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A FINITE ELEMENT BASED P3M METHOD FOR N-BODY

PROBLEMS

NATALIE N. BEAMS∗, LUKE N. OLSON† , AND JONATHAN B. FREUND‡

Abstract. We introduce a fast mesh-based method for computing N-body interactions that
is both scalable and accurate. The method is founded on a particle-particle–particle-mesh (P3M)
approach, which decomposes a potential into rapidly decaying short-range interactions and smooth,
mesh-resolvable long-range interactions. However, in contrast to the traditional approach of using
Gaussian screen functions to accomplish this decomposition, our method employs specially designed
polynomial bases to construct the screened potentials. Because of this form of the screen, the
long-range component of the potential is then solved exactly with a finite element method, leading
ultimately to a sparse matrix problem that is solved efficiently with standard multigrid methods.
Moreover, since this system represents an exact discretization, the optimal resolution properties of
the FFT are unnecessary, though the short-range calculation is now more involved than P3M/PME
methods. We introduce the method, analyze its key properties, and demonstrate the accuracy of the
algorithm.

Key words. N-body, finite element, multigrid, P3M, PME, multipole methods

AMS subject classifications. 70–08, 70F10, 65N30, 65N99

1. Introduction. N -body interactions arise in a range of applications, includ-
ing molecular dynamics, plasma dynamics, vortex methods, and viscous flow: sys-
tems that are described by a Green’s function solution to the Poisson equation or its
derivatives. We focus on three-dimensional electrostatic-like 1/R interactions, where
R is the distance to a particle; this is the simplest kernel in three dimensions and
well-known for this class of problems. However, the resulting algorithm we describe
extends to other systems. We consider a periodic domain, which is commonly used to
model extensive systems, and discuss a straightforward extension to other boundary
conditions in Section 2.6. Without loss of generality we consider a L3 cubic unit cell
containing N point charges, which has the total electrostatic potential energy

U =
1

2

∞∑

n=−∞

N∑

i,j=1
i6=j,n=0

QiQj

|xi − xj + nL|
≡

1

2

N∑

i=1

QiΦi,(1.1)

where Φi is the electrostatic potential at location xi of particle i with charge Qi. The
central challenge in (1.1) is the computation of the potential,

(1.2) Φ(xi) =

∞∑

n=−∞

N∑

j=1
i6=j,n=0

Qj

|xi − xj + nL|
,

because of the fairly slow 1/R decay rate of the interactions at large distances.
There are a number of approaches for efficiently evaluating (1.2). The most

widely used methods are generally classified as either tree-based, such as the fast
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multipole method (FMM) [11], or mesh-based (sometimes called “particle-in-cell”),
such as the particle-particle–particle-mesh (P3M) method [16] and its popular variant,
the particle-mesh-Ewald (PME) method [5, 7]. In the FMM, particles are grouped
within multipole expansions to provide an accurate representation of their combined
influence at a distance, thus limiting the number of terms needed to explicitly compute
the interactions. The resulting algorithm scales with O(N) complexity, although the
coefficient in this scaling can be large, especially if a high-order multipole expansion
is required for the desired accuracy [12]. Efficient implementations are intricate—
especially in parallel—but demonstrated, and the FMM has been shown to be effective
as an adaptive three-dimensional algorithm [4]. The method also extends to systems
with more complicated kernels, such as Stokes flow [28, 30, 29].

In comparison, mesh-based methods also reduce the number of explicit calcula-
tions but achieve this by splitting the potential into a rapidly decaying component
Φsr, which is accurately calculated with inclusion of only a few short-range interac-
tions, and a smooth part Φsm, which is solved on a mesh covering the domain [16].
It is instructive to view this splitting as the addition and subtraction of strategically
selected “screening” functions, so that the potential in (1.2) decomposes as

(1.3) Φi = Φi − Φsm
i

︸ ︷︷ ︸

Φsr
i

+Φsm
i .

The particle-mesh-Ewald (PME) method [5] bases this decomposition directly
on the Ewald summation [8] for (1.2) and uses Lagrangian interpolation to move
between particle locations and the mesh, while the smooth PME (SPME) uses B-
spline interpolants, similar to those proposed in the P3M method [7]. PME-based
algorithms use Gaussian screening functions, as illustrated in Figure 1.1. Here, the
screen is designed to yield a Φsr that is straightforward to calculate within a prescribed
cutoff at radius Rc, while the long-range portion of the potential remains smooth. In

Fig. 1.1: Introduction of a Gaussian screen to define (1.3) and resulting decomposition of the
potential of the singular charge.

PME-based methods, the Gaussian screen yields a Φsm that is accurately solved by
fast Fourier transforms (FFTs). To do this, the screen is interpolated to a regular
mesh and the Poisson (or similar) operator is inverted. For computational efficiency
it is desirable that these screens be as compact as possible and barely resolved on
the mesh, since this maximizes the decay of the screened potential Φsr. Fast decay
allows for a small point-to-point interaction cutoff distance Rc, which reduces the
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number of interactions that need to be explicitly computed for the targeted accuracy.
The ideal wavenumber resolution of the FFT provides accurate representation of the
most compact screens possible. The FFT also makes these methods most natural for
periodic domains, but they can be extended to free space [16, 24, 9].

Here we propose a fundamentally new decomposition that is constructed within
a P3M-type framework. The method incorporates screen potentials that are selected
to yield exact mesh potentials, which has many potential benefits. The screens are
designed for a mesh and thus have no explicit dependence on problem geometry; this
suggests complex geometries as well as more general boundary conditions fit naturally
within this method. In addition, the exact mesh potential recast the problem as sparse
matrix problem where multigrid methods are known (and shown in Section 4) to be
effective and scale to high core counts [1]. As a result, since the method does not rely
on the Fourier resolution for an accurate mesh solution, a global FFT can be avoided,
which may be beneficial at extreme scales. Indeed, while multigrid methods are
ultimately latency bound, they do not exhibit the strong dependence on a machine’s
half-bandwidth, which is a limited factor of using multidimensional FFTs a large core
counts [10].

The new decomposition we propose comes with the cost of representing more
intricate short-range interactions. The calculations are more involved than the simple
isotropic point-to-point interactions of PME, but are tractable and more importantly
local, which contributes to scalability. As we highlight in the following sections, the
short-range potential also has fast but algebraic decay (up to 1/R6 in our examples),
which is less attractive than the exponential decay seen in PME, thus possibly leading
to more local interactions.

Improvements to Ewald-type schemes range from coarsening strategies to reduce
the number of grid points by using a staggered mesh [3] to multilevel approaches [2]
that yield increased locality in the FFT calculations while resulting in only a small
increase in total work. Moreover, other methods such as the Multilevel Summation
Method (MSM) [25, 26, 27, 17] take different approach to operator splitting altogether.

In summary, the goal of this paper is to detail a method the incorporates mesh-
based screens and to investigate the accuracy of such an approach. In Section 2, we
develop the mathematical construction of each component. In particular, we detail
the screen functions that lead to the exact sparse linear system for Φsm and the local
evaluation of Φsr. In Section 3, we develop a performance model for the method
and discuss its implications in a parallel setting. A numerical experiment is shown
in Section 4 to confirm the accuracy of our method. Additional considerations and
possible extensions are discussed in Section 5.

2. Description of method. The Ewald decomposition is often viewed through
the construction of a screen potential to define the corresponding short-range and
long-range potentials. The usual PME formulation is consistent with the original
Ewald decomposition in that it uses a Gaussian screen function

(2.1) ρGi (x) = Qiρ0e
−a2|x−xi|

2

.

This screen, as depicted in Figure 1.1, yields a short-range potential so that Φsr ∝
erfc(a|x − xi|)/|x − xi|, which is straightforward to compute. The resulting mesh
potential satisfies the Poisson problem,

(2.2) −∇ · ∇Φsm =
∑

i

ρi(x),
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which is then optimally solved using FFTs on a mesh.
We instead propose screening functions ρi(x) that are piecewise polynomials of

order q, as shown in Figure 2.1. The corresponding potential is then solved exactly

Fig. 2.1: Introduction of a polynomial screen and resulting decomposition of the potential of the
singular charge.

with (2.2) using a finite element method with basis functions of order p = q+2. That
is, the potential is represented exactly in the finite element space, making the optimal
resolution provided by an FFT-based solve unnecessary.

Next, we describe the details of the method, following the four basic steps of
P3M methods: assignment of charges to the mesh, solving for the smooth potential
on the mesh, transferring the potential back to the charge locations, and calculating
the point-to-point (short-range) interactions. A high-level synopsis of the algorithm
is described in Algorithm 1 to illustrate the structural pieces of our approach.

Algorithm 1: Polynomial Screen Method for Calculating Potential

Input: A mesh of elements ej and a group of point charges Qi

Return: Potential at locations of charges
for each charge Qi {charge assignment, Section 2.1}

place Qi in element
solve for screen {(2.10) or (2.19)}

for each element ej
if element ej ∈ surface

adjust boundary conditions as necessary {see (2.26)}

apply charge assignment operator to form ρm {see (2.9)}

perform multigrid solve of −∇2Φsm = ρm {see (2.2)}

for each charge Qi {evaluations, Sections 2.3 and 2.4}

Φi ← Φsr
i +Φsm

i {mesh-to-charge assignment}

We assume a collection of N charges Q ≡ {Qi}
N
i=1 located at xc

i in a cube Ω =

[0, L]
3
(see Figure 2.2). A mesh with Nel = nx

el × n
y
el × n

z
el elements is constructed to

conform to the domain, and a uniform mesh is assumed in each direction for simplicity
of presentation — i.e., nel = nx

el = ny
el = nz

el. Finally, the collocation points for q-order

basis functions on the mesh are denoted xm
j , with j = 1, . . . ,M ≡ (qnel + 1)3.

2.1. Charge assignment. A central component of particle-mesh methods is
the assignment of singular charges to the mesh, yielding a mesh-based charge density
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Fig. 2.2: Schematic configuration showing N charges of strength Qi at locations xc

i distributed in
the cubic domain Ω of size hnel × hnel × hnel, where h is the size of the cubic finite elements. The
finite element centers are x̄ and the collocation points are xm

j
.

function, ρm(x
m). In particular, we seek an assignment function W(x) that reflects

our specially selected screen functions and provides a weighting that distributes a
charge Qi at x

c
i to each collocation point xm

j of the basis functions:

(2.3) ρm(x
m
j ) = Qi

N∑

i=1

W(xm
j ;x

c
i ).

Existing methods use Lagrange polynomials (PME [5]) or B-splines (P3M [16] and
SPME [7]) for this weighting, the latter of which work particularly well with FFTs.
The charge assignment function impacts both accuracy and efficiency of the method.
In our approach we design an assignment operator based directly on polynomial basis
functions for compatibility with a finite-element-based Poisson solver.

2.1.1. Defining the polynomial screens. We define our screen density func-
tion for a single charge Qi ∈ Q as

(2.4) ρi(x) =
∑

j

cjψj(x),

with linear superposition providing the extension to multiple charges. Here ψj(x) are a
collection of q-order Lagrange basis functions over an index set determined as follows.
If charge Qi is located within element τj of the mesh, we choose V i

ρ = ∪τ∩τj 6=0τ
to be the interpolation support of the charge assignment operator. That is, the
support is the union of the element of the mesh that includes the charge along with
all neighboring elements, leading to a support of 27 elements in three dimensions.
Generalization to other choices for this support are briefly discussed in Section 5. To
construct the polynomial screen, we consider the degrees of freedom which are interior
to or on the faces of the element containing the charge. For q-order interpolating
polynomials, this leads to dim(V i

ρ ) = (q + 1)
3
degrees of freedom. These degrees of
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freedom are determined so that the charge-screen combination has a potential that
decays rapidly in space by considering the multipole expansion of the screen for a
point well outside the screen, given by
(2.5)

Φsc
i (x) =

1

R̂

∫

V i
ρ

ρi(ξ) dξ−
1

R̂2

∫

V i
ρ

ρi(ξ) (ξ·r̂) dξ+
1

2R̂3

∫

V i
ρ

ρi(ξ)[3(ξ · r̂)
2
−|ξ|2] dξ+· · ·

where R̂ = (x− x̄i
ρ)/h, with x representing the observation point, x̄i

ρ is the center of
the screen volume, and h is the mesh size. The quantity r̂ is the unit direction vector
R̂/|R̂|.

For a chargeQi located at xi = (xi, yi, zi) in element τj (see Figure 2.2), we denote
the offset δi = (δxi , δ

y
i , δ

z
i ) = xi− x̄j with respect to the center of the element x̄j , and

define the (l,m, n)-moment and centered (l,m, n)-moment of the screen function as

ρ
(l,m,n)
i =

∫

V i
ρ

(x− δxi )
l
(y − δyi )

m
(z − δzi )

n
ρi(x) dx,(2.6)

ρ̄
(l,m,n)
i =

∫

V i
ρ

xlymznρi(x) dx.(2.7)

where the origin is taken to be x̄i
ρ, the center of the screen volume V i

ρ . Dividing

ρ
(0,0,0)
i =

∫

V i
ρ

ρi(x) dx by R̂ = |xi − x|/h gives the first term of the screen’s multipole

expansion from (2.5). Thus, requiring ρ
(0,0,0)
i = 1 guarantees that the combined point-

charge and screen have a potential that decays at least as fast as 1/R2 with distance
from the point charge. Likewise, zeroing higher moments of the screen enforces the
cancellation of dipole and higher-order terms and further accelerates the long-range
decay rate, thereby reducing the number of interactions that must be explicitly rep-
resented by point-to-point computations. With the available degrees of freedom, a
screen of order q cancels all terms up to R−(q+1), leaving Φsr = 1/R−Φsc ∼ R−(q+2).
This is summarized in Table 2.1, which shows the moments that result from perform-
ing the vector operations in the integrands of (2.5).

Power of R Single terms Mixed terms

R−1 1 —
R−2 x, y, z —
R−3 x2, y2, z2 xy, xz, yz
R−4 x3, y3, z3 x2y, xy2, x2z, xz2, y2z, yz2, xyz
...

...
...

R−N xN−1, yN−1, zN−1 xlymzn, with
1 ≤ l, m, n ≤ N − 2,
and l+m+ n = N − 1

Table 2.1: Polynomial terms in multipole expansion.

Constructing the screen. The goal is to perform multipole cancellations with
screens that are also compatible with the basis functions of our finite element dis-
cretization. With this description, each screen is composed of Nsc = n3

sc = (q + 1)
3
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nodal screen basis functions, ψ:

(2.8) ρi(x) =

Nsc−1∑

j=0

cjψj(x).

Thus, revisiting (2.3), the assignment operator W is

(2.9) W(xm
j ;x

c
i ) =







Nsc−1∑

k=0

ck(δi)ψk(x
m
j ) xm

j ∈ V
i
ρ

0 otherwise.

Restricting the first Nsc moments leads to a Nsc×Nsc linear system for the coefficients
c in (2.8):

(2.10)











ψ
(0,0,0)
0 ψ

(0,0,0)
1 · · · ψ

(0,0,0)
Nsc−1

ψ
(1,0,0)
0 ψ

(1,0,0)
1 · · · ψ

(1,0,0)
Nsc−1

...
. . .

...

ψ
(q,q,q)
0 ψ

(q,q,q)
1 · · · ψ

(q,q,q)
Nsc−1





















c0

c1
...

cNsc−1











=











1

0
...

0











,

where ψj
(l,m,n) is the (l,m, n)-moment, as defined in (2.6) for ρ, of the j-th screen

basis function ψj(x).
Figure 2.3 shows cross-sections of example screens constructed using q = 1, . . . , 4.

Each screen’s peak is attained near the marked charge, and the screens are constructed
to decay to zero at the edge of Vρ. The screens have support in the active screen region
V i
ρ and for q > 1, the screens are in general non-monotone.

We confirm in Figure 2.4 that screens constructed in this fashion yield potentials
with the expected behavior: in all cases, the far-field behavior approximates 1/R. In
Figure 2.5, we estimate mean and peak errors incurred for point-to-point interaction
truncation at a distance R̂c = Rc/h. To do this, the short-range potential is con-
structed for N = 84 charge locations and sampled in 42 directions; the behavior of
|Φsr| is shown in the figure as the weighted average |Φsr|avg and the maximum from all
samples |Φsr|max. In addition, the radius from a charge location is also normalized as
R̂ = R/h, and is denoted R̂ (see Figure 2.2). We see that twice the screen-size scale
R̂ ≈ 3 corresponds to the expected start of the asymptotic decay behavior. This is
the distance at which a multipole expansion is generally considered “well-separated”
and expected to show convergence with R. Both the mean and peak errors show the
expected behavior for increasing q beyond this distance.

A fast algorithm for screen construction. Solving (2.10) directly requires
O(N3

sc) operations for each screen, which is feasible, but is not necessary in general.
In the following, we design a fast algorithm for computing screens, which follows from
a generalization of the Parallel Axis Theorem applied to moments used in the system.
First, we note that the moments are additive. For example, the first moment in
variable x of basis function ψj satisfies

ψ
(1,0,0)
j =

∫

Vρ

xψ(x) dx− δxi

∫

Vρ

ψ(x) dx

= ψ̄
(1,0,0)
j − δxi ψ

(0,0,0)
j ,

(2.11)
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PSfrag replacements

x
y

(a) q = 1

PSfrag replacements

x
y

(b) q = 2

PSfrag replacements

x
y

(c) q = 3

PSfrag replacements

x
y

(d) q = 4

Fig. 2.3: Example linear through quartic screens for a single marked charge.
PSfrag replacements

R̂
R̂

|Φsr|avg or |Φsr|max

Φsc

q = 1
q = 2
q = 3
q = 4

1/R

(a)

PSfrag replacements

R̂
R̂

|Φsr|avg or |Φsr|max

Φsc

q = 1
q = 2
q = 3
q = 4

1/R

(b)

Fig. 2.4: Screen potential in two directions: (a) x− xi ∝ (1, 0, 0) and (b) x− xi ∝ (1, 1, 1).

where ψ̄j
(1,0,0) is the centered moment of the j-th basis function as in (2.7). Therefore,

second row of (2.10) is equivalent to

(2.12)

Nsc−1∑

j=0

cjψ̄
(1,0,0)
j = δxi

Nsc−1∑

j=0

cjψ
(0,0,0)
j = δxi .
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PSfrag replacements

R
R̂

|Φsr|avg or |Φsr|max

Φsc

q = 1, Φsr ∼ R̂−3

q = 2, Φsr ∼ R̂−4

q = 3, Φsr ∼ R̂−5

q = 4, Φsr ∼ R̂−6

Fig. 2.5: Maximum (solid) and average (dash-dot-dot) short-range potentials for screens with q = 1
to 4. The straight dash-dot lines denote the expected slopes.

Similarly, the second moment of ψj satisfies

ψ
(2,0,0)
j =

∫

Vρ

x2ψ(x) dx− 2δxi

∫

Vρ

xψ(x) dx+ (δxi )
2
∫

Vρ

ψ(x) dx

= ψ̄
(2,0,0)
j − 2δxi ψ̄

(1,0,0)
j + (δxi )

2ψ
(0,0,0)
j ,

(2.13)

so the third row of (2.10) becomes

Nsc−1∑

j=0

cjψ̄
(2,0,0)
j = 2δxi

Nsc−1∑

j=0

cjψ̄
(1,0,0)
j − (δxi )

2
Nsc−1∑

j=0

cjψ
(0,0,0)
j

= 2(δxi )
2 − (δxi )

2 = (δxi )
2.

(2.14)

Continuing this procedure for other moments in (2.10) yields:

(2.15)
























ψ
(0,0,0)
0 ψ

(0,0,0)
1 . . . ψ

(0,0,0)
Nsc−1

ψ̄
(1,0,0)
0 ψ̄

(1,0,0)
1

...
...

ψ̄
(q,0,0)
0

. . . ψ̄
(q,0,0)
Nsc−1

ψ̄
(0,1,0)
0

...
...

ψ̄
(q,q,q)
0 . . . ψ̄

(q,q,q)
Nsc−1















































c0

c1

...

cNsc−1
























=
























1

δxi
...

(δxi )
q

δyi
...

(δxi )
q
(δyi )

q
(δzi )

q
























,

which we write compactly as Cc = f . An advantage of this form is that for a uniform
mesh, the matrix C is the same for each screen, since the moments reference the center
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of the element. As a result, the matrix is pre-factorized leading to a complexity of
only O(N2

sc) to solve for each screen.
For small q this yields a small operation count, yet the computation is further

reduced if ψ(x) is separable, as is the case for the regular cubic mesh shown in Fig-
ure 2.2. In this case,

(2.16) ψκ(x) = ωi(x)ωj(y)ωk(z),

where ωi are the one-dimensional nodal basis functions for a mesh size h and κ =
i + (q + 1)j + (q + 1)2k with i, j, k ∈ [0, q]. With ψ separable, the moment integrals
are also separable:

ψ̄(l,m,n)
κ =

∫

V i
ρ

xlymznψκ(x) dx

=

(
∫ 3h/2

−3h/2

xlωi(x) dx

)(
∫ 3h/2

−3h/2

ymωj(y) dy

)(
∫ 3h/2

−3h/2

znωk(z) dz

)

.(2.17)

Following the notation of (2.7), we define

(2.18) ω̄
(l)
i =

∫ 3h/2

−3h/2

xlωi(x) dx

and likewise for the one-dimensional y and z centered moments. We take cκ =
wx

i w
y
jw

z
k and recognize that the right-hand side of (2.15) is also separable as fµ =

(δx)
l
(δy)

m
(δz)

n
with µ = l+(q+1)m+(q + 1)

2
n. This yields three equivalent (q + 1)

2

systems of the form

(2.19)

q
∑

i=0

ω̄
(l)
i (x)wx

i = (δx)
l
, l = 0, . . . , q

which are solved independently. The inverse of the matrix is computed once and
applied for all right hand sides, resulting in only O(n2

sc) operations per screen. This
method also extends to regular rectangular meshes, where h is not necessarily equal
in each direction.

2.2. Solution of the mesh potential. Given our construction of the screen ρ
using the finite element basis functions via (2.9), the solution of Φsm is straightfor-
ward. We simply use a finite element solver with basis functions um of order p = q+2,
which results in a symmetric, positive definite sparse linear system (under realistic as-
sumptions regarding the boundary conditions) that does not introduce any numerical
approximations.

Multigrid preconditioners are effective for this problem, even for high-order bases,
and allow the sparse matrix problem to be solved to any level of accuracy. As an ex-
ample, consider the case of a high-order finite element discretization of the Poisson
problem with Dirichlet boundary conditions. Figure 2.6 shows the convergence his-
tory of a multigrid preconditioned conjugate gradient method for basis functions of
order p = 1 through 6. An algebraic multigrid preconditioner, based on smoothed ag-
gregation using a more general strength measure [22] and optimal interpolation opera-
tor [21], is used. We observe only a weak dependence on p. Moreover, more advanced
multigrid techniques have shown still better scalings for both Poisson and other ellip-
tic problems such as for Stokes flow [15, 20]. Importantly for our principal objective,
multigrid preconditioners are well-known to exhibit high parallel efficiency [10, 1]. In
the following tests, we use AMG through the BoomerAMG package [13].
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PSfrag replacements

‖r‖2

CG iterations

conjugate gradient (CG)
multigrid preconditioned CG

increasing p

Fig. 2.6: Convergence history for the Poisson problem using basis elements of order p = 1, . . . , 6 for
both the conjugate gradient method (dot-dashed) and multigrid preconditioning (solid).

2.3. Evaluation of the smooth potential at charge locations. The next
step is to evaluate Φsm at the charge locations. For standard P3M and PME imple-
mentations, this involves interpolation with the Lagrangian or B-spline basis functions
from the charge assignment. In contrast, our method requires no interpolation, though
interpolation can be used to speed up calculations, if desired. Since the smooth po-
tential exists in each element as a linear combination of coefficients — i.e., the values
of Φsm at xm for all Nm points in an element — and the basis functions um, the
smooth potential is expressed exactly at any point as

(2.20) Φsm(x) =

Nm∑

j=1

Φsm(xm
j )umj (x− x̄),

where Nm is the number of collocation points in an element. Direct evaluation at the
charge locations x = xc

i is straightforward.

2.4. Short-range potential. Our formulation for the exact mesh solution yields
a more complex short-range interaction than PME. In addition to R, the short-range
interaction now also depends on the position of the charge relative to the under-
lying mesh. Consequently, additional effort is required to evaluate the short-range
interaction. However, the calculation is local, so it does not inhibit parallel efficiency.

The short-range potential at point x due to a charge Qi located at xi is

(2.21) Φsr
i (x) =

Qi

|x− xi|
− Φsc

i (x),

where

(2.22) Φsc
i (x) =

∫

V i
ρ

ρi(ξ)

|x− ξ|
dξ.
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Though feasible, performing accurate quadrature for each screen individually is com-
putationally expensive. We therefore shift a significant portion of this computational
effort to a pre-processing step, for which there are multiple options.

One approach is to consider a look-up table of pre-computed values for the screen
potential evaluated at xj due to a charge at xc

i . These values are represented in
a six-dimensional look-up table as Φsc(xj − xc

i ; δi), since they are a function of the
difference between the evaluation point and the charge location, and also the offset of
the charge within its element (which determines the screen).

With some additional computation, but still without resorting to direct evaluation
of (2.22), it is possible to remove the charge offset interpolation to reduce errors. We
accomplish this by recognizing the screen’s formulation as a linear combination of
basis functions,

Φsc
i (x) = Qi

Nsc−1∑

j=0

cj(δi)

∫

V i
ρ

ψj(ξ)

|x− ξ|
dξ(2.23)

= Qi

Nsc−1∑

j=0

cj(δi)Φ
b,sc
j (x− xc

i ).(2.24)

This approach yields Nsc look-up tables for basis-function potential values Φb,sc(xj −
xc
i ). However, for q ≥ 2 the polynomial nature of the screen leads to non-monotonic

decay for some directions within the region where the screen is active, as shown
in Figure 2.4. Consequently, a direct implementation of a look-up table for such
functions requires sufficient resolution, which is harder to achieve for larger q. For
good performance, knowledge of the underlying structure of the screen potentials
should be used to inform both the storage locations for the look-up table values and
the interpolation method.

2.5. A note about the self term. If the point x is the location of a charge, we
do not wish to include the potential due to this charge in our calculation. However,
we do still need to subtract the screen potential from the charge’s own screen, which is
sometimes called the “self” term. We can allow for this by amending our short-range
potential expression to include both cases:

(2.25) Φsr
i (x) =

{
Qi

|x−xi|
− Φsc

i (x) |x− xi| > 0

−Φsc
i (x) otherwise.

2.6. Alternate boundary conditions. The formulation above is presented
under the assumption of periodic boundary conditions, which is the simplest case and
important for a range of applications. It is straightforward to generalize boundary
conditions via the mesh potential Φsm. This is accomplished by adjusting for short-
range effects present at the boundary and then proceeding in the usual manner for a
finite element problem with the given type of boundary conditions. For example, for
a Dirichlet boundary condition of Φ = g on ∂V , the condition for our mesh problem
becomes

(2.26) Φsm|∂V = g − Φsr|∂V ,

which leads to

(2.27) Φ|∂V = Φsm|∂V +Φsr|∂V = g.
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A similar approach is used in [14]. This also extends to the case of Neumann or mixed-
type boundary conditions, with the usual constraint to address the non-uniqueness of
the fully Neumann problem. Free-space conditions impose the usual challenges but
are no more difficult for the proposed scheme than for any mesh-based Poisson solver.

3. Performance model. The computational cost of the method for N charges
is formulated as O(N)+O(M), where M = (pnel + 1)

3
is the total number of degrees

of freedom in the mesh. Example CPU time scalings for the major N -related com-
ponents is illustrated in Figure 3.1a, with the M -dependent mesh solve times shown
in Figure 3.1b. Given N and M and assuming on average N sr

el neighboring elements
in the short-range interaction list for each charge, then it is possible to express the
coefficients in the linear O(N) +O(M) operation count in terms of p. Such a formu-
lation provides a more detailed description of the actual costs of each component of
the method and their relationships to the order of the screens.
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3.1. Breakdown of costs. Screens ρi(x) of order q are built out of (q + 1)3 =
Nsc basis functions — recall that p = q + 2. The corresponding finite element solve
associated with these screens involves (p+ 1)

3
degrees of freedom per element and

a total of M degrees of freedom. We also define the average number of charges per
element as Ñ = N/Nel.

3.1.1. Screen construction. For each evaluation, the element containing each
charge is identified, and the offsets from the center of these elements determined. This
incurs a small O(N) cost, which we designate C1N . The screen coefficients are then
calculated. As shown in (2.19), assuming pre-computed inverses, this amounts to three

matrix-vector multiplications of size q + 1 = p− 1, for a cost of 6(p− 1)
2
− 3(p− 1).
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We then multiply the one-dimensional weights, resulting in two additional floating
point multiplications. The total cost for determining the screen coefficients is thus

(screen construction) ∼ [6(p− 1)2 − 3(p− 1) + 2(p− 1)3]N.

3.1.2. Short-range potential. The cost of evaluating the short-range poten-
tial depends on the method chosen for calculating Φsc, as discussed in Section 2.4.
In addition, there is a cost of O(N) due to the singular part of the short-range cal-
culations, which we denote SN . For a general six-dimensional look-up table, the
cost of calculating Φsc at a point due to all charges in the short-range interaction
volume is C2ÑN

sr
el , where C2 depends on the order of interpolation used. If Nsc

three-dimensional look-up tables are used, as we have done in the example calcula-
tions of Section 4, then the interpolation is repeated for (q + 1)

3
tables and combined

by an inner product with the screen coefficients and a multiplication by Qi for a total
of [C2(p− 1)

3
+ 2(p− 1)

3
]ÑN sr

el . The cost for the short-range calculation is then

(point-to-point evaluation) ∼ SN + [C2(p− 1)
3
+ 2(p− 1)

3
]ÑN sr

elN.

Since Ñ = N/Nel, this expression is also written in terms of N2. However, we
assume that in practice, ÑN sr

el is chosen to be small enough to render this effectively

as O(N). Furthermore, if Ñ is > 1, this cost is reduced further by calculating the
effects of all charges in an element at once in an “element-to-point” operation. To do
this, we compile a combined list of Qici for all the charges in any given element, so
that the screen potential for this sum at a point as calculated by (2.24) is the same
as if the charges were handled individually. The cost then is then reduced by a factor
of Ñ yielding

(element-to-point evaluation) ∼ SN + [C2(p− 1)
3
+ 2(p− 1)

3
− 1]N sr

elN.

3.1.3. Mesh solve. The “transfer” of the order-q screens to a representation in
order p = q+2 basis functions by (2.9) to construct the source ρm in the right-hand side
of the finite element solve (2.2) requires an inner product between a vector containing
the screen coefficients c(δ) with the evaluation of the order-q basis functions at the
collocation points, followed by a multiplication by Qi. This is done at each degree of
freedom within an active screen area, for a total of (3p+ 1)3× [2(p−1)]N operations.
The multigrid solve for the finite element problem is O(M), with a coefficient C that
depends on the convergence of the iterations, but is considered low in practice. Overall
the mesh solve thus has complexity

(mesh solve) ∼ {(3p+ 1)
3
× [2(p− 1)

3
]}N + CM.

3.1.4. Evaluation. The smooth potential is written as a combination of basis
functions at the location of each charge, as in (2.20). Thus evaluation involves (p+ 1)

3

basis functions at a cost of 2p operations for each function. However, empirically we
find that this cost is minimal in terms of CPU time.

3.2. Summary. The screen creation (mostly due to the “transfer” portion) and
short-range interaction calculations are the most costly even for modest values of
p given the scaling shown above. The relative costs of these two portions of the
algorithm depend on choices in short-range calculation method, mesh size, and q. For
any given cutoff error, decreasing mesh spacing decreases the number of short-range
interactions, but results in an increased number of collocation points M in the mesh
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solve. Likewise, increasing q also decreases the number of short-range interactions,
but at the price of the increased cost of constructing and manipulating screens for
larger q. Calculating the short-range effects of each individual charge becomes more
costly with increased q, though at a slower rate than the transfer. The scaling of these
components is shown in Figure 3.2 for cases of N = 102 to 106 randomly distributed
particles in a triply-periodic box with 6 859 elements. It is noted that once Ñ ≫ 1,
the singular short-range calculation loses its linearity in N . However, the screen
potential portion of the short-range calculation retains its linearity due utilization of
the “element-to-point” evaluation method.
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Fig. 3.2: Example CPU time vs. N for the two most costly local portions of the algorithm: (a)
creation of the screens, (b) calculation of short-range interactions for Nsr

el
= 7× 7× 7. The dot-dash

lines show the time associated with calculating singular potentials, while solid lines show times cal-
culating element-to-point screen potentials. At large N , there is an expected breakdown in linearity
for the singular potential calculations.

4. Example calculation. We consider cases with N ranging from 102 to 105

unit charges placed in a triply-periodic unit cube of elements with h = 0.067. The
exact positions are selected randomly, but distributed so that any given charge ex-
periences both long-range interactions, on the scale of the overall periodic domain
size, and short-range interactions of comparable magnitude. This is done to provide a
balanced test of both the short-range and smooth portions of our decomposition. To
achieve this, the charges are randomly distributed within two smaller cubes: [0, 1/2]

3

is biased toward positive charges, 55% to 45%, and [1/2, 1]
3
is biased equally strongly

toward negative charges. This set-up is visualized in Figure 4.1a for N = 100.
The potential is then calculated using a short-range interaction of 7× 7× 7 = 343

elements (corresponding to a minimum possible value of 3 for the cutoff distance
R̂c) for linear through quartic screens. This short-range cutoff is chosen to ensure
that the short-range potential of every charge near the cutoff exhibits asymptotic
behavior. The short-range calculation uses the approach of (2.24), with Nsc look-up
tables. These experiments are tested using a dual, quad-core Intel Xeon E5506 CPU
with 48 GB of main memory.

Remark 1. In our current implementation, we use a variation (but equivalent
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form) to this construction, in which the values stored in the tables are for “basis
screens” instead of screen basis functions. These basis screens, ρbasis, are the polyno-
mial screens associated with each node in an order-q finite element. The values of each
table are computed as a Dirichlet finite element solution for Poisson’s equation, with
−∇2Φbasis

i = ρbasisi . The computation is completed in a domain larger than the size
that will be kept in the look-up table to minimize boundary effects. Because these basis
screens follow our moment-canceling rules, they have long-range decay ∼ R̂−(q+2), and
the boundary conditions are accurately set by the first terms of the multipole expansion
(2.5). The finite element solver uses basis functions of order p, and the look-up tables
are stored in terms of their order-p basis functions, allowing them to be evaluated and
combined in the same way as Φsm for all charge locations. We note that because the
number of tables and coefficients is unchanged, the computational complexity for the
short-range calculation is not altered by this variation.

Upon calculation the potential is compared, allowing for a constant which is
included in a potential and in this case is equal to the average value of Φsm throughout
the computational domain, with that of an Ewald summation ΦE with large enough
resolution that we consider it the “exact” solution. This uses two periodic images in
physical space with a2 = 6.25 and four modes for each direction in the Fourier sum. As
we see for a representative calculation in Figure 4.2, the method has super-algebraic
convergence with q.
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In each of these tests, we use an algebraic multigrid preconditioned GMRES solver
with single precision residual tolerance — i.e., 1e − 7. Boomeramg [13] is used and
the resulting method yields 8 or fewer iterations in each of the tests reported above.
The timing dependence on mesh size is reported in Figure 3.1b where we see that the
solver exhibits O(M) scaling.

4.1. Estimated memory requirements. The memory requirements of the
method in our example calculations are classified as finite element matrices or particle-
related arrays. As the number of elements increases, the finite element matrices
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comprise a majority of the total allocated memory, as demonstrated in the following
for the case of N = 106:

Order of Particle FE matrices FE matrices
screens arrays (Nel = 9× 9× 9) (Nel = 25× 25× 25)

linear (q = 1): 184 MB 39 MB (≈ 18%) 844 MB (≈ 81%)
quartic (q = 4): 1120 MB 1290 MB (≈ 52%) 27 600 MB (≈ 95%)

As the polynomial order increases — e.g. q = 4, which corresponds with a 6th order
basis for the finite element solve — this effect increases as expected. We note that
this memory footprint is typical for high-order FEM, but more optimal methods do
exist [18].

5. Discussion.

5.1. Comparison to PME. While the method proposed here incorporates sev-
eral advantageous features of PME, there are several notable differences that may offer
benefits in certain settings. Our method no longer relies on the FFT, which may be
limiting a extreme scales (in comparison to other Poisson solvers) and forces an as-
sumption of structure on the compute geometry. The key is the introduction of a
mesh-based screen, which introduces additional complexities locally, but also allows
for a more general decomposition of the problem. There are particle-mesh variants
that use finite elements — e.g., some PIC methods [6, 23] — but these have been pro-
posed with a symmetric screen, which must be resolved on the mesh. We avoid this ap-
proximation, but at the cost of more intricate screen functions, which are constructed
with (and the resulting potentials evaluated by) using memory-local operations. This
fundamental difference hampers direct cost comparison with PME/P3M methods,
which perform well when global FFTs do not impose restrictions. Still, we make
some general comparisons in the following.

The locality of the new method comes at the cost of more intricate screens,
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which incur an O(p6) cost when represented by p-order basis functions as discussed in
Section 3. This is larger than the O(p̃3) cost of the p̃-order B-spline interpolations in
PME. However, the polynomial order p in the present scheme and the B-spline order
p̃ in PME are only loosely related. The B-spline order affects the overall accuracy of
the PME method since it affects the resolution of the mesh description of the smooth
potential. The polynomial order p in the present method does not, since the mesh
solve is exact for any p. Instead, p affects R̂c via the decay of the screened potential
as shown in Figure 2.5. This is important, since for uniform charge density the cost of
point-to-point interactions scales with volume ∼ R̂3

c . An independent Ewald splitting
parameter sets the corresponding truncation error at fixed cut-off radius for PME.

Similarly, the mesh density has different implications in the two methods. As
with the B-spline order, the mesh density in PME affects the accuracy by providing
more resolution for the potential. A denser mesh does not affect the short-range
calculation, but requires more global communication for the FFT. In contrast, the
mesh density in the present scheme decreases the communication burden for the short-
range component of the calculation by reducing the number of interactions included
for a given R̂c, since the cut-off radius is scaled by the mesh size, unlike in PME. The
communication required of the mesh solver is that of multigrid.

5.2. Comparison to FMM. The method presented in this paper shares sev-
eral attractive features of the fast multipole method, most notably the linear scaling.
The relative merits in comparison to FMM are likely application dependent, and the
preferred choice depends on several factors. Though intricate, the low communica-
tion burden of FMM leads to efficient implementations [19]. Both methods become
expensive with increased p, the basis order in the present scheme or the multipole
expansion order for FMM. Yet the highly local work load of the proposed high-order
screens is more suitable for emerging architectures with accelerators. Unlike FMM,
the present method is not naturally adaptive to larger regions without singularities —
e.g., charges. The degree to which FMM takes advantage of this in parallel depends
on load balancing issues of the system.

5.3. Other considerations. For dynamic application, the conservation proper-
ties of the overall scheme are important, such as conservation of energy in molecular
dynamics simulations. Since we are only evaluating potentials in this paper, we do
not consider momentum or energy conservation in detail. For the formulation as
presented, the operators we demonstrate do not exactly satisfy the symmetry dis-
cussed by Hockney and Eastwood [16], so exact momentum conservation is not antici-
pated. Moreover, as the basis functions are not differentiable at the collocation points,
straightforward analytical differentiation of the potentials is not always possible.

The nature of the mesh solve in the presented method lends itself to varied bound-
ary conditions since the fundamental formulation of the algorithm does not change
when the boundary conditions are changed. As with PME, periodic boundary condi-
tions are the simplest to implement in our method, and require no extra effort beyond
creating a finite element matrix that honors the periodic structure of the mesh. As
presented in Section 2.6, Dirichlet and Neumann boundary conditions simply require
calculations to allow for any short-range effects already present on the surface before
applying the conditions to the finite element problem.

The method is also extensible to non-uniform meshes common in finite element
discretizations without fundamental changes. The main differences for general meshes
is in the cost of the method. The screens are still built in the same way, that is, they
still solve (2.10). However, the discussed simplifications of the screen coefficient calcu-
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lations depend on a regular, rectangular mesh and are not applicable to an unstruc-
tured mesh with general quadrilateral elements. Thus, the flexibility of a complex
mesh is balanced with the benefits of localizing the mesh cells. Likewise, the short-
range potential becomes more difficult to generalize due to the many different shapes
a screen could take based on the shapes of the elements composing it. Gaining accu-
rate values for the short-range potentials may require quadrature-based evaluations
for each pair of interacting charges. However, the locality and structured character
of these operations is expected to coincide with high-throughput accelerators.

In our demonstration, we have presented one choice for the support of the screens.
Another possible variation of the method is to limit the screens to have support in
only the element containing the charge, so that each screen includes only degrees of
freedom interior to the element and not those on the faces. Using the same multipole
representation to construct the screen, this choice results in a loss of two powers in the
short-range decay of the screens — e.g., q = 3 for the screen yields a R−3 far-field decay
instead of R−5, while of course still requiring p = 5 in the mesh solve (and all the cost
incurred by this order of p). However, the more compact screen provides an asymptotic
decay rate starting at R̂ ≈ 1 instead of R̂ ≈ 3 (see Figure 2.5), which reduces the
cost through reducing R̂c for certain target accuracies. The local composition of these
one-element screens also facilitates the move to unstructured meshes, helping alleviate
some of the additional cost in the screen-related calculations.

In constructing our screens, we have chosen to maximize the far-field decay rate.
Some simulation goals may be better served by other choices — e.g., by a weighted
objective function. In such cases, a least-squares optimization might provide screens
with advantageous properties to meet overall simulation objectives. We have also
restricted our discussion to purely polynomial basis functions. Given the regularity of
the underlying Green’s function, basis enrichments with specially designed functions
chosen to increase the short-range decay likely enhance the overall performance of the
method, though this also disrupts the exactness of the mesh solve.
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