
 

                                  

 

 

Affine LIBOR Models with Multiple Curves
Theory, Examples and Calibration
Grbac, Zorana; Papapantoleon, Antonis; Schoenmakers, John; Skovmand, David

Document Version
Final published version

Published in:
SIAM Journal on Financial Mathematics

DOI:
10.1137/15M1011731

Publication date:
2015

License
Unspecified

Citation for published version (APA):
Grbac, Z., Papapantoleon, A., Schoenmakers, J., & Skovmand, D. (2015). Affine LIBOR Models with Multiple
Curves: Theory, Examples and Calibration. SIAM Journal on Financial Mathematics, 6(1), 984–1025.
https://doi.org/10.1137/15M1011731

Link to publication in CBS Research Portal

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us (research.lib@cbs.dk) providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 26. Dec. 2024

https://doi.org/10.1137/15M1011731
https://doi.org/10.1137/15M1011731
https://research.cbs.dk/en/publications/55df253d-f96a-4178-bce5-58d07c0a8be4


 

                                  

 

 

 

 
 

 

Affine LIBOR Models with Multiple Curves: Theory, 

Examples and Calibration 
Zorana Grbac, Antonis Papapantoleon, John Schoenmakers, and David Skovmand 

Journal article (Publishers version) 

 

 

 

 

 

 This is the publishers version of an article published by SIAM Journal on Financial 

Mathematics, Vol. 6, Issue 1, Pages 984–1025. 

DOI: http://dx.doi.org/10.1137/15M1011731 

 

 

 

Uploaded to Research@CBS: December 2015 

Available at Research@CBS 

 

 

 

© 2015, Society for Industrial and Applied Mathematics 

 

 

 

http://dx.doi.org/10.1137/15M1011731
http://research.cbs.dk/da/publications/affine-libor-models-with-multiple-curves%2855df253d-f96a-4178-bce5-58d07c0a8be4%29.html


SIAM J. FINANCIAL MATH. c© 2015 Society for Industrial and Applied Mathematics
Vol. 6, pp. 984–1025

Affine LIBOR Models with Multiple Curves: Theory, Examples and Calibration∗

Zorana Grbac†, Antonis Papapantoleon‡, John Schoenmakers§, and David Skovmand¶

Abstract. We introduce a multiple curve framework that combines tractable dynamics and semianalytic pricing
formulas with positive interest rates and basis spreads. Negative rates and positive spreads can also
be accommodated in this framework. The dynamics of overnight indexed swap and LIBOR rates
are specified following the methodology of the affine LIBOR models and are driven by the wide and
flexible class of affine processes. The affine property is preserved under forward measures, which
allows us to derive Fourier pricing formulas for caps, swaptions, and basis swaptions. A model
specification with dependent LIBOR rates is developed that allows for an efficient and accurate
calibration to a system of caplet prices.

Key words. multiple curve models, LIBOR, OIS, basis spread, affine LIBOR models, caps, swaptions, basis
swaptions, calibration

AMS subject classifications. 91G30, 91G20, 60G44

DOI. 10.1137/15M1011731

1. Introduction. The recent financial crisis has led to paradigm shifting events in interest
rate markets because substantial spreads have appeared between rates that used to be closely
matched; see Figure 1 for an illustration. We can observe, for example, that before the credit
crunch the spread between the three-month LIBOR and the corresponding overnight indexed
swap (OIS) rate was nonzero; however, it could be safely disregarded as negligible. The
same is true for the three-month versus six-month basis swap spread. However, since August
2007 these spreads have been evolving randomly over time, are substantially too large to be
neglected, and also depend on the tenor length. Therefore, the assumption of a single interest
rate curve that could be used both for discounting and for generating future cash flows was
seriously challenged, which led to the introduction of the so-called multiple curve interest rate
models.

In the multiple curve framework, one curve is used for discounting purposes, where the
usual choice is the OIS curve, and then as many LIBOR curves as market tenors (e.g., 1 month,
3 month, 6 month, and 1 year) are built for generating future cash flows. The difference
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Figure 1. Spread development from January 2004 to April 2014.

between the OIS and each LIBOR rate is usually called basis spread or simply basis. There
are several ways of modeling the curves and different definitions of the spread. One approach
is to model the OIS and LIBOR rates directly which leads to tractable pricing formulas, but
the sign of the spread is more difficult to control and may become negative. Another approach
is to model the OIS and the spread directly and infer the dynamics of the LIBOR; this grants
the positivity of the spread, but pricing formulas are generally less tractable. We refer to
Mercurio (2010b, pp. 11–12) for a detailed discussion of the advantages and disadvantages of
each approach. Moreover, there exist various definitions of the spread: an additive spread is
used, e.g., by Mercurio (2010a), a multiplicative spread was proposed by Henrard (2010), while
an instantaneous spread was used by Andersen and Piterbarg (2010); we refer to Mercurio
and Xie (2012) for a discussion of the merits of each definition.

The literature on multiple curve models is growing rapidly and the different models pro-
posed can be classified in one of the categories described above. Moreover, depending on
the modeling approach, one can also distinguish between short rate models, Heath–Jarrow–
Morton (HJM) models, and LIBOR market models (LMM) with multiple curves. The spreads
appearing as modeling quantities in the short rate and the HJM models are, by the very nature
of these models, instantaneous and given in additive form. We refer to Bianchetti and Morini
(2013) for a detailed overview of several multiple curve models. In the short rate framework,
we mention Kenyon (2010), Kijima, Tanaka, and Wong (2009), and Morino and Runggaldier
(2014), where the additive short rate spread is modeled, which leads to multiplicative adjust-
ments for interest rate derivative prices. HJM-type models have been proposed e.g., by Fujii,
Shimada, and Takahashi (2011), Crépey, Grbac, and Nguyen (2012), Moreni and Pallavicini
(2014), Crépey et al. (2015a), and Cuchiero, Fontana, and Gnoatto (2014). The models by
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Mercurio (2009), Bianchetti (2010) (where an analogy with the cross-currency market has
been exploited), and Henrard (2010) are developed in the LMM setup, while multiple curve
extensions of the Flesaker and Hughston (1996) framework have been proposed in Nguyen
and Seifried (2015) and Crépey et al. (2015b). Typically, multiple curve models address the
issue of different interest rate curves under the same currency; however, the paper by Fujii,
Shimada, and Takahashi (2011) studies a multiple curve model in a cross-currency setup.
Filipović and Trolle (2013) offer a thorough econometric analysis of the multiple curve phe-
nomena and decompose the spread into a credit risk and a liquidity risk component. In recent
work, Gallitschke, Müller, and Seifried (2014) construct a structural model for interbank rates,
which provides an endogenous explanation for the emergence of basis spreads.

Another important change due to the crisis is the emergence of significant counterparty risk
in financial markets. In this paper, we consider the clean valuation of interest rate derivatives
meaning that we do not take into account the default risk of the counterparties involved in
a contract. As explained in Crépey et al. (2015a) and Morino and Runggaldier (2014), this
is sufficient for calibration to market data which correspond to fully collateralized contracts.
The price adjustments due to counterparty and funding risk for two particular counterparties
can then be obtained on top of the clean prices; cf. Crépey et al. (2015a), Crépey et al.
(2015b), and, in particular, Papapantoleon and Wardenga (2015) for computations in affine
LIBOR models.

Let us also mention that there exist various other frameworks in the literature where
different curves have been modeled simultaneously, for example, when dealing with cross-
currency markets (cf., e.g., Amin and Jarrow (1991)) or when considering credit risk (cf., e.g.,
the book by Bielecki and Rutkowski (2002)). The models in the multiple curve world often
draw inspiration from these frameworks.

The aim of this paper is to develop a multiple curve LIBOR model that combines tractable
model dynamics and semianalytic pricing formulas with positive interest rates and basis
spreads. The framework of the affine LIBOR models proposed by Keller-Ressel, Papapan-
toleon, and Teichmann (2013) turns out to be tailor-made for this task, since it allows us to
model directly LIBOR rates that are greater than their OIS counterparts. In other words, the
nonnegativity of spreads is automatically ensured. Simultaneously, the dynamics are driven
by the wide and flexible class of affine processes. Similarly to the single curve case, the affine
property is preserved under all forward measures, which leads to semianalytical pricing for-
mulas for liquid interest rate derivatives. In particular, the pricing of caplets is as easy as in
the single curve setup, while the model structure allows us to derive efficient and accurate
approximations for the pricing of swaptions and basis swaptions using a linearization of the
exercise boundary. In addition, the model offers adequate calibration results to a system of
caplet prices for various strikes and maturities.

The paper is organized as follows: in section 2 we review the main properties of affine
processes and the construction of ordered martingales greater than one. Section 3 introduces
the multiple curve interest rate setting. The multiple curve affine LIBOR model is presented
in section 4 and its main properties are discussed, in particular, the ability to produce positive
rates and spreads and the analytical tractability (i.e., the preservation of the affine property).
A model that allows for negative interest rates and positive spreads is also presented. In
section 5 we study the connection between the class of affine LIBOR models and the class of
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LMMs (driven by semimartingales). Sections 6 and 7 are devoted to the valuation of the most
liquid interest rate derivatives such as swaps, caps, swaptions, and basis swaptions. In section
8 we construct a multiple curve affine LIBOR model where rates are driven by common
and idiosyncratic factors and calibrate it market data. Moreover, we test numerically the
accuracy of the swaption and basis swaption approximation formulas. Section 9 contains
some concluding remarks and comments on future research. Finally, Appendix A provides an
explicit formula for the terminal correlation between LIBOR rates.

2. Affine processes. This section provides a brief review of the main properties of affine
processes and the construction of ordered martingales greater than one. More details and
proofs can be found in Keller-Ressel, Papapantoleon, and Teichmann (2013) and the references
therein.

Let (Ω,F ,F,P) denote a complete stochastic basis, where F = (Ft)t∈[0,T ] and T denotes
some finite time horizon. Consider a stochastic process X satisfying the following:

Assumption (A). Let X = (Xt)t∈[0,T ] be a conservative, time-homogeneous, stochastically

continuous Markov process with values in D = R
d
�0, and (Px)x∈D a family of probability

measures on (Ω,F), such that X0 = x, Px-almost surely for every x ∈ D. Setting

IT :=
{
u ∈ R

d : Ex

[
e〈u,XT 〉] <∞, for all x ∈ D

}
,(2.1)

we assume that
(i) 0 ∈ I◦

T , where I◦
T denotes the interior of IT (with respect to the topology induced by

the Euclidean norm on R
d);

(ii) the conditional moment generating function of Xt under Px has exponentially affine
dependence on x; that is, there exist deterministic functions φt(u) : [0, T ] × IT → R

and ψt(u) : [0, T ]× IT → R
d such that

Ex

[
exp〈u,Xt〉

]
= exp

(
φt(u) + 〈ψt(u), x〉

)
(2.2)

for all (t, u, x) ∈ [0, T ] × IT ×D.
Here 〈·, ·〉 denotes the inner product on R

d and Ex the expectation with respect to Px.
Moreover, it holds that IT ⊆ It for t ≤ T ; cf. Keller-Ressel and Mayerhofer (2015, Theorem
2.14). In other words, if u ∈ R

d is such that Ex

[
e〈u,XT 〉] <∞, then Ex

[
e〈u,Xt〉] <∞ for every

t ≤ T .
The functions φ and ψ satisfy the following system of ODEs, known as generalized Riccati

equations:

∂

∂t
φt(u) = F (ψt(u)), φ0(u) = 0,(2.3a)

∂

∂t
ψt(u) = R(ψt(u)), ψ0(u) = u,(2.3b)

for (t, u) ∈ [0, T ]× IT . The functions F and R are of Lévy–Khintchine form:

F (u) = 〈b, u〉+
∫
D

(
e〈ξ,u〉 − 1

)
m(dξ),(2.4a)

Ri(u) = 〈βi, u〉+
〈αi

2
u, u

〉
+

∫
D

(
e〈ξ,u〉 − 1− 〈u, hi(ξ)〉

)
μi(dξ),(2.4b)
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where (b,m, αi, βi, μi)1≤i≤d are admissible parameters and hi : R
d
�0 → R

d are suitable trunca-
tion functions. The functions φ and ψ also satisfy the semiflow equations

φt+s(u) = φt(u) + φs(ψt(u)),(2.5a)

ψt+s(u) = ψs(ψt(u))(2.5b)

for all 0 ≤ t+ s ≤ T and u ∈ IT , with initial condition

φ0(u) = 0 and ψ0(u) = u.(2.6)

We refer to Duffie, Filipović, and Schachermayer (2003) for all the details.

The following definition will be used later, where 1 := (1, 1, . . . , 1).

Definition 2.1. Let X be a process satisfying Assumption (A). Define

γX := sup
u∈IT∩Rd

>0

E1

[
e〈u,XT 〉].(2.7)

The quantity γX measures the ability of an affine process to fit the initial term structure
of interest rates and equals infinity for several models used in mathematical finance, such as
the Cox–Ingersoll–Ross process and Ornstein-Uhlenbeck models driven by subordinators; cf.
Keller-Ressel, Papapantoleon, and Teichmann (2013, section 8).

An essential ingredient in affine LIBOR models is the construction of parametrized mar-
tingales which are greater than or equal to one and increasing in this parameter (see also
Papapantoleon (2010)).

Lemma 2.2. Consider an affine process X satisfying Assumption (A) and let u ∈ IT ∩R
d
�0.

Then the process Mu = (Mu
t )t∈[0,T ] with

Mu
t = exp

(
φT−t(u) + 〈ψT−t(u),Xt〉

)
,(2.8)

is a martingale, greater than or equal to one, and the mapping u 
→ Mu
t is increasing, for

every t ∈ [0, T ].

Proof. Consider the random variable Y u
T := e〈u,XT 〉. Since u ∈ IT ∩ R

d
�0 we have that

Y u
T is greater than one and integrable. Then, from the Markov property of X, (2.2), and the

tower property of conditional expectations we deduce that

Mu
t = E

[
e〈u,XT 〉|Ft

]
= exp

(
φT−t(u) + 〈ψT−t(u),Xt〉

)
(2.9)

is a martingale. Moreover, it is obvious that Mu
t ≥ 1 for all t ∈ [0, T ], while the ordering

u ≤ v =⇒ Mu
t ≤Mv

t ∀t ∈ [0, T ],(2.10)

follows from the ordering of Y u
T and the representation Mu

t = E[Y u
T |Ft].
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Figure 2. Illustration of different tenor structures.

3. A multiple curve LIBOR setting. We begin by introducing the notation and the main
concepts of multiple curve LIBOR models. We will follow the approach introduced in Mercurio
(2010a), which has become the industry standard in the meantime.

The fact that LIBOR-OIS spreads are now tenor dependent means that we cannot work
with a single tenor structure any longer. Hence, we start with a discrete, equidistant time
structure T = {0 = T0 < T1 < · · · < TN}, where Tk, k ∈ K := {1, . . . , N}, denote the
maturities of the assets traded in the market. Next, we consider different subsets of T with
equidistant time points, i.e., different tenor structures T x = {0 = T x

0 < T x
1 < · · · < T x

Nx},
where x ∈ X := {x1, x2, . . . , xn} is a label that indicates the tenor structure. Typically, we
have X = {1, 3, 6, 12} months. We denote the tenor length by δx = T x

k −T x
k−1 for every x ∈ X .

Let Kx := {1, 2, . . . , Nx} denote the collection of all subscripts related to the tenor structure
T x. We assume that T x ⊆ T and T x

Nx = TN for all x ∈ X . A graphical illustration of a
possible relation between the different tenor structures appears in Figure 2.

Example 3.1. A natural construction of tenor structures is the following: let T =
{0 = T0 < T1 < · · · < TN} denote a discrete time structure, where Tk = kδ for k = 1, . . . , N
and δ > 0. Let X = {1 = x1, x2, . . . , xn} ⊂ N, where we assume that xk is a divisor of N for
all k = 1, . . . , n. Next, set for every x ∈ X

T x
k = k · δ · x =: kδx for k = 1, . . . , Nx := N/x,

where obviously T x
k = Tkx. Then, we can consider different subsets of T , i.e., different tenor

structures T x = {0 = T x
0 < T x

1 < · · · < T x
Nx}, which satisfy by construction T x ⊂ T x1 = T

and also T x
Nx = Nx · δ · x = TN , for all x ∈ X .

We consider the OIS curve as a discount curve, following the standard market practice
of fully collateralized contracts. The market prices for caps and swaptions considered in the
following for model calibration are indeed quoted under the assumption of full collateralization.
A detailed discussion on the choice of the discount curve in the multiple curve setting can be
found e.g., in Mercurio (2010a) and in Hull and White (2013). The discount factors B(0, T )
are stripped from market OIS rates and defined for every possible maturity T ∈ T via

T 
→ B(0, T ) = BOIS(0, T ).

We denote by B(t, T ) the discount factor, i.e., the price of a zero coupon bond, at time t
for maturity T , which is assumed to coincide with the corresponding OIS-based zero coupon
bond for the same maturity.
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We also assume all our modeling objects live on a complete stochastic basis (Ω,F ,F,PN ),
where PN denotes the terminal forward measure, i.e., the martingale measure associated with
the numeraire B(·, TN ). The corresponding expectation is denoted by EN . Then, we introduce
forward measures Px

k associated with the numeraire B(·, T x
k ) for every pair (x, k) with x ∈ X

and k ∈ Kx. The corresponding expectation is denoted by E
x
k. The forward measures P

x
k

are absolutely continuous with respect to PN , and defined in the usual way, i.e., via the
Radon–Nikodym density

dPx
k

dPN
=
B(0, TN )

B(0, T x
k )

1

B(T x
k , TN )

.(3.1)

Remark 3.2. Since T x ⊆ T there exists an l ∈ K and a k ∈ Kx such that Tl = T x
k . There-

fore, the corresponding numeraires and forward measures coincide, i.e., B(·, Tl) = B(·, T x
k )

and Pl = P
x
k. See, again, Figure 2.

Next, we define the two rates that are the main modeling objects in the multiple curve
LIBOR setting: the forward OIS rate and the forward LIBOR rate. We also define the additive
and the multiplicative spread between these two rates. Let us denote by L(T x

k−1, T
x
k ) the spot

LIBOR rate at time T x
k−1 for the time interval [T x

k−1, T
x
k ], which is an FTx

k−1
-measurable

random variable on the given stochastic basis.
Definition 3.3.The time-t forward OIS rate for the time interval [T x

k−1, T
x
k ] is defined by

F x
k (t) :=

1

δx

(
B(t, T x

k−1)

B(t, T x
k )

− 1

)
.(3.2)

Definition 3.4.The time-t forward LIBOR rate for the time interval [T x
k−1, T

x
k ] is defined by

Lx
k(t) = E

x
k

[
L(T x

k−1, T
x
k )|Ft

]
.(3.3)

The forward LIBOR rate is the fixed rate that should be exchanged for the future spot
LIBOR rate so that the forward rate agreement has zero initial value. Hence, this rate reflects
the market expectations about the value of the future spot LIBOR rate. Notice that at time
t = T x

k−1 we have that

Lx
k(T

x
k−1) = E

x
k

[
L(T x

k−1, T
x
k )|FTx

k−1

]
= L(T x

k−1, T
x
k ),(3.4)

i.e., this rate coincides with the spot LIBOR rate at the corresponding tenor dates.
Remark 3.5. In the single curve setup, (3.2) is the definition of the forward LIBOR rate.

However, in the multiple curve setup we have that

L(T x
k−1, T

x
k ) �=

1

δx

(
1

B(T x
k−1, T

x
k )

− 1

)
,

hence the OIS and the LIBOR rates are no longer equal.
Definition 3.6.The spread between the LIBOR and the OIS rate is defined by

Sx
k (t) := Lx

k(t)− F x
k (t).(3.5)
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Let us also provide an alternative definition of the spread based on a multiplicative, instead
of an additive, decomposition.

Definition 3.7.The multiplicative spread between the LIBOR and the OIS rate is defined by

1 + δxR
x
k(t) :=

1 + δxL
x
k(t)

1 + δxF
x
k (t)

.(3.6)

A model for the dynamic evolution of the OIS and LIBOR rates, and thus also of their
spread, should satisfy certain conditions which stem from economic reasoning, arbitrage re-
quirements, and their respective definitions. These are, in general, consistent with market
observations. We formulate them below as model requirements:

(M1) F x
k (t) ≥ 0 and F x

k ∈ M(Px
k) for all x ∈ X , k ∈ Kx, t ∈ [0, T x

k−1].

(M2) Lx
k(t) ≥ 0 and Lx

k ∈ M(Px
k) for all x ∈ X , k ∈ Kx, t ∈ [0, T x

k−1].

(M3) Sx
k (t) ≥ 0 and Sx

k ∈ M(Px
k) for all x ∈ X , k ∈ Kx, t ∈ [0, T x

k−1].

Here M(Px
k) denotes the set of Px

k-martingales.

Remark 3.8. If the additive spread is positive, the multiplicative spread is also positive
and vice versa.

4. The multiple curve affine LIBOR model. We describe next the affine LIBOR model
for the multiple curve interest rate setting and analyze its main properties. In particular,
we show that this model produces positive rates and spreads, i.e., it satisfies the modeling
requirements (M1)–(M3) and is analytically tractable. OIS and LIBOR rates are modeled
in the spirit of the affine LIBOR model introduced by Keller-Ressel, Papapantoleon, and
Teichmann (2013).

LetX be an affine process defined on (Ω,F ,F,PN ), satisfying Assumption (A) and starting
at the canonical value 1. Consider a fixed x ∈ X and the associated tenor structure T x. We
construct two families of parametrized martingales following Lemma 2.2: take two sequences
of vectors (uxk)k∈Kx and (vxk )k∈Kx , and define the PN -martingales Mux

k and Mvxk via

(4.1) M
ux
k

t = exp
(
φTN−t(u

x
k) + 〈ψTN−t(u

x
k),Xt〉

)
and

(4.2) M
vxk
t = exp

(
φTN−t(v

x
k) + 〈ψTN−t(v

x
k),Xt〉

)
.

The multiple curve affine LIBOR model postulates that the OIS and the LIBOR rates asso-
ciated with the x-tenor evolve according to

1 + δxF
x
k (t) =

M
ux
k−1

t

M
ux
k

t

and 1 + δxL
x
k(t) =

M
vxk−1

t

M
ux
k

t

(4.3)

for every k = 2, . . . , Nx and t ∈ [0, T x
k−1].

In the following three propositions, we show how to construct a multiple curve affine
LIBOR model from any given initial term structure of OIS and LIBOR rates.
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Proposition 4.1. Consider the time structure T , let B(0, Tl), l ∈ K, be the initial term
structure of nonnegative OIS discount factors and assume that

B(0, T1) ≥ · · · ≥ B(0, TN ).

Then the following statements hold:
1. If γX > B(0, T1)/B(0, TN ), then there exists a decreasing sequence u1 ≥ u2 ≥ · · · ≥
uN = 0 in IT ∩ R

d
�0 such that

(4.4) Mul
0 =

B(0, Tl)

B(0, TN )
for all l ∈ K.

In particular, if γX = ∞, the multiple curve affine LIBOR model can fit any initial
term structure of OIS rates.

2. If X is one dimensional, the sequence (ul)l∈K is unique.
3. If all initial OIS rates are positive, the sequence (ul)l∈K is strictly decreasing.
Proof. See Proposition 6.1 in Keller-Ressel, Papapantoleon, and Teichmann (2013).
After fitting the initial term structure of OIS discount factors, we want to fit the initial

term structure of LIBOR rates, which is now tenor dependent. Thus, for each k ∈ Kx, we set

uxk := ul,(4.5)

where l ∈ K is such that Tl = T x
k ; see Remark 3.2. In general, we have that l = kT x

1 /T1, while
in the setting of Example 3.1 we simply have l = kx, i.e., uxk = ukx.

Proposition 4.2. Consider the setting of Proposition 4.1, the fixed x ∈ X , and the corre-
sponding tenor structure T x. Let Lx

k(0), k ∈ Kx, be the initial term structure of nonnegative
LIBOR rates and assume that for every k ∈ Kx

(4.6) Lx
k(0) ≥

1

δx

(
B(0, T x

k−1)

B(0, T x
k )

− 1

)
= F x

k (0).

The following statements hold:
1. If γX > maxk∈Kx(1 + δxL

x
k(0))B(0, T x

k )/B(0, T x
N ), then a sequence vx1 , v

x
2 , . . . , v

x
Nx = 0

exists in IT ∩ R
d
�0 such that vxk ≥ uxk and

(4.7) M
vxk
0 = (1 + δxL

x
k+1(0))M

ux
k+1

0 for all k ∈ Kx\{Nx}.

In particular, if γX = ∞, then the multiple curve affine LIBOR model can fit any
initial term structure of LIBOR rates.

2. If X is one dimensional, the sequence (vxk )k∈Kx is unique.
3. If all initial spreads are positive, then vxk > uxk for all k ∈ Kx\{Nx}.
Proof. Similarly to the previous proposition, by fitting the initial LIBOR rates we ob-

tain a sequence (vxk )k∈Kx which satisfies (1)–(3). The inequality vxk ≥ uxk follows directly
from (4.6).
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Proposition 4.3.Consider the setting of the previous propositions. Then we have:
1. F x

k and Lx
k are P

x
k-martingales for every k ∈ Kx.

2. Lx
k(t) ≥ F x

k (t) ≥ 0 for every k ∈ Kx, t ∈ [0, T x
k−1].

Proof. Since Mux
k and Mvxk are PN -martingales and the density process relating the mea-

sures PN and P
x
k is provided by

dPx
k

dPN

∣∣∣
Ft

=
B(0, TN )

B(0, T x
k )

B(t, T x
k )

B(t, TN )
=
M

ux
k

t

M
ux
k

0

,(4.8)

we get from (4.3) that

1 + δxF
x
k ∈ M(Px

k) because (1 + δxF
x
k )M

ux
k =Mux

k−1 ∈ M(PN ).(4.9)

Similarly,

1 + δxL
x
k ∈ M(Px

k) because (1 + δxL
x
k)M

ux
k =Mvxk−1 ∈ M(PN ).(4.10)

The monotonicity of the sequence (uxk) together with (2.10) yields that Mux
k−1 ≥ Mux

k .
Moreover, from the inequality vxk ≥ uxk together with (2.10) again, it follows that Mvxk ≥Mux

k

for all k ∈ Kx. Hence,
1 + δxL

x
k ≥ 1 + δxF

x
k ≥ 1.

Therefore, the OIS rates, the LIBOR rates, and the corresponding spreads are nonnegative
P
x
k-martingales.

Remark 4.4. The above propositions provide the theoretical construction of affine LIBOR
models with multiple curves, given initial term structures of OIS bond prices B(0, T x

k ) and
LIBOR rates Lx

k(0), for any x ∈ X and k ∈ Kx. The initial term structures determine the
sequences (uxk) and (vxk ), but not in a unique way, as soon as the dimension of the driving
process is strictly greater than one, which will typically be the case in applications. This
provides plenty of freedom in the implementation of the model. For example, setting some
components of the vectors (uxk) and (vxk) equal to zero allows us to exclude the corresponding
components of the driving process and thus decide which components of the driving process X
will affect the OIS rates, respectively, the LIBOR rates. Moreover, if the components of X are
assumed mutually independent, one can create a factor model with common and idiosyncratic
components for each OIS and LIBOR rate, as well as various other specific structures. In
section 8.1 we present more details on this issue; see Remark 8.1 in particular.

Remark 4.5. Let us now look more closely at the relationship between the sequences (vxk )
and (uxk). Propositions 4.1 and 4.2 imply that uxk−1 ≥ uxk and vxk ≥ uxk for all k ∈ Kx.
However, we do not know the ordering of vxk and uxk−1, or whether the sequence (vxk) is
monotone or not. The market data for LIBOR spreads indicate that in a “normal” market
situation vxk ∈ [uxk, u

x
k−1]. More precisely, on the one hand, we have vxk ≥ uxk because the

LIBOR spreads are nonnegative. On the other hand, if vxk > uxk−1, then the LIBOR rate
would be more than two times higher than the OIS rate spanning an interval twice as long,
starting at the same date. This contradicts normal market behavior, hence, vxk ∈ [uxk , u

x
k−1]

and consequently the sequence (vxk) will also be decreasing. This ordering of the parameters
(vxk) and (uxk) is illustrated in Figure 3 (top graph). However, the normal market situation
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�
0 = uxNx uxNx−1v

x
Nx−1 . . . uxk vxk uxk−1 . . . ux1 vx1

�
0 = uxNx uxNx−1 . . . uxk . . . ux1 vx1 . . . vxNx−1 . . . vxk

Figure 3. Two possible orderings of (ux
k) and (vxk ).

alternates with an “extreme” situation, where the spread is higher than the OIS rate. In
the bottom graph of Figure 3 we plot another possible ordering of the parameters (vxk ) and
(uxk) corresponding to such a case of very high spreads. Intuitively speaking, the value of the
corresponding model spread depends on the distance between the parameters (vxk ) and (uxk),
although in a nonlinear fashion.

The next result concerns an important property of the multiple curve affine LIBOR model,
namely, its analytical tractability in the sense that the model structure is preserved under
different forward measures. More precisely, the process X remains affine under any forward
measure, although its “characteristics” become time dependent. We refer to Filipović (2005)
for time-inhomogeneous affine processes. This property plays a crucial role in the derivation
of tractable pricing formulas for interest rate derivatives in the forthcoming sections, since it
entails that the law of any collection of LIBOR rates is known under any forward measure. The
result below is presented in Keller-Ressel, Papapantoleon, and Teichmann (2013, cf. (6.14)
and its proof), nevertheless, we include a short proof here for completeness. In section 5 we
also provide an alternative proof for the case when X is an affine diffusion.

Proposition 4.6. The process X is a time-inhomogeneous affine process under the measure
P
x
k for every x ∈ X and k ∈ Kx. In particular

E
x
k

[
e〈w,Xt〉] = exp

(
φk,xt (w) + 〈ψk,x

t (w),X0〉
)
,(4.11)

where

φk,xt (w) := φt
(
ψTN−t(u

x
k) +w

)
− φt

(
ψTN−t(u

x
k)
)
,(4.12a)

ψk,x
t (w) := ψt

(
ψTN−t(u

x
k) +w

)
− ψt

(
ψTN−t(u

x
k)
)

(4.12b)

for every w ∈ Ik,x with

Ik,x :=
{
w ∈ R

d : ψTN−t(u
x
k) + w ∈ IT

}
.(4.13)

Proof. Using the density process between the forward measures (see (4.8)), we have that

E
x
k

[
e〈w,Xt〉∣∣Fs

]
= EN

[
e〈w,Xt〉Mux

k
t /M

ux
k

s

∣∣Fs

]
= EN

[
exp

(
φTN−t(u

x
k) + 〈ψTN−t(u

x
k) + w,Xt〉

)∣∣Fs

]
/M

ux
k

s

= exp
(
φTN−t(u

x
k)− φTN−s(u

x
k) + φt−s(ψTN−t(u

x
k) + w)

)
× exp

〈
ψt−s(ψTN−t(u

x
k) + w)− ψTN−s(u

x
k),Xs

〉
,(4.14)
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where the above expectation is finite for every w ∈ Ik,x; recall (2.1). This shows that X is
a time-inhomogeneous affine process under P

x
k, while (4.11) follows by substituting s = 0 in

(4.14) and using the flow equations (2.5).
Remark 4.7. The preservation of the affine property of the driving process under all forward

measures is a stability property shared by all forward price models in which the process

1 + δxF
x
k =

B(·,Tx
k−1)

B(·,Tx
k ) is modeled as a deterministic exponential transformation of the driving

process. This is related to the density process of the measure change between subsequent

forward measures given exactly as
dPx

k−1

dPx
k

∣∣∣
Ft

=
B(0,Tx

k )

B(0,Tx
k−1)

B(t,Tx
k−1)

B(t,Tx
k ) =

1+δxFx
k (t)

1+δxFx
k (0) (see (4.8)), which

is of the same exponential form, and guarantees that when performing a measure change the
driving process remains in the same class. We refer to Eberlein and Kluge (2007) for an
example of a forward price model driven by a time-inhomogeneous Lévy process under all
forward measures. The models in the spirit of the LMM, where it is rather the forward rate
F x
k which is modeled as an exponential, do not possess this property. The measure change in

these models yields the stochastic terms
δxFx

k
1+δxFx

k
appearing in the characteristics of the driving

process (more precisely, in the drift and in the compensator of the random measure of jumps)
under any forward measure different from the terminal one, which destroys the analytical
tractability of the model. The tractability is often reestablished by freezing the value of these

terms at their initial value
δxFx

k (0)

1+δxFx
k (0) — an approximation referred to as freezing the drift. This

approximation is widely known to be unreliable in many realistic settings; cf. Papapantoleon,
Schoenmakers, and Skovmand (2012) and the references therein.

On the other hand, in LMMs the positivity of the rate F x
k is ensured, which, in general,

may not be the case in the forward price models. Due to their specific construction, the
affine LIBOR models are able to reconcile both of these properties: the positivity of the rate
F x
k and the structure preservation for the driving process under all forward measures. We

refer the interested reader to a detailed discussion on this issue in section 3 of Keller-Ressel,
Papapantoleon, and Teichmann (2013). Finally, it should be emphasized that in the current
market situation the observed OIS rates also have negative values, but this situation can easily
be included in the affine LIBOR models; cf. section 4.1 below.

Remark 4.8 (single curve and deterministic spread). The multiple curve affine LIBORmodel
easily reduces to its single curve counterpart (cf. Keller-Ressel, Papapantoleon, and Teich-
mann (2013)) by setting vxk = uxk for all x ∈ X and k ∈ Kx. Another interesting question
is whether the spread can be deterministic or, similarly, whether the LIBOR rate can be a
deterministic transformation of the OIS rate.

Consider, for example, a 2-dimensional driving process X = (X1,X2), where X1 is an
arbitrary affine process and X2 the constant process (i.e., X2

t ≡ X2
0 ). Then, by setting

uxk−1 = (ux1,k−1, 0) and vxk = (ux1,k−1, v
x
2,k−1),

where ux1,k−1, v
x
2,k−1 > 0 we arrive at

1 + δxL
x
k(t) = (1 + δxF

x
k (t)) e

vx2,k−1 ·X2
0 .

Therefore, the LIBOR rate is a deterministic transformation of the OIS rate, although the
spread Sx

k as defined in (3.5) is not deterministic. In that case, the multiplicative spread Rx
k

defined in (3.6) is obviously deterministic.
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4.1. A model with negative rates and positive spreads. The multiple curve affine LI-
BOR model produces positive rates and spreads, which is consistent with the typical market
observations. However, in the current market environment, negative rates have been observed,
while the spreads still remain positive. Negative interest rates (as well as spreads, if needed)
can be easily accommodated in this setup by considering, for example, affine processes on R

d

instead of Rd
�0 or “shifted” positive affine processes, where supp(X) ∈ [a,∞)d with a < 0.

In order to illustrate the flexibility of the affine LIBOR models, we provide below an
explicit specification which allows for negative OIS rates, while still preserving the positive
spreads. It is based on a particular choice of the driving process and suitable assumptions on
the vectors uxk and vxk . Recall from Remark 4.4 that if the driving process is multidimensional,
we have a certain freedom in the choice of the parameters uxk and vxk when fitting the initial
term structure, that we shall exploit here.

Starting from the affine LIBOR model in (4.3), we have an expression for the OIS rates
F x
k and we will derive an expression for the multiplicative spreads Rx

k as defined in (3.6). We
choose the multiplicative spreads as a more convenient quantity instead of the additive spreads
Sx
k in (3.5), but obviously the additive spreads can easily be recovered from the multiplicative

spreads and the OIS rates, and vice versa, by combining (3.5) and (3.6). Moreover, the two
spreads always have the same sign, i.e., Rx

k ≥ 0 if and only if Sx
k ≥ 0.

The model specification below allows us, in addition, to ensure the monotonicity of the
spreads with respect to the tenor length, which is also a feature typically observed in the
markets. More precisely, this means that for any two tenors T x1 and T x2 such that T x2 ⊂ T x1 ,
i.e., such that δx1 ≤ δx2 , the spreads have the following property: for all k ∈ Kx1 and j ∈ Kx2

such that [T x1
k−1, T

x1
k ) ⊂ [T x2

j−1, T
x2
j ) with T x1

k−1 = T x2
j−1, we have

Rx1
k (t) ≤ Rx2

j (t)

for all t ≤ T x1
k−1. That is, the spreads are lower for shorter tenor lengths. For example, a

3-month spread is lower than a 6-month spread for a 6-month period starting at the same
time as the 3-month period.

According to (4.3), the OIS rate F x
k , for every x ∈ X and every k ∈ Kx, is provided by

(4.15) 1 + δxF
x
k (t) =

M
ux
k−1

t

M
ux
k

t

,

where we note that uxk = ul for l such that T x
k = Tl. This process is a P

x
k-martingale by

construction. The multiplicative spread Rx
k(t) now takes the form

(4.16) 1 + δxR
x
k(t) =

1 + δxL
x
k(t)

1 + δxF
x
k (t)

=
M

vxk−1

t

M
ux
k−1

t

,

which is a P
x
k−1-martingale by construction.

Let us now present a possible choice of the driving process which allows us to accommodate
F x
k (t) ∈ R, while keeping Rx

k(t) ∈ R�0, as well as ensuring the monotonicity of the spreads
with respect to the tenor length. We assume that the initial term structure of forward OIS
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rates F x
k (0) ∈ R and of multiplicative spreads Rx

k(0) ∈ R�0 are given for every fixed x and
all k ∈ Kx. Moreover, we assume that the initial spreads are monotone with respect to the
tenor, i.e., for every two tenors x1 and x2 such that δx1 ≤ δx2 , we have Rx1

k (0) ≤ Rx2
j (0) for

all k ∈ Kx1 and j ∈ Kx2 with T x1
k−1 = T x2

j−1.

In order to fix ideas, we shall consider only a 2-dimensional affine process X = (X1,X2)
on the state space R × R�0 such that X1 and X2 are independent. The construction can
easily be extended to d-dimensional affine processes on R

n × R
m
�0 with n +m = d, such that

the first n components are independent of the last m components. The forward OIS rates
will be driven by both components of the driving process X and for the spreads we shall use
only the second component X2, which takes values in R�0, to ensure the nonnegativity. This
can be achieved by imposing appropriate assumptions on the parameters vxk . We split the
construction into two steps.

Step 1. Given the initial term structure of forward OIS rates F x
k (0) ∈ R, for every fixed

x and all k ∈ Kx, we apply Proposition 4.1 and find a sequence (uxk) ⊂ R × R�0 such that
the model (4.15) fits the initial term structure. Note that the uxk, k ∈ Kx, do not have to be
ordered and F x

k (t) ∈ R for any t.
Step 2. Next, given the initial term structure of multiplicative spreads Rx

k(0) ∈ R�0,
for every fixed x and all k ∈ Kx, we calculate the initial LIBOR rates Lx

k(0) using (3.6).
Applying Proposition 4.2 we can find a sequence (vxk) ⊂ R × R�0 such that for each k ∈ Kx,
vxk−1 = (vx1,k−1, v

x
2,k−1) satisfies vx1,k−1 = ux1,k−1 and the model (4.16) fits the initial term

structure. Note that even though we fixed here the first component vx1,k−1 of each of the
vectors vxk−1, Proposition 4.2 ensures that the initial term structure can be fitted using only
the second components vx2,k−1. This yields

1 + δxR
x
k(t) =

M
vxk−1
t

M
ux
k−1

t

(4.17)

=
exp

(
φ1TN−t(u

x
1,k−1)+φ

2
TN−t(v

x
2,k−1)+ψ

1
TN−t(u

x
1,k−1)X

1
t +ψ

2
TN−t(v

x
2,k−1)X

2
t

)
exp

(
φ1TN−t(u

x
1,k−1)+φ

2
TN−t(u

x
2,k−1)+ψ

1
TN−t(u

x
1,k−1)X

1
t +ψ

2
TN−t(u

x
2,k−1)X

2
t

)
=

exp
(
φ2TN−t(v

x
2,k−1) + ψ2

TN−t(v
x
2,k−1)X

2
t

)
exp

(
φ2TN−t(u

x
2,k−1) + ψ2

TN−t(u
x
2,k−1)X

2
t

) ,
due to the independence of X1 and X2; see Keller-Ressel (2008, Prop. 4.7). Therefore, Rx

k is
driven only by X2 and the fact that the initial values Rx

k(0) ∈ R�0 implies that vx2,k−1 ≥ ux2,k−1

for all k. Consequently, we have Rx
k(t) ∈ R�0 for all t, which follows immediately from (4.17).

Finally, it remains to show that the monotonicity of the initial spreads with respect to
the tenor Rx1

k (0) ≤ Rx2
j (0) implies the monotonicity at all times t, Rx1

k (t) ≤ Rx2
j (t), for all

x1, x2 and k, j as above. First note that T x1
k−1 = T x2

j−1 = Tl implies ux1
k−1 = ux2

j−1 = ul and
consequently

(4.18) M
u
x1
k−1

t =M
u
x2
j−1

t .
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Hence, Rx1
k (0) ≤ Rx2

j (0) implies that necessarilyM
v
x1
k−1

0 ≤M
v
x2
j−1

0 by (4.16). This in turn yields
vx1
k−1 ≤ vx2

j−1 or, more precisely, vx1
2,k−1 ≤ vx2

2,j−1 since vx1
1,k−1 = ux1

1,k−1 = ux2
1,j−1 = vx2

1,j−1. As a
consequence, Rx1

k (t) ≤ Rx2
j (t) for all t, since

1 + δx1R
x1
k (t) =

M
v
x1
k−1

t

M
u
x1
k−1

t

≤ M
v
x2
j−1

t

M
u
x2
j−1

t

= 1 + δx2R
x2
j (t)

due to (4.18).

5. Connection to LMMs. In this section, we will clarify the relationship between the
affine LIBOR models and the “classical” LMMs (cf. Sandmann, Sondermann, and Miltersen
(1995) and Brace, Ga̧tarek, and Musiela (1997), and also Mercurio (2010a) for the extension
of the LMMs to multiple curves). This relationship has not yet been investigated even in
the single curve framework of Keller-Ressel, Papapantoleon, and Teichmann (2013). More
precisely, we will embed the multiple curve affine LIBOR model (4.3) in the general semi-
martingale LMM of Jamshidian (1997) and derive the corresponding dynamics of OIS and
LIBOR rates. We shall concentrate on affine diffusion processes for the sake of simplicity, in
order to expose the ideas without too many technical details. The generalization to affine
processes with jumps is straightforward and left to the interested reader.

An affine diffusion process on the state space D = R
d
�0 is the solution X = Xx of the SDE

(5.1) dXt = (b+BXt)dt+ σ(Xt)dW
N
t , X0 = x,

where WN is a d-dimensional PN -Brownian motion. The coefficients b, B = (β1, . . . , βd), and
σ have to satisfy the admissibility conditions for affine diffusions on R

d
�0; see Filipović (2009,

Chap. 10). That is, the drift vectors satisfy

b ∈ R
d
�0, βi(i) ∈ R, and βi(j) ∈ R�0 for all 1 ≤ i, j ≤ d, i �= j,(5.2)

where βi(j) denotes the jth element of the column vector βi. Moreover, the diffusion matrix

σ : D → R
d×d satisfies

σ(z)σ(z)T =
d∑

i=1

αizi for all z ∈ D,(5.3)

where the αi are symmetric, positive semidefinite matrices for all 1 ≤ i ≤ d, such that

αi(ii) ∈ R�0 and αi(jk) = 0 for all 1 ≤ i, j, k ≤ d, i �= j, k.(5.4)

Here, αi(jk) denotes the j, kth entry of the matrix αi. Therefore, the affine diffusion process
X is componentwise described by

dXi
t = (b+BXt)

idt+
√
Xi

t σi dW
N
t(5.5)

for all i = 1, . . . , d, where σi =
√
αi(ii) · ei (with ei the unit vector).
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5.1. OIS dynamics. We start by computing the dynamics of OIS rates. As in the previous
section, we consider a fixed x ∈ X and the associated tenor structure T x.

Using the structure of the PN -martingale Mux
k in (4.1), we have that

dM
ux
k

t =M
ux
k

t ψTN−t(u
x
k)dXt + (· · · )dt.(5.6)

Hence, applying Itô’s product rule to (4.3) and using (5.6) yields that

dF x
k (t) =

1

δx
d
M

ux
k−1

t

M
ux
k

t

=
1

δx

M
ux
k−1

t

M
ux
k

t

(
ψTN−t(u

x
k−1)−ψTN−t(u

x
k)
)
dXt + (· · · )dt

=
1

δx
(1 + δxF

x
k (t))

(
ψTN−t(u

x
k−1)− ψTN−t(u

x
k)
)
dXt + (· · · )dt.

Therefore, the OIS rates satisfy the following SDE

dF x
k (t)

F x
k (t)

=
1 + δxF

x
k (t)

δxF x
k (t)

(
ψTN−t(u

x
k−1)− ψTN−t(u

x
k)
)
dXt + (· · · )dt(5.7)

for all k = 2, ..., Nx. Now, using the dynamics of the affine process X from (5.5) we arrive at

dF x
k (t)

F x
k (t)

=
1 + δxF

x
k (t)

δxF
x
k (t)

d∑
i=1

(
ψi
TN−t(u

x
k−1)− ψi

TN−t(u
x
k)
)
dXi

t + (· · · )dt

=
1 + δxF

x
k (t)

δxF x
k (t)

d∑
i=1

(
ψi
TN−t(u

x
k−1)− ψi

TN−t(u
x
k)
)√

Xi
t σidW

N
t + (· · · )dt

=: Γx,k(t) dW
N
t + (· · · )dt,(5.8)

where we define the volatility structure

Γx,k(t) =
1 + δxF

x
k (t)

δxF
x
k (t)

d∑
i=1

(
ψi
TN−t(u

x
k−1)− ψi

TN−t(u
x
k)
)√

Xi
t σi ∈ R

d
�0.(5.9)

On the other hand, we know from the general theory of discretely compounded forward
rates (cf. Jamshidian (1997)) that the OIS rate should satisfy the following SDE under the
terminal measure PN :

dF x
k (t)

F x
k (t)

= −
Nx∑

l=k+1

δxF
x
l (t)

1 + δxF x
l (t)

〈Γx,l(t),Γx,k(t)〉dt+ Γx,k(t) dW
N
t ,(5.10)

for the volatility structure Γx,k given in (5.9). Therefore, we get immediately that the P
x
k-

Brownian motion W x,k is related to the terminal Brownian motion WN via the equality

W x,k :=WN −
Nx∑

l=k+1

∫ ·

0

δxF
x
l (t)

1 + δxF x
l (t)

Γx,l(t) dt

=WN −
Nx∑

l=k+1

d∑
i=1

∫ ·

0

(
ψi
TN−t(u

x
l−1)− ψi

TN−t(u
x
l )
)√

Xi
t σi dt.(5.11)
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Moreover, the dynamics of X under Px
k take the form

dXi
t = (b+BXt)

i dt+
√
Xi

t σidW
x,k
t

+ σi

√
Xi

t

Nx∑
l=k+1

d∑
j=1

(
ψj
TN−t

(
uxl−1

)
− ψj

TN−t (u
x
l )
)√

Xj
t σjdt

=

(
bi + (BXt)

i +

Nx∑
l=k+1

(
ψi
TN−t(u

x
l−1)− ψi

TN−t(u
x
l )
)
Xi

t |σi|2
)
dt

+
√
Xi

t σidW
x,k
t(5.12)

for all i = 1, . . . , d. The last equation provides an alternative proof to Proposition 4.6 in the
setting of affine diffusions, since it shows explicitly that X is a time-inhomogeneous affine
diffusion process under P

x
k. One should also note from (5.11), that the difference between

the terminal and the forward Brownian motion does not depend on other forward rates as in
classical LMMs. As mentioned in Remark 4.7, the same property is shared by forward price
models.

Thus, we arrive at the following P
x
k-dynamics for the OIS rates

dF x
k (t)

F x
k (t)

= Γx,k(t) dW
x,k
t(5.13)

with the volatility structure Γx,k provided by (5.9). The structure of Γx,k shows that there is
a built-in shift in the model, whereas the volatility structure is determined by ψ and σ.

5.2. LIBOR dynamics. Next, we derive the dynamics of the LIBOR rates associated
with the same tenor. Using (4.3), (4.2), and repeating the same steps as above, we obtain the
following:

dLx
k(t)

Lx
k(t)

=
1

δxLx
k(t)

d
M

vxk−1

t

M
ux
k

t

=
1

δxLx
k(t)

M
vxk−1
t

M
ux
k

t

(
ψTN−t(v

x
k−1)− ψTN−t(u

x
k)
)
dXt + (· · · )dt

=
1 + δxL

x
k(t)

δxLx
k(t)

d∑
i=1

(
ψi
TN−t(v

x
k−1)−ψi

TN−t(u
x
k)
)√

Xi
t σidW

N
t + (· · · )dt,

for all k = 2, ..., Nx. Similarly to (5.9) we introduce the volatility structure

(5.14) Λx,k(t) :=
1 + δxL

x
k(t)

δxLx
k(t)

d∑
i=1

(
ψi
TN−t(v

x
k−1)−ψi

TN−t(u
x
k)
)√

Xi
t σi ∈ R

d
�0,
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and then obtain for Lx
k the following P

x
k-dynamics

dLx
k(t)

Lx
k(t)

= Λx,k(t) dW
x,k
t ,(5.15)

whereW x,k is the Px
k-Brownian motion given by (5.11), while the dynamics of X are provided

by (5.12).

5.3. Spread dynamics. Using that Sx
k = Lx

k −F x
k , the dynamics of LIBOR and OIS rates

under the forward measure P
x
k in (5.13) and (5.15), as well as the structure of the volatilities

in (5.9) and (5.14), after some straightforward calculations we arrive at

dSx
k (t) =

{
Sx
k (t)Υt(v

x
k−1, u

x
k) +

1 + δxF
x
k (t)

δx
Υt(v

x
k−1, u

x
k−1)

}
dW x,k

t ,

where

Υt(w, y) :=
d∑

i=1

(
ψi
TN−t(w)−ψi

TN−t(y)
)√

Xi
t σi.(5.16)

5.4. Instantaneous correlations. The derivation of the SDEs that OIS and LIBOR rates
satisfy allows us to quickly provide formulas for various quantities of interest, such as the
instantaneous correlations between OIS and LIBOR rates or LIBOR rates with different ma-
turities or tenors. We have, for example, that the instantaneous correlation between the
LIBOR rates maturing at T x

k and T x
l is heuristically described by

Corrt
[
Lx
k, L

x
l

]
=

dLx
k(t)

Lx
k(t)

· dLx
l (t)

Lx
l (t)√

dLx
k(t)

Lx
k(t)

· dLx
k(t)

Lx
k(t)

√
dLx

l (t)

Lx
l (t)

· dLx
l (t)

Lx
l (t)

;

therefore, we get that

Corrt
[
Lx
k, L

x
l

] (5.15)
=

〈Λx,k,Λx,l〉
|Λx,k||Λx,l|

=

∑d
i=1

(
ψi
TN−t

(
vxk−1

)
− ψi

TN−t (u
x
k)
)(

ψi
TN−t

(
vxl−1

)
− ψi

TN−t (u
x
l )
)
Xi|σi|2√∑d

i=1

(
ψi
TN−t

(
vxk−1

)
− ψi

TN−t

(
uxk
))2

Xi|σi|2

× 1√∑d
i=1

(
ψi
TN−t

(
vxl−1

)
− ψi

TN−t

(
uxl
))2

Xi|σi|2
.

Similar expressions can be derived for other instantaneous correlations, e.g.,

Corrt
[
F x
k , L

x
k

]
or Corrt

[
Lx1
k , L

x2
k

]
.

Instantaneous correlations are important for describing the (instantaneous) interdependen-
cies between different LIBOR rates. In the LMM, for instance, the rank of the instantaneous
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correlation matrix determines the number of factors (e.g., Brownian motions) that is needed
to drive the model. Explicit expressions for terminal correlations between LIBOR rates are
provided in Appendix A.

6. Valuation of swaps and caps.

6.1. Interest rate and basis swaps. We start by presenting a fixed-for-floating payer
interest rate swap on a notional amount normalized to 1, where fixed payments are exchanged
for floating payments linked to the LIBOR rate. The LIBOR rate is set in advance and the
payments are made in arrears, while we assume for simplicity that the timing and frequency
of the payments of the floating leg coincides with those of the fixed leg. The swap is initiated
at time T x

p ≥ 0, where x ∈ X and p ∈ Kx. The collection of payment dates is denoted by
T x
pq := {T x

p+1 < · · · < T x
q }, and the fixed rate is denoted by K. Then, the time-t value of the

swap, for t ≤ T x
p , is given by

St(K,T x
pq) =

q∑
k=p+1

δxB(t, T x
k )E

x
k

[
L(T x

k−1, T
x
k )−K|Ft

]
= δx

q∑
k=p+1

B(t, T x
k ) (L

x
k(t)−K) .(6.1)

Thus, the fair swap rate Kt(T x
pq) is provided by

Kt(T x
pq) =

∑q
k=p+1B(t, T x

k )L
x
k(t)∑q

k=p+1B(t, T x
k )

.(6.2)

Basis swaps are new products in interest rate markets, whose value reflects the discrepancy
between the LIBOR rates of different tenors. A basis swap is a swap where two streams of
floating payments linked to the LIBOR rates of different tenors are exchanged. For example,
in a 3-month–6-month basis swap, a 3-month-LIBOR is paid (received) quarterly and a 6-
month-LIBOR is received (paid) semiannually. We assume in what follows that both rates are
set in advance and paid in arrears; of course, other conventions regarding the payments on the
two legs of a basis swap also exist. A more detailed account on basis swaps can be found in
Mercurio (2010b, section 5.2) or in Filipović and Trolle (2013, section 2.4 and Appendix F).
Note that in the precrisis setup the value of such a product would have been zero at any time
point, due to the no-arbitrage relation between the LIBOR rates of different tenors; see, e.g.,
Crépey, Grbac, and Nguyen (2012).

Let us consider a basis swap associated with two tenor structures denoted by T x1
pq :=

{T x1
p1 < . . . < T x1

q1 } and T x2
pq := {T x2

p2 < . . . < T x2
q2 }, where T x1

p1 = T x2
p2 ≥ 0, T x1

q1 = T x2
q2 , and

T x2
pq ⊂ T x1

pq . The notional amount is again assumed to be 1 and the swap is initiated at time
T x1
p1 , while the first payments are due at times T x1

p1+1 and T x2
p2+1, respectively. The basis swap

spread is a fixed rate S which is added to the payments on the shorter tenor length. More
precisely, for the x1-tenor, the floating interest rate L(T x1

i−1, T
x1
i ) at tenor date T x1

i is replaced
by L(T x1

i−1, T
x1
i ) + S for every i ∈ {p1 + 1, . . . , q1}. The time-t value of such an agreement is

given, for 0 ≤ t ≤ T x1
p1 = T x2

p2 , by
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BSt(S,T x1
pq ,T x2

pq ) =

q2∑
i=p2+1

δx2B(t, T x2
i )Ex2

i

[
L(T x2

i−1, T
x2
i )|Ft

]
(6.3)

−
q1∑

i=p1+1

δx1B(t, T x1
i )Ex1

i

[
L(T x1

i−1, T
x1
i ) + S|Ft

]
=

q2∑
i=p2+1

δx2B(t, T x2
i )Lx2

i (t) −
q1∑

i=p1+1

δx1B(t, T x1
i )

(
Lx1
i (t) + S

)
.

We also want to compute the fair basis swap spread St(T x1
pq ,T x2

pq ). This is the spread that
makes the value of the basis swap equal zero at time t, i.e., the fair spread is obtained by
solving BSt(S,T x1

pq ,T x2
pq ) = 0. We get that

(6.4) St(T x1
pq ,T x2

pq ) =

∑q2
i=p2+1 δx2B(t, T x2

i )Lx2
i (t)−

∑q1
i=p1+1 δx1B(t, T x1

i )Lx1
i (t)∑q1

i=p1+1 δx1B(t, T x1
i )

.

The formulas for the fair swap rate and basis spread can be used to bootstrap the initial values
of LIBOR rates from market data; see Mercurio (2010b, section 2.4).

6.2. Caps. The valuation of caplets, and thus caps, in the multiple curve affine LIBOR
model is an easy task, which has complexity equal to the complexity of the valuation of
caplets in the single curve affine LIBOR model; compare with Proposition 7.1 in Keller-
Ressel, Papapantoleon, and Teichmann (2013). There are two reasons for this: on the one
hand, the LIBOR rate is modeled directly (see (4.3)), as opposed to, e.g., Mercurio (2010a),
where the LIBOR rate is modeled implicitly as the sum of the OIS rate and the spread. In
our approach, the valuation of caplets remains a one-dimensional problem, while in the latter
approach it becomes a “basket” option on the OIS rate and the spread. On the other hand,
the driving process remains affine under any forward measure (cf. Proposition 4.6), which
allows the application of Fourier methods for option pricing. In what follows we will derive
semiexplicit pricing formulas for any multiple curve affine LIBOR model. Let us point out
that we do not need to “freeze the drift” as is customary in LMMs with jumps (see Remark
4.7).

Proposition 6.1.Consider an x-tenor caplet with strike K that pays out, at time T x
k ,

δx(L(T
x
k−1, T

x
k )−K)+. The time-0 price is provided by

C0(K,T
x
k ) =

B(0, T x
k )

2π

∫
R

K1−R+iw
x

ΘWx
k−1

(R− iw)

(R− iw)(R − 1− iw)
dw(6.5)

for R ∈ (1,∞) ∩ Ĩk,x, assuming that (1,∞) ∩ Ĩk,x �= ∅, where Kx = 1 + δxK, ΘWx
k−1

is given

by (6.7), while the set Ĩk,x is defined as

Ĩk,x =
{
z ∈ R : (1− z)ψTN−Tx

k−1
(uxk) + zψTN−Tx

k−1
(vxk−1) ∈ IT

}
.
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Proof. Using (3.3) and (4.3) the time-0 price of the caplet equals

C0(K,T
x
k ) = δxB(0, T x

k )E
x
k

[
(L(T x

k−1, T
x
k )−K)+

]
= δxB(0, T x

k )E
x
k

[
(Lx

k(T
x
k−1)−K)+

]
= B(0, T x

k )E
x
k

[(
M

vxk−1

Tx
k−1

/M
ux
k

Tx
k−1

−Kx

)+]
= B(0, T x

k )E
x
k

[(
eW

x
k−1 −Kx

)+]
,

where

Wx
k−1 = log

(
M

vxk−1

Tx
k−1

/M
ux
k

Tx
k−1

)
= φTN−Tx

k−1
(vxk−1)− φTN−Tx

k−1
(uxk)

+
〈
ψTN−Tx

k−1
(vxk−1)− ψTN−Tx

k−1
(uxk),XTx

k−1

〉
=: A+ 〈B,XTx

k−1
〉.(6.6)

Now, using Eberlein, Glau, and Papapantoleon (2010, Thm 2.2, Ex. 5.1), we arrive directly at
(6.5), where ΘWx

k−1
denotes the Px

k-moment generating function of the random variable Wx
k−1,

i.e., for z ∈ Ĩk,x,

ΘWx
k−1

(z) = E
x
k

[
ezW

x
k−1
]
= E

x
k

[
exp

(
z(A+ 〈B,XTx

k−1
〉)
)]

= exp
(
zA+ φk,xTx

k−1
(zB) +

〈
ψk,x
Tx
k−1

(zB),X0

〉)
.(6.7)

The last equality follows from Proposition 4.6, noting that z ∈ Ĩk,x implies zB ∈ Ik,x.

7. Valuation of swaptions and basis swaptions. This section is devoted to the pric-
ing of options on interest rate and basis swaps, in other words, to the pricing of swaptions
and basis swaptions. In the first part, we provide general expressions for the valuation of
swaptions and basis swaptions making use of the structure of multiple curve affine LIBOR
models. In the following two parts, we derive efficient and accurate approximations for the
pricing of swaptions and basis swaptions by further utilizing the model properties, namely,
the preservation of the affine structure under any forward measure, and applying the linear
boundary approximation developed by Singleton and Umantsev (2002). Similarly to the pric-
ing of caplets, here also we do not have to freeze the drift, while in special cases we can even
derive closed or semiclosed form solutions (cf. Keller-Ressel, Papapantoleon, and Teichmann,
(2013, section 8)).

Let us consider first a payer swaption with strike rate K and exercise date T x
p on a fixed-

for-floating interest rate swap starting at T x
p and maturing at T x

q ; this was defined in section
6.1. A swaption can be regarded as a sequence of fixed payments δx(KTx

p
(T x

pq)−K)+ that are
received at the payment dates T x

p+1, . . . , T
x
q ; see Musiela and Rutkowski (2005, section 13.1.2,
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p. 524). Here KTx
p
(T x

pq) is the swap rate of the underlying swap at time T x
p ; cf. (6.2). Note

that the classical transformation of a payer (resp., receiver) swaption into a put (resp., call)
option on a coupon bond is not valid in the multiple curve setup, since LIBOR rates cannot
be expressed in terms of zero coupon bonds; see Remark 3.5.

The value of the swaption at time t ≤ T x
p is provided by

S
+
t (K,T x

pq) = B(t, T x
p )

q∑
i=p+1

δx E
x
p

[
B(T x

p , T
x
i )
(
KTx

p
(T x

pq)−K
)+ ∣∣∣Ft

]

= B(t, T x
p )E

x
p

⎡⎣⎛⎝ q∑
i=p+1

δxL
x
i (T

x
p )B(T x

p , T
x
i )−

q∑
i=p+1

δxKB(T x
p , T

x
i )

⎞⎠+ ∣∣∣Ft

⎤⎦
since the swap rate KTx

p
(T x

pq) is given by (6.2) for t = T x
p . Using (3.2), (4.3), and a telescoping

product, we get that

B(T x
p , T

x
i ) =

B(T x
p , T

x
i )

B(T x
p , T

x
i−1)

B(T x
p , T

x
i−1)

B(T x
p , T

x
i−2)

· · ·
B(T x

p , T
x
p+1)

B(T x
p , T

x
p )

=
M

ux
i

Tx
p

M
ux
p

Tx
p

.

Together with (4.3) for Lx
i (T

x
p ), this yields

S
+
t (K,T x

pq) = B(t, T x
p )E

x
p

⎡⎢⎣
⎛⎝ q∑

i=p+1

M
vxi−1

Tx
p

M
ux
p

Tx
p

−
q∑

i=p+1

Kx

M
ux
i

Tx
p

M
ux
p

Tx
p

⎞⎠+ ∣∣∣Ft

⎤⎥⎦

= B(t, TN )EN

⎡⎣⎛⎝ q∑
i=p+1

M
vxi−1

Tx
p

−
q∑

i=p+1

KxM
ux
i

Tx
p

⎞⎠+ ∣∣∣Ft

⎤⎦ ,(7.1)

where Kx := 1 + δxK and the second equality follows from the measure change from P
x
p to

PN as given in (4.8).
Next, we move on to the pricing of basis swaptions. A basis swaption is an option to enter

a basis swap with spread S. We consider a basis swap as defined in section 6.1, which starts
at T x1

p1 = T x2
p2 and ends at T x1

q1 = T x2
q2 , while we assume that the exercise date is T x1

p1 . The
payoff of a basis swap at time T x1

p1 is given by (6.3) for t = T x1
p1 . Therefore, the price of a basis

swaption at time t ≤ T x
p is provided by

BS
+
t (S,T x1

pq ,T x2
pq ) = B(t, T x1

p1 )E
x1
p1

⎡⎣⎛⎝ q2∑
i=p2+1

δx2L
x2
i (T x2

p2 )B(T x2
p2 , T

x2
i )

−
q1∑

i=p1+1

δx1

(
Lx1
i (T x1

p1 ) + S
)
B(T x1

p1 , T
x1
i )

⎞⎠+ ∣∣∣Ft

⎤⎦ .
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Along the lines of the derivation for swaptions and usingM
u
x2
p2

T
x2
p2

=M
u
x1
p1

T
x1
p1

(cf. (4.5)), we arrive at

BS
+
0 (S,T x1

pq ,T x2
pq )(7.2)

= B(t, T x1
p1 )E

x1
p1

⎡⎣⎛⎝ q2∑
i=p2+1

(
M

v
x2
i−1

T
x2
p2

/M
u
x2
p2

T
x2
p2

−M
u
x2
i

T
x2
p2

/M
u
x2
p2

T
x2
p2

)

−
q1∑

i=p1+1

(
M

v
x1
i−1

T
x1
p1

/M
u
x1
p1

T
x1
p1

− Sx1M
u
x1
i

T
x1
p1

/M
u
x1
p1

T
x1
p1

)⎞⎠+ ∣∣∣Ft

⎤⎦
= B(t, TN )EN

⎡⎣⎛⎝ q2∑
i=p2+1

(
M

v
x2
i−1

T
x2
p2

−Mu
x2
i

T
x2
p2

)
−

q1∑
i=p1+1

(
M

v
x1
i−1

T
x1
p1

−Sx1M
u
x1
i

T
x1
p1

)⎞⎠+ ∣∣∣Ft

⎤⎦ ,
where Sx1 := 1− δx1S.

7.1. Approximation formula for swaptions. We will now derive an efficient approximation
formula for the pricing of swaptions. The main ingredients in this formula are the affine
property of the driving process under forward measures and the linearization of the exercise
boundary. Numerical results for this approximation will be reported in section 8.3.

We start by presenting some technical tools and assumptions that will be used in what
follows. We define the probability measures P

x
k, for every k ∈ Kx, via the Radon–Nikodym

density

dP
x
k

dPN

∣∣∣
Ft

=
M

vxk
t

M
vxk
0

.(7.3)

The process X is obviously a time-inhomogeneous affine process under every P
x
k. More pre-

cisely, we have the following result which follows directly from Proposition 4.6.
Corollary 7.1. The process X is a time-inhomogeneous affine process under the measure P

x
k

for every x ∈ X , k ∈ Kx, with

IE
x
k

[
e〈w,Xt〉] = exp

(
φ
k,x
t (w) + 〈ψk,x

t (w),X0〉
)
,(7.4)

where

φ
k,x
t (w) := φt

(
ψTN−t(v

x
k ) +w

)
− φt

(
ψTN−t(v

x
k)
)
,(7.5a)

ψ
k,x
t (w) := ψt

(
ψTN−t(v

x
k ) +w

)
− ψt

(
ψTN−t(v

x
k)
)

(7.5b)

for every w ∈ Ik,x
with

Ik,x
:=
{
w ∈ R

d : ψTN−t(v
x
k ) +w ∈ IT

}
.(7.6)
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The price of a swaption is provided by (7.1), while for simplicity we shall consider the
price at time t = 0 in what follows. We can rewrite (7.1) as

S
+
0 (K,T x

pq) = B(0, TN )EN

⎡⎣⎛⎝ q∑
i=p+1

M
vxi−1

Tx
p

−
q∑

i=p+1

KxM
ux
i

Tx
p

⎞⎠1{f(XTx
p
)≥0}

⎤⎦(7.7)

= B(0, TN )

⎛⎝ q∑
i=p+1

EN

[
M

vxi−1

Tx
p

1{f(XTx
p
)≥0}

]
−Kx

q∑
i=p+1

EN

[
M

ux
i

Tx
p
1{f(XTx

p
)≥0}

]⎞⎠ ,

where, recalling (4.1) and (4.2), we define the function f : Rd
�0 → R by

f(y) =

q∑
i=p+1

exp
(
φTN−Tx

p
(vxi−1) + 〈ψTN−Tx

p
(vxi−1), y〉

)
−

q∑
i=p+1

Kx exp
(
φTN−Tx

p
(uxi ) + 〈ψTN−Tx

p
(uxi ), y〉

)
.(7.8)

This function determines the exercise boundary for the price of the swaption.
Now, since we cannot compute the characteristic function of f(XTx

p
) explicitly, we will

follow Singleton and Umantsev (2002) and approximate f by a linear function.
Approximation (S). We approximate

f(XTx
p
) ≈ f̃(XTx

p
) := A+ 〈B,XTx

p
〉,(7.9)

where the constants A, B are determined according to the linear regression procedure described
in Singleton and Umantsev (2002, pp. 432–434). The line 〈B,XTx

p
〉 = −A approximates the

exercise boundary, hence, A and B are strike dependent.
The following assumption will be used for the pricing of swaptions and basis swaptions.
Assumption (CD). The cumulative distribution function of Xt is continuous for all t ∈

[0, TN ].
Let �(z) denote the imaginary part of a complex number z ∈ C. Now, we state the main

result of this subsection.
Proposition 7.2. Assume that A,B are determined by Approximation (S) and that Assump-

tion (CD) is satisfied. The time-0 price of a payer swaption with strike K, option maturity
T x
p , and swap maturity T x

q , is approximated by

S̃
+
0 (K,T x

pq) = B(0, TN )

q∑
i=p+1

M
vxi−1

0

[
1

2
+

1

π

∫ ∞

0

�
(
ξ̃xi−1(z)

)
z

dz

]

−Kx

q∑
i=p+1

B(0, T x
i )

[
1

2
+

1

π

∫ ∞

0

�
(
ζ̃xi (z)

)
z

dz

]
,(7.10)

where ζ̃xi and ξ̃xi are defined by (7.14) and (7.15), respectively.
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Proof. Starting from the swaption price in (7.7) and using the relation between the terminal
measure PN and the measures Px

k and P
x
k in (4.8) and (7.3), we get that

S
+
0 (K,T x

pq) = B(0, TN )

q∑
i=p+1

M
vxi−1

0 IE
x
i−1

[
1{f(XTx

p
)≥0}

]
(7.11)

−Kx

q∑
i=p+1

B(0, T x
i )E

x
i

[
1{f(XTx

p
)≥0}

]
.

In addition, from the inversion formula of Gil-Pelaez (1951) and using Assumption (CD), we
get that

E
x
i

[
1{f(XTx

p
)≥0}

]
=

1

2
+

1

π

∫ ∞

0

�(ζxi (z))
z

dz,(7.12)

IE
x
i

[
1{f(XTx

p
)≥0}

]
=

1

2
+

1

π

∫ ∞

0

�(ξxi (z))
z

dz(7.13)

for each i ∈ Kx, where we define

ζxi (z) := E
x
i

[
exp

(
izf(XTx

p
)
)]

and ξxi (z) := IE
x
i

[
exp

(
izf(XTx

p
)
)]
.

However, the above characteristic functions cannot be computed explicitly, in general,
thus we will linearize the exercise boundary as described by Approximation (S). That is, we
approximate the unknown characteristic functions with ones that admit an explicit expression
due to the affine property of X under the forward measures. Indeed, using Approximation
(S), Proposition 4.6 and Corollary 7.1 we get that

ζxk (z) ≈ ζ̃xk (z) := E
x
k

[
exp

(
izf̃(XTx

p
)
)]

= exp
(
izA+ φk,xTx

p
(izB) +

〈
ψk,x
Tx
p
(izB),X0

〉)
,(7.14)

ξxk (z) ≈ ξ̃xk (z) := IE
x
k

[
exp

(
izf̃(XTx

p
)
)]

= exp
(
izA+ φ

k,x
Tx
p
(izB) +

〈
ψ
k,x
Tx
p
(izB),X0

〉)
.(7.15)

After inserting (7.12) and (7.13) into (7.11) and using (7.14) and (7.15) we arrive at the
approximation formula for swaptions (7.10).

Remark 7.3. The pricing of swaptions is inherently a high-dimensional problem. The
expectation in (7.1) corresponds to a d-dimensional integral, where d is the dimension of the
driving process. However, the exercise boundary is nonlinear and hard to compute, in general.
See, e.g., Brace, Ga̧tarek, and Musiela (1997), Eberlein and Kluge (2006) or Keller-Ressel,
Papapantoleon, and Teichmann (2013, section 7.2, section 8.3) for some exceptional cases that
admit explicit solutions. Alternatively, one could express a swaption as a zero strike basket
option written on 2(q− p) underlying assets and use Fourier methods for pricing; see Hubalek
and Kallsen (2005) or Hurd and Zhou (2010). This leads to a 2(q − p)-dimensional numerical
integration. Instead, the approximation derived in this section requires only the evaluation
of 2(q − p) univariate integrals together with the computation of the constants A,B. This
reduces the complexity of the problem considerably.
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7.2. Approximation formula for basis swaptions. In this subsection, we derive an analo-
gous approximate pricing formula for basis swaptions. Numerical results for this approxima-
tion will be reported in section 8.4.

Similarly to the case of swaptions, we can rewrite the time-0 price of a basis swaption
(7.2) as follows:

(7.16)

BS
+
0 (S,T x1

pq ,T x2
pq )

= B(0, TN )

⎧⎨⎩
q2∑

i=p2+1

(
EN

[
M

v
x2
i−1

T
x2
p2

1{g(Xx2
Tp2

)≥0}

]
− EN

[
M

u
x2
i

T
x2
p2

1{g(Xx2
Tp2

)≥0}

])

−
q1∑

i=p1+1

(
EN

[
M

v
x1
i−1

T
x1
p1

1{g(X
T
x1
p1

)≥0}

]
− Sx1EN

[
M

u
x1
i

T
x1
p1

1{g(X
T
x1
p1

)≥0}

])⎫⎬⎭ ,

where we define the function g : Rd
�0 → R by

g(y) =

q2∑
i=p2+1

exp
(
φTN−T

x2
p2
(vx2

i−1) + 〈ψTN−T
x2
p2
(vx2

i−1), y〉
)

−
q2∑

i=p2+1

exp
(
φTN−T

x2
p2
(ux2

i ) + 〈ψTN−T
x2
p2
(ux2

i ), y〉
)

−
q1∑

i=p1+1

exp
(
φTN−T

x1
p1
(vx1

i−1) + 〈ψTN−T
x1
p1
(vx1

i−1), y〉
)

+

q1∑
i=p1+1

Sx1 exp
(
φTN−T

x1
p1
(ux1

i ) + 〈ψTN−T
x1
p1
(ux1

i ), y〉
)
,(7.17)

which determines the exercise boundary for the price of the basis swaption. This will be
approximated by a linear function again following Singleton and Umantsev (2002).

Approximation (BS). We approximate

g(XT
x1
p1
) ≈ g̃(XT

x1
p1
) := C+ 〈D,XT

x1
p1
〉,(7.18)

where C and D are determined via a linear regression.
Proposition 7.4. Assume that C,D are determined by Approximation (BS) and that As-

sumption (CD) is satisfied. The time-0 price of a basis swaption with spread S, option maturity
T x1
p1 = T x2

p2 , and swap maturity T x1
q1 = T x2

q2 , is approximated by

B̃S
+

0 (S,T x1
pq ,T x2

pq ) = B(0, TN )

q2∑
i=p2+1

M
v
x2
i−1

0

[
1

2
+

1

π

∫ ∞

0

�
(
ξ̃x2
i−1(z)

)
z

dz

]

−
q2∑

i=p2+1

B(0, T x2
i )

[
1

2
+

1

π

∫ ∞

0

�
(
ζ̃x2
i (z)

)
z

dz

]
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−B(0, TN )

q1∑
i=p1+1

M
v
x1
i−1

0

[
1

2
+

1

π

∫ ∞

0

�
(
ξ̃x1
i−1(z)

)
z

dz

]
(7.19)

+ Sx1

q1∑
i=p1+1

B(0, T x1
i )

[
1

2
+

1

π

∫ ∞

0

�
(
ζ̃x1
i (z)

)
z

dz

]
,

where ζ̃xl
i and ξ̃xl

i are defined by (7.20) and (7.21) for l = 1, 2.
Proof. Starting from the expression for the basis swaption price given in (7.16), we follow

the same steps as in the previous section: first, we use the relation between the terminal
measure PN and the measures P

x
k,P

x
k to arrive at an expression similar to (7.11). Second,

we approximate g by g̃ in (7.18). Third, we define the approximate characteristic functions,
which can be computed explicitly,

ζ̃xl
i (z) := E

xl
i

[
exp

(
izg̃(XT

xl
pl
)
)]

= exp

(
izC+ φi,xl

T
xl
pl

(izD) +
〈
ψi,xl

T
xl
pl

(izD),X0

〉)
,(7.20)

ξ̃xl
i (z) := IE

xl

i

[
exp

(
izg̃(XT

xl
pl
)
)]

= exp
(
izC+ φ

i,xl

T
xl
pl
(izD) +

〈
ψ
i,xl

T
xl
pl
(izD),X0

〉)
(7.21)

for l = 1, 2. Finally, putting all the pieces together we arrive at the approximation formula
(7.19) for the price of a basis swaption.

8. Numerical examples and calibration. The aim of this section is twofold: on the one
hand, we demonstrate how the multiple curve affine LIBOR model can be calibrated to mar-
ket data and, on the other hand, we test the accuracy of the swaption and basis swaption
approximation formulas. We start by discussing how to build a model which can simultane-
ously fit caplet volatilities when the options have different underlying tenors. Next, we test
numerically the swaption and basis swaption approximation formulas (7.10) and (7.19) using
the calibrated models and parameters. In the last subsection, we build a simple model and
compute exact and approximate swaption and basis swaption prices in a setup which can be
easily reproduced by interested readers.

8.1. A specification with dependent rates. There are numerous ways of constructing
models and the trade-off is usually between parsimony and fitting ability. We have elected
here a heavily parametrized approach that focuses on the fitting ability, as we believe it best
demonstrates the utility of our model. In particular, we want to show that affine LIBOR
models, which are driven by positive affine processes, can indeed be well calibrated to market
data. Moreover, it is usually easier to move from a complex specification towards a simpler
one, than the converse.
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We provide below a model specification where LIBOR rates are driven by common and
idiosyncratic factors which is suitable for sequential calibration to market data. The starting
point is to revisit the expression for LIBOR rates in (4.3):

1 + δxL
x
k(t) =M

vxk−1
t /M

ux
k

t(8.1)

= exp
(
φTN−t(v

x
k−1)− φTN−t(u

x
k) +

〈
ψTN−t(v

x
k−1)− ψTN−t(u

x
k),Xt

〉 )
.

According to Proposition 4.2, when the dimension of the driving process is greater than
one, then the vectors vxk−1 and uxk are not fully determined by the initial term structure.
Therefore, we can navigate through different model specifications by altering the structure of
the sequences (uxk) and (vxk ).

Remark 8.1. The following observation allows us to create an (exponential) linear factor
structure for the LIBOR rates with as many common and idiosyncratic factors as desired.
Consider an R

d
�0-valued affine process

X = (X1, . . . ,Xd),(8.2)

and denote the vectors vxk−1, u
x
k ∈ R

d
�0 by

vxk−1 = (vx1,k−1, . . . , v
x
d,k−1) and uxk = (ux1,k, . . . , u

x
d,k).(8.3)

Select a subset Jk ⊂ {1, . . . , d}, set vxi,k−1 = uxi,k for all i ∈ Jk, and assume that the

{Xi}i∈Jk are independent of {Xj}j∈{1,...,d}\Jk . Then, it follows from (8.1) and Keller-Ressel
(2008, Prop. 4.7) that Lx

k will also be independent of {Xi}i∈Jk and will depend only on
{Xj}j∈{1,...,d}\Jk . The same observation also allows us to construct a model where different
factors are used for driving the OIS and LIBOR rates; see also section 4.1.

Let x1, x2 ∈ X and consider the tenor structures T x1 ,T x2 , where T x2 ⊂ T x1 . The dataset
under consideration contains caplets maturing on M different dates for each tenor, where M
is less than the number of tenor points in T x1 and T x2 . In other words, only M maturities
are relevant for the calibration. The dynamics of OIS and LIBOR rates are driven by tuples
of affine processes

dXi
t = −λi(Xi

t − θi)dt+ 2ηi

√
Xi

tdW
i
t + dZi

t ,(8.4)

dXc
t = −λc(Xc

t − θc)dt+ 2ηc
√
Xc

t dW
c
t ,(8.5)

for i = 1, . . . ,M , where Xc denotes the common and Xi the idiosyncratic factor for the
ith maturity. Here Xi

0 ∈ R�0, λi, θi, ηi ∈ R�0 for i = c, 1, . . . ,M, and W c,W 1, . . . ,WM ,
are independent Brownian motions. Moreover, the Zi are independent compound Poisson
processes with constant intensity νi and exponentially distributed jumps with mean values μi
for i = 1, . . . ,M . Therefore, the full process has dimension M + 1:

X =
(
Xc,X1, . . . ,XM

)
,(8.6)

and the total number of process-specific parameters equals 5M + 3. The affine processes
Xc,X1, . . . ,XM are mutually independent, hence, using Proposition 4.7 in Keller-Ressel
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ux1

�1(M) =
(
ũx1

�1(M) 0 . . . 0 0 0 ūx1

�1(M)

)
ux1

�1(M)−1 =
(
ũx1

�1(M)−1 0 . . . 0 0 0 ūx1

�1(M)−1

)
ux1

�1(M)−2 =
(
ũx1

�1(M)−2 0 . . . 0 0 0 ūx1

�1(M)−2

)
ux1

�1(M)−3 =
(
ũx1

�1(M)−3 0 . . . 0 0 0 ūx1

�1(M)−3

)
ux1

�1(M−1) =
(
ũx1

�1(M−1) 0 . . . 0 0 ūx1

�1(M−1) ūx1

�1(M)−3

)
ux1

�1(M−1)−1 =
(
ũx1

�1(M−1)−1 0 . . . 0 0 ūx1

�1(M−1)−1 ūx1

�1(M)−3

)
ux1

�1(M−1)−2 =
(
ũx1

�1(M−1)−2 0 . . . 0 0 ūx1

�1(M−1)−2 ūx1

�1(M)−3

)
ux1

�1(M−1)−3 =
(
ũx1

�1(M−1)−3 0 . . . 0 0 ūx1

�1(M−1)−3 ūx1

�1(M)−3

)
ux1

�1(M−2) =
(
ũx1

�1(M−2) 0 . . . 0 ūx1

�1(M−2) ūx1

�1(M−1)−3 ūx1

�1(M)−3

)
...

...
... . .

. ...
...

...

ux1

�1(1)
=

(
ũx1

�1(1)
ūx1

�1(1)
ūx1

�1(2)−3 . . . ūx1

�1(M−2)−3 ūx1

�1(M−1)−3 ūx1

�1(M)−3

)
...

...
...

...
...

...
...

...
ux1
1 =

(
ũx1
1 ūx1

1 ūx1

�1(2)−3 . . . ūx1

�1(M−2)−3 ūx1

�1(M−1)−3 ūx1

�1(M)−3

)
Figure 4. The sequence ux1 encompasses the proposed “diagonal plus common” factor structure. In this

particular example, x1 = 3 months and caplets mature on entire years.

(2008), the functions φ(Xc,Xi), respectively, ψ(Xc,Xi), are known in terms of the functions
φXc and φXi , respectively, ψXc and ψXi , for all i ∈ {1, . . . ,M}. The latter are provided, for
example, by Grbac and Papapantoleon (2013, Ex. 2.3).

In order to create a “diagonal plus common” factor structure, where each rate for each
tenor is driven by an idiosyncratic factor Xi and the common factor Xc, we will utilize
Remark 8.1. We start from the longest maturity, which is driven by the idiosyncratic factor
XM and the common factor Xc. Then, at the next caplet maturity date we add the indepen-
dent idiosyncratic factor XM−1, while we cancel the contribution of XM by “freezing” the
values of ux1 and vx1 corresponding to that factor. The construction proceeds iteratively and
the resulting structures for ux1 and vx1 are presented in Figures 4 and 5, where elements of ux1

below a certain “diagonal” are “frozen” to the latest-set value and copied to vx1 . These struc-
tures produce the desired feature that each rate is driven by an idiosyncratic and a common
factor, while they do not violate inequalities vxk ≥ uxk ≥ uxk+1 that stem from Propositions 4.1
and 4.2. In Figures 4 and 5, �1(k) := k/δx1 for k = 1, . . . ,M , i.e., this function maps caplet
maturities into tenor points. Moreover, all elements in these matrices are nonnegative and
ux1
Nx1 = vx1

Nx1 = 0 ∈ R
M+1.

The boxed elements are the only ones that matter in terms of pricing caplets when these
are not available at every tenor date of T x1 . The impact of the common factor is determined
by the difference between ṽx1

k−1 and ũx1
k . If we set ṽx1

k−1 = ũx1
k , it follows from Remark 8.1

that Lx1
k will be independent of the common factor Xc and thus determined solely by the

corresponding idiosyncratic factor Xi, with k = �1(i). If the values of ṽx1
k and ũx1

k are fixed
a priori, the remaining values (ūx1

k )k=1,...,Nx1 and (v̄x1
k )k=1,...,Nx1 are determined uniquely by

the initial term structure of OIS and LIBOR rates; see again Propositions 4.1 and 4.2. This
model structure is consistent with vx1

k−1 ≥ ux1
k−1 ≥ ux1

k if and only if the sequences ũx1 and ūx1
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vx1

�1(M) =
(
ṽx1

�1(M) 0 . . . 0 0 0 v̄x1

�1(M)

)
vx1

�1(M)−1 =
(
ṽx1

�1(M)−1 0 . . . 0 0 0 v̄x1

�1(M)−1

)
vx1

�1(M)−2 =
(
ṽx1

�1(M)−2 0 . . . 0 0 0 v̄x1

�1(M)−2

)
vx1

�1(M)−3 =
(
ṽx1

�1(M)−3 0 . . . 0 0 0 v̄x1

�1(M)−3

)
vx1

�1(M−1) =
(
ṽx1

�1(M−1) 0 . . . 0 0 v̄x1

�1(M−1) ūx1

�1(M)−3

)
vx1

�1(M−1)−1 =
(
ṽx1

�1(M−1)−1 0 . . . 0 0 v̄x1

�1(M−1)−1 ūx1

�1(M)−3

)
vx1

�1(M−1)−2 =
(
ṽx1

�1(M−1)−2 0 . . . 0 0 v̄x1

�1(M−1)−2 ūx1

�1(M)−3

)
vx1

�1(M−1)−3 =
(
ṽx1

�1(M−1)−3 0 . . . 0 0 v̄x1

�1(M−1)−3 ūx1

�1(M)−3

)
vx1

�1(M−2) =
(
ṽx1

�1(M−2) 0 . . . 0 v̄x1

�1(M−2) ūx1

�1(M−1)−3 ūx1

�1(M)−3

)
vx1

�1(M−2)−1 =
(
ṽx1

�1(M−2)−1 0 . . . 0 v̄x1

�1(M−2)−1 ūx1

�1(M−1)−3 ūx1

�1(M)−3

)
...

...
... . .

. ...
...

...
vx1

�1(1)
=

(
ṽx1

�1(1)
v̄x1

�1(1)
ūx1

�1(2)−3 . . . ūx1

�1(M−2)−3 ūx1

�1(M−1)−3 ūx1

�1(M)−3

)
vx1

�1(1)−1 =
(
ṽx1

�1(1)−1 ūx1

�1(1)−3 ūx1

�1(2)−3 . . . ūx1

�1(M−2)−3 ūx1

�1(M−1)−3 ūx1

�1(M)−3

)
...

...
...

...
...

...
...

...
vx1
1 =

(
ṽx1
1 ūx1

�1(1)−3 ūx1

�1(2)−3 . . . ūx1

�1(M−2)−3 ūx1

�1(M−1)−3 ūx1

�1(M)−3

)
Figure 5. The sequence vx1 is constructed analogously to ux1 . In this particular example, x1 = 3 months

and caplets mature on entire years.

are decreasing, ṽx1
k ≥ ũx1

k and v̄x1
k ≥ ūx1

k for every k = 1, . . . , Nx1 . Moreover, this structure
will be consistent with the normal market situation described in Remark 4.5 if, in addition,
ṽx1
k ∈ [ũx1

k , ũ
x1
k−1] and v̄

x1
k ∈ [ūx1

k , ū
x1
k−1] for every k = 1, . . . , Nx1 .

The corresponding matrices for the x2 tenor are constructed in a similar manner. More
precisely, ux2 is constructed by simply copying the relevant rows from ux1 . Simultaneously,
for vx2 the elements (v̄x2

k )k=0,...,Nx2 are introduced in order to fit the x2-initial LIBOR term
structure, as well as the elements (ṽx2

k )k=0,...,Nx2 which determine the role of the common
factor. We present only four rows from these matrices in Figures 6 and 7, for the sake of brevity.

8.2. Calibration to caplet data. The data we use for calibration are from the EUR
market on 27 May 2013 collected from Bloomberg. These market data correspond to fully
collateralized contracts, hence they are considered “clean.” Bloomberg provides synthetic
zero coupon bond prices for EURIBOR rates, as well as OIS rates constructed in a manner
described in Akkara (2012). In our example, we will focus on the 3- and 6-month tenors only.
The zero coupon bond prices are converted into zero coupon rates and plotted in Figure 8.

Cap prices are converted into caplet implied volatilities using the algorithm described
in Levin (2012). The implied volatility is calculated using OIS discounting when inverting
the Black (1976) formula. The caplet data we have at our disposal correspond to 3- and
6-month tenor structures. More precisely, in the EUR market caps written on the 3-month
tenor are quoted only up to a maturity of 2 years, while 6-month tenor caps are quoted
from maturity 3 years and onwards. Moreover, we have option prices only for the maturities
corresponding to entire years and not for every tenor point. We have a grid of 14 strikes
ranging from 1% to 10% as quoted in Bloomberg. We calibrate to caplet data for maturities
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ũx1

�1(M) 0 . . . 0 0 ūx1
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�1(M)−3

)
ux2

�2(M−1)−1 =
(
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Figure 6. The first four rows of ux2 . In this particular example, x2 = 6 months and caplets mature on

entire years.
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ṽx2

�2(M)−1 0 . . . 0 0 v̄x2

�2(M)−1

)
vx2

�2(M−1) =
(
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Figure 7. The first four rows of vx2 . In this particular example, x2 = 6 months and caplets mature on

entire years.
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Figure 8. Zero coupon rates, EUR market, 27 May 2013.

1, 2, . . . , 10 years and the OIS zero coupon bond B(·, 10.5) defines the terminal measure.1

We fix in advance the values of the parameters (ũx1), (ũx2), (ṽx1), and (ṽx2), as well as the
parameters of the process Xc. The impact of Xc is determined by the spread between ũx1

�1(i)

and ṽx1

�1(i)−1, and ũ
x2

�2(i)
and ṽx2

�2(i)−1 for the 3-month and 6-month tenor caplets, respectively,

and we will simplify by setting ũx1
1 = · · · = ũx1

Nx1−1 = uc constant. The constant uc, along
with ṽx1

1 , . . . , ṽ
x1
Nx1 and ṽx2

1 , . . . , ṽ
x2
Nx2 are not identified by the initial term structures and have

to be determined in some other manner (e.g., by calibration to swaptions or basis swaptions).
They also cannot be chosen completely freely and one has to validate that the values of
ux1
k , u

x2
k and vx1

k , v
x2
k stemming from these procedures satisfy the necessary inequalities, i.e.,

vxk−1 ≥ uxk−1 ≥ uxk. Having this in mind, we chose these values in a manner such that

1We found that the model performs slightly better in calibration using this numeraire than when choosing
10 years as the terminal maturity.
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Figure 9. Market and model implied volatility for caplets written on 3- (1−2-year maturity) and 6- (2− 9-
year maturity) month tenor EURIBOR.

Xc accounts for approximately 50% of the total variance of LIBOR rates from maturities
4 until 10, and about 10% of the total variance for maturities 1 until 3. We have verified
through experimentation that this adhoc choice of dependence structure does not have a
qualitative impact on the results of the following sections. Alternatively, these parameters
could be calibrated to derivatives such as swaptions, basis swaptions, or other derivatives
partly determined by the dependence structure of the LIBOR rates. However, since interest
rate derivative markets remain highly segmented and joint calibration of caplets and swaptions
is a perennial challenge (see, e.g., Brigo and Mercurio (2006) or Ladkau, Schoenmakers, and
Zhang (2013)), we will leave this issue for future research.

The model construction summarized in Figures 4–7 has the advantage that caplets can be
calibrated sequentially one maturity at a time starting at the longest maturity and then moving
backwards. In the calibration procedure we fit the parameters of each idiosyncratic process Xi

to caplet prices with maturity T x
i while simultaneously choosing ux1

i , u
x2
i and vx1

i , v
x2
i to match

the corresponding values of the initial OIS and LIBOR rates. Caplets are priced using formula
(6.5) and the parameters are found using standard least-squares minimization between market
and model implied volatility. The results2 from fitting the caplets are shown in Figure 9. We

2All calibrated and chosen parameter values as well as the calibrated matrices uxj , vxj for j = 1, 2 are
available from the authors upon request.
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can observe that the model performs very well for different types of volatility smiles across the
whole term structure, with only minor problems for extreme strikes in maturities 1-3. These
problems are however mainly cosmetic in nature as these prices and more importantly the
deltas for these contracts are very close to zero anyway, making any model error in this region
economically insignificant.

8.3. Swaption price approximation. The next two sections are devoted to numerically
testing the validity of the swaption and basis swaption price approximation formulas derived
in sections 7.1 and 7.2. We will run a Monte Carlo (MC) study comparing the true price
with the linear boundary approximation formula. The model parameters used stem from the
calibration to the market data described in the previous section.

Let us denote the true and the approximate prices as follows:

S
+
0 (K,T x

pq) = B(0, TN )EN

⎡⎣⎛⎝ q∑
i=p+1

M
vxi−1

Tx
p

−
q∑

i=p+1

KxM
ux
i

Tx
p

⎞⎠1{f(XTx
p
)≥0}

⎤⎦ ,
S̃
+
0 (K,T x

pq) = B(0, TN )EN

⎡⎣⎛⎝ q∑
i=p+1

M
vxi−1

Tx
p

−
q∑

i=p+1

KxM
ux
i

Tx
p

⎞⎠1{ ˜f(XTx
p
)≥0}

⎤⎦ ,
where f and f̃ were defined in (7.8) and (7.9), respectively. The MC estimator3 of S+0 (K,T x

pq)

is denoted by Ŝ
+
0 (K,T x

pq) and we will refer to it as the “true price.” Instead of computing

S̃
+
0 (K,T x

pq) using Fourier methods, we will form another MC estimator
ˆ̃
S

+

0 (K,T x
pq). This has

the advantage that, when the same realizations are used to calculate both MC estimators,

the difference Ŝ
+
0 (K,T x

pq) −
ˆ̃
S

+

0 (K,T x
pq) will be an estimate of the error induced by the linear

boundary approximation which is minimally affected by simulation bias.
Swaption prices vary considerably across strike and maturity, thus we will express the

difference between the true and the approximate price in terms of implied volatility (using OIS
discounting), which better demonstrates the economic significance of any potential errors. We
price swaptions on three different underlying swaps. The results for the 3-month underlying
tenor are exhibited in Figure 10. The corresponding results for the 6-month tenor swaptions
have errors which are approximately one-half the level in the graphs shown here and have
been omitted for brevity.

On the left-hand side of Figure 10, implied volatility levels are plotted for the true and
the approximate prices. The strikes are chosen to range from 60% to 200% of the spot value
of the underlying fair swap rate, which is the normal range the products are quoted. The
right-hand side shows the difference between the two implied volatilities in basis points (i.e.,
multiplied by 104). As was also documented in Schrager and Pelsser (2006), the errors of the
approximation usually increase with the number of payments in the underlying swap. This is
also the case here, however, the level of the errors is in all cases very low. In normal markets,

3We construct the MC estimate using 5 million paths of X with 10 discretization steps per year. In each
discretization step the continuous part is simulated using the algorithm in Glasserman (2003, section 3.4.1)
while the jump part is handled using Glasserman (2003, pp. 137–139) with jump size distribution changed
from log-normal to exponential.
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Figure 10. Implied volatility and absolute errors for 3-month swaptions.

bid-ask spreads typically range from 10 to 300 basis points (at the at-the-money level), thus,
even the highest errors are too small to be of any economic significance. This is true even in
the case of the 2Y8Y swaption which contains 32 payments.

8.4. Basis swaption price approximation. In order to test the approximation formula for
basis swaptions, we will follow the same methodology as in the previous subsection. That is,
we calculate MC estimators for the following two expectations:

BS
+
0 (S,T x1

pq ,T x2
pq ) = B(0, TN )EN
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]
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Figure 11. Prices in basis points, absolute and relative errors for 3-month–6-month basis swaptions.

where Sx1 = 1 − δx1S, while g and g̃ were defined in (7.17) and (7.18). Using the same
realizations, we plot the level, and the absolute and relative differences between both prices
measured in basis points as a function of the spread for three different underlying basis swaps.
The spreads are chosen to range from 50% to 200% of the at-the-money level, i.e., the spread
that sets the underlying basis swap to a value of zero (see again (6.4)),

SATM := S0(T x1
pq ,T x2

pq ).

The numerical results can be seen in Figure 11. We have chosen these maturities to be
representative of two general patterns. The first is that the errors tend to increase with the
length of the basis swap, which is exemplified by comparing errors for the 2Y8Y, 5Y5Y, and
6Y2Y contracts. The second pattern relates to when the majority of payments in the contract
are paid out. We can notice that the errors for the 2Y2Y contract are much larger than for the
corresponding 6Y2Y, even though both contain the same number of payments. Furthermore,
we can also see that the 2Y2Y contract has larger errors than the 2Y8Y even though both
have the same maturity and the latter has more payments. This anomalous result can be
explained by the convexity of the term structure of interest rates. In Figure 8 we can notice
that the majority of the payments of the 2Y2Y contract fall in a particularly curved region
of the term structure. This will result in an exercise boundary which is also more nonlinear,
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thus leading to the relative deterioration of the linear boundary approximation. However, it
must be emphasized that the errors are still at a level easily deemed economically insignif-
icant, with a maximum relative error of 0.4% in a spread region where the price levels are
particularly low.

Remark 8.2. The approximative formulas from Propositions 7.2 and 7.4 can be used for
calibration to swaptions and basis swaptions. Error bounds for these approximations are not
available in closed form and thus accuracy in the entire parameter space cannot be guaran-
teed. Any desired accuracy in pricing is achievable using MC methods, which means that the
accuracy of the approximate formula can always be validated numerically. However, when per-
forming a full calibration, which may require several hundreds of iterations in order to achieve
convergence in a numerical optimization procedure, MC methods are slow in comparison to
the analytical approximation. Thus, in order to calibrate to swaption prices, one would prefer
the approximation to the MC method. Then one can perform a MC simulation (just one)
to validate that the approximation is also correct for the parameters found by the numerical
optimization. Let us also mention that in a typical calibration procedure an acceptable error
is around 2%, well above the error of the approximative formulas, else the risk of overfitting
the data is present.

8.5. A simple example. The purpose of this section is to provide a simple example to
help the reader’s intuition regarding the numerical implementation of the model. We present a
fully constructed and more manageable numerical toy example of fitting the model parameters
uxk and vxk to the initial term structures, which can be reproduced by the reader himself/herself
as opposed to the full calibration example in sections 8.3 and 8.4. Moreover, we show in this
simple setting how Approximations (S) and (BS) are computed.

We start by choosing a simple two factor model X = (X1,X2) with

dXi
t = −λi(Xi

t − θi)dt+ 2ηi

√
Xi

tdW
i
t + dZi

t , i = 1, 2,(8.7)

where we set
i Xi

0 λi θi ηi νi μi
1 0.5000 0.1000 1.5300 0.2660 0 0
2 9.4531 0.0407 0.0591 0.4640 0.0074 0.2499

The initial term structures are constructed from a Nelson–Siegel parametrization of the zero
coupon rate R(T )

R(T ) = β0 + β1
1− e−γT

γT
+ β2

(
1− e−γT

γT
− e−γT

)
.(8.8)

We limit ourselves to two tenors, x1 corresponding to 3 months and x2 corresponding to 6
months. We construct the initial curves from the following parameters:

Curve β0 β1 β2 γ

OIS 0.0003 0.01 0.07 0.06
3m 0.0032 0.01 0.07 0.06
6m 0.0050 0.01 0.07 0.06
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In particular, we use (8.8) to construct the initial 3- and 6-month LIBOR curves via the
expression

Lx
k(0) =

1

δx

(
exp (−Rx(Tk−1)Tk−1)

exp (−Rx(Tk)Tk)
− 1

)
for x = 3 months and 6 months, and a third one to construct an initial OIS curve consistent
with the system

B(0, Tk) = exp
(
−ROIS(Tk)Tk

)
.

Moreover, we construct the matrices uxj and vxj in the following simple manner:

ux1
k = (uc ūx1

k ), k = 1, . . . , Nx1 ,(8.9)

ux2
k = ux1

kδx2/δx1
, k = 1, . . . , Nx2 ,(8.10)

vx1
k = (ṽx1

c v̄x1
k ), k = 0, . . . , Nx1 − 1,(8.11)

vx2
k = (ṽx2

c v̄x2
k ), k = 0, . . . , Nx2 − 1,(8.12)

and ux1
Nx1 = ux2

Nx2 = 0, where ū
xj

k , v̄
xj

k ∈ R�0 for j = 1, 2. The bond B(·, 4.5) defines the
terminal measure, thus Nx1 = 18 and Nx2 = 9. We set uc = 0.0065, ṽx1

c = 0.007, and
ṽx2
c = 0.0075. The remaining values can then be determined uniquely using (4.4) and (4.6),
i.e., by fitting the initial term structures. We get that

k ux1
k vx1

k ux2
k vx2

k

0 - 0.008966 - 0.009035
1 0.008638 0.008641 0.008286 0.008358
2 0.008286 0.008289 0.007505 0.007577
3 0.007908 0.007911 0.006625 0.006697
4 0.007505 0.007507 0.005652 0.005725
5 0.007077 0.007079 0.004591 0.004664
6 0.006625 0.006627 0.003447 0.003520
7 0.006150 0.006152 0.002225 0.002298
8 0.005652 0.005654 0.000929 0.001003
9 0.005132 0.005135 0 -
10 0.004591 0.004594
11 0.004029 0.004032
12 0.003447 0.003450
13 0.002847 0.002848
14 0.002225 0.002228
15 0.001586 0.001589
16 0.000929 0.000932
17 0.000254 0.000257
18 0 -

We can observe that all sequences uxj , vxj for j = 1, 2 are decreasing, which corresponds to
the normal market situation; see, again, Remark 4.5.
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8.5.1. Swaption approximation. Let us consider a 2Y2Y swaption on 3-month LIBOR
rates, i.e., a swaption in the notation of section 7.1 with p = 8 and q = 16. We run an MC
study equivalent to the one in section 8.3 and the results are reported for four different strikes:

Strike (K) Ŝ
+
0 Error IV (%) IV Error A B

0.013238 176.17 2.06e-08 30.38 2.326e-10 -5.5403 (1.1596 1)
0.023535 52.214 4.31e-08 26.78 1.818e-10 -10.2982 (1.1605 1)
0.033831 9.7898 4.09e-08 24.82 2.971e-10 -15.0481 (1.1615 1)
0.044128 1.4016 7.90e-09 23.72 2.016e-10 -19.7899 (1.1625 1)

where
• Ŝ

+
0 := Ŝ

+
0 (K,T

x1
8,16) and IV denote the MC estimator of the price (in basis points) and

the implied volatility (with OIS discounting) using the true exercise boundary defined
in (7.8).

• Error := |Ŝ+0 (K,T
x1
8,16) −

ˆ̃
S

+

0 (K,T x1
8,16)|, where

ˆ̃
S

+

0 (K,T x1
8,16) denotes the MC estimator

of the price (in basis points) using the approximate exercise boundary defined in (7.9).

• IV Error = |IV− ĨV|, where ĨV denotes the implied volatility (with OIS discounting)

calculated from
ˆ̃
S

+

0 (K,T x1
8,16).

• A ∈ R and B ∈ R
2 determine the linear approximation to the exercise boundary

defined by the function f in (7.8):

f(y) ≈ A+ 〈B, y〉.

Applying the procedure in Singleton and Umantsev (2002, pp. 432–434), we first calcu-

late the upper and lower quantiles for X
(1)
2 using Gaussian approximations for speed.

We solve for xl and xu in

f
([
q
X

(1)
2

(0.05), xl

])
= 0 and f

([
q
X

(1)
2

(0.95), xu

])
= 0.

Then, A and B are computed by fitting the straight line

A+ 〈B, y〉 = 0

through the two points yl =
[
q
X

(1)
2

(0.05), xl

]
and yu =

[
q
X

(1)
2

(0.95), xu

]
.

8.5.2. Basis swaption approximation. Let us also consider a 2Y2Y basis swaption. This
is an option to enter into a basis swap paying 3-month LIBOR plus spread S and receiving
6-month LIBOR, which starts at year 2 and ends at year 4. Once again we conduct an MC
study equivalent to section 8.4, and get that

Spread (S) B̂S
+
0 Price error C D

0.0010945 13.778 2.103e-06 -7.7191 (1 5.7514)
0.0019458 3.7972 4.784e-05 -14.0029 (1 5.7694)
0.0027971 0.64406 9.364e-05 -20.2158 (1 5.7868)
0.0036484 0.080951 5.852e-05 -26.3597 (1 5.8037)
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where

• B̂S
+
0 := B̂S

+
0 (S,T x1

8,16,T
x2
4,8 ) denotes the MC estimator of the price (in basis points)

using the true exercise boundary defined in (7.17).

• Price error := |B̂S+0 (S,T x1
8,16,T

x2
4,8 )−

ˆ̃
BS

+

0 (S,T x1
8,16,T

x2
4,8 )|, where

ˆ̃
BS

+

0 (K,T x1
8,16,T

x2
4,8 ) sim-

ilarly denotes the MC estimator of the price (in basis points) using the approximate
exercise boundary defined in (7.18).

• C ∈ R and D ∈ R
2 determine the linear approximation to the exercise boundary

defined by the function g in (7.17):

g(y) ≈ C+ 〈D, y〉.

Applying again the same procedure, we first calculate the upper and lower quantiles

for X
(1)
2 and solve for x̃l and x̃u in

g
([
q
X

(1)
2

(0.05), x̃l

])
= 0 and g

([
q
X

(1)
2

(0.95), x̃u

])
= 0.

Then, C and D are computed by fitting the straight line

C+ 〈D, ỹ〉 = 0

through the two points ỹl =
[
q
X

(1)
2

(0.05), x̃l

]
and ỹu =

[
q
X

(1)
2

(0.95), x̃u

]
.

These simple examples highlight once again the accuracy of the linear boundary approxi-
mations developed in sections 7.1 and 7.2.

9. Concluding remarks and future research. Finally, let us conclude with some remarks
that further highlight the merits of the affine LIBOR models and some topics for future
research. Consider the following exotic product: a loan with respect to a 1$ notional over a
monthly tenor structure T = {0 = T0 < T1 < · · · < TN} with optional interest payments due
to the following scheme: at time t = 0, the product holder may contract to settle the first
interest payment either after 1, 3, or 6 months (as long as the maturity TN is not exceeded).
Next, at the first settlement date, the holder may choose again either the 1-, 3-, or 6-month
LIBOR to be settled 1, 3 or 6 months later (while not exceeding TN ). She/He continues until
the last payment is settled at TN and the notional is paid back. Clearly, the value of this
product at t = 0 in the single curve (precrisis) LIBOR world would be simply zero. However,
in the multiple curve world the pricing of this product is highly nontrivial. In particular,
such an evaluation would involve the dynamics of any LIBOR rate over the periods [Ti, Tj ] ,
0 ≤ i ≤ j ≤ N , where Tj − Ti equals 1, 3 or 6 months. As a matter of fact, the affine
LIBOR model with multiple curves presented in this paper is tailor made for this problem as
it produces “internally consistent” LIBOR and OIS rates over any subtenor structure. This
means that for all subtenor structures the rates have the same type of dynamics and the
driving process remains affine under any forward measure. To the best of our knowledge,
this is the only multiple curve LIBOR model in the literature that naturally produces this
consistency across all different tenors. The full details of the pricing of this product are,
however, beyond the scope of this article.
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The property of internal consistency is beneficial already in the single curve LIBORmodels.
More precisely, the dynamics of LIBOR rates in the classical LMMs are specified by setting
a “natural” volatility structure of a LIBOR system based on a particular tenor structure.
As a consequence, the volatilities of the LIBOR rates spanning, e.g., a double period length
are immediately hard to determine, as they contain the LIBOR rates of the shorter period.
On the contrary, in the single curve affine LIBOR models the dynamics of the LIBOR are
specified via ratios of martingales that are connected with different underlying tenors, thus
one has simultaneously specified the dynamics of all possible LIBOR rates in an internally
consistent way.

However, the other side of this coin is that a proper choice of the driving affine process,
and the effective calibration of the affine LIBOR models entailed, are far from trivial. In fact
these issues require the development of new approaches and thus provide a new strand of
research on its own. Therefore the calibration experiments in this paper are to be considered
preliminary and merely to demonstrate the potential flexibility of the affine LIBOR model
with multiple curves.

Appendix A. Terminal correlations.
This appendix is devoted to the computation of terminal correlations. The expression

“terminal correlation” is used in the same sense as in Brigo and Mercurio (2006, section 6.6),
i.e., it summarizes the degree of dependence between two LIBOR rates at a fixed, terminal
time point. Here the driving process is a general affine process and not just an affine diffusion
as in section 5.4.

We start by introducing some shorthand notation:

Φx
k(t) := φTN−t(v

x
k−1)− φTN−t(u

x
k),

Ψx
k(t) := ψTN−t(v

x
k−1)− ψTN−t(u

x
k),

Φx1,x2

k1,k2
(t) := Φx1

k1
(t) + Φx2

k2
(t),

Ψx1,x2

k1,k2
(t) := Ψx1

k1
(t) + Ψx2

k2
(t),

where k ∈ Kx and kl ∈ Kxl for l = 1, 2. Then, we have from (4.3) that

1 + δxl
Lxl
kl
(Ti) =M

v
xl
kl−1

Ti
/M

u
xl
kl

Ti
= exp

(
Φxl
kl
(Ti) +

〈
Ψxl

kl
(Ti),XTi

〉)
(A.1)

for l = 1, 2 and Ti ≤ T x1
k1−1 ∨ T

x2
k2−1. We also denote the moment generating function of XTi

under the measure PN as follows:

ΘTi(z) = EN

[
e〈z,XTi

〉] = exp
(
φTi(z) + 〈ψTi(z),X0〉

)
.(A.2)

Therefore we get that

EN

[
M

vxk−1

Ti
/M

ux
k

Ti

]
= eΦ

x
k(Ti)ΘTi

(
Ψx

k(Ti)
)
,(A.3)

EN

[(
M

vxk−1

Ti
/M

ux
k

Ti

)2]
= e2Φ

x
k(Ti)ΘTi

(
2Ψx

k(Ti)
)
,(A.4)

EN

[
M

v
x1
k1−1

Ti
/M

u
x1
k1

Ti
·M

v
x2
k2−1

Ti
/M

u
x2
k2

Ti

]
= e

Φ
x1,x2
k1,k2

(Ti)ΘTi

(
Ψx1,x2

k1,k2
(Ti)

)
.(A.5)
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The formula for terminal correlations follows after inserting the expressions above in the
definition of correlation and doing some tedious, but straightforward, computations:

CorrTi

[
Lx1
k1
, Lx2

k2

] (A.1)
= Corr

[
M

v
x1
k1−1

Ti
/M

u
x1
k1

Ti
,M

v
x2
k2−1

Ti
/M

u
x2
k2

Ti

]
=

ΘTi

(
Ψx1,x2

k1,k2
(Ti)

)
−ΘTi

(
Ψx1

k1
(Ti)

)
ΘTi

(
Ψx2

k2
(Ti)

)√
ΘTi

(
2Ψx1

k1
(Ti)

)
−ΘTi

(
Ψx1

k1
(Ti)

)2√
ΘTi

(
2Ψx2

k2
(Ti)

)
−ΘTi

(
Ψx2

k2
(Ti)

)2 .
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E. Eberlein and W. Kluge, Calibration of Lévy term structure models, in Advances in Mathematical Finance:

In Honor of Dilip B. Madan, M. Fu, R. A. Jarrow, J.-Y. Yen, and R. J. Elliott, eds., Birkhäuser, Boston,
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D. Filipović and A. Trolle, The term structure of interbank risk, J. Financ. Econ., 109 (2013), pp. 707–733.
B. Flesaker and L. P. Hughston, Positive interest, Risk Magazine, 9 (1996), pp. 46–49.



AFFINE LIBOR MODELS WITH MULTIPLE CURVES 1025

M. Fujii, Y. Shimada, and A. Takahashi, A market model of interest rates with dynamic basis spreads in
the presence of collateral and multiple currencies, Wilmott Mag., 54 (2011), pp. 61–73.

J. Gallitschke, S. Müller, and F. T. Seifried, Post-crisis interest rates: XIBOR mechanics and basis
spreads, preprint, SSRN/2448657, 2014.

J. Gil-Pelaez, Note on the inversion theorem, Biometrika, 38 (1951), pp. 481–482.
P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, New York, 2003.
Z. Grbac and A. Papapantoleon, A tractable LIBOR model with default risk, Math. Financ. Econ., 7 (2013),

pp. 203–227.
M. Henrard, The irony in the derivatives discounting part II: The crisis, Wilmott J., 2 (2010), pp. 301–316.
F. Hubalek and J. Kallsen, Variance-Optimal Hedging and Markowitz-Efficient Portfolios for Multivariate

Processes with Stationary Independent Increments with and without Constraints, TU München, manuscript,
2005.

J. Hull and A. White, LIBOR vs. OIS: The derivatives discounting dilemma, J. Invest. Manag., 11 (2013),
pp. 14–27.

T. R. Hurd and Z. Zhou, A Fourier transform method for spread option pricing, SIAM J. Financial Math.,
1 (2010), pp. 142–157.

F. Jamshidian, LIBOR and swap market models and measures, Finance Stoch., 1 (1997), pp. 293–330.
M. Keller-Ressel, Affine Processes: Theory and Applications to Finance, Ph.D. thesis, TU Vienna, Vienna,

2008.
M. Keller-Ressel and E. Mayerhofer, Exponential moments of affine processes, Ann. Appl. Probab., 25

(2015), pp. 714–752.
M. Keller-Ressel, A. Papapantoleon, and J. Teichmann, The affine LIBOR models, Math. Finance, 23

(2013), pp. 627–658.
C. Kenyon, Short-rate pricing after the liquidity and credit shocks: Including the basis, Risk, 2010, pp. 83–87.
M. Kijima, K. Tanaka, and T. Wong, A multi-quality model of interest rates, Quant. Finance, 9 (2009), pp.

133–145.
M. Ladkau, J. Schoenmakers, and J. Zhang, Libor model with expiry-wise stochastic volatility and dis-

placement, Int. J. Portfolio Analy. Manag., 1 (2013), pp. 224–249.
K. Levin, The Bloomberg Volatility Cube, Technical documentation, Bloomberg L.P., 2012.
F. Mercurio, Interest Rates and the Credit Crunch: New Formulas and Market Models, preprint,

SSRN/1332205, 2009.
F. Mercurio, A LIBOR market model with a stochastic basis, Risk, 2010a, pp. 84–89.
F. Mercurio, LIBOR Market Models with Stochastic Basis, preprint, SSRN/1563685, 2010b.
F. Mercurio and Z. Xie, The basis goes stochastic, Risk, 2012, pp. 78–83.
N. Moreni and A. Pallavicini, Parsimonious HJM modelling for multiple yield-curve dynamics, Quant.

Finance, 14 (2014), pp. 199–210.
L. Morino and W. J. Runggaldier, On multicurve models for the term structure, in Nonlinear Economic

Dynamics and Financial Modelling, R. Dieci, X. Z. He, and C. Hommes, eds., Springer, Chan, Switzerland,
2014, pp. 275–290.

M. Musiela and M. Rutkowski, Martingale Methods in Financial Modelling, 2nd ed., Springer, Berlin, 2005.
T. A. Nguyen and F. Seifried, The multi-curve potential model, Int. J. Theor. Appl. Finance., to appear.
A. Papapantoleon, Old and new approaches to LIBOR modeling, Stat. Neerl., 64 (2010), pp. 257–275.
A. Papapantoleon and R. Wardenga, Computation of Value Adjustments in Affine LIBOR Models with

Multiple Curves, manuscript, 2015.
A. Papapantoleon, J. Schoenmakers, and D. Skovmand, Efficient and accurate log-Lévy approximations
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