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REDUCING PARALLEL COMMUNICATION IN ALGEBRAIC
MULTIGRID THROUGH SPARSIFICATION
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Abstract. Algebraic multigrid (AMG) is an O(n) solution process for many large sparse

linear systems. A hierarchy of progressively coarser grids is constructed that utilize complementary
relaxation and interpolation operators. High-energy error is reduced by relaxation, while low-energy
error is mapped to coarse-grids and reduced there. However, large parallel communication costs
often limit parallel scalability. As the multigrid hierarchy is formed, each coarse matrix is formed
through a triple matrix product. The resulting coarse-grids often have significantly more nonzeros
per row than the original fine-grid operator, thereby generating high parallel communication costs on
coarse-levels. In this paper, we introduce a method that systematically removes entries in coarse-grid
matrices after the hierarchy is formed, leading to an improved communication costs. We sparsify by
removing weakly connected or unimportant entries in the matrix, leading to improved solve time.
The main trade-off is that if the heuristic identifying unimportant entries is used too aggressively,
then AMG convergence can suffer. To counteract this, the original hierarchy is retained, allowing
entries to be reintroduced into the solver hierarchy if convergence is too slow. This enables a balance
between communication cost and convergence, as necessary. In this paper we present new algorithms
for reducing communication and present a number of computational experiments in support.

Key words. multigrid, algebraic multigrid, non-Galerkin multigrid, high performance comput-
ing

AMS subject classifications.

1. Introduction. Algebraic multigrid (AMG) [16, 6, 17] is an O(n) linear solver.
For standard discretizations of elliptic differential equations, AMG is remarkably fast
[2, 22, 19]. We consider AMG as a solver for the symmetric, positive definite matrix
problem
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with A € R™*"™ and z,b € R™. AMG consists of two phases, a setup and a solve phase.
The setup phase defines a sequence or hierarchy of fy,. coarse-grid and interpolation
operators, Ay,..., Ay, .. and Fy,..., Py, 1 respectively. The solve phase iteratively
improves the solution through relaxation and coarse-grid correction. The error not
reduced by relaxation, called algebraically smooth, is transferred to cheaper coarser-
levels and reduced there.

The focus of this paper is on the communication complexity of AMG in a dis-
tributed memory, parallel setting. To be clear, we refer to the communication com-
plexity as the time cost of interprocessor communication, while referring to the com-
putational complexity as the time cost of the floating point operations. The complexity
or total complexity is then the cost of the algorithm, combining the communication
and computational complexities.

Both the convergence and complexity of an algebraic multigrid method are con-
trolled by the setup phase. Highly accurate interpolation, which yields a rapidly
converging method, requires a slow rate of coarsening and often denser coarse opera-
tors. This large number of coarse-levels, as well as increased density, correlates with
an increase in the amount of work required during a single iteration of the AMG solve
phase. In contrast, sparser interpolation and fast coarsening reduce the cost of a sin-
gle iteration of AMG cycle, but often lead to a deterioration in convergence [22, 19].
Therefore, there is a trade-off between per-iteration complexity and the resulting con-
vergence factor.

The sparse matrices, Aq,..., Ay, . , in the multigrid hierarchy are, by design,
smaller in dimension, yet often decrease in sparsity. As an example of this, Table 1
shows the properties of a hierarchy for a 3D Poisson problem with a 7-point finite
difference stencil on a 100 x 100 x 100 grid. We see that as the problem size decreases
on coarse-levels, the average number of nonzero entries per row increases. Here we
denote by nnz the number of nonzero entries in the respective matrix. Figure 1 depicts
this effect for this example, where we see that the density increases on lower levels in
the hierarchy.

max

level matrix size nonzeros nNONZeEros per row

Y4 n nnz mnz/,
0 1000000 6940000 7
1 500000 9320600 19
2 83345 2775281 33
3 13265 745 689 56
4 2207 208173 94
5 333 23 843 72

Table 1: Matrix properties using classical AMG for a 3D Poisson problem.

In parallel, the increase in density (decrease in sparsity) on coarse-levels correlates
with an increase in parallel communication costs. Figure 2 shows this by plotting the
time spent on each level in an AMG hierarchy during the solve phase. The time
grows substantially on coarse-levels and this is almost completely due to increased
communication costs from the decreasing sparsity. The time spent on smaller, coarse
problems is much larger than the time spent working on the original, finest-level
problem. The test problem is again the 3D Poisson problem, using the hypre [2]
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Level in AMG hierarchy >

Fig. 1: Matrix sparsity pattern using classical AMG for three levels in the hierarchy:
¢ =0, 3, 5. The full matrix properties are given in Table 1.

package with Falgout coarsening [7], extended classical modified interpolation, and
hybrid symmetric Gauss-Seidel relaxation. This problem was run on 2048 processes
with 10,000 degrees-of-freedom per process.
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Fig. 2: Left: Time spent on each level of the hierarchy during a single iteration of
classical parallel AMG for a 3D Poisson problem. Right: repeat experiment, but using
aggressive HMIS coarsening. The total time is much lower; however, the qualitative
feature of expensive coarse-levels remains.

In this paper we introduce a method for controlling the communication complexity
in AMG. The method increases the sparsity of only coarse-grid operators (Ag, £ =
1,...,lmax) by eliminating entries in A, with no effect on interpolation operators (P,
¢ =0,...,8max—1). This results in an improved balance between convergence and
per-iteration complexity in comparison to the standard algorithm. In addition, we
develop an adaptive method which allows nonzero entries to be reintroduced into the
AMG hierarchy, should the entry elimination heuristic be chosen too aggressively.
This allows for the method to robustly maintain classic AMG convergence rates.

In the context of this paper, we define sparsity and density in terms of the average
number of nonzeros per row (or equivalently, the average degree of the matrix). In
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particular, density of a matrix A, of size ny is defined to be nnz(Ay)/ne. The perfor-
mance of AMG is closely correlated with this metric, especially communication costs.
In addition, note that if a matrix A, is “sparser” or “denser” under this definition,
it is also the case under the more traditional density metric, nnz(A,)/n?. Another
advantage is that this measure yields a meaningful comparison between matrices of
different sizes. For example, a goal of our algorithm is to generate coarse matrices
that have nearly the same sparsity as the fine grid matrix.

There are a number of existing approaches to reduce per-iteration communication
complexity at the cost of convergence. Aggressive coarsening, such as HMIS [19] and
PMIS [19], rapidly coarsen each level of the hierarchy. These methods greatly reduce
the complexity of an algebraic multigrid iteration by reducing both the number and
the density of coarse operators. While these coarsening strategies reduce the cost of
each iteration or cycle in the AMG solve phase, they do so at the cost of accuracy,
often leading to a reduction in convergence. Interpolation schemes such as distance-
two interpolation [18], improve the convergence for aggressive coarsening, but also
result in an increase in complexity.

The result of aggressive coarsening and distance-two interpolation does often lead
to a notable reduction in the time spent on each level in AMG, and a reduction in
the total time to solution. Figure 2 shows that the time per level during the solve
phase is reduced in comparison to standard coarsening, even though the same num-
ber of processes and problem size per core are used. The use of HMIS coarsening is
the only difference in problem settings between these two runs. In the case of the
simple 3D Poisson problem, there is only a nominal impact on convergence, yielding a
large reduction in overall time spent in the solve phase. Nonetheless, while aggressive
coarsening may reduce the total work required during an iteration of AMG, the prob-
lem of expensive coarse-levels still persists. For instance in [11], it is noted that even
when using these best-practice parameters, parallel AMG for the 3D 7-point Poisson
problem produces coarse-grid operators with hundreds of nonzeros per row. This can
be seen in Figure 2, where the time per-level still spikes on coarse levels.

Another strategy for reducing communication complexity in AMG consists of sys-
tematically adding sparsity into the interpolation operators [18]. Removing nonzeros
from the interpolation operators reduces the complexity of the coarse-grid opera-
tors. Modest levels of interpolation truncation are usually beneficial, however, this
process can also yield unpredictable impact on coarse-level performance if used too
aggressively. Sparsity can alternatively be added into each coarse-grid operator by
weighting the prolongation and restriction operators with entries of the appropriate
Fourier series [5].

The typical approach to building coarse-grid operators, Ay, is to form the Galerkin
product with the interpolation operator: A;4q1 = PZT Ay P;. This ensures a projection
in the coarse-grid correction process and a guarantee on the reduction in error in each
iteration of the AMG solve phase. On the other hand, the triple matrix product in the
Galerkin construction also leads to the growth in the number of nonzeros in coarse-
grid matrices. As such, there are several approaches to constructing coarse operators
that do not use a Galerkin product and are termed non-Galerkin methods. These
methods have been formed in a classical AMG setting [11] and also in a smoothed
aggregation [20] context. In general, these methods selectively remove entries from
coarse-grid operators, reducing the complexity of the multigrid cycle. Assuming the
appropriate entries are removed from coarse-grid operators, the result is a reduction
in complexity with little impact on convergence. However, if essential entries are
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removed, convergence deteriorates.

An alternative to limiting communication complexity is to directly determine the
coarse-grid stencil, an approach used in geometric multigrid. For instance, simply
rediscretizing the PDE on a coarse-level results in the same stencil pattern as for the
original finest-grid operator, thus avoiding any increase in the number of nonzers in
coarse-grid matrices. More sophisticated approaches combine geometric and algebraic
information and include BoxMG [8, 9] and PFMG [3], where a stencil-based coarse-
grid operator is built. Additionally, collocation coarse-grids (CCA) [21] have been used
on coarse levels to effectively limit the number nonzeros. Yet, all these methods rely
on geometric properties of the problem being solved. One exception is the extension of
collocation coarse-grids to algebraic multigrid (ACCA) [10], which has shown similar
performance to smoothed aggregation AMG.

The approach developed in this paper is to form non-Galerkin operator by mod-
ifying existing hierarchies. The novel benefit of the proposed approach is that it is
applicable to most AMG methods, requires no geometric information, and provides
a mechanism for recovery if the dropping heuristic is chosen too aggressively (see
Section 6). This paper is outlined as follows. Section 2 describes standard algebraic
multigrid as well as the method of non-Galerkin coarse-grids. Section 3 introduces two
new methods for reducing the communication complexity of AMG: Sparse Galerkin
and Hybrid Galerkin. Parallel performance models for these methods are described
in Section 4, and the parallel results are displayed in Section 5. An adaptive method
for controlling the trade-off between communication complexity and convergence is
described in Section 6. Finally, Section 7 makes concluding remarks.

2. Algebraic Multigrid. In this section we detail the AMG setup and solve
phases, along with the basic structure of a non-Galerkin method. We let the fine-grid
operator A be denoted with a subscript as Ag.

Algorithm 1 describes the setup phase and begins with strength, which iden-
tifies the strongly connected edges' in the graph of A, to construct the strength-of-
connection matrix Sy. From this, P, is built in interpolation to interpolate vectors
from level £+ 1 to level £, with the goal to accurately interpolate algebraically smooth
functions. For classical AMG, interpolation first forms a disjoint splitting of the
index set {1,...,n} = CUF, where C' is a set of so-called coarse degrees-of-freedom
and where F' is a set of fine degrees-of-freedom. The goal is to have algebraically
smooth functions on C accurately approximate such functions on the full set C' U F'.
The size of the coarse-grid is given by ng+1 = |C|, and an interpolation operator
Py R™+1 — R™ is constructed using Sy and A, to compute sparse interpolation for-
mulas accurate for algebraically smooth functions. Finally, the coarse-grid operator
is created through a Galerkin triple matrix-product, Ay 1 = PZT ApPp. In a two-level
setting, this ensures the desirable property that the coarse-grid correction process
I- PeT A¢Py) Ay is an Ag-orthogonal projection on the error. When a non-Galerkin
approximation is introduced, this property is lost. Thus, the most difficult task for
us when designing a non-Galerkin algorithm is to approximate the Galerkin product
well. If the approximation is poor, the method can even diverge [11].

The density of each coarse-grid operator Ay depends on that of the interpolation
operator Py. Even interpolation operators with modest numbers of nonzeros typically

LA degree-of-freedom i is strongly connected to j if algebraically smooth error varies slowly
between them. Algebraically smooth error is not effectively reduced by relaxation and has a small
Rayleigh quotient — i.e., it’s low in energy. Strength information critically informs AMG how to
coarsen and how to interpolate. For more detail, see [6, 17].
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Algorithm 1: amg_setup

Input: Ap: fine-grid operator
max_size: threshold for max size of coarsest problem
Y1y Y2, - - drop tolerances for each level

nongalerkin: (optional) non-Galerkin method

Output: Aq,..., A,

max ?

Po,..., P ,.—1
while size(A4y) > max_size
Sy = strength(Ag) {Strength-of-connection of edges}
P = interpolation(Ag, Sg) {Construct interpolation and injection}
Ag+1 = PZTA[P[ {Galerkin product}
if nongalerkin {(optional) described in Section 2.1}
L Ae+1 = sparsify(AgH, A[7 Pb S[, ’Y@) {Remove nonzeros in Ag41}

lead to increasingly dense coarse-grid operators [11, 12]. Algorithm 1 addresses this
with the optional step sparsify, which triggers the sparsification steps developed in
this paper. The non-Galerkin approach [11] also fits within this framework.

The solve phase of AMG, described in Algorithm 2 as a V-cycle, iteratively im-
proves an initial guess ¢ through use of the residual equation Ageq = ro. High energy
error in the approximate solution is reduced through relaxation in relax — e.g. Ja-
cobi or Gauss-Seidel. The remaining error is reduced through coarse-grid correction:
a combination of restricting the residual equation to a coarser level, followed by in-
terpolating and correcting with the resulting approximate error. The coarsest-grid
equation is computed with solve, using with a direct solution method.

Algorithm 2: amg_solve

Input: =z, fine-level initial guess
b, right-hand side
Ag, .o Ay
Py, ..., P
Output: 1z, fine-level approximation

max

max—1

fori=0,...,0p.—1do

relax(Ag, Ty, b[) {Pre-smooth}
L To41 = PeT(bg — Azxg) {Restrict residual}
Tlae = solve(Agmx, ’I”emax) {Coarsest-level direct solve}
for i =Vl —1,...,0do

Ty = Ty + Pgl‘g+1 {interpolate and correct}
L relax(Ag, Ty, bz) {Post-smooth}

The dominant computation kernel in Algorithm 2 is the sparse matrix-vector
(SpMV) product, found in relax and interpolation/restriction. Typically relaxation
dominates since Ay is larger and denser than P,. Thus, the performance on level ¢ of
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the solve phase depends strongly on the performance of a single SpMV with A,.

When performing parallel sparse matrix operations, a matrix A is distributed
across processes in a row-wise partition, as shown in Figure 3. The local portion of
the matrix is split into two groups: the diagonal block, containing all columns of A that
correspond to local element of the vector; and the off-diagonal block, corresponding to
elements of the vector that are stored on other processes. For a SpMV, all off-process
elements in the vector that correspond to matrix nonzeros must be communicated.
Therefore, the density of a matrix contribute to the cost of communication complexity
in the SpMV operation. This implies that the decrease in sparsity on AMG coarse-
levels leads to large communication costs and often results in an inefficient solve
phase [11, 12].

r. - on-diagonal Sl

processor k

off—diagon-al O

A v

Fig. 3: Matrix A and vector v distributed across processes in a row-wise partition.

2.1. Method of non-Galerkin coarse-grids. In this section we give an overview
of the method [11] which constructs hierarchies with coarse operators that do not sat-
isfy the Galerkin relationship where Ayy; = P[TAng for each level ¢. The method of
non-Galerkin coarse-grids forms the coarse-grid operator through the Galerkin prod-
uct, but then uses a sparsification step that generates Ag+1 — see the call to sparsify
in Algorithm 1. As motivated in the previous section, fewer nonzeros in the coarse-grid
operator reduce the communication requirements. The sparser matrix A£+1 replaces
Agy1 and is then used when forming the remaining levels of the hierarchy, creating
a dependency between /lg“ and all successive levels as shown in Figures 6a and 6b.
Thus, this approach does not preserve a coarse-grid correction corresponding to an
A-orthogonal projection, as described in Section 2.

In the following we use edges(A), for a sparse matrix A, to represent the set
of edges in the graph of A. That is, edges(A) = {(¢, ) such that A; ; # 0}, where
Aij = (A),;; is the (i,7/)™ entry of A. In addition, we denote P; as the injection
interpolation operator that injects from level £ + 1 to the C' points on level £ so that
Py is defined as the identity over the coarse points.

The sparsify method for reducing the nonzeros in a matrix is described in Al-
gorithm 3. Here, the method selectively removes small entries outside a minimal
sparsity pattern® given by M, where edges(M,) = edges(PT A;P; + PF A,P}). For
notational convenience, we set A to A, as well as other operators in the algorithm.

2The goal of the minimal sparsity pattern is to maintain, at the minimum, a stencil as wide for
the coarse-grid as exists for the fine-grid. This is a critical heuristic for achieving spectral equivalence
between the sparsified operator and the Galerkin operator. The current M achieves this in many
cases. It is possible in some cases to reduce M further. See [11] for more details.
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For a given tolerance v, any entry A; ; with (¢,7) ¢ M and |4, ;| < ymaxgz; [A; k]
is considered insignificant and is removed. When entry A;; is removed, the value
of A;; is lumped to other entries that are strongly connected to A;;, and A;; is
set to zero. This reduces the per-iteration communication complexity and heuristi-
cally targets spectral equivalence between the sparsified operator and the Galerkin
operator [11, 20].

There is a trade-off between the communication requirements and the conver-
gence rate. Each entry in the matrix has a communication cost that is dependent on
the number of network links that the corresponding message travels in addition to
network contention. In addition, each entry in the matrix also influences convergence
of AMG, with large entries generally having larger impact (although this is not uni-
formly the case). Any entry that has an associated communication cost outweighing
the impact on convergence should be removed. However, while it is possible to pre-
dict this communication cost based on network topology and message size, the entry’s
contribution to convergence cannot be easily predetermined. When dropping via non-
Galerkin coarse-grids, if the chosen drop tolerance is too large, too many entries are
removed and convergence deteriorates. Because the ideal drop tolerance is problem
dependent and cannot be predetermined, it is likely that the chosen drop tolerance is
suboptimal.

Figures 4a and 4b show the convergence and communication complexity, respec-
tively, of various AMG hierarchies for solving a 3D Poisson problem with the method
of non-Galerkin coarse-grids. The original Galerkin hierarchy converges in the fewest
number of iterations, but has the highest communication complexity. Non-Galerkin
removes an ideal number of nonzeros from coarse-grid operators (labeled ideal) when
no entries are removed from the first coarse level, and all successive levels have a
drop tolerance of 1.0. In this case, the communication complexity of the solver is
greatly reduced with little effect on convergence. However, if the first coarse level is
also created with a drop tolerance of 1.0, essential entries are removed (labeled too
many). While the complexity of the hierarchy is further reduced, but the method
fails to converge.

500,
""""" — Galerkin
- - Non-Galerkin (Ideal)
----- Non-Galerkin (Too Many)

400

300

Relative Residual

200

Number of Messages Sent

100 (S S,

10°t —  Galerkin 4 Se
- - Non-Galerkin (Ideal) . ‘\ \
o Non-Galerkin (Too Many) LS T
1075 5 10 15 20 25 3035 % 5 10 15 20 25
Iteration Level in AMG Hierarchy
(a) Relative residual per iteration (b) Number of MPI sends per level

Fig. 4: Adding sparsity to AMG hierarchy

If a large drop tolerance is chosen for non-Galerkin AMG, the effect on conver-
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Algorithm 3: sparsify from [11]

Input:

Output:

coarse-grid operator

fine-grid operator

interpolation

injection

classical strength matrix

sparse dropping threshold parameter

D>>‘Q (QFUQU :B(}

, a sparsified A.

P« form-injection()

M = edges(PTAP + PTAP)

{Edges in the minimal sparsity pattern}

N =0 {Edges to keep in A.}
AC =0 {Initialize sparsified A.}
for (A.), ; # 0 do
i (i, ) € M or |(40),, (A0
L N —NU {(’L,j), (], Z)} {Add strong edges or the required pattern}
for ( )” # 0 do
(i,j) €N
‘ (AC)z',j = (AC)”
else
W = {k | Sj,k 7& 0, (Z, k) € N} {Find strong neighbors in the keep list}
for k € w do
o = Sanl {Relative strength to k}
el g
({10)1 k ( ) (AC)’L J
(Ao)y, (Ao, + el
(AC)k,k (A ) a(AC)

Algorithm 3b: Diagonal Lumping — Alternative for loop (§ 3.1)

1

L, for (A.); ; # 0 do

ismax + ‘(Ac)i’j’ = maxgz; [(Ac);,| and (i,k) ¢ NVk #£iand 30, A;; =0
if (Z, ]) c N or ismax {Keep if entry is the single, maximum nonzero}
‘ (Ae)iy = (Ae)s

else

L (Ac)iﬂ‘ — (Ac)lﬁ + (Ac)i,j

{Otherwise add to the diagonal}

gence can be determined after one or two iterations of the solve phase. At this point,
if convergence is poor, eliminated entries can be re-introduced into the matrix. How-
ever, with this method, convergence improvements cannot be guaranteed. As shown
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in Algorithm 1, sparsifying on a level affects all coarser-grid operators. Hence, adding
entries back into the original operator does not influence the impact of their removal
on all coarser levels. Figure 5 shows how re-adding entries is ineffective by plotting
the required communication costs verses the achieved convergence for both Galerkin
and non-Galerkin AMG solve phases for the same 3D Poisson problem. The data set
Non-Galerkin (added back) is generated by removing entries with a drop tolerance of
1.0 (everything outside of M) on the first coarse-grid operator and 0.0 (retaining ev-
erything) on all successive levels. This results in a non-convergent method. We then
add these removed entries back into the first coarse-grid operator, but this does not
reintroduce the entries which were removed from coarser grid operators as a result of
the non-Galerkin triple-matrix product PZTAZP[. Figure 5 shows that this hierarchy
requires little coarse-level communication after all entries have been reinstated to the
first coarse-grid operator. However as the required entries are not added back into all
coarser grid operators, the method still fails to converge.

3400 .
10° — Galerkin

- - Non-Galerkin (ideal)

3200 a0l \ Non-Galerkin (add back)

— Galerkin
Ay ()UU

- - Non-Galerkin (ideal)
+ Non-Galerkin (add back)

w
S
Sy

1800

2600

o
=3
S

Number of Messages Sent
Number of Sends

Relative Residual Norm
5

2400

. 100
A " Gl A
________________________________ o - - - {2200 o)

2000 0
0 10 20 30 40 0 5 10 15 20

Iteration Level in AMG Hierarchy

Fig. 5: Convergence vs. communication of Galerkin and non-Galerkin hierarchies for
the Poisson problem. Relative residual per AMG iteration (black) vs the number of
MPIT sends per iteration (red) (left), and number of sends per level in AMG hierarchy
(right)

3. Sparse and Hybrid Galerkin approaches. In this section we present two
methods as alternatives to the method of non-Galerkin coarse-grids. The methods
consist of forming the entire Galerkin hierarchy before sparsifying each operator,
yielding a lossless approach for increasing sparsity in the AMG hierarchy. The first
method, which is called the Sparse Galerkin method is described in Algorithm 4 (see
Line 1). Sparse Galerkin creates the entire Galerkin hierarchy as usual. The hierarchy
is then thinned as a post-processing step to remove relatively small entries outside of
the minimal sparsity pattern M = PTAP 4+ PT AP using sparsify.

The second method that we introduce is called Hybrid Galerkin since it combines
elements of Galerkin and Sparse Galerkin to create the final hierarchy. The method
is again lossless, and is outlined in Algorithm 4 (see Line 2). After the Galerkin
hierarchy is formed, small entries outside are removed, this time using a modified,
minimal sparsity pattern of M = PTAP + PTAP.

The Sparse and Hybrid Galerkin methods retain the structure of the original
Galerkin hierarchy. Consequently, these methods introduce error only into relax-
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Algorithm 4: sparse_hybrid_setup

Input: A fine-grid operator
max_size: threshold for max size of coarsest problem
Y1, Y2y - - drop tolerances for each level

sparse_galerkin Sparse Galerkin method
hybrid_galerkin Hybrid Galerkin method

Output: /11, . ,/L;

“max

Py,..., P, -1 = amng setup(Ap,max_size,False)

max

Ar,. Ay
Ay = Ay
for ¢/ <+ 1 to {,,,, do
if sparse_galerkin
1 L Ag_;,_l = sparsify(Ag_,_l, Ag, Pg, Sg, ")/g) {Increase using the Sparse Method}

max ?

else if hybrid galerkin
2 L Appq = sparsify(AgH, Ay, Py, Sy, ’yz) {Increase using the Hybrid Method}

ation and residual calculations. The remaining components of each V-cycle in the
solve phase (see amg_solve), such as restriction and interpolation are left unmodi-
fied. Therefore, the grid transfer operators do not depend on any sparsification, as
shown in Figure 6. Here, we see that the Sparse Galerkin method does not use the
modified (or sparsified) operators to create the next coarse-grid operator in the hier-
archy. Conversely, Hybrid Galerkin uses the newly modified operator to compute the
sparsity pattern M for the next coarse-grid operator; this process does not impact
interpolation.

Ay — Py Ag— Py Ay — Py Ay — Py
N N
l / l >< l l 5 l y
! 7 7
Al—)Pl Al—)Al—)Pl Al P Al P
L' v
A2 A2
J 7 7
Ay Ay —— Ay Ay Az
(a) Galerkin (b) Non-Galerkin (c) Sparse Galerkin  (d) Hybrid Galerkin

Fig. 6: Dependencies for forming each operator in the various AMG hierarchies. The
difference between Sparse and Hybrid Galerkin dependencies is highlighted in red.

The new Sparse Galerkin and Hybrid Galerkin methods reduce the per-iteration
cost in the AMG solve cycle as less communication is required by each sparse, coarse-
grid operator. However, high-energy error may also be relaxed at a slower rate,
yielding a reduction in the convergence factor. As a result, the solve phase is more
efficient when the reduction in communication outweighs the change in convergence
factor.

Similar to the method of non-Galerkin, it is difficult to predict the impact of
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removing entries from A. on the relaxation process. However, as the structure of
the Galerkin hierarchy is retained, the convergence factor of the solve phase can be
controlled on-the-fly. In our approach, differences between A, and A, are stored while
forming the sparse approximations. Subsequently, if the convergence factor falls below
a tolerance, entries can be reintroduced into the hierarchy, allowing improvement of
the convergence factor up to that of the original Galerkin hierarchy (see Section 6).

3.1. Diagonal Lumping. A significant amount of work is required in Algo-
rithm 3 to increase the sparsity of each coarse operator. When forming non-Galerkin
coarse-grids, this additional setup cost is hidden by the reduced cost of the sparsified
triple matrix product A, = PTAP. However, as the entire Galerkin hierarchy is ini-
tially formed as usual in our new methods (Algorithm 4) the additional work greatly
reduces the scalability of the setup phase, as shown in Section 5.2. This significant cost
suggests using an alternative method for sparsification of coarse-grid operators. When
reducing the number of nonzeros from coarse-grid operators with Sparse Galerkin or
with Hybrid Galerkin, the structure of the Galerkin hierarchy remains intact, allow-
ing a more flexible treatment of increasing sparsity in the matrix. For instance, one
option is to remove entries by lumping to the diagonal rather than strong neighbors,
as described in Algorithm 3b. This variation of sparsify is beneficial for several rea-
sons, including a much cheaper setup phase when compared to Algorithm 3, potential
to reduce the cost of the solve phase, reduced storage constraints for adaptive solve
phases (see Algorithm 5), and retaining positive-definiteness of coarse operators.

Algorithm 3b replaces the for loop in Algorithm 3. For each nonzero entry in the
matrix, the algorithm first checks if the entry is the maximum element in the row and
if all other entries in the row are selected for removal (see Line 1). In this case, the
nonzero entry is not removed if there is a zero row sum.

The method of diagonal lumping (Algorithm 3b) results in a significantly cheaper
setup phase than Algorithm 3. The original non-Galerkin sparsify requires each
removed entry to be symmetrically lumped to significant neighbors. As a result, the
process of calculating the associated strong connections requires a large amount of
computation. Furthermore, to maintain symmetry, all matrix entries that are not
stored locally must be updated, requiring a significant amount of interprocessor com-
munication. Lumping these entries to the diagonal eliminates both the computational
and communication complexities.

Eliminating the requirement of lumping to strong neighbors yields potential for
removing a larger number of entries from the hierarchy, further reducing the commu-
nication costs of the solve phase. The original version of Algorithm 3 requires that
an entry must have strong neighbors to be removed, as its value is lumped to these
neighbors.

While relaxing the restrictions of the original non-Galerkin sparsify provides
more opportunity to remove entries from the matrix, the diagonal lumping also neg-
atively influences convergence in some cases. However, during the solve phase, if
convergence suffers, entries can be easily reintroduced into the hierarchy, improving
convergence. As removed entries are only added to the diagonal, the storage of both
the sparse matrix along with removed entries is minimal. In addition, these entries
can be restored simply by adding their values to the original positions, and subtract-
ing these values from the associated diagonal entries as shown in Algorithm 5. The
process of reintroducing these entries requires no interprocessor communication as
well as a low amount of local computational work.

Diagonal lumping also preserves matrix properties such as symmetric positive-
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definiteness (SPD). As described in the following theorem, if the sparsity of a diago-
nally dominant, SPD matrix is increased using diagonal lumping, the resulting matrix
remains SPD. Consequently, Sparse and Hybrid Galerkin with diagonal lumping can
be used in preconditioning many methods such as conjugate gradient. It is important
to note, that while SPD matrices are an attractive property for AMG, AMG methods
do not guarantee diagonally dominance of the coarse-grid operators. Yet, in many
instances this property is preserved, for example for more standard elliptic operators.

THEOREM 3.1. Let A be SPD and diagonally dominant. If A s produced by
Algorithm 3b, then it is symmetric positive semi-definite and diagonally dominant.
Proof. Let A be SPD with diagonal dominance,

(3.1) |4l > Z |Ai k|, Vi.
s

Symmetry of A is guaranteed from the symmetry of both A and the A from Algo-
rithm 3. For all off-diagonal entries (i, 5), (j,4) € N,
(3.2) A=A, = Aji = Aj,ia

4,3 1,7

by Line 2 in Algorithm 3b and the symmetry of A.

The positive-definiteness is guaranteed by the diagonal dominance and a Gersh-
gorin disc argument. The proof proceeds by starting with the matrix A and then
considering the change made to A by the elimination of each entry. Initially, all the
Gershgorin discs of A are strictly on the right-side of the origin, thus implying that all
eigenvalues are non-negative. Then, assume that we eliminate some arbitrary entry
A; ;, (4,7) € N. This results in row ¢ being updated

(3.3) Aji A +A;; and A <0

If A; ; > 0, then the center of the Gershgorin disc is shifted to the right, and the radius
shrinks, thus keeping the disc to the right of the origin and preserving definiteness. If
A; ; <0, then the center of the disc is shifted to the left by |A; ;|, but the radius of
the disc also shrinks by |A; j|. This also keeps the disc to the right of the origin and
preserves semi-definiteness. Furthermore, since each disc is never shifted to the left,
diagonal dominance is also preserved. The proof then proceeds by considering all of
the entries to be eliminated. O

REMARK 3.1. If any row of A is strictly diagonally dominant, as often happens
with Dirichlet boundary conditions, then A will be positive definite. Essentially, Al-
gorithm 3b never shifts a Gershgorin disc to the left, so A can have no 0 eigenvalue.

4. Parallel Performance. In this section we model the parallel performance of
Galerkin, non-Galerkin, Sparse and Hybrid Galerkin using full lumping as in Algo-
rithm 3, and Sparse and Hybrid Galerkin with diagonal lumping as in Algorithm 3b
(labeled with Diag) in order to illustrate the per-level costs associated with each
method. The large increase in cost on coarse-levels in the Galerkin method (see
Figure 2) is due to the increase in coarse-level communication.

The solve phase of AMG (see Algorithm 2) is largely comprised of sparse matrix-
vector multiplication, thus we model each method by assessing the cost of performing
a SpMV on each level of the hierarchy. We focus on the operators Ay, as the work
required for this matrix is more costly than the restriction and interpolation opera-
tions. Specifically, we employ an a—3 model to capture the cost of the parallel SpMV



14 Bienz, Falgout, Gropp, Olson, Schroder

based on the number of nonzeros in A. We denote p as the number of processors, o
as the latency or startup cost of a message, and S as the reciprocal of the network
bandwidth [12, 13]. In addition, nnz,, represents the average number of nonzeros local
to a process, while s, and n,, are the maximum number of MPI sends and message size
across all processors. Finally, we use ¢ to represent the cost of a single floating-point
operation. With this we model the total time as

(4.1) T =2cnnz, + max sp(a+ fny).

For the model parameters above we us the Blue Waters supercomputer at the Univer-
sity of Illinois at Urbana-Champaign [1, 4]. The latency and bandwidth were measured
through the HPCC benchmark [15], yielding o = 1.8 x 1075 and 8 = 1.8 x 1079,
Since the achieved floprate depends on matrix size, we determine the value of ¢ by
timing the local SpMV. Specifically, letting nnz),.,; be the number of nonzeros local
to the processor and Tjyca the time to perform the local portion of the SpMV, we
compute ¢ = Tiocal f2nnz)0c. for each matrix in the hierarchy.

The minimal per-level cost associated with the non-Galerkin and Sparse/Hybrid
Galerkin methods occurs when entries are removed with a drop tolerance of v = 1.0.
Using the model, (4.1), this is highlighted in Figure 7 for both the Laplace and
rotated anisotropic diffusion problems (a full description of these problems is given
in Section 5. We see that both non-Galerkin and Hybrid Galerkin have potential
to minimize the per-level cost. However, when the per-level cost is minimized, the
convergence of AMG often suffers. Therefore, less-aggressive drop tolerances such as
v < 1.0 may remove fewer entries, increasing the per-level cost, but due to better
convergence will improve the overall cost of the solve phase.

o—e Galerkin + = Hybrid Galerkin o—e Galerkin + = Hybrid Galerkin
=—a  Non-Galerkin 4+— Sparse Galerkin (Diag) =—= Non-Galerkin +— Sparse Galerkin (Diag)
& -4 Sparse Galerkin ~ +— Hybrid Galerkin (Diag)

& -4 Sparse Galerkin +— Hybrid Galerkin (Diag)
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Fig. 7: Modeled minimal cost of a single SpMV on each level of the AMG hierarchy

for Laplace (left) and rotated anisotropic diffusion (right), for an aggressive drop

tolerance of 1.0 on each level.

Figure 8 models the cost of a SpMV on each level of the hierarchy in the case
of more realistic drop tolerances that are used to retain convergence of the original
method. These drop tolerances vary by level in the AMG hierarchy, each containing
a combination of 0.0, 0.01, 0.1, and 1.0. For each test displayed in the model, six
drop tolerance series were tested, and we selected the smallest solve time. The results
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underscore the simplicity of the Laplacian, as removing entries can fortuitously im-
prove convergence of this problem. For the rotated anisotropic diffusion problem the
per-level cost of non-Galerkin and Hybrid Galerkin increase in order to retain conver-
gence. However, the per-level cost of the non-Galerkin and Hybrid/Sparse Galerkin
methods are significantly decreased for levels near the middle of the hierarchy.

e—e Galerkin + = Hybrid Galerkin e—e Galerkin + = Hybrid Galerkin
m—a  Non-Galerkin 4— Sparse Galerkin (Diag) »—a Non-Galerkin +— Sparse Galerkin (Diag)
0.0006. %~ Sparse Galerkin ~ +— Hybrid Galerkin (Diag) 0.0035. * ™ Sparse Galerkin  +— Hybrid Galerkin (Diag)
0.0005 0.0030
0.0025
2 0.0004 8
g £
2 2 0.0020
)
5:0.0003 &
=3 =3
kS £ 0.0015
T T
1 1
] ]
= 0.0002 =
0.0010f \J
0.0001 0.0005
0.0000 0.0000 - - - ]
0 0 5 10 15 20 25
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Fig. 8: Modeled minimal cost of a single SpMV on each level of the AMG hierarchy for
Laplace (left) and rotated anisotropic diffusion (right) when a practical drop tolerance
is used.

5. Parallel results for Sparse and Hybrid Galerkin. In this section we
highlight the parallel performance of the Sparse and Hybrid Galerkin methods. We
consider scaling tests on the familiar 3D Laplacian since this is a common multigrid
problem used to establish a baseline. In order to test problems where AMG conver-
gence is suboptimal, we consider the 2D rotated anisotropic diffusion problem. Finally,
we test our methods on a suite of matrices from the Florida Sparse Matrix Collection.
All computations were performed on the Blue Waters system at the University of
Nlinois at Urbana-Champaign [1]. Each method was implemented and solved with
hypre [2, 14], using default parameters unless otherwise specified. In summary, we
compare the solve and setup times of the four methods discussed in previous sections,
preconditioning a Krylov method such as CG or GMRES in each test:

Galerkin: Classic coarsening in AMG, as outlined in Algorithm 1;

non-Galerkin The base algorithm presented in [11], where PT AP is not used on
coarse-levels;

Sparse Galerkin A new algorithm presented in Algorithm 4; and

Hybrid Galerkin A new algorithm presented in Algorithm 4.

In addition, we also consider the Sparse and Hybrid Galerkin methods with diagonal

lumping, as detailed in Algorithm 3b. The drop tolerances for each method vary

by level, using a combination of 0.0, 0.01, 0.1, and 1.0 across the coarse-levels. Six

combinations of these drop tolerances are tested for the various test cases, and the

series yielding the minimum solve time for each is selected. note: At 100,000 cores,

the best drop tolerances from the second largest run size are used due to large costs

associated with running 6 drop tolerances at this core count.
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We consider the diffusion problem
(5.1) -V - KVu =0,

with two particular test cases for our simulations:

3D Laplacian Here, we use K = I on the unit cube with homogeneous Dirichlet
boundary conditions. Q1 finite elements are used to discretize the problem
using a uniform mesh, leading to a familiar 27-point stencil. The precondi-
tioner formed for the 3D Laplacian uses aggressive coarsening (HMIS) and
distance-two (extended classical modified) interpolation. The interpolation
operators were formed with a maximum of five elements per row, and hybrid
symmetric Gauss-Seidel was the relaxation method.

Rotated, anisotropic diffusion In this case, we consider a diffusion tensor with
homogeneous Dirichlet boundary conditions of the form K = Q7 DQ, where
Q@ is a rotation matrix and D is a diagonal scaling defined as

~( cos(f)  sin(0) (1 0
(5.2) @= (— sin(0) COS(H)) b= (O e) '
Q1 finite elements are used to discretize a uniform, square mesh. In the
following tests we use ¢ = ¢ and € = 0.001. In each case, the preconditioner
uses Falgout coarsening [7], extended classical modified interpolation and
hybrid symmetric Gauss-Seidel.

Lastly, as problems with less structure result in increased density on coarse-levels,
we consider a subset from the Florida sparse matrix collection.

Florida sparse matrix collection subset We consider all real, symmetric, posi-
tive definite matrices from the Florida sparse matrix collection with size over
1,000,000 degrees-of-freedom. In addition we consider only the cases where
GMRES preconditioned with Galerkin AMG converges in fewer than 100 it-
erations. Each problem uses HMIS coarsening and so-called extended+i inter-
polation if possible. In some cases, however, Galerkin AMG does not converge
with these options; in these cases Falgout coarsening and modified classical
interpolation are used. Relaxation for all systems is hybrid symmetric Gauss-
Seidel. note: When necessary for convergence, some hypre parameters, such
as the minimum coarse-grid size and strength tolerance, vary from the default.

The following results demonstrate that the diagonally lumped Sparse and Hybrid
Galerkin methods are able to perform comparably to non-Galerkin. Non-Galerkin
and Sparse/Hybrid Galerkin all significantly reduce the per-iteration cost by reduc-
ing communication on coarse-levels. Since the method of non-Galerkin is multiplica-
tive in construction, the setup times are often much lower in comparison to standard
Galerkin. However, Sparse and Hybrid do not observe this benefit since the processing
is post facto. While the per-iteration work is decreased for all methods, the conver-
gence suffers for the case of rotated anisotropic diffusion problems with non-Galerkin
at large scales. However, Sparse and Hybrid Galerkin converge at rates similar to the
original Galerkin hierarchy, yielding speedup in total solve times.

A strong scaling study shows that the anisotropic problem of a set size can be
most efficiently solved at larger scales when using non-Galerkin, but Hybrid Galerkin
performs comparably. Lastly, a strong scaling study of the subset of Florida sparse
matrix collection problems shows that non-Galerkin and Sparse/Hybrid Galerkin each
improve solve phase times for all matrices. While non-Galerkin performs slightly
better for many problems on 32 cores, Hybrid Galerkin outperforms the other methods
for most problems at larger scales.



Sparsifying AMG 17

5.1. Increasing sparsity in AMG Hierarchies. The significant number of
nonzeros on coarse-levels creates large, relatively dense matrices near the middle of
the AMG hierarchy, yielding large communication costs for each SpMV performed on
these levels. As the solve phase of AMG consists of many SpMVs on each level of the
hierarchy, the time spent on coarse-levels can increase dramatically. Sparse, Hybrid,
and non-Galerkin can all reduce both the cost associated with communication as well
as the time spent on each level during a solve phase.

Figure 9 shows the time spent on each level of the hierarchy during a single
iteration of AMG, for both test cases with 10,000 degrees-of-freedom per core using
8192 cores. Both the method of non-Galerkin coarse-grids, as well as the Sparse
and Hybrid Galerkin methods, reduce the time required on levels near the middle of
the hierarchy. Non-Galerkin more greatly reduces the time spent on middle levels of
the hierarchy for the Laplace problem than Sparse and Hybrid Galerkin. However,
for the anisotropic problem, diagonally-lumped Hybrid Galerkin reduces level-time
equivalently. This is due to a large reduction in the number of messages required
in each SpMV as shown in Figure 10. The reduction in total size of all messages
communicated is relatively small.

— Galerkin «# Hybrid Galerkin — Galerkin ++ Hybrid Galerkin
»—a Non-Galerkin & - Sparse Galerkin (Diag) =—a Non-Galerkin » -+ Sparse Galerkin (Diag)
o010, A4 Sparse Galerkin =~ Hybrid Galerkin (Diag) 020, A4 Sparse Galerkin  +— Hybrid Galerkin (Diag)
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Fig. 9: Time spent on each level of the AMG hierarchy during a single iteration of the
solve phase for Laplace (left) and rotated anisotropic diffusion (right), each
with 10,000 degrees-of-freedom per core.

The increase in time spent on each level, as well as the associated communication
costs of these levels, becomes more pronounced at higher processor counts in a strong
scaling study. Figure 11 illustrates this by plotting the per-level times required during
a single iteration of AMG, as well as the number of messages communicated during
a SpMV for the rotated anisotropic diffusion problem with 1,250 degrees-of-freedom
per core using 8192 cores. Compared with the 10,000 degrees-of-freedom per core
example in Figures 10 and 9, there is a sharper increase in time required for levels
near the middle of the hierarchy due to the increasing dominance of communication
complexity. note: Strong scaling the Laplace problem results in similar performance.

5.2. Costs of Weakly Scaled Setup Phases. Each sparsification method
can lead to reduced communication costs in the middle of the hierarchy. However,
removing insignificant entries from coarse-grid operators requires additional work in
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Fig. 10: Number of sends required to perform a single SpMV on each level of the
AMG hierarchy for: Laplace (left) and Rotated anisotropic diffusion (right),
each with 10,000 degrees-of-freedom per core.
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Fig. 11: For each level of the AMG hierarchy, time per iteration of AMG (left) and
number of messages sent during a single SpMV (right) for the rotated anisotropic
diffusion problem with 1,250 degrees-of-freedom per core.

the setup phase. In the non-Galerkin method, setup times are reduced since the
increased sparsity is used directly in the triple-matrix product required to form each
successive coarse-grid operator. However, for the new methods, Sparse and Hybrid
Galerkin, the entire Galerkin hierarchy is first constructed so that the sparsify process
on each level requires additional work. Figure 12 shows the times required to setup
an AMG hierarchy for rotated anisotropic diffusion, with Laplace setup times scaling
in a similar manner. While there is a slight increase in setup cost associated with the
Sparse and Hybrid Galerkin hierarchies, this extra work is nominal. Therefore, while
the majority of this additional work is removed when using diagonal lumping, the
differences in work required in the setup phase between these two lumping strategies
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is insignificant for the problems being tested.
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Fig. 12: Time required to setup AMG hierarchy for rotated anisotropic diffusion
with 10,000 degrees-of-freedom per core.

5.3. Weak Scaling of GMRES Preconditioned by AMG. In this section
we investigate the weak scaling properties of the methods. Figure 13 shows both the
average convergence factor and total time spent in the solve phase for a weak scaling
study with rotated anisotropic diffusion problems at 10,000 degrees-of-freedom per
core using GMRES preconditioned by AMG. GMRES is used over CG because Algo-
rithm 3 guarantees symmetry but not positive-definiteness of the preconditioner. In
many cases, positive-definiteness is preserved, but when using more aggressive drop
tolerances, we have observed this property being lost. While the convergence of both
diagonally-lumped Sparse and Hybrid Galerkin remain similar to that of Galerkin,
the non-Galerkin method converges more slowly. Therefore, while non-Galerkin and
diagonally-lumped Hybrid Galerkin yield similar communication requirements, GM-
RES preconditioned by Hybrid Galerkin performs significantly better as fewer itera-
tions are required.

REMARK 5.1. With the chosen drop tolerances, non-Galerkin does not converge
for this anisotropic problem at 100,000 cores. In this case, nothing was dropped from
the first three coarse-levels of the hierarchy. On the fourth coarse-level a drop tol-
erance of 0.01 was used, and the fifth was sparsified with a tolerance of 0.1. The
remaining levels were sparsified with a drop tolerance of 1.0. This was determined
to be the best tested drop tolerance sequence for smaller run sizes, and multiple drop
tolerance sequences were not tuned at this large problem size due to the significant
costs. However, a better drop tolerance could yield a convergent non-Galerkin method
at this scale.

The efficiency of weakly scaling to p processes is defined as F, = I;‘FTPN where T}
is the time required to solve the problem on a single process and T}, is time to solve
on p processes. The efficiency of solving weakly scaled rotated anisotropic diffusion
problems with non-Galerkin, Sparse Galerkin, and Hybrid Galerkin, relative to the
efficiency of Galerkin AMG, are shown in Figure 14. While both the original and
diagonally-lumped Sparse and Hybrid Galerkin methods scale more efficiently than
Galerkin, the poor convergence of non-Galerkin on large run sizes yields a reduction
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Fig. 13: Convergence factors (left) and times (right) for weak scaling of anisotropic
problem (10,000 degrees-of-freedom per core), solved by preconditioned GMRES. For
large problem sizes, non-Galerkin AMG does not converge, and timings indicate when
the maximum iteration count was reached.

in relative efficiency. While the methods perform similarly when solving the Laplace
problem, non-Galerkin improves relative efficiency for all scalings of this model prob-
lem.
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Fig. 14: Efficiency of solving weakly scaled rotated anisotropic diffusion at 10,000
degrees-of-freedom per core with various methods, relative to that of the Galerkin
hierarchy.

5.4. Strong Scaling of GMRES Preconditioned by AMG. We next con-
sider the rotated anisotropic diffusion system with approximately 10,240,000 un-
knowns using cores ranging from 128 to 100,000. Therefore, the simulation is re-
duced from 80,000 degrees-of-freedom per core when run on 128 cores, to just over
100 degrees-of-freedom per core on 100,000 cores. Computation dominates the total
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cost of solving a problem partitioned over relatively few processes, as each process
has a large amount of local work. However, as the problem is distributed across an
increasing number of processes, the local work decreases while communication re-
quirements increase. Therefore, the time required to solve a problem is reduced with
strong scaling, but only to the point where communication complexity begins to dom-
inate. The efficiency of solving this problem with preconditioned GMRES relative to
Galerkin is shown in Figure 15. In each case we observe improvements over standard

Galerkin.

— Galerkin =+ Hybrid Galerkin
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A4 Sparse Galerkin + =+ Hybrid Galerkin (Diag)
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Fig. 15: Efficiency of non-Galerkin and Sparse/Hybrid Galerkin methods in a strong
scaling study, relative to Galerkin AMG for rotated anisotropic diffusion.

A strong scaling study is also performed on the subset of matrices from the
Florida sparse matrix collection. These problems were tested on 64, 128, 256, and
512 processes. Figure 16 shows the time required to perform a single V-cycle for each
of the matrices in the subset, relative to the time required by Galerkin AMG. All
methods reduce the per-iteration times for each matrix in the subset. Furthermore,
the total time required to solve each of these matrices is also reduced, as shown in
Figure 17. While Sparse Galerkin provides some improvement, the Hybrid and non-
Galerkin methods are comparable, particularly at high core counts.

5.5. Diagonal Lumping Alternative and Preconditioned Conjugate Gra-
dient. Diagonal lumping retains positive-definiteness of diagonally-dominant coarse-
grid operators, as described in Theorem 3.1. Therefore, as the preconditioned Con-
jugate Gradient (PCG) method requires both the matrix and preconditioner to be
symmetric and positive-definite, the Laplace and anisotropic diffusion problems are
solved by Conjugate Gradient preconditioned by the diagonally-lumped Sparse and
Hybrid Galerkin hierarchies. Figure 18 shows the solve phase times for solving the
weakly scaled rotated anisotropic diffusion problem with PCG. As with GMRES,
both the Sparse and Hybrid Galerkin preconditioners decrease the time required in
the AMG solve phase during a weak scaling study.

6. Adaptive Solve Phase. The previous results describe the case of an optimal
drop tolerance selected in sparsify: the new diagonally-lumped Sparse and Hybrid
Galerkin methods reduce the cost of the solve phase. However, as the optimal drop
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Fig. 16: Time (relative to Galerkin) per iteration for each matrix in the Florida Sparse
Matrix Collection, using p = 64, 128, 256, and 512.

tolerance changes with problem type, problem size, and even level of the AMG hier-
archy, an optimal drop tolerance is often not easily realized. When the drop tolerance
is too small, few entries are removed from the hierarchy and the communication com-
plexity remains the same. However, if the drop tolerance is too large, the solver is
non-convergent, as described in Section 2.1.

In this section we consider an adaptive method that attempts to add entries back
into the hierarchy as a deterioration in convergence is observed. This is detailed
in Algorithm 5. The algorithm initializes a Sparse or Hybrid Galerkin hierarchy
and proceeds by executing k iterations of a preconditioned Krylov method — e.g.
PCG. If the convergence is below a tolerance, the coarse levels are traversed until a
coarse grid operator is found on which entries were removed with a drop tolerance
greater than 0.0. Entries are then added back to this coarse-grid operator, reducing
the drop tolerance by a factor of 10. Any new drop tolerance below 7y, = 0.01
is rounded down to 0.0. This continues until entries have been reintroduced into s
coarse-grid operators. At this point, the Krylov method continues, using the most
recent values for x unless the previous iterations diverged from the true solution.
Many methods such as PCG and GMRES must be restarted after the preconditioner
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Fig. 17: Time (relative to Galerkin) per AMG solve for each matrix in the Florida
Sparse Matrix Collection, using p = 64, 128, 256, and 512.

has been edited. This entire process is then repeated until convergence. The adaptive
solve phase requires additional iterations over Galerkin AMG, as initial iterations
of this method may not converge. However, the goal of this solver is to guarantee
convergence similar to Galerkin AMG. Speed-up over Galerkin AMG is still dependent
on choosing reasonable initial drop tolerances.

EXAMPLE 6.1. As an example, consider the case of a hierarchy with 6 levels
using drop tolerances of [0,0.01,0.1,1.0,1.0,1.0] — i.e., Ay retains all entries from
Aq, Ay and As result from sparsify with v = 0.01 and v = 0.1, etc. Suppose
that adaptive_solve with k = 3 and s = 2 results in 3 iterations of PCG and a
large residual. The adaptive solve find the first level containing a sparsified coarse
grid matriz, namely Ay, The drop tolerance on this level is changed from 0.01 to
0.0, and the original coarse matriz Ay is sparsified with to the new drop tolerance.
Furthermore, since s = 2 the drop tolerance on level 3 is reduced from 0.1 to 0.01,
and As is also sparsified. PCG then restarts with the new hierarchy. If convergence
continues to suffer after 3 iterations, the hierarchy is updated again, but since Ay has
vo = 0.0, entries are reintroduced into coarse matrices As and A4 instead.

Using Algorithm 5, Figure 19 shows both the relative residual of the system after
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Fig. 18: Weak scaling solve time for the anisotropic problem, solved by PCG pre-
conditioned by various AMG hierarchies.

each iteration as well as the communication costs of PCG using three different AMG
hierarchies: standard Galerkin, Sparse Galerkin with diagonal lumping and aggressive
dropping, and Sparse Galerkin with diagonal lumping modified with adaptivity. For
the adaptive case, we purposefully choose an overly aggressive initial drop tolerance
so that entries can be added back multiple times and one coarse level at a time to
show the effect on convergence and communication. Initially, when the drop tolerance
is aggressive, the associated communication costs are low, but the resulting PCG it-
erations do not converge; this provides a baseline. As sparse entries are reintroduced
into the hierarchy, convergence improves, while only slightly increasing the associated
communication cost. When entries are reintroduced into the hierarchy, the precondi-
tioner for PCG changes, and hence, the method must be restarted. After restarting
the method, convergence improves.

An important feature of Algorithm 5 is that it is solver independent. Indeed,
other solvers may be used such as standalone AMG and preconditioned FGMRES.
No change to these solvers is needed when updating the AMG hierarchy, as the change
in hierarchy is considered during the solve.

7. Conclusion. We have introduced a lossless method to reduce the work re-
quired in parallel algebraic multigrid by removing weak or unimportant entries from
coarse-grid operators after the multigrid hierarchy is formed. This alternative to
the original method of non-Galerkin coarse-grids is similarly capable of reducing the
communication costs on coarse-levels, yielding an overall reduction in solve times.
Furthermore, this method retains the original Galerkin hierarchy, allowing many of
the restrictions of non-Galerkin to be relaxed. As a result, removed entries are easily
lumped directly to the diagonals, greatly reducing setup costs, while also reducing
communication complexity during the solve phase. Furthermore, as entries are added
to the diagonal, entries removed from the matrix are stored and adaptively reintro-
duced into the hierarchy if necessary for convergence. Hence, the trade-off between
convergence and the communication costs is controlled at solve-time with little addi-
tional work.
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Algorithm 5: adaptive_solve

Input:
A7 b, i)
Ay, A Sparse/Hybrid Galerkin coarse grid matrices
Ar, oo A, original Galerkin coarse grid matrices
Py,.... P .1
k number of PCG iterations before convergence test
s number of AMG levels to update at a time
Yo, Y1y - - - drop tolerance used at each level for sparsification
tol convergence tolerance
sparse_galerkin Sparse Galerkin method
hybrid_galerkin Hybrid Galerkin method
Output: =
r = X9

Tozb—Al‘o

while 71l /|- < tol

M = preconditioner(amg_solve, Ay,..., As ., Po,-.., Po .. .—1)
T = PCG(A, b,x, k, M) {Call k steps of preconditioned CG}
r=b—Ax
if g7 < tol
L continue
else
for £ =0,...,0n. do
if >0
L Estart — /¢ {Find finest level that uses dropping}
for ¢ = Estart - -Estart + s do
e i e
2G>y
Yo = 10” 10 '.me {Determine new dropping parameter}
0, otherwise
if sRarse,galerkin {Re-add entries at the new dropping tolerance}
| Ay =sparsify(As, A¢—1, Pr—1, Se—1, Ye)
else if hybrid_galerkin {Re-add entries at the new dropping tolerance}
| A, =sparsify(Ay, Ag_1, Pr_y1, Si—1, ve)
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