

(3.4) − log(P (F |U)) =
∫

Ω

(
log
(
γ2 + (U(x) − F (x))2

)
+ βJ(U(x)) + log π + log Z − log γ

)
.

Since the last three terms are constants, our model for restoring images corrupted with Cauchy
noise is given by

(3.5) inf
u∈BV (Ω)

E(u) :=
∫

Ω
|Du| +

λ

2

∫

Ω
log
(
γ2 + (u − f)2

)
dx,

where λ = 2
β is a strictly positive parameter and we assume f ∈ L∞(Ω).

As in [3, 21, 54], in our work we consider the recovered image u in the space of the functions
of bounded variation (BV). In particular, u ∈ BV (Ω) iff u ∈ L1(Ω) and the seminorm in the
space BV (Ω) is finite, where the BV-seminorm is defined as follows:

(3.6)
∫

Ω
|Du| := sup

{∫

Ω
u ∙ div(ξ(x))dx

∣
∣
∣ξ ∈ C∞

0 (Ω,R2), ‖ξ‖L∞(Ω,R2) ≤ 1

}

.

The space BV (Ω) endowed with the norm ‖u‖BV = ‖u‖L1 +
∫
Ω |Du| is a Banach space. If

u ∈ BV (Ω), (3.6) corresponds to the TV. From the compactness of the space BV (Ω), we
have the following embedding, BV (Ω) ↪→ Lp(Ω), with 1 ≤ p ≤ 2, and for p < 2 it is compact
(see [2, 3] for more explanations).

In the following section, we give some theoretical results on the existence of the minimizer
and we enunciate the minimum-maximum principle.
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3.2. Properties of the model (3.5). We start this section with proving that there exists
at least one solution for the minimization problem (3.5).

Theorem 3.1. Let f be in L∞(Ω); then the problem (3.5) has at least one solution in BV (Ω)
satisfying

inf
Ω

f ≤ u ≤ sup
Ω

f.

Proof. Let us denote a = inf f and b = sup f , and consider a minimizing sequence {un} ∈
BV (Ω) for (3.5). First of all, we show that we can assume a ≤ un ≤ b without loss of
generality, and so the sequence {un} is bounded in L1(Ω). Fixing x ∈ Ω and denoting the
data fidelity term with h : R→ R, where h(t) := log(γ2 + (t − f(x))2), we have

h′(t) =
2
(
t − f(x)

)

γ2 +
(
t − f(x)

)2 .

Thus, the function h is decreasing if t < f(x) and increasing if t > f(x). For every M ≥ f(x),
we have

h(min(t,M)) ≤ h(t).

Hence, if M = b, we have
∫

Ω
log
(
γ2 +

(
inf(t, b) − f(x)

)2)dx ≤
∫

Ω
log
(
γ2 +

(
t − f(x)

)2)dx.

Furthermore, from [34], we know that
∫
|D inf(u, b)| ≤

∫
|Du|. By definition of our func-

tional E, we can conclude that E(inf(u, b)) ≤ E(u). In the same way, we can prove that
E(sup(u, a)) ≤ E(u), with a = inf f . Hence, since a ≤ un ≤ b, the sequence {un} is bounded
in L1(Ω).

Now, applying our functional E in (3.5) to the sequence {un}, we have that E(un) is
bounded. In particular, there exists a constant C > 0 such that E(un) ≤ C. The data
fidelity term has minimum value 2 log γ when u = f and E(un) is bounded, and hence the
regularization term

∫
|D(un)| is also bounded. Thus, the sequence {un} is bounded in BV (Ω)

and there exists u ∈ BV (Ω) such that up to a subsequence, we have un → u in BV (Ω)-weak
and un → u in L1(Ω)-strong. Furthermore, using a ≤ u ≤ b, the lower semicontinuity of the
TV, and Fatou’s lemma, we have that u is a minimizer of the problem (3.5). Remark that
if γ ≥ 1, we can directly apply Fatou’s lemma, since the logarithm does not take negative
values; if γ < 1, we can still use Fatou’s lemma, but we need some considerations. In fact,
letting u = γv and f = γf0 (with v ∈ BV (Ω) and f0 ∈ L∞(Ω)), the minimization problem in
(3.5) can be rewritten as follows:

inf
v∈BV (Ω)

E(v) := γ

∫

Ω
|Dv| +

λ

2

∫

Ω
log
(
1 + (v − f0)

2
)
dx.

Hence, also in the case γ < 1, the logarithm does not take negative values, and then the use
of Fatou’s lemma is ensured.

Now we are able to prove, under some hypothesis, that there exists a unique solution for
our minimization problem (3.5).

Proposition 3.2. Let f be in L∞(Ω); then the problem (3.5) has only one solution u such
that f − γ < u < f + γ.
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Proof. Using the same notation as before and fixing x ∈ Ω, we have

h′′(t) =
2
(
γ2 − (t − f(x))2

)

(
γ2 + (t − f(x))2

)2 ,

where t ∈ R. If f − γ < t < f + γ, the function h is strictly convex, and hence there exists a
unique minimizer for the problem defined in (3.5).

In the following proposition we enunciate the minimum-maximum principle.
Proposition 3.3. Let f1 and f2 be in L∞(Ω), with a1 = infΩ f1, a2 = infΩ f2, b1 = supΩ f1,

and b2 = supΩ f2. Let us assume that f1 < f2. Then, denoting with u1 (resp., u2) a solution
of (3.5) for f = f1 (resp., f = f2), we have u1 ≤ u2 if b2 < γ + a1.

Proof. From Theorem 3.1, we know that problem (3.5) admits solutions. Thus, by defini-
tion of u1 and u2 we have

J(u1 ∧ u2) +
λ

2

∫

Ω
log(γ2 + (u1 ∧ u2 − f1)

2)dx ≥ J(u1) +
λ

2

∫

Ω
log(γ2 + (u1 − f1)

2)dx

and

J(u1 ∨ u2) +
λ

2

∫

Ω
log(γ2 + (u1 ∨ u2 − f2)

2)dx ≥ J(u2) +
λ

2

∫

Ω
log(γ2 + (u2 − f2)

2)dx,

where u1 ∧ u2 = inf(u1, u2) and u1 ∨ u2 = sup(u1, u2). From [9, 27], we know that J(u1 ∧
u2) + J(u1 ∨ u2) ≤ J(u1) + J(u2); thus, adding the two inequalities above we have

∫

Ω

(
log(γ2+(u1∧u2−f1)

2)−log(γ2+(u1−f1)
2)+log(γ2+(u1∨u2−f2)

2)−log(γ2+(u2−f2)
2)
)
dx ≥ 0.

We now split the domain Ω into two parts Ω = {u1 > u2} ∪ {u1 ≤ u2} and deduce that
(3.7)∫

{u1>u2}

(
log(γ2 +(u2−f1)

2)− log(γ2 +(u1−f1)
2)+log(γ2 +(u1−f2)

2)− log(γ2 +(u2−f2)
2)
)
dx ≥ 0.

With the hypothesis b2 < γ + a1, one can prove that the integrand of the above integral
is strictly negative (for further details we refer the reader to the appendix. Hence, we have
that {u1 > u2} has a zero Lesbegue measure, and thus we have proved that u1 ≤ u2 a.e. in
the domain Ω.

Although we proved under some conditions that there exists a unique solution for (3.5),
the model is not convex. Due to the nonconvexity of (3.5), the restored results from (3.5)
strongly depend on the initialization and the numerical schemes. To overcome this problem,
in section 4 we introduce a convex model by adding a quadratic penalty term. Before that we
first extend (3.5) to the deblurring case.
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3.3. Deblurring and denoising case. Since in the real applications the observed image f
is usually not only corrupted by noise but also blurred, we extend the minimization model in
(3.5) to the deblurring and denoising case. In particular, the blurred and noisy image is given
by f = Ku+v, where K ∈ L(L1(Ω), L2(Ω)) is a known linear and continuous blurring operator
and v ∈ L2(Ω), as above, represents the Cauchy noise. In the deblurring and denoising case,
the minimization problem becomes

(3.8) inf
u∈BV (Ω)

∫

Ω
|Du| +

λ

2

∫

Ω
log
(
γ2 + (Ku − f)2

)
dx.

As in the denoising case, (3.8) is nonconvex; in the next section, to overcome this problem we
introduce a convex model.

4. Convex variational model. In this section we introduce a convex variation model for
deblurring and denoising an image corrupted by Cauchy noise. At the beginning, we focus
only on the denoising case, and then we generalize the model for the deblurring case. Drawing
inspiration from the nonconvex model defined in (3.5), we introduce a new model by adding
a quadratic penalty term that is based on the image given by applying the median filter to
the noisy image f . The reason why we choose to use the median filter will be explained in
subsection 4.1.

In particular, introducing a quadratic penalty term into the previous nonconvex model
(3.5), we have

(4.1) inf
u∈BV (Ω)

∫

Ω
|Du| +

λ

2

(∫

Ω
log
(
γ2 + (u − f)2

)
dx + μ‖u − u0‖

2
2

)

,

where u0 is the image obtained by applying the median filter to the noisy image f and λ > 0
and μ > 0 are the regularization parameters. In this way, we will prove that the model, under
some conditions, is strictly convex.

4.1. Median filter. In this part we explain the reason why we choose the median filter [25]
as a quadratic penalty term, focusing on the analogies between the Cauchy noise and impulse
noise. Due to its simplicity and its capability of preserving image edges, in past decades, the
median filter has attracted much attention in image processing [7, 35, 42, 57], especially for
denoising images corrupted by impulse noise; see [13, 20]. Given the original image u, the
noisy image f corrupted by impulse noise is defined as follows:

f(x) =

{
u(x) with probability 1 − σ,

η with probability σ,
with x ∈ Ω,

where η is a uniformly distributed random variable with values in [min u, max u] and σ > 0 is
the noise level.

Figure 3(a) shows the original Parrot image, and Figures 3(b), 3(c), and 3(d), respectively,
represent the images corrupted by additive Gaussian noise, impulse noise, and Cauchy noise.
In Figures 3(e)–3(h) we show the zooms of the top left corners of 3(a)–3(d). One can see
that the image degraded by Gaussian noise looks slightly different from the images corrupted
by Cauchy noise and impulse noise, while in some way Cauchy noise and impulse noise are
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(a) Original image (b) Gaussian noise (c) Cauchy noise (d) Impulse noise

(e) Zoom of (a) (f) Zoom of (b) (g) Zoom of (c) (h) Zoom of (d)

Figure 3. Comparison of different noisy images. (a) Original image u0; (b) u corrupted by an additive
Gaussian noise; (c) u corrupted by an additive Cauchy noise; (d) u corrupted by an impulse noise; (e)–(h)
zooms of the top left corners of images (a)–(d), respectively. The Cauchy noise and impulse noise are more
impulsive than the Gaussian noise.

quite close to each other. For instance, with the impulse noise and the Cauchy noisy there
are some pixels degraded to white or black, while the image corrupted by the Gaussian noise
is uniformly modified and white and black pixels are very rare. Although the Cauchy noise
has some analogies with the impulse noise, there are also some very important differences;
for example, in the impulse noise some pixels are noise-free (see Figure 3(h)), while in the
Cauchy noise all the pixels are corrupted by noise (see Figure 3(g)). Thus, due to the impulsive
character of the Cauchy noise and to its analogies with the impulse noise, we decide to employ
the median filter in our minimization problem (4.1).

In the literature, there also exist some filters created for removing noise in impulsive
environments, for instance the myriad filter [29, 30]. The myriad filter theory is based on the
definition of the sample myriad as the maximum likelihood location estimator of the alpha-
stable distribution. It is a very robust filter for suppressing impulsive noise, in particular
alpha-stable noise, but comparing with the median filter it is much more sensitive with respect
to the parameter selection and much more time-consuming. In section 5, we show the results
obtained by applying the median filter and the myriad filter to the noisy images, and we can
see that the myriad filter slightly outperforms the median filter. Furthermore, there is not
any significant improvement if, in our model, we use the myriad filter instead of the median
filter. Thus, for simplicity, we keep the median filter result as u0 in our model (4.1).

4.2. Existence and uniqueness of a solution. We now prove that under certain condi-
tions, there exists a unique solution for the minimization problem defined in (4.1). To do this,
first of all we show that under certain conditions the objective function of (4.1) is strictly
convex.

Proposition 4.1. If 8μγ2 ≥ 1, the model defined in (4.1) is strictly convex.
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Proof. We start to prove that the data fidelity term in (4.1) is strictly convex. Fixed
x ∈ Ω, we define a function h : R→ R as

(4.2) h(t) := log
(
γ2 +

(
t − f(x)

)2)+ μ
(
t − u0(x)

)2
,

and we prove that it is strictly convex. Easily, we can compute the first and the second order
derivatives of h, and we have

h′(t) = 2
t − f(x)

γ2 + (t − f(x))2
+ 2μ(t − u0(x)) and h′′(t) = 2

γ2 − (t − f(x))2
(
γ2 + (t − f(x))2

)2 + 2μ.

A direct computation shows that h is strictly convex for 8μγ2 ≥ 1. Since TV regularization
is convex, we can also conclude that the objective function in (4.1) is strictly convex, for
8μγ2 ≥ 1, and hence we have the thesis.

We now prove the existence and uniqueness of a solution to (4.1).
Theorem 4.2. Let f be in L∞(Ω); then the model (4.1) has a unique solution u ∈ BV (Ω)

satisfying

min

{

inf
Ω

f, inf
Ω

u0

}

≤ u ≤ max

{

sup
Ω

f, sup
Ω

u0

}

.

Proof. The proof of the existence of a solution to (4.1) is similar to that for Theorem
3.1. We would like to mention that in this case the function defined in (4.2) is decreasing if
t < min{inf f, inf u0} and is increasing if t > max{sup f, sup u0}.

The uniqueness of the solution follows directly from the strict convexity of our model.
As in section 3, we enunciate the minimum-maximum principle for the convex minimiza-

tion problem. The proof of this proposition follows the same arguments as in Proposition 3.3.
Proposition 4.3. Let f1 and f2 be in L∞(Ω) with a1 = infΩ f1 and a2 = infΩ f2, and we

denote b1 = supΩ f1 and b2 = supΩ f2. Let us assume that f1 < f2. Then, denoting with u1

(resp., u2) a solution of (4.1) for f = f1 (resp., f = f2), we have u1 ≤ u2 if b2 < a1 + γ.

4.3. Deblurring and denoising case. We now modify our model to include a linear and
continuous blurring operator K ∈ L(L1(Ω), L2(Ω)). To restore a blurred image corrupted by
Cauchy noise, we introduce the following optimization problem:

(4.3) inf
u∈BV (Ω)

∫

Ω
|Du| +

λ

2

(∫

Ω
log
(
γ2 + (Ku − f)2

)
dx + μ‖Ku − u0‖

2
2

)

,

where u0 is the image obtained by applying the median filter to the blurred and noisy image f .
Since the blurring operator K is nonnegative and it is linear, we can conclude that the

model in (4.3) is convex when 8μγ2 ≥ 1. In the following theorem we give the existence and
uniqueness results to (4.3).

Theorem 4.4. Let f be in L∞(Ω), let u0 ∈ L2(Ω), and let K ∈ L(L1(Ω), L2(Ω)) be a
nonnegative linear operator, and let assume that K does not annihilate constant functions,
i.e., KI 6= 0. Then the model (4.3) admits a solution. If 8μγ2 ≥ 1 and K is injective, there
exists a unique solution.

Proof. As in the proof of Theorem 3.1, one can prove that the objective function of
the minimization problem in (4.3) is bounded from below. Consider a minimizing sequence
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{un} ∈ BV(Ω) for (4.3). From the boundedness of the objective function of our model, we
have that {

∫
Ω |Dun|} is bounded. We define mΩ(un) = 1

|Ω|

∫
Ω undx with |Ω| as the measure

of Ω. Based on the Poincaré inequality [23] we have

‖un − mΩ(un)‖2 ≤ C

∫

Ω
|D(un − mΩ(un))| = C

∫

Ω
|Dun|,

where C is a positive constant. Recalling that Ω is bounded, we have that ‖un − mΩ(un)‖2

and ‖un − mΩ(un)‖1 are bounded for each n. Due to the continuity of the blurring operator
K ∈ L(L1(Ω), L2(Ω)), the sequence {K(un − mΩ(un))} is bounded in L2(Ω) and in L1(Ω).
Furthermore, since the objective function of (4.3) is bounded, we also have that (Kun − u0)2

is bounded in L1(Ω) for each n; thus ‖Kun − u0‖1 is bounded and hence ‖Kun‖1 is bounded.
We are now ready to prove that |mΩ(un)|‖KI‖1 is bounded from

|mΩ(un)|‖KI‖1 = ‖K(un − mΩ(un)) − Kun‖1 ≤ ‖K(un − mΩ)‖1 + ‖Kun‖1.

Since KI 6= 0, we have that mΩ(un) is uniformly bounded. Thus, now we can conclude that
the sequence {un} is bounded in L2(Ω) and hence in L1(Ω). Thus, since BV (Ω) is closed
and convex, {un} is also bounded in BV (Ω). Thus, there exists a subsequence {unk

} which
converges strongly in L1(Ω) to some u? ∈ BV (Ω), and {Dunk

} converges weakly as a measure
to Du?. Since K is a continuous linear operator, {Kunk

} converges strongly to Ku? in L2(Ω).
Moreover, up to a subsequence, {Kunk

} converges almost everywhere to this Ku?. Based on
the lower semicontinuity of TV and Fatou’s lemma, we have that u? is a solution of (4.3).

The uniqueness of the solution follows directly from the injectivity of the operator K and
the assumption of 8μγ2 ≥ 1, since in this case the model is strictly convex.

Note that the assumption that K ∈ L(L1(Ω), L2(Ω)) is classical; see [12]. Basically, the
above proof also works when K =Id. We leave the details to the interested reader.

4.4. Numerical method. In this part we show how to compute numerically the minimizer
of (4.3). We focus directly on the general case, since the denoising case can be seen as a special
case of the deblurring and denoising one, when K is the identity operator. First of all, we
derive the discrete version of our minimization problem (4.3), and then we study how to
solve it numerically. For the sake of simplicity we keep the notation from the continuous
contest. Let f ∈ Rmn be the noisy image obtained from a two-dimensional pixel-array, with
dimension m× n, by concatenation in the usual columnwise fashion, and let K ∈ Rmn×mn be
the discretization of the continuous blurring operator K. Due to the convexity of (4.3), there
exist many algorithms to solve the proposed model, for instance the primal dual algorithm
[10, 15, 17], the alternating direction method with multipliers (ADMM) [6], the split-Bregman
algorithm [28], and the Chambolle–Pock algorithm [11]. Since, under some hypothesis, the
convergence of the Chambolle–Pock algorithm is guaranteed (see [11]), we decide to employ
it to solve our minimization problem (3.8).

In order to compute numerically the solution of our minimization problem, we introduce
the discrete version of (4.3),
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(4.4) min
u

‖∇u‖1 +
λ

2
G(Ku),

where G : Rmn → R represents the data fidelity term and it is defined as follows:

G(u) :=
∑

i

log
(
γ2 + (ui − fi)

2
)

+ μ‖u − u0‖
2
2.

The first term of (4.4) represents the discrete TV of the image u, and it is defined as follows:

‖∇u‖1 =
∑

i

√
(∇xu)2i + (∇yu)2i .

The discrete gradient ∇ ∈ R2mn×mn is given by

∇u =

(
∇xu
∇yu

)

,

where the discrete derivative operators in the x-direction and y-direction, respectively, ∇x and
∇y, are obtained using the finite difference approximations to the derivatives with symmetric
boundary conditions,

(∇xu)l,j =

{
ul+1,j − ul,j if l < n,

0 if l = n
and (∇yu)l,j =

{
ul,j+1 − ul,j if j < m,

0 if j = m.

As in [14], for using the primal dual algorithm, we introduce two new variables v ∈ R2mn

and w ∈ Rmn, and, instead of consider the unconstrained problem, we look at the following
constrained optimization problem:

(4.5) min
u,v,w

‖v‖1 +
λ

2
G(w) subject to v = (vx, vy)

> = ∇u and w = Ku.

To apply the Chambolle–Pock algorithm, we study the following optimization problem:

(4.6) min
u,v,w∈Rmn

max
p,q∈Y

‖v‖1 +
λ

2
G(w) + 〈v −∇u, p〉 + 〈w − Ku, q〉,

where p ∈ R2mn and q ∈ Rmn are the dual variables, and Y = {q ∈ R2mn : ‖q‖∞ ≤ 1}, where
‖q‖∞ is the `∞-vector norm and it is defined as follows:

‖q‖∞ = max
i∈{1,...,mn}

√
q2
i + q2

i+mn.

Then the Chambolle–Pock algorithm for solving (4.6) is described in Algorithm 1. The
main calculation is carried out in (4.7)–(4.11). In the following, we give the details on how to
solve them.
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Algorithm 1. Solving (4.6) by using the Chambolle–Pock algorithm.

1: Fixed σ > 0 and τ > 0. Initialize: p0 = 0, q0 = 0, u0 = ū0 = f , v0 = v̄0 = ∇u0, and
w0 = w̄0 = Ku0.

2: Calculate pk+1, qk+1, uk+1, vk+1, wk+1, ūk+1, v̄k+1, and v̄k+1 using the following equations:

pk+1 = arg max
p

〈v̄k −∇ūk, p〉 −
1
2σ

‖p − pk‖2
2,(4.7)

qk+1 = arg min
q

〈w̄k − Kūk, q〉 −
1
2σ

‖q − qk‖2
2,(4.8)

uk+1 = arg min
u

−〈∇u, pk+1〉 − 〈Ku, qk+1〉 +
1
2τ

‖u − uk‖2
2,(4.9)

vk+1 = arg min
v

‖v‖1 + 〈v, pk+1〉 +
1
2τ

‖v − vk‖2
2,(4.10)

wk+1 = arg min
w

λ

2
G(w) + 〈w, qk+1〉 +

1
2τ

‖w − wk‖2
2,(4.11)

ūk+1 = 2uk+1 − uk,(4.12)

v̄k+1 = 2vk+1 − vk,(4.13)

w̄k+1 = 2wk+1 − wk.(4.14)

3: Stop or set k := k + 1 and go back to step 2.

The objective functions (4.7)–(4.9) are quadratics, and thus the update of p, q, and u is
given by

(4.15)

pk+1 = σ(v̄k −∇ūk) + pk,

qk+1 = σ(w̄k − Kūk) + qk,

uk+1 = uk + τ(K>qk+1 − divpk+1).

The equation in (4.10) can be rewritten in the following way:

vk+1 = arg min
v

‖v‖1 +
1
2τ

‖v − tk‖2
2,

where tk = vk − τpk+1. Thus, the update of v is easily given by applying the soft shrinkage
operator,

vk+1
i =

tki
|tki |

max{|tki | − τ, 0} and vk+1
i+mn =

tki+mn

|tki |
max{|tki | − τ, 0} for i = 1, . . . ,mn,

with |tki | =
√

(tki )
2 + (tki+mn)2.

The optimality condition for (4.11) is given by

(4.16) λ
w − f

γ2 + (w − f)2
+ μλ(w − u0) + qk+1 +

1
τ
(w − wk) = 0,
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where, as usual, the division and the exponentiation have to be considered pointwise.
Multiplying both sides of the above equation for τ(γ2 +(w−f)2), collecting the term with

the same factors, one can see that (4.16) is equivalent to the following cubic equation:

aw3 + bw2 + cw + d = 0,

with
a = μλτ + 1;

b = −(μλτ (2f + u0) − τqk+1 + 2f + wk);

c = τλ + μλτ (γ2 + f2 + 2u0f) − 2τqk+1f + γ2 + f2 + 2wkf ;

d = −τλf − μλτu0(γ
2 + f2) + τqk+1(γ2 + f2) − wk(γ2 + f2).

From Cardano’s formula, we can find the explicit expression for the solutions of a cubic
equation; see the following proposition. For more details, we refer the reader to [37].

Proposition 4.5. A generic cubic equation with real coefficients

(4.17) ax3 + bx2 + cx + d = 0, with a 6= 0,

has at least one solution among the real numbers. Let

q =
3ac − b2

9a2
and r =

9abc − 27a2d − 2b3

54a3
;

if there exists a unique real solution of (4.17), the discriminant, Δ = q3+r2, has to be positive.
Furthermore, if Δ ≥ 0, the only real root of (4.17) is given by

(4.18) x =
3

√
r +

√
Δ +

3

√
r −

√
Δ −

b

3a
.

Due to the strict convexity of our problem, we know that there exists a unique real solu-
tion for (4.16) and, from the above proposition, it can be computed explicitly using (4.18).
Otherwise, since the objective function in (4.11) has the second derivative, one can also de-
termine the solution in an efficient way using the Newton method followed by one projection
step, in order to guarantee the nonnegativity of u; see [21, 34]. In our simulations, we decide
to compute the explicit expression of unique real solution by using Cardano’s formula.

We remark that if K is the identity operator, i.e., the degraded image f is not blurred
but it is only corrupted by noise, there is no need to introduce the primal variable w and the
dual variable q, and the algorithm can be simplified accordingly.

In the last part of this section, we study the existence of the solution and the convergence
of the algorithm. First of all, we reformulate (4.6) in the following way:

(4.19) min
x

max
y

H(x) + 〈Ax, y〉,

with H(x) = ‖v‖1 + λ
2G(w) and

A =

(
−∇ I 0
−K 0 I

)

, x =




u
v
w



 , x̄ =




ū
v̄
w̄



 , y =

(
p
q

)

.
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Proposition 4.6. The saddle-point set of (4.19) is nonempty.
For the proof, we refer the reader to Proposition 2 in [44].
The following proposition shows the convergence of the algorithm described in Algorithm 1.
Proposition 4.7. The iterates (xk, yk) defined in Algorithm 1 converge to a saddle point of

the primal dual problem defined in (4.19) if στ‖A‖2
2 < 1, where ‖A‖2 denotes the operator

2-norm of A.
This proposition can be seen as a special case of the theorem proved by Chambolle and

Pock [11, Theorem 1].
In order to use the inequality given in the above proposition, we need to give an estimate

of ‖A‖2. By using the property of the norm, one can find that

‖Ax‖2 ≤
√

‖∇‖2
2 + ‖K‖2

2‖u‖2 +

∥
∥
∥
∥

(
v

w

)∥∥
∥
∥

2

.

If ‖x‖2 = 1, by definition of x, we have that ‖u‖2
2 +

∥
∥(v

w

)∥∥2

2
= 1; therefore, from the Cauchy

inequality, we obtain

‖Ax‖2 ≤
√

‖∇‖2
2 + ‖K‖2

2 + 1.

Hence, we have ‖A‖2 ≤
√

‖∇‖2
2 + ‖K‖2

2 + 1.
From [10], we know that ‖∇‖2

2 ≤ 8, and from [44], we have that ‖K‖2 ≤ 1, and thus
‖A‖2 ≤

√
10. Therefore, in order to ensure the convergence of our algorithm we just need

that στ < 0.1. In our numerical simulations we set σ = τ = 0.3, which ensures the convergence
of the algorithm.

5. Numerical simulations. In this section, we show some numerical reconstructions ob-
tained by applying our proposed model to blurred images corrupted by Cauchy noise. First
of all, we focus only on the denoising case, and then we consider also the deblurring case. In
order to show the potentiality of our method, we compare our reconstructions with images
obtained by employing other well-known methods, such as the ROF model [54], the median
filter [25], the myriad filter [29], and the L1-TV model. The L1-TV model was introduced
by Nikolova in [45, 46] for restoring images corrupted by impulse noise; in particular, in
this model, the TV regularization is combined with an L1 data fidelity term. Motivated by
the impulsive character of the Cauchy noise, we decide to compare our reconstructions also
with the L1-TV model. For the ROF model and the L1-TV model, we employ the primal
dual algorithm proposed in [11] to solve the minimization problem. Furthermore, in Figure
9, we also compare our method with other methods, such as the wavelet shrinkage [5], the
SURE-LET [43], and the BM3D [18].

For illustrations, we use the 256-by-256 gray level images Peppers, Parrot, and Camera-
man; the original images are presented in Figure 4. The quality of the restored images is
compared quantitatively using the peak signal noise ratio (PSNR) value [5] and the measure
of structural similarity (SSIM) [64]. The PSNR is a measure widely used in image quality
assessment, and it is defined as follows:

PSNR = 20 log10

mn|umax − umin|
‖u? − u‖2

,
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(a) (b) (c)

Figure 4. Original images. (a) Peppers; (b) Parrot; (c) Cameraman.

where u? and u are, respectively, the restored and the original images with values in the gray-
level range [umin, umax]. It is a very useful tool, since it is able to measure quantitatively the
quality of the reconstructed image compared to the original image. Recently, another mea-
sure has become very popular in the imaging community, the so-called SSIM measure. This
measure compares local patterns of pixel intensities that have been normalized for luminance
and contrast, and it has been proved that it is more consistent with human eye perception
than PSNR [64].

In our simulations, we stop our algorithm as soon as there are not big changes in the
objective function, i.e.,

E(uk) − E(uk−1)
E(uk)

< 5 ∙ 10−5,

where E denotes the objective function of the proposed minimization problem. In our method,
we choose the regularization parameter λ to give a good balance between a good fit to f and
the smoothness from TV. Since γ depends on the noise level, we use the same value of γ for
all test images under the same noise level. Based on our numerical experiments, our method
is robust with respect to μ; so we choose it such that the convexity condition is just satisfied,
i.e., 8μγ2 = 1. The development of an automatic procedure for choosing these parameters is
outside the scope of this paper. In addition, all the simulations are run in MATLAB R2014a.

5.1. Image denoising. In this section we focus only on the denoising case. Our aim
is to recover the original image u, knowing the corrupted image f . Since the ratio of two
independent standard normal variables gives a standard Cauchy random variable, we generate
the noisy image f by using the following equation:

f = u + v = u + ξ
η1

η2
,

where the random variable v follows the Cauchy distribution, ξ > 0 gives the noise level, and
η1 and η2 follow the Gaussian distribution with mean 0 and variance 1.

In the following, we compare our reconstructions with those obtained by applying the ROF
model, the median filter (MD), the myriad filter (MR), and the L1-TV model. By tuning the
regularization parameter λ, in the ROF model and the L1-TV model, we use the results with
the best PSNRs to compare with our method.

In Figures 5 and 7, we give the results for denoising the corrupted images Peppers, Parrot,
and Cameraman for different noise levels, ξ = 0.02 and ξ = 0.04. In order to make evident
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Observed

ROF

Median
filter

Myriad filter

L1-TV

Ours

Figure 5. Comparison of the recovered images from different methods for removing Cauchy noise in Peppers
(“Pe” for short), Parrot (“Pa”), and Cameraman (“C”). First row: noisy images f (ξ = 0.02); second row:
restored images by the ROF approach (λ = 5 (“Pe”); 6 (“Pa”); 5.8 (“C”)); third row: restored images by the
median filter (MD); fourth row: restored images by the myriad filter (MR); fifth row: restored images by theL1-
TV approach (λ = 1.5 (“Pe”); 1.5 (“Pa”); 1.6 (“C”)); sixth row: restored images by our approach (λ = 0.7

(“Pe”); 0.8 (“Pa”); 0.7 (“C”), μ = 6.25, and γ =
√

2
10

).
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Original

L1-TV

Ours

Figure 6. The zoomed-in regions of the recovered images in Figure 5. First row: details of original images;
second row: details of restored images by the L1-TV approach; third row: details of restored images by our
approach.

the differences between the L1-TV approach and ours, in Figure 6 we present some details of
Figure 5 (here, we also include the original images in the first row). It can be seen that the
L1-TV model outperforms the ROF model, the median filter, and the myriad filter, but our
method gives even better visual quality. The reason why our method and the L1-TV approach
perform better is because Cauchy noise is very impulsive and in some way it is very similar to
impulse noise; see subsection 4.1. Since the ROF model was introduced for removing Gaussian
noise, in order to remove highly impulsive Cauchy noise, it has to oversmooth the image. For
example, in Cameraman many details are missing and the contrast of the image is reduced.
The median filter and the myriad filter work quite well if the noise level is low; otherwise they
are not able to eliminate all the noise and at the same time to preserve most details. From
the details in Figure 6, we can see that our reconstructions preserve better the details of the
image, for example the stalk of the Peppers, the eye and the stripes of the Parrot, and the
tripod and the column of the building in Cameraman.

For the comparison of the performance quantitatively, in Tables 1–4 we list the values of
the PSNR and SSIM for the noisy and recovered images. Here, we also provide the values of
PSNR and SSIM for other popular test images in image processing, such as Lena, Baboon,
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Observed

ROF

Median
filter

Myriad filter

L1-TV

Ours

Figure 7. Comparison of the recovered images from different methods for removing Cauchy noise. First
row: noisy images f (ξ = 0.04); second row: restored images by the ROF approach (λ = 4.5 (“Pe”); 4.7 (“Pa”);
5 (“C”)); third row: restored images by the median filter (MD); fourth row: restored images by the myriad filter
(MR); fifth row: restored images by the L1-TV approach (λ = 1.3 (“Pe”); 1.3 (“Pa”); 1.5 (“C”)); sixth row:
restored images by our approach (λ = 0.6 (“Pe”); 0.8 (“Pa”); 0.9 (“C”), μ = 3.125, and γ = 0.2).
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Table 1
PSNR values for noisy images and recovered images given by different methods (ξ = 0.02). In the last line

of the table, we compute the average of the values.

Noisy ROF MD MR L1-TV Ours

Peppers 19.15 25.03 29.64 29.85 30.34 30.94

Parrot 19.13 23.88 27.05 27.13 28.02 28.98

Cameraman 19.07 24.00 26.14 26.57 27.21 27.91

Lena 19.06 24.58 28.94 28.98 29.84 30.36

Baboon 19.17 21.16 21.38 21.64 24.24 24.96

Goldhill 18.99 24.40 26.80 27.12 28.23 28.80

Boat 19.03 24.21 27.27 27.49 28.70 29.20

Average 19.09 23.89 26.75 26.97 28.08 28.74

Table 2
SSIM measures for noisy images and recovered images given by different methods (ξ = 0.02). In the last

line of the table, we compute the average of the values.

Noisy ROF MD MR L1-TV Ours

Peppers 0.3243 0.4820 0.6743 0.6790 0.7163 0.7168

Parrot 0.3179 0.4083 0.5894 0.5697 0.6571 0.6641

Cameraman 0.2743 0.2314 0.4115 0.4180 0.4715 0.4707

Lena 0.3240 0.4022 0.6488 0.6370 0.6950 0.6880

Baboon 0.5174 0.2115 0.4231 0.4175 0.6980 0.6950

Goldhill 0.3744 0.3191 0.5875 0.5952 0.6692 0.6811

Boat 0.3566 0.3474 0.6437 0.6387 0.6908 0.6931

Average 0.3556 0.3431 0.5683 0.5650 0.6568 0.6584

Table 3
PSNR values for noisy images and recovered images given by different methods (ξ = 0.04). In the last line

of the table, we compute the average of the values.

Noisy ROF MD MR L1-TV Ours

Peppers 16.25 23.95 27.25 27.50 28.29 28.80

Parrot 16.27 22.75 25.50 25.85 26.55 27.16

Cameraman 16.08 23.17 24.87 25.19 25.99 26.66

Lena 16.21 24.29 26.88 27.03 28.79 29.30

Baboon 16.16 20.67 20.90 21.55 22.50 23.05

Goldhill 16.21 23.72 25.48 25.85 26.49 27.00

Boat 16.28 23.55 25.67 25.16 26.67 27.18

Average 16.21 23.16 25.22 25.45 26.47 27.02

Goldhill, and Boat. From Tables 1–4, we can see that, on average, with our method we can
increase the PSNRs of the recovered images of 0.66 dB for ξ = 0.02 and 0.55 dB for ξ = 0.04
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Table 4
SSIM measures for noisy images and recovered images given by different methods (ξ = 0.04). In the last

line of the table, we compute the average of the values.

Noisy ROF MD MR L1-TV Ours

Peppers 0.2246 0.4294 0.5605 0.5734 0.6347 0.6411

Parrot 0.2334 0.3289 0.4706 0.4800 0.5529 0.5676

Cameraman 0.1989 0.2081 0.3379 0.3452 0.3857 0.3920

Lena 0.2220 0.4025 0.5394 0.5500 0.5993 0.6170

Baboon 0.3651 0.1588 0.3681 0.3795 0.5525 0.5650

Goldhill 0.2426 0.2786 0.5108 0.5256 0.5205 0.5684

Boat 0.2479 0.3266 0.5429 0.5498 0.5843 0.5930

Average 0.2478 0.3047 0.4757 0.4862 0.5471 0.5634
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Figure 8. Plots of the objective function values versus iterations of the three TV-based methods correspond-
ing to the experiments in the first line of Figure 5. (a) ROF model; (b) L1-TV model; (c) our model.

and also obtain largest SSIM values.
The convergence of the algorithm of the three TV-based methods is presented in Figure 8,

where we plot the objective function values versus the number of iterations (we use the image
of the Parrot when ξ = 0.02). Here, we see that the objective function values for the ROF
model and ours are monotonically decreasing.

Finally, we compare our method with some well-known techniques in image denoising.
Here, we use the noisy image Peppers with PSNR=19.15 and we compare with the wavelet
shrinkage [5], the SURE-LET [43], and the BM3D [18]. From Figure 9, we can clearly see
that our method outperforms all of them. Visually, there is still some noise left in the results
from the other three methods, which is due to the impulsive behavior of Cauchy noise.

5.2. Image deblurring and denoising. In this section, we consider restoring blurred im-
ages corrupted by Cauchy noise. In our simulation, we use the Gaussian blur with a window
size 9×9 and standard deviation of 1. After the blurring operation, we corrupt the images by
adding Cauchy noise with ξ = 0.02. As in the previous section we compare our reconstructions
with those obtained by employing the ROF model, the median filter, the myriad filter, and
the L1-TV model; see Figures 10 and 11. In Tables 5 and 6, we list the values of the PSNR
and SSIM for different images and different variational methods.
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(a) Wavelet: 23.13 (b) SURE-LET: 23.22 (c) BM3D: 28.74 (d) Ours: 30.94

Figure 9. Recovered images (with PSNR(dB)) of different approaches for removing Cauchy noise using as
the noisy image that in the first column of Figure 5. (a) Wavelet shrinkage; (b) SURE-LET; (c) BM 3D; (d)
our model.

Comparing the results of the three TV-based methods, i.e., the ROF, the L1-TV, and
ours, one can see that our method performs best visually. The images given by the ROF
model are too smooth, and the details are missed. The L1-TV model preserves more details
than the ROF model, but still some features are lost or not well recovered as in our model,
such as the eye of the Parrot and the columns of the building in the Cameramen; see Figure
11. In the third and fourth rows of Figure 10, the reconstructions given by the median filter
and the myriad filter are shown. We can see that the images are still blurred, because there
are no deblurring steps in both filters. Comparing the values of the PSNR and SSIM, we can
clearly see that our method outperforms the others even in presence of blur.

6. Conclusion. In this paper, we introduce a variational method for deblurring and de-
noising of blurred images corrupted by Cauchy noise. Inspired by the ROF model we combine
a TV regularization term with a data fidelity term suitable for the Cauchy noise. In order to
obtain a convex minimization problem, we add a quadratic penalty term based on the median
filter. Due to the strict convexity of our problem, we are able to prove the existence and the
uniqueness of a solution to our proposed model. Then, we introduce the primal dual algorithm
to solve our convex minimization problem and the convergence is ensured. Numerical results
show that our method outperforms other existing and well-known methods.

Appendix. Proof of Proposition 3.3. In this section we give more details on the proof of
Proposition 3.3; in particular we show that the integrand of (3.7) is strictly negative.

Using the properties of the logarithm, we can rewrite the last inequality in the proof as
follows:

(A.1)
∫

{u1>u2}
log

(γ2 + (u2 − f1)2)(γ2 + (u1 − f2)2)
(γ2 + (u1 − f1)2)(γ2 + (u2 − f2)2)

dx ≥ 0.

Now we show that, under our assumptions, the integrand of (A.1) is strictly negative. Since
the argument of the logarithm in (A.1) is strictly positive, we just need to show that

(A.2)
(γ2 + (u2 − f1)2)(γ2 + (u1 − f2)2)
(γ2 + (u1 − f1)2)(γ2 + (u2 − f2)2)

< 1.
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Observed

ROF

Median
filter

Myriad filter

L1-TV

Ours

Figure 10. Comparison of the recovered images from different methods for deblurring and denoising an
image blurred and corrupted by Cauchy noise. First row: blurred and noisy images f (ξ = 0.02); second row:
restored images by the ROF approach (λ = 15 (“Pe”); 16 (“Pa”); 16 (“C”)); third row: restored images by the
median filter (MD); fourth row: restored images by the myriad filter (MR); fifth row: restored images by the
L1-TV approach (λ = 3 (“Pe”); 3.4 (“Pa”); 3.5 (“C”)); sixth row: restored images by our approach (λ = 2

(“Pe”); 2.1 (“Pa”); 2.1 (“C”), μ = 6.25, and γ =
√

2
10

).
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Original

L1-TV

Ours

Figure 11. The zoomed-in regions of the recovered images in Figure 10. First row: details of original
images; second row: details of restored images by L1-TV approach; third row: details of restored images by our
approach.

Table 5
PSNR values for noisy images and recovered images given by different methods (ξ = 0.02). In the last line

of the table, we compute the average of the values.

Noisy ROF MD MR L1-TV Ours

Peppers 18.31 24.21 25.19 25.01 26.70 27.46

Parrot 18.23 24.06 24.48 24.57 25.75 26.79

Cameraman 18.29 23.98 24.43 24.39 25.49 26.27

Lena 18.64 25.74 26.70 26.72 27.26 28.14

Baboon 17.42 20.84 21.54 21.49 21.36 21.81

Goldhill 18.47 24.84 25.88 25.85 26.17 26.76

Boat 18.48 24.36 25.42 25.43 26.18 26.69

Average 18.28 24.00 24.81 24.78 25.56 26.31

Now, collecting the term with the same factor γ2, we have

γ2
(
(u2−f1)

2+(u1−f2)
2−(u1−f1)

2−(u2−f2)
2
)
+(u2−f1)

2(u1−f2)
2−(u1−f1)

2(u2−f2)
2 < 0.
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Table 6
SSIM measures for noisy images and recovered images given by different methods (ξ = 0.02). In the last

line of the table, we compute the average of the values.

Noisy ROF MD MR L1-TV Ours

Peppers 0.2413 0.4974 0.5909 0.5762 0.6086 0.6297

Parrot 0.2316 0.4439 0.5145 0.4991 0.5278 0.5655

Cameraman 0.1753 0.2609 0.3433 0.3296 0.3516 0.3880

Lena 0.2487 0.4748 0.5764 0.5631 0.5712 0.6071

Baboon 0.1955 0.2167 0.3573 0.3502 0.3208 0.3905

Goldhill 0.2262 0.3678 0.5070 0.4949 0.4911 0.5390

Boat 0.2410 0.4059 0.5313 0.5243 0.5478 0.5721

Average 0.2228 0.3811 0.4887 0.4767 0.4884 0.5274

The above inequality can be simply rewritten as follows:

2γ2(u1f1 + u2f2 − u2f1 − u1f2) +
(
f2
1 u2

1 − 2u2
1u2f1 + u2

2f
2
2 − 2u2f1f

2
2 − 2u1u

2
2f2 − 2u1f

2
1 f2

)

−
(
f2
1 u2

2 − 2u1u
2
2f1 + u2

1f
2
2 − 2u1f1f

2
2 − 2u2

1u2f2 − 2u2f
2
1 f2

)
< 0,

and collecting some terms together we need to prove that

2γ2(f1 − f2)(u1 − u2) + f2
1 (u2

1 − u2
2) + f2

2 (u2
2 − u2

1)

+ 2
(
−u2

1u2f1 − u2f1f
2
2 − u1u

2
2f2 − u1f

2
1 f2 + u1u

2
2f1 + u1f1f

2
2 + u2

1u2f2 + u2f
2
1 f2

)
< 0.

Thus,

2γ2(f1 − f2)(u1 − u2) + (u1 − u2)(f1 − f2)(u1 + u2)(f1 + f2)

+ 2
(
u2

1u2(f2 − f1) + f1f
2
2 (u1 − u2) + u1u

2
2(f1 − f2) + f2

1 f2(u2 − u1)
)

< 0

and hence

2γ2(f1 − f2)(u1 − u2) + (u1 − u2)(f1 − f2)(u1 + u2)(f1 + f2)

+ 2
(
u1u2(u1 − u2)(f2 − f1) + f1f2(f2 − f1)(u1 − u2)

)
< 0.

Finally, collecting (f1 − f2)(u1 − u2) we need to prove that

(f1 − f2)(u1 − u2)
(
2γ2 + (u1 + u2)(f1 + f2) − 2(u1u2 + f1f2)

)
< 0.

Hence, since f1 < f2 and u1 > u2, we just need to show that

(A.3) 2γ2 + (f1 + f2)(u1 + u2) − 2(f1f2 + u1u2) > 0.
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Using the Cauchy inequality, we can easily find that (A.3) is consequence of the following:

(A.4) (
√

u1u2 − f1)(
√

u1u2 − f2) < γ2.

From Theorem 3.1, we know that a1 ≤ u1 ≤ b1 and a2 ≤ u2 ≤ b2; thus, by the hypothesis
that f1 < f2, we have a1 <

√
u1u2 < b2. Furthermore, |

√
u1u2−f1| < b2−a1 and |

√
u1u2−f2| <

b2 − a1. Hence, the inequality in (A.4) always holds if (b2 − a1)2 < γ2, and thus b2 < γ + a1.
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