
Minimal geodesics along volume preserving maps,
through semi-discrete optimal transport

Quentin Mérigot∗† Jean-Marie Mirebeau∗‡

August 18, 2018

Abstract

We introduce a numerical method for extracting minimal geodesics along the group of
volume preserving maps, equipped with the L2 metric, which as observed by Arnold [Arn66]
solve Euler’s equations of inviscid incompressible fluids. The method relies on the general-
ized polar decomposition of Brenier [Bre91], numerically implemented through semi-discrete
optimal transport. It is robust enough to extract non-classical, multi-valued solutions of Eu-
ler’s equations, for which the flow dimension is higher than the domain dimension, a striking
and unavoidable consequence of this model [Shn94]. Our convergence results encompass this
generalized model, and our numerical experiments illustrate it for the first time in two space
dimensions.

1 Introduction

The motion of an inviscid incompressible fluid, moving in a compact domainX ⊆ Rd, is described
by Euler’s [Eul65] equations

∂tv + (v · ∇)v = −∇p div v = 0, (1)

coupled with the impervious boundary condition v · n = 0 on ∂Ω. Here v denotes the fluid
velocity, and p the pressure acts as a Lagrange multiplier for the incompressibility constraint.
In Lagrangian coordinates, Euler equations (1) yield the geodesic equations along the group
SDiff volume preserving diffeomorphisms of X, equipped with the L2 metric [Arn66]. Consider
an inviscid incompressible fluid flowing during the time interval [0, 1], and a map s∗ : X → X
giving the final position s∗(x) of each fluid particle initially at position x ∈ X. In this paper, we
discretize and numerically investigate a natural approach to reconstruct the intermediate fluid
states: look for a minimizing geodesic joining the initial configuration s∗ = Id to the final one s∗

minimize
ˆ 1

0
‖ṡ(t)‖2dt, subject to s(0) = s∗, s(1) = s∗, and ∀t ∈ [0, 1], s(t) ∈ S. (2)

We denoted by S ⊆ L2(X,Rd) the space of maps preserving the Lebesgue measure on X, which
in dimension d ≥ 2 is the closure of SDiff. Despite this first relaxation, note that the optimized
functional in (2) does not penalize the spatial derivatives of s, whereas the constraint involves
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Figure 1: The motion of inviscid incompressible fluids admits three formulations, either (I)
Eulerian based on the local speed v : [0, 1]×X → Rd, (II) Lagrangian based on diffeomorphisms
s(t, ·) which integrate the speed: ∂ts(t, x) = v(t, s(t, x)), or (III) relaxed as a superposition of
individual particles paths ω ∈ Ω, weighted by a measure µ.

the jacobian of s. The study of (2) thus requires non-standard variational techniques, reviewed
in [FD12].

In dimension d ≥ 3, the optimization problem (2) needs not have a minimizer in s ∈
H1([0, T ],S) [Shn94], and minimizing sequences (sn)n∈N may instead display oscillations reminis-
cent of an homogeneization phenomenon. A second relaxation is required, based on generalized
flows [Bre89] which allow particles to split and their paths to cross. This surprising behavior is
an unavoidable counterpart of the lack of viscosity in Euler’s equations, which amounts to an
infinite Reynolds number. Generalized flows are also relevant in dimension d ∈ {1, 2} if the un-
derlying physical model actually involves a three dimensional domain X × [0, ε]3−d in which one
neglects the fluid acceleration in the extra dimensions [Bre08]. Consider the space of continuous
paths (of fluid particles)

Ω := C0([0, 1], X).

Let et(ω) := ω(t) be the evaluation map at time t ∈ [0, 1], so that (e0, e1)(ω) = (ω(0), ω(1)). Let
also Leb denote the Lebesgue measure restricted to the domain X, normalized for unit mass,
and let f#µ denote the push-forward of a measure µ by a measurable map f . The geodesic
distance (2) admits a convex relaxation, linearizing both the objective and the constraints, and
for which the existence of a minimizer is guaranteed. It is posed on probability measures on Ω,
called generalized flows

d2(s∗, s
∗) := min

µ∈Prob(Ω)

ˆ
Ω
A(ω)dµ(ω), subject to


A(ω) :=

´ 1
0 |ω̇(t)|2dt

(e0, e1)#µ = (s∗, s
∗)# Leb,

∀t ∈ [0, 1], et #µ = Leb .

(3)

Note that the path action A : Ω→ R+ ∪ {+∞}, although unbounded, is lower semi-continuous.
The first constraint (e0, e1)#µ = (s∗, s

∗)# Leb expresses that moving fluid particles from s∗(x)
to s∗(x) for all x ∈ X, or from the origin ω(0) to the end ω(1) of the paths ω ∈ Ω as weighted
by µ, yields equivalent transport plans. The second constraint et #µ = Leb states that the path
positions ω(t), as weighted by µ, equidistribute on X at each time t ∈ [0, 1], which amounts to
incompressibility. A classical flow s ∈ H1([0, 1],S) can be regarded as a generalized flow, with
paths t 7→ s(t, x), weighted by the Lebesgue measure on x ∈ X. Our discretization truly solves
(3), rather than (2), and convergence is established in this relaxed setting.

The incompressibility constraint in (1), (2) and (3), gives rise to a Lagrange multiplier,
the pressure, which is the unique maximizer to a concave optimization problem dual to (3),

2



m0 mT−1

s∗

. . .

πS(mT−1). . .

m1 mT

s∗

πS(m1)

S

MN

Figure 2: The geodesic distance d2(s∗, s
∗) along the “manifold” S of volume preserving maps,

represented as a blue curve, is estimated (6) as the length of a chain (mi)
T
i=0 in the linear subspace

MN , represented as a black line, plus penalizations for the boundary values and the distance from
the chain elements to S.

see [Bre93]. The primal (3) may in contrast have several solutions, up to the notable ex-
ception [BFS09] of smooth flows in dimension d = 1. The pressure is a classical function
p ∈ L2

loc( ]0, T [, BV(X)), see [AF07] (which requires the technical assumption that X is a d-
dimensional torus). This regularity is sufficient to show that any solution s to (2) (resp. µ-almost
any path ω, for any solution µ to (3)) satisfies

∂tts(t, x) = −∇p(t, s(t, x)), resp. ω̈(t) = −∇p(t, ω(t)). (4)

In other words, fluid particles move by inertia, only deflected by the force of pressure. Assume
that the pressure hessian is sufficiently small, precisely that

∀t ∈ [0, 1], ∀x ∈ X, ∇2p(t, x) ≺ π2 Id (5)

in the sense of symmetric matrices. Then using the path dynamics equation (4) Brenier [Bre89]
showed that the relaxed problem (3) admits a unique minimizer µ ∈ Prob(Ω), which is deter-
ministic: in other words associated to a, possibly non-smooth but otherwise classical, minimizer
s ∈ H1([0, T ],S) of (2). Inequality (5) is sharp, and several families of examples are known for
which uniqueness and/or determinism are lost precisely when the threshold (5) is passed. We
present §4 the first numerical illustration of this phenomenon.

1.1 Numerical scheme and main results

We introduce a new discretization for the relaxation (3) of the shortest path formulation (2) of
Euler equations (1). Our approach is numerically tractable in dimension 2, and is the first to
illustrate the transition between classical and generalized solutions occurring at the threshold
(5) on the pressure regularity.

For that purpose we need to introduce some notation. Let M := L2(X,Rd), and let S ⊆ M
be the collection of maps preserving the restriction to X of the Lebesgue measure, denoted by
Leb and normalized to have mass 1. For each N ∈ N let PN be a partition of X into N regions
of equal area 1/N , diameter ≤ CPN

− 1
d , and let MN ⊆ M be the N -dimensional subspace

of functions which are piecewise constant on this partition. Given s∗, s
∗ ∈ S, discretization

parameters T,N ∈ N, and a penalization factor λ� 1, we solve

E(T,N, λ) := min
m∈MT+1

N

T
∑

0≤i<T
‖mi+1−mi‖2 +λ

(
‖m0−s∗‖2 +‖mT −s∗‖2 +

∑
1≤i<T

inf
s∈S
‖mi−s‖2

)
.

(6)
In all this paper, ‖ · ‖ stands for the L2(X,Rn) norm, and | · | for the euclidean norm on Rn, for
any n ∈ N. Comparing this with (2), we recognize the standard discretization of the length of the
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discrete path (m0, · · · ,mT ), as well as an implementation by penalization of the boundary value
constraints and of the incompressibility constraints. The optimization of (6), seen as a function
of m ∈ MT+1

N , is an N(T + 1)d-dimensional smooth optimization problem. A quasi-Newton
method gave convincing results, see §4, despite the non-convexity of the functional which forbids
to guarantee that its global minimum is numerically found.

Before entering the analysis of (6), let us emphasize that the inner-subproblems, the projec-
tion of each mi onto the set S of measure preserving maps, are numerically tractable thanks to
two main ingredients: Brenier’s polar factorization [Bre91], and semi-discrete optimal transport.
The former states that the distance from any given m ∈ M to the set S, is the cost of the
transport plan needed to equidistribute on X the image measure of m

inf
s∈S
‖m− s‖2 = W 2

2 (m# Leb,Leb), (7)

whereW2 is the Wasserstein distance for the quadratic transport cost. If m ∈MN , then m# Leb
is the sum of N Dirac measures of mass 1/N , located at the N values of the piecewise constant
map m on the partition PN . Semi-discrete optimal transport [AHA98, Mer11, Lév14] is a numer-
ical method for computing (7), and more generally the Wasserstein distance between a discrete
measure η =

∑N
j=1 ηjδxj , and an absolutely continuous measure ν = ρLeb, with a (typically)

piecewise linear density ρ. It is based on Kantorovitch duality

W 2
2 (η, ν) = sup

f∈L1(η)

ˆ
X
fη +

ˆ
X
gν, where ∀y ∈ X, g(y) = inf

x∈X
|y − x|2 − f(x), (8)

= sup
f∈RN

∑
1≤j≤N

ηjfj +

ˆ
X
gν, where ∀y ∈ X, g(y) = min

1≤j≤N
|y − xj |2 − fj , (9)

where (9) is obtained from (8) by setting fj = f(xj). Importantly, the conjugate g in (9) is
piecewise quadratic on a partition of X, called the Laguerre Diagram of the sites xj with weights
fj , that is constructible through computational geometry software [cga]. The N -dimensional
concave maximization problem (9), which is unconstrained and twice continuously differentiable,
is efficiently solved via Newton or quasi-Newton methods. Semi-discrete optimal transport has
become a reliable and efficient building block for PDE discretizations [BCMO14].

A second interpretation of the optimization problem (6), closer to (3), involves a generalized
flow µ ∈ Prob(Ω) supported on N trajectories, each piecewise linear with direction changes at
times {0, 1/T, · · · , T/T}. Let m = (mi)

T
i=0 ∈ MT+1

N , and for each 1 ≤ j ≤ N let mj
i be the

constant value of mi on the j-th region of the partition PN of X. For each 1 ≤ j ≤ N let
ωj ∈ Ω be the piecewise linear path with value mj

i at time i/T , for all 0 ≤ i ≤ T (see Figure 3).
Finally let µ ∈ Prob(Ω) be the discrete probability measure equidistributed on the set of paths
{ωj ; 1 ≤ j ≤ N}. Then (6) rewrites in a form close to (3)

ˆ
Ω
A(ω)dµ(ω) + λ

(ˆ
X
|m0(x)− s∗(x)|2 + |mT (x)− s∗(x)|2dx+

∑
1≤i<T
t=i/T

W 2
2 (et#µ,Leb)

)
. (10)

Indeed, the first energy term satisfies
ˆ

Ω
A(ω)dµ(ω) =

1

N

∑
1≤j≤N

ˆ 1

0
|ω̇j(t)|2dt =

T

N

∑
0≤i<T
1≤j≤N

|mj
i+1 −m

j
i |

2 = T
∑

0≤i<T
‖mi+1 −mi‖2.
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Figure 3: (Left) A partition PN cuts the domain X into N region of equal area and roughly
isotropic shape. (Right) To a sequence (mi)

T
i=0 ∈ MT+1

N one can associate N piecewise linear
paths (ωj)

N
j=1, by interpolating the map values at the times {0, 1/T, · · · , T/T} for each region

of the partition PN .

The penalized integral term in (10) equals ‖m0 − s∗‖2 + ‖mT − s∗‖2 from (6). It is the cost of
the transport plan on X2 mapping (m0(x),mT (x)) to (s∗(x), s∗(x)) for all x ∈ X, which sends
(e0, e1)#µ = (m0,mT )# Leb onto (s∗, s

∗)# Leb, and thus enforces the proximity of these two
couplings on X2 as required in (3). The other penalized terms W 2

2 (et #µ,Leb) account for the
incompressibility of µ at time t = i/T , 1 ≤ i < T , and by (7) are equal to infs∈S ‖mi − s‖2 from
(6).

Summarizing, the geodesic formulation of Euler equations (2) has a rather surprising re-
laxation (3), looking a-priori unphysical: fluid particles may split and cross. Yet the natural
discretizations (6) and (10) of these two formulations are actually identical. The classical and
generalized interpretations are also at the heart of our main result.

Theorem 1.1. Let s∗, s∗ ∈ S, let T,N ∈ N, and λ ≥ 0. The relaxed geodesic distance (3) and
the discretized minimum (6) satisfy

E(T,N, λ) ≤ d(s∗, s
∗) +O(Th2

Nλ),

• (Classical estimate) with hN = N−
1
d , if the classical geodesic distance (2) equals the relaxed

distance (3), and admits a minimizer with regularity s ∈ L∞([0, 1], H1(X)).

• (Relaxed estimate) with hN = N−
1
2d (resp. N−

1
2

√
lnN if d = 1), if the pressure field

gradient ∇p is Lipschitz on [0, 1]×X, and the boundary data s−1
∗ , s∗ are Lipschitz on X.

Recall that the classical (2) and relaxed (3) distances are automatically equal in dimension
d ≥ 3, and that the pressure field gradient ∇p is uniquely determined by the boundary values
s∗, s

∗.
The decay rate hN = N−

1
D in Theorem 1.1 is actually tied to the dimension Dquant(µ) of the

generalized flow µ ∈ Prob(Ω) minimizing (3), see Definition 3.1. The flow associated to a classical
solution has dimension d, since the particle trajectories are determined by their initial position
x ∈ X ⊆ Rd. The trajectories of a generalized flow obey a second order ordinary differential
equation (4) and are thus determined by their initial position and velocity (x, v) ∈ X×Rd ⊆ R2d,
provided Cauchy-Lipschitz’s theorem applies. The generalized flow dimension is thus 2d in the
worst case, but intermediate dimensions d < D < 2d are also common, see §4.

Theorem 1.1 does not tell how to choose the constraint penalization parameter λ. The next
proposition shows that the quantity E ′(T,N, λ) := (1 + 4T/λ)E(T,N, λ) arises naturally in error
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estimates, which suggests to choose λ = h−1
N = N

1
D so that

E ′(T,N, λ) = d2(s∗, s
∗) +O(T/λ+ Th2

Nλ) = d2(s∗, s
∗) +O(TN−

1
D ). (11)

Proposition 1.2. Let m = (mi)
T
i=0 ∈MT+1

N be a minimizer of (6).

• (Classical construction) Let (si)
T
i=0 be the chain of incompressible maps defined by: s0 = s∗,

sT = s∗, and si is a projection of mi onto S for all 1 ≤ i < T . Then

T
∑

0≤i<T
‖si+1 − si‖2 ≤ E ′(T,N, λ).

• (Relaxed construction) Let µ ∈ Prob(Ω) be the generalized flow built from (mi)
T
i=0 as in

(10). Then ˆ 1

0
W 2

2 (et #µ,Leb) dt ≤ 1

4T 2
E ′(T,N, λ).

As a result, let (NT , λT )T∈N be such that E ′(T,NT , λT ) → d(s∗, s
∗) as T → ∞. Then a

subsequence of the associated flows (µT )T∈N weak-* converges to a minimizer of (3).

Outline. Theorem 1.1 is established §2.1 (Classical estimate) and §3 (Relaxed estimate).
Proposition 1.2 is proved §2.2. Numerical experiments are presented §4.

Remark 1.3 (Monge-Ampere gravitation). Some models of reconstruction of the early universe
[Bre11] involve actions of a form closely related to our discrete energy functional (6), for the
parameter value λ = 2: ˆ 1

0

(
1

2
‖ṁ(t)‖2 + inf

s∈S
‖m(t)− s‖2

)
dt.

2 Classical analysis

We establish Theorem 1.1 (Classical estimate) in §2.1, and prove Proposition 1.2 in §2.2. The
optimization parameters (T,N, λ, s∗, s

∗) are fixed in this section.

2.1 Upper estimate of the discretized energy

Following the assumption of Theorem 1.1 (Classical estimate), we consider a minimizer of the
shortest path problem (2), and assume that it has regularity s ∈ L∞([0, 1], H1(X)). Define
si := s(i/T ) for all 0 ≤ i ≤ T , and note that s0 = s∗, sT = s∗. Let also mi := PN (si), for all
0 ≤ i ≤ T , where PN : M → MN denotes the orthogonal projection. We denote by hN := N−

1
d

the discretization scale, and recall that each region of the partition PN of X has area 1/N and
diameter ≤ CPhN .

Let sPi denote the mean of si on the region P of the partition PN , for all 0 ≤ i ≤ T . Then

‖si −mi‖2 =
∑
P∈PN

ˆ
P
|si(x)− sPi |2dx ≤ Csb(CPhN )2

∑
P∈PN

ˆ
P
|∇si(x)|2dx = Ch2

N‖∇si‖2,

(12)

where the Sobolev inequality constant Csb only depends on the dimension, and C := CsbC
2
P .

Recall that, in all this paper, ‖ · ‖ stands for the L2(X,Rn) norm, and | · | for the euclidean norm
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s0 = s∗
si = s(i/T )

mi := πMN
(si)

S

MN

Figure 4: Theorem 1.1 (classical estimate) is based projecting the measure preserving maps
(si)

T
i=0 ∈ ST+1 onto the finite dimensional space MN , a procedure symmetric the projection of

(mi)
T−1
i=1 ∈MT−1

N onto S involved in the discrete energy optimization (6), see Figure 2.

on Rn, for any integer n ≥ 1. The map PN is 1-Lipschitz, as the orthogonal projection onto the
convex set MN . Hence for any 0 ≤ i < T

‖mi −mi+1‖2 ≤ ‖si − si+1‖2 ≤
1

T

ˆ i+1
T

i
T

‖ṡ(t)‖2dt. (13)

Summing (12) and (13) over 0 ≤ i ≤ T we obtain

E(T,N, λ) ≤ T
∑

0≤i<T
‖mi+1 −mi‖2 + λ

∑
0≤i≤T

‖mi − si‖2

≤
∑

0≤i<T

ˆ i+1
T

i
T

‖ṡ(t)‖2dt+ λ
∑

0≤i≤T
Ch2

N‖∇si‖2

≤ d2(s∗, s
∗) + C ′Th2

Nλ,

where C ′ = C‖s‖L∞([0,1],H1(X)), which concludes the proof.

2.2 Length of a chain of incompressible maps

Proposition 1.2 (Classical construction) immediately follows from Lemma 2.1 below, which is
general and could be used to approximate geodesics on any manifold S embedded in a Hilbert
space M, internally approximated by subspaces MN . It relies on a the following identity, valid
for any elements a, b of a Hilbert space, and any ε > 0:

(1 + ε)−1‖a+ b‖2 ≤ ‖a‖2 + ε−1‖b‖2. (14)

Indeed subtracting the LHS to the RHS of (14) we obtain (1 + ε)−1‖ε
1
2a− ε−

1
2 b‖2 ≥ 0.

Lemma 2.1. For any T ∈ N∗, any penalization λ > 0, and any (m, s) ∈ (M× S)T+1 one has

T
∑

0≤i<T
‖si+1 − si‖2 ≤ (1 + 4T/λ)

T ∑
0≤i<T

‖mi+1 −mi‖2 + λ
∑

0≤i≤T
‖mi − si‖2

 . (15)

Proof. Let 0 ≤ i < T . Choosing a := si+1 − si, and b := mi+1 −mi − a, we obtain

(1 + ε)−1‖mi+1 −mi‖2 ≤ ‖si+1 − si‖2 + ε−1‖(si −mi)− (si+1 −mi+1)‖2

≤ ‖si+1 − si‖2 + 2ε−1(‖si −mi‖2 + ‖si+1 −mi+1‖2).
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Summing over 0 ≤ i < T yields

(1 + ε)−1
∑

0≤i<T
‖mi+1 −mi‖2 ≤

∑
0≤i<T

‖si+1 − si‖2 + 2ε−1
∑

0≤i≤T
αi‖si −mi‖2,

with α0 = αT = 1, αi = 2 otherwise. Choosing ε = 4T/λ concludes the proof.

The second point of Proposition 1.2 is based on (14) as well. Indeed, let (mi)
T
i=0 be minimizers

of (6), let 0 ≤ i < T , and let t = (i+ α)/T with 0 ≤ α ≤ 1. Then for any ε > 0

W 2
2 (et #µ,Leb) = inf

s∈S
‖(1−α)mi+αmi+1−s‖2 ≤ (1+ε)

(
‖α(mi+1 −mi)‖2 + ε−1 inf

s∈S
‖mi − s‖2

)
Integrating over t ∈ [0, 1], using that either α ≤ 1/2 or 1− α ≤ 1/2, and choosing ε = 4T/λ, we
obtain as announced
ˆ 1

0
W 2

2 (et #µ,Leb)dt ≤ 1 + ε

T

∑
0≤i<T

(
1

4
‖mi+1 −mi‖2 + ε−1 inf

s∈S
‖mi − s‖2

)
=

1

4T 2
E ′(T,N, λ).

Finally, the convergence claim for the minimizing chain (µT )T∈N results from classical arguments.
(i) The weak-* lower semi-continuity of the energy µ 7→

´
ΩA(ω)dµ(ω) on Prob(Ω), which follows

from the lower semi-continuity of the action A : Ω → R+ ∪ {∞}. (ii) The weak-* sequential
compactness of {µ ∈ Prob(Ω);

´
ΩA(ω)dµ(ω) ≤ K} for any constant K, see [Bre93]. (iii) The

weak-* continuity of µ 7→ W 2
2 ((e0, e1)#µ, (s∗, s

∗)# Leb), a quantity bounded for µT by ‖m0 −
s∗‖2 + ‖mT − s∗‖2 ≤ E(T,NT , λT )/λT → 0 as T → ∞. (iv) The weak-* lower semi-continuity
of µ 7→

´ 1
0 W

2
2 (et #µ,Leb) dt, which follows from Fatou’s lemma and the continuity of µ 7→

W 2
2 (et #µ,Leb) for any t ∈ [0, 1].

3 Relaxed analysis

We prove Theorem 1.1 (Relaxed estimate), using a quantization of the generalized flow minimiz-
ing the relaxed geodesic distance (3). This quantization is a counterpart of the partition PN of
the domain (X,Leb) used for the classical estimate §2.1, which amounts to quantize the initial
positions of the fluid particles. Let δx denote the Dirac probability measure concentrated at a
point x.

Definition 3.1. Let H be a metric space, let µ be a probability measure on H, and let Γ ⊆ H.
For all N ≥ 1 denote, with W2 the Wasserstein distance for the quadratic transportation cost

hN (µ) := inf
ω∈HN

W2

(
µ,

1

N

∑
1≤i≤N

δωi

)
, rN (Γ) := inf

ω∈HN
min

{
r ≥ 0; Γ ⊆

⋃
1≤i≤N

B(ωi, r)

}
.

The quantization dimension of µ, and the box dimension of Γ, are defined by

Dquant(µ) := lim sup
N→∞

lnN

− lnhN (µ)
, Dbox(Γ) := lim sup

N→∞

lnN

− ln rN (Γ)
.

The decay rate of hN is directly involved in the announced result Theorem 1.1. We estimate
it using an elementary result of quantization theory, and refer to [GG92] for more details on
this rich subject. Note that the (upper) box dimension Dbox is a variant of the Haussdorff
dimension, in which the set of interest if covered by balls of equal radius. Box and Haussdorff
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dimension coincide for compact manifolds, but differ in general. For instance, all countable sets
have Haussdorff dimension zero, whereas one can check that

Dbox

(
([0, 1] ∩Q)d

)
= d, Dbox

({
1

n
; n ∈ N∗

})
=

1

2
.

Proposition 3.2. Let H be a metric space, and let µ ∈ Prob(H) be supported on a set Γ. Then
Dquant(µ) ≤ max{2, Dbox(Γ)}. More precisely for any D > 0, one has as N →∞

rN (Γ) = O(N−
1
D ) ⇒ hN (µ) = O


N−

1
D if D > 2,

N−
1
2

√
lnN if D = 2,

N−
1
2 if D < 2.

(16)

Proof. Let N ∈ N be fixed. For each 1 ≤ i ≤ N let Mi ⊆ H be a set of i points such that
Γ ⊆ ∪ω∈MiB(ω, 2ri), with ri := ri(Γ). We construct a sequence of points ωi ∈ H, and an
increasing sequence of measures ρi supported on Γ and of mass i/N , inductively starting with
i = N and finishing with i = 1. Initialization: ρN := µ.

Induction: for each 1 ≤ i ≤ N , we construct ωi and ρi−1 in terms of ρi. Let indeed ωi ∈Mi

be such that Bi := B(ωi, 2ri) satisfies ρi(Bi) ≥ 1/N . Such a point exists since |ρi| = i/N ,
#(Mi) = i, and supp(ρi) ⊆ Γ. Then let ρi−1 := ρi− 1

Nρi(Bi)
ρi, so that ρi−ρi−1 is a non-negative

measure of mass 1
N supported on Bi. One has

hN (µ)2 ≤W 2
2

(
µ,

1

N

∑
1≤i≤N

δωi

)
≤

∑
1≤i≤N

W 2
2

(
ρi − ρi−1,

1

N
δωi

)
≤ 1

N

∑
1≤i≤N

(2ri)
2.

The comparison (16) of the decay rates of hN (µ) and rN (Γ) immediately follows. Finally the
comparison of the dimensions follows from (16).

We now specialize the choice of µ, Γ and H. Let µ ∈ Prob(Ω) be a generalized flow minimizing
the relaxed geodesic distance (3). This measure is concentrated on the set Γ of paths obeying
Newton’s second law of motion

Γ := {ω ∈ C2([0, 1], X); ∀t ∈ [0, 1], ω̈(t) = −∇p(t, ω(t))},

where the pressure gradient ∇p : [0, 1] × X → Rd is assumed, following the assumptions of
Theorem 1.1, to have Lipschitz regularity. We regard Γ as embedded in the Hilbert space
H := H1([0, 1],Rd), which plays a natural role in the problem of interest (3) and is equipped
with the norm

‖ω‖2H :=

∣∣∣∣ˆ 1

0
ω

∣∣∣∣2 +

ˆ 1

0
|ω̇|2.

Note that H continuously embeds in C0(Ω,Rd), hence the evaluation maps et : H → Rd are
continuous with a common Lipschitz constant denoted Ce.

Lemma 3.3. The set Γ is compact. Furthermore the map Γ → X × Rd : ω 7→ (ω(0), ω̇(0)) is
bijective and bi-Lipschitz onto its image.

Proof. The result follows from Cauchy-Lipschitz’s theorem for ordinary differential equations,
and the compactness of X.
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The image of the generalized flow µ by the map of Lemma 3.3, namely initial position
and speed, is often called a minimal measure [BFS09]. Since there is no ambiguity, we denote
hN := hN (µ). The constants c, C,C ′ appearing in the estimates below only depend on the
dimension d.

Corollary 3.4. One has hN = O(N−
1
2d ) (resp. O(N−

1
2

√
lnN) if d = 1.)

Proof. By Lemma 3.3, the set Γ is in bi-Lipschitz bijection with a compact set K ⊆ R2d. Hence
rN (Γ) ≤ CrN (K) ≤ C ′N−

1
2d , and the upper estimate follows from (16).

The quantization scale hN is also bounded below, and is minimal for classical solutions.

Lemma 3.5. There exists c > 0 such that hN ≥ cN−
1
d for all N > 0. If the generalized flow

µ in fact represents a classical solution s to Euler’s equations, and ∇ṡ is bounded on [0, 1]×X,
then this lower estimate is sharp: hN = O(N−

1
d ).

Proof. Since X is a d-dimensional domain, there exists c > 0 such that W2(Leb, νN ) ≥ cN−
1
d

for any measure νN supported at N points of Rd. (Recall that, in this paper, Leb denotes the
Lebesgue measure restricted to the set X, and normalized for unit mass.) The first point follows:
for any measure µN supported at N points of H

cN−
1
d ≤W2(Leb, e0 #µN ) = W2(e0 #µ, e0 #µN ) ≤ CeW2(µ, µN ) = CehN .

Second point: for each x ∈ X, let ωx : t 7→ s(t, x). Then Φ : (X,Leb) → (Γ, µ) : x 7→ ωx is
measure preserving and Lipschitz, with regularity constant denoted CΦ. Let νN be a discrete
probability measure, with one Dirac mass of weight 1/N in each region of the partition PN .
Since these regions have diameter ≤ CPN−

1
d , we conclude that

hN ≤W2(µ,Φ#νN ) = W2(Φ# Leb,Φ#νN ) ≤ CΦW2(Leb, νN ) ≤ CΦCPN
− 1
d .

In the rest of this section, we fix the integer N and allow ourselves a slight abuse of notation:
elements ωj , Pj , ρj , . . . indexed by 1 ≤ j ≤ N do implicitly depend on N , although that second
index ωNj , P

N
j , ρ

N
j , . . . is omitted for readability.

Lemma 3.6. The infimum defining hN is attained, see Definition 3.1. As a result there exists
(ωj)

N
j=1 ∈ HN and probability measures (ρj)

N
j=1 on Γ such that

µ =
1

N

∑
1≤j≤N

ρj h2
N =

1

N

∑
1≤j≤N

ˆ
Γ
‖ω − ωj‖2H dρj(ω) (17)

Furthermore, ωj is the barycenter of ρj for each 1 ≤ j ≤ N .

Proof. Let (ωj)
N
j=1 be a candidate quantization, and let π be the transport plan associated to

W 2
2 ( 1

N

∑N
j=1 δωj , µ). Then the measures ρj : A 7→ N π({xj} × A), 1 ≤ j ≤ N , are probabilities

which average to µ, and the transport cost is the RHS of (17). The quantization energy, i.e.
the squared Wasserstein distance, is decreased by replacing ωj with the barycenter bj of ρj ,
1 ≤ j ≤ N , by the amount 1

N

∑N
j=1 |ωj−bi|2. Hence ωj = bj for all 1 ≤ j ≤ N if the quantization

is optimal. Note also that the barycenter of ρj belongs to G := Hull(Γ) by construction.
Since Γ is a compact subset of a Hilbert space, the convex hull closure G is also compact, for

the strong topology induced by ‖ · ‖H. The quantization energy (ωj)
N
j=1 7→ W 2

2 ( 1
N

∑N
j=1 δωj , µ)

attains its minimum on GN by compactness, and by the previous argument it is the global
minimum on HN .
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Let µN denote the equidistributed probability on the set {ωj ; 1 ≤ j ≤ N} of Lemma 3.6.

Lemma 3.7. The regions of the partition PN of Ω can be indexed as (Pj)
N
j=1 in such way that

Ch2
N ≥

∑
1≤j≤N

ˆ
Pj

|ωj(0)− x|2dx. (18)

Proof. Let BN ⊆ Ω collect the barycenters of the partition PN , and let νN denote the equidis-
tributed probability on BN . One has

W2(νN ,Leb) ≤ CPN−
1
d , W2(Leb, e0 #µN ) ≤ CeW2(µ, µN ) = CehN .

Thus W2(νN , e0 #µN ) ≤ C1hN by Lemma 3.5. This optimal transport problem between the
discrete measures νN and e0 #µN determines an optimal assignment ΓN → BN , represented
by the indexation (bj)

N
j=1 of ΓN and BN . Denoting by Pj ∈ PN the region of which bj is the

barycenter we conclude that∑
1≤j≤N

ˆ
Pj

|ωj(0)− x|2dx =
∑

1≤j≤N

ˆ
Pj

|bj − x|2dx+W 2
2 (νN , e0 #µN ) ≤ Ch2

N .

For each 0 ≤ i ≤ T , let mi ∈ N be the piecewise constant map on the partition PN defined
by

∀1 ≤ j ≤ N, ∀x ∈ Pj , mi(x) := ωj(i/T ).

Bound on the energy terms ‖mi+1 −mi‖. Using Cauchy-Schwartz’s inequality we obtain

T
∑

0≤i<T
‖mi+1 −mi‖2 =

1

N

∑
1≤j≤N

T
∑

0≤i<T

∣∣∣∣ωj( i+ 1

T

)
− ωj

(
i

T

)∣∣∣∣2 ≤ 1

N

∑
1≤j≤N

ˆ 1

0
|ω̇j(t)|2dt

=
1

N

∑
1≤j≤N

ˆ 1

0

∣∣∣∣ˆ
Γ
ω̇ dρj(ω)

∣∣∣∣2 ≤ 1

N

∑
1≤j≤N

ˆ 1

0

ˆ
Γ
|ω̇|2 dρj(ω) dt = d2(s∗, s

∗).

Distance to incompressible maps. For any 1 ≤ i ≤ T , with t := i/T , one has

inf
s∈S
‖mi − s‖ = W2(Leb, et #µN ) = W2(et #µ, et #µN ) ≤ CeW2(µ, µN ) = CehN .

Boundary conditions. We make the assumption that s∗ = Id, up to a minor modification of
Lemma 3.7 (replace x with s∗(x) in (18)). Lemma 3.7 then precisely states that ‖m0 − s∗‖2 ≤
Ch2

N , and the generalized boundary condition of (3) states that ω(1) = s∗(ω(0)) for µ-almost
every ω ∈ Γ. Denoting by C0 the Lipschitz regularity constant of s∗ we obtain for any 1 ≤ j ≤ N
and x ∈ X

|ωj(1)− s∗(x)|2 =

∣∣∣∣ˆ
Γ
s∗(ω(0))− s∗(x) dρj(ω)

∣∣∣∣2 ≤ ˆ
Γ
|s∗(ω(0))− s∗(x)|2 dρj(ω)

≤ C2
0

ˆ
Γ
|ω(0)− x|2 dρj(ω) ≤ 2C2

0

(ˆ
Γ
|ωj(0)− ω(0)|2 dρj(ω) + |ωj(0)− x|2

)
.
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Therefore

‖mT − s∗‖2 =
∑

1≤j≤N

ˆ
Pj

|ωj(1)− s∗(x)|2 dx

≤ 2C2
0

∑
1≤j≤N

(
1

N

ˆ
Γ
|ωj(0)− ω(0)|2 dρj(ω) +

ˆ
Pj

|ωj(0)− x|2 dx

)
≤ 2C2

0 (C2
eW

2
2 (µN , µ) + ‖m0 − s∗‖2) ≤ Ch2

N .

Summation and final estimate. The value E(T,N, λ) of the minimum (6) is

T
∑

0≤i<T
‖mi+1−mi‖2+λ

‖m0 − s∗‖2 + ‖mT − s∗‖2 +
∑

1≤i<T
inf
s∈S
‖mi − s‖2

 ≤ d2(s∗, s
∗)+O(Th2

Nλ).

4 Numerical experiments

4.1 Minimization algorithm and choice of penalization

We rely on a quasi-Newton method to compute a (local) minimum of the discretized problem
(6). This means that we need to compute the value of the functional

m ∈MT+1
N 7→ T

∑
0≤i<T

‖mi+1 −mi‖2 + λ

(
‖m0 − s∗‖2 + ‖mT − s∗‖2 +

∑
1≤i<T

d2
S(mi)

)
. (19)

and its gradient, where d2
S(m) = infs∈S ‖m− s‖2. The only difficulty is to evaluate the squared

distance d2
S to the set of measure-preserving vector fields and its gradient. As explained in the

introduction, Brenier’s Polar Factorization Theorem implies that for any vector valued function
m ∈M,

d2
S(m) = W 2

2 (m# Leb,Leb).

When m belongs to MN , the measure m# Leb is finitely supported, and the computation of the
Wasserstein distance can be performed using a semi-discrete optimal transport solver [AHA98,
Mer11, Lév14]. The next proposition gives an explicit formulation for the gradient in term of
the optimal transport plan. Recall that MN is the set of piecewise constant functions on the
tessellation PN := (Pj)1≤j≤N of X. The diagonal DN in MN is the set of functions m in MN

such that m(Pj) = m(Pk) for some j 6= k. The set MN \ DN is a dense open set in MN .

Proposition 4.1. The functional d2
S is differentiable almost everywhere on MN and continuously

differentiable on MN \ DN . The gradient of d2
S at m ∈MN \ DN is explicit: with xj = m(Pj),

∇d2
S(m)

∣∣
Pj

= 2(xj − bary(T−1(xj))) (20)

where T : X → m(X) is the piecewise constant optimal transport map between Leb and the
finitely supported measure m# Leb and bary(S) =

´
S xdx/Leb(S) is the isobarycenter of S

Proof. The functional F := d2
S − ‖ · ‖2 is concave as an infimum of linear functions:

F(m) = d2
S(m)− ‖m‖2 = inf

s∈S
‖m− s‖2 − ‖m‖2 = inf

s∈S

[
−2〈m|s〉+ ‖s‖2

]
,
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where 〈·, ·〉 denotes the L2(X) scalar product. This implies in particular that F and therefore
d2
S is differentiable almost everywhere on MN . Given m in MN \ DN , define xj = m(Pj) and

let T : X → Rd be the optimal transport plan from Leb to m# Leb = 1
N

∑N
j=1 δxj . The

transport plan is indeed always representable by a function when the source measure is absolutely
continuous with respect to the Lebesgue measure. Let Vj = T−1(xj) be the partition ofX induced
by this transport plan. Then

F(m) = W 2
2 (m# Leb,Leb)− ‖m‖2 =

N∑
j=1

ˆ
Vj

‖xj − x‖2 − ‖xj‖2dx

= 〈m|G(m)〉+

N∑
j=1

ˆ
Vj

‖x‖2dx

where G(m) ∈ MN is the piecewise constant function on X given by G(m)|Pj = −2 bary(Vj).
For any m′ in MN and x′j = m′(Vj), one has

F(m′) = W 2
2 (m′# Leb,Leb)− ‖m′‖2 ≤

N∑
j=1

ˆ
Vj

‖x′j − x‖2 − ‖x′j‖2dx

= F(m) + 〈m′ −m|G(m)〉

This shows that G(m) belongs to the superdifferential to F at m. In addition, by the continuity
of optimal transport plans, the map m ∈MN \DN 7→ G(m) is continuous. To summarize, on the
open domain MN \DN the concave function F possesses a continuous selection of supergradient.
This implies that F is of class C1 on this domain, with ∇F (m) = G, and the result follows.

Construction of the initial solution Since the discrete energy (19) is non-convex, the con-
struction of the inital guess is important. We follow a time-refinement strategy already used by
Brenier [Bre08] to construct a good initial guess. Assuming that we have already a local mini-
mizer for Tk = 2k+1, we use linear interpolation to construct an initial guess for Tk+1 = 2k+1+1.
The optimization is then performed from this inital guess, using a quasi-Newton algorithm for
the energy (19).

Choice of the penalization parameter The optimal choice of λ in (19) depends on the
quantization dimension D = Dquant(µ) of the generalized solution µ ∈ Prob(Ω) that one expects
to recover: namely λN = N−

1
D , see the remark after (11). We call D the flow dimension, and

regard it as as the intrinsic dimensionality of the problem which determines its computational
difficulty. For a classical solution, this dimension agrees with the ambient dimension i.e. D = d,
while for a non-deterministic solution the quantization dimension can be up to 2d. Intermediate
dimensions d < D < 2d are also common [Bre89]. In our numerical experiments we set λN = N

1
3 ,

a decision justified a-posteriori by the numerical estimation of the quantization dimension of the
computed solution, see Figure 9.

Note that the numerical error in (11) is governed (for a fixed number T of time steps) by
the quantity λ−1 + h2

Nλ, and that hN = O(N−
1
2d ) under the assumptions of Theorem 1.1. The

choice λN = N
1
α thus yields a convergent scheme whenever α > d, although convergence rates

are improved if α is close to the flow dimension D, so that λN ≈ N
1
D ≈ h−1

N .
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4.2 Visualization of generalized solution

The main interest of numerical experimentation is to visualize generalized solutions to Euler’s
equation, or equivalently generalized geodesics between two measure-preserving diffeomorphisms
s∗, s

∗ in S.

4.2.1 Gradient of the pressure

Consider a minimizer of the discretized energy (19). Given i ∈ {1, . . . , T −1}, mi minimizes over
MN the functional m 7→ T (‖m−mi−1‖2 + ‖mi+1 −m‖2) + λd2

S(m). This gives

T 2(mi−1 − 2mi +mi+1) = Tλ∇d2
S(mi). (21)

This equation is a discretized counterpart of the rule that the acceleration of a geodesic on an
embedded manifold, is normal to that manifold (here S plays the role of the manifold, embedded
in M, which is internally approximated by the linear space MN ). The second order difference
T 2(mi−1 − 2mi + mi+1) approximates a second derivative in time. Comparing (21) to (4), we
see that the right hand-side of (21) can be used as an estimation of (minus) the pressure of the
gradient.

4.2.2 Geometric data analysis

As in the proof of Theorem 1.1, the discrete minimizer of (19) can converted to a collection of
N piecewise-linear curves {ω1, . . . , ωN} = ΓN . We recall that the domain X is partitioned into
N subdomains (Pj)1≤j≤N with equal area and we let ωj(i/T ) ∈ Rd be the point corresponding
to the restriction of mi to the subdomain Pj , for each 0 ≤ i ≤ T . Figure 3 illustrates this
construction. We regard ΓN as embedded in the Hilbert space H := H1([0, 1],R2) which plays a
natural role in the problem of interest, as in §3, and apply techniques from the field of geometric
data analysis.

Clustering In order to better visualize the solution, we use the k-means algorithm to divide
the set ΓN into k. A distinct particle color is attached to each cluster, see for instance Figure 6.
The k-means algorithm consists in finding a local minimizer of the optimal quantization problem

min
`1,...`k∈H

1

N

∑
ω∈ΓN

min
1≤i≤k

‖ω − `i‖2H (22)

using a simple fixed point algorithm, and to divide ΓN into clusters (Ci)1≤i≤k with

Ci =

{
ω ∈ ΓN ; ‖ω − `i‖H = arg min

1≤j≤k
‖ω − `i‖H

}
.

Note that l1, · · · , lk automatically belong to Span(ΓN ), hence to the d(T + 1)-dimensional linear
subspace of H consisting of piecewise linear paths with nodes ω(t) ∈ Rd at times t = i/T ,
0 ≤ i ≤ T . This makes (22) tractable.

Box dimension A natural objective is to estimate the quantization dimension Dquant(µ) of
the generalized flow µ ∈ Prob(Ω) minimizing the relaxed problem (3). The probability measure
µN equidistributed on the set ΓN approximates µ, see Proposition 1.2, hence we can expect
the set ΓN to also approximate supp(µ). The quantization dimension Dquant(µ) is difficult to
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estimate, but by Proposition 3.2 it admits the simpler upper bound Dbox(supp(µ)). We estimate
the latter by applying the furthest point sampling algorithm to the finite metric space ΓN , which
defines an ordering on the elements of ΓN as follows: let γ1 be an arbitrary point of ΓN and
define by induction

γi+1 := arg max
γ∈ΓN

d(γ, {γ1, . . . , γi}) (23)

As in Definition 3.1, denote by ri = ri(ΓN ) is the smallest r ≥ 0 such that ΓN can be covered by
i balls of radius r. For 1 � i � N , the ratio log(i)/ log(1/ri(ΓN )) is expected to approximate
log(i)/ log(1/ri(supp(µ))) and thus the desired Dbox(suppµ).

Lemma 4.2. Let εi := maxγ∈Γ d(γ, {γ1, . . . , γi}), where γi is defined as in (23). Then,(
1− log(2)

log(1/εi)

)
log(i)

log(1/εi)
≤ log(i)

log(1/ri)
≤ log(i)

log(1/εi)

Proof. By construction, ri ≤ εi. Moreover, the balls centered at the points γ1, . . . , γi and with
radius εi/2 are disjoint, so that ri ≥ εi/2.

4.3 Test cases and numerical results

Our two testcases are constructed from two stationary solutions to Euler’s equation in 2D. Let
s : R+ → S be a classical solution to Euler equation in Lagrangian coordinates (4), starting from
the identity map. We solve the discretized version (6) of the minimization problem (2)-(3), with
s∗ = s(0) = Id and s∗ := s(tmax), where tmax > 0. For small values of tmax the solution to
this boundary problem is simply the original classical flow s, but for larger values a completely
different generalized flow is obtained. In this case the geodesic s in the space of the measure
preserving diffeomorphisms is no longer the unique shortest path between its boundary values
s∗ and s∗. The first classical behavior is guaranteed if the pressure hessian satisfies

∇2p ≺ (π/tmax)2 Id (24)

uniformly on [0, tmax]×X, see (5) and [Bre89]. In all the numerical experiments, the number of
points is set to N = 10 000 and the number of timesteps is T = 24 + 1 = 17.

4.3.1 Rotation of the disk

On the unit disk D = {(x1, x2) ∈ R2; x2
1 + x2

2 ≤ 1}, the simplest stationary solution to Euler’s
equation (1) is given by a time-independent pressure field and speed:

p(x1, x2) =
1

2
(x2

1 + x2
2), v(x1, x2) = (−x2, x1).

The corresponding Lagrangian flow s(t) is simply the rotation of angle t. The largest eigenvalue
of ∇2p is 1 at every point in D. Hence by (24) the flow of rotations is the unique minimizer to
both the variational formulation (2) and its relaxation (3) with boundary values s∗ = s(0) = Id
and s∗ = s(tmax), when tmax < π. Uniqueness is lost at the critical time tmax = π which
corresponds to a rotation of angle π, so that the final diffeomorphism becomes s∗ = s(π) = − Id.
In this situation, the minimization problem (2) has two classical solutions, namely the clockwise
and counterclockwise rotations. The relaxation (3) has uncountably many generalized solutions
such as, by linearity, superpositions of these two rotations.

Another explicit example of generalized solution was discovered by Brenier [Bre89]: given a
point x ∈ D and a speed v, denote by ωx,v the curve ωx,v(t) = x cos(t)+v sin(t), t ∈ [0, 1]. Then,
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Brenier’s solution is obtained as the pushforward by the map (x, v) 7→ ωx,v ∈ Ω of the measure
on D × R2 defined by

µ(dx, dv) =
1

π
H2(dx)⊗ 1

2π
√

1− |x|2
H1
∣∣
{|v|=
√

1−|x|2} (dv),

where Hk denotes the k-dimensional Hausdorff measure. In particular, the quantization dimen-
sion of the solution is 3 = 2 + 1. We refer to [BFS09] for more examples of optimal flows, and
construct four dimensional one. Let µr be defined by combining (i) a classical rotation on the
annulus D \D(r), with D(r) = {x ∈ R2; |x| ≤ r} and (ii) Brenier’s solution rescaled by a factor
r on the disc D(r). Then µr is an optimal generalized flow of quantization dimension 3, whereas
the averaged flow

´ 1
0 µrdr is also optimal by linearity, and has quantization dimension 4.

Numerical results The numerical solutions computed by our algorithm for the critical time
tmax = π are highly non-deterministic. To see this, we select a small neighborhood around several
points in the unit disk D and look at the trajectories emanating from this small neighborhood.
As shown in Figure 8, we can see that the trajectories emanating from each neighborhood fill
up the disk. In addition, each indivual trajectory looks like an ellipse. Second, we estimate the
box dimension of the support of the numerical solution (as explained in §4.2). The estimated
dimension is slightly above 3.

4.3.2 Beltrami flow on the square

On the unit square S = [−1/2, 1/2]2, we consider the Beltrami flow constructed from the time-
independent pressure and speed:

p(x1, x2) =
1

2
(sin(πx1)2 + sin(πx2)2)

v(x1, x2) = (− cos(πx1) sin(πx2), sin(πx1) cos(πx2))

The maximum eigenvalue of ∇2p is π2, and [Bre89] implies that the associated flow is minimizing
between s∗ = s(0) = Id and s∗ = s(tmax) for tmax ≤ 1. Because of the lack of symmetry,
generalized solutions constructed from this flow are less understood than in the disk case.

Numerical results Our numerical results suggest the following observations. First, as shown
in Figure 5, the computed solutions with boundary values s∗ = Id and s∗ = s(tmax) approximate
the classical flow if tmax < 1, and are non-deterministic generalized flows if tmax ≥ 1. This
suggests the sharpness of the bound given by [Bre89]. Interestingly, even for t > 1, the numerical
solutions seem to remain deterministic in a neighborhood of the boundary of the cube. This can
be seen more clearly in Figure 6, where the particles have been divided into clusters using the
k-means algorithm (see §4.2.2).

The pressure gradient is estimated as in §4.2.1 and is displayed in Figure 7. These pic-
tures seem to indicate a loss of regularity of the pressure near the initial and final times. This
corroborates the result of [AF07] according to which the pressure belongs to L2

loc( ]0, T [, BV(X)).
Figure 8 suggests that the even for tmax = 1.5, the reconstructed solution for the Beltrami flow

are more deterministic than the solution to the disk inversion. We estimate the box dimension
of the support of the solution using the method explained in §4.2.2. The result are displayed
in Figure 9. The estimated dimension is D = 2 for the deterministic solution (tmax = 0.9)
but it increases as the maximum time (and therefore the amount of non-determinism) increases.
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Finally, we note that the estimated dimensions for tmax ∈ {1.1, 1.3, 1.5} seem to be strictly
between 2 and 3, suggesting a fractal structure for the support of the solution. This would need
to be confirmed by a mathematical study.

Software. The software developed for generating the results presented in this article is publicly
available at https://github.com/mrgt/EulerSemidiscrete

Acknowledgement The authors thank Y. Brenier for constructive discussions and introducing
them to the topic of Euler equations of inviscid incompressible fluids.
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(a) t = 0.0 (b) t = 0.95 (c) t = 1.1 (d) t = 1.3 (e) t = 1.5

(f) t = 0.0 (g) t = 0.25 ∗ tmax (h) t = 0.5 ∗ tmax (i) t = 0.75 ∗ tmax (j) t = tmax = 0.9

(k) t = 0.0 (l) t = 0.25 ∗ tmax (m) t = 0.5 ∗ tmax (n) t = 0.75 ∗ tmax (o) t = tmax = 1.1

(p) t = 0.0 (q) t = 0.25 ∗ tmax (r) t = 0.5 ∗ tmax (s) t = 0.75 ∗ tmax (t) t = tmax = 1.3

(u) t = 0.0 (v) t = 0.25 ∗ tmax (w) t = 0.5 ∗ tmax (x) t = 0.75 ∗ tmax (y) t = tmax = 1.5

Figure 5: (First row) Beltrami flow in the unit square at various timesteps, a classical solution
to Euler’s equation. The color of the particles depend on their initial position. (Second to fifth
row) Generalized fluid flows that are reconstructed by our algorithm, using boundary conditions
displayed in the first and last column. When tmax < 1 we recover the classical flow, while for
tmax ≥ 1 the solution is not classical any more and includes some mixing.

18



(a) t = 0.0 (b) t = 0.125tmax (c) t = 0.25tmax (d) t = 0.375tmax (e) t = 0.5tmax

(f) t = 0.625tmax (g) t = 0.75tmax (h) t = 0.875tmax (i) t = tmax = 1.5

Figure 6: Using the k-means cluster algorithm, we cluster the reconstructed trajectories for the
Beltrami flow in the square with tmax = 1.5 into 10 groups. This suggests that close to the
boundary of the square the movement of particle is clockwise and deterministic while in the
interior the movement is highly non-deterministic and counter-clockwise.

(a) t = 0.0 (b) t = 0.125tmax (c) t = 0.25tmax

(d) t = 0.375tmax (e) t = 0.5tmax (f) t = 0.625tmax

(g) t = 0.75tmax (h) t = 0.875tmax (i) t = tmax = 1.5

Figure 7: Estimated pressure gradient for the Beltrami flow on the square with tmax = 1.5.
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(a) (x, y) = (−0.7, 0) (b) (x, y) = (−0.35, 0) (c) (x, y) = (0, 0)

(d) (x, y) = (0.2, 0) (e) (x, y) = (0.35, 0) (f) (x, y) = (0.5, 0)

Figure 8: We select particles whose initial position lie in a small disk, and display their trajectories
according to the computed solution to (19). (Top) For the inversion of the unit disk (Bottom)
For the Beltrami flow on the square, with tmax = 1.5.

Figure 9: Estimation of the box counting dimension of the support of the computed solution,
see §4.2.2. (Left) for the inversion of the unit disk (Right) Comparison between the estimated
box counting dimensions of the solutions to the Beltrami flow on the square, depending on the
maximum time.
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