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Abstract

This paper introduces the interpolative butterfly factorization for nearly optimal implemen-
tation of several transforms in harmonic analysis, when their explicit formulas satisfy certain
analytic properties and the matrix representations of these transforms satisfy a complementary
low-rank property. A preliminary interpolative butterfly factorization is constructed based on
interpolative low-rank approximations of the complementary low-rank matrix. A novel sweeping
matrix compression technique further compresses the preliminary interpolative butterfly factor-
ization via a sequence of structure-preserving low-rank approximations. The sweeping procedure
propagates the low-rank property among neighboring matrix factors to compress dense subma-
trices in the preliminary butterfly factorization to obtain an optimal one in the butterfly scheme.
For an N×N matrix, it takes O(N logN) operations and complexity to construct the factoriza-
tion as a product of O(logN) sparse matrices, each with O(N) nonzero entries. Hence, it can
be applied rapidly in O(N logN) operations. Numerical results are provided to demonstrate
the effectiveness of this algorithm.

Keywords. Data-sparse matrix, butterfly algorithm, randomized algorithm, matrix factoriza-
tion, operator compression, nonuniform Fourier transform, Fourier integral operators.

AMS subject classifications: 44A55, 65R10 and 65T50.

1 Introduction

One key problem in computational harmonic analysis is the rapid evaluation of various transforms
to make large-scale scientific computation feasible. These transforms are essentially matrix-vector
multiplications, u = Kg, where the kernel matrix K is the discrete representation of a transform
and the vector g is the discrete representation of a function to be transformed. Inspired by the
idea of the butterfly algorithm initially proposed in [24] and later extended in [25], the recently
proposed butterfly factorization [20, 21] factorizes a complementary low-rank matrix K of size
N × N into a product of O(logN) sparse matrices, each with O(N) nonzero entries. After fac-
torization, the application of K has nearly optimal1 operation and memory complexity of order
N logN . Since a wide range of transforms in harmonic analysis admits a matrix representation
satisfying the complementary low-rank property [7, 10, 22, 33, 25, 28], the butterfly factorization,
once constructed, is a nearly optimal fast algorithm to evaluate these transforms. However, the
construction of the butterfly factorization requires O(N2) operations in [25] and requires O(N1.5)
operations in [20, 21], which might still be too expensive in real applications. This paper introduces
the interpolative butterfly factorization to construct the factorization in O(N logN) operation and

1Through out the paper, the “nearly optimal” refers to the nearly optimal constant in the complexity.

1

ar
X

iv
:1

60
5.

03
61

6v
2 

 [
m

at
h.

N
A

] 
 1

6 
N

ov
 2

01
6



memory complexity, if the continuous kernel K is explicitly available. The interpolative butterfly
factorization is a combination of the butterfly algorithm in [7] and a novel structure-preserving ma-
trix compression technique. Hence, the proposed method can be considered as an optimized sparse
matrix representation of the butterfly algorithm in [7] with a smaller prefactor in the operation
complexity.

Another key problem in modern large-scale computation is the parallel scalability of fast al-
gorithms. Although there have been various fast algorithms like the (nonuniform) fast Fourier
transform (FFT) [1, 14, 15], the FFT in polar and spherical coordinates [19, 29, 31, 33], the par-
allel scalability of some of these traditional algorithms might be still limited in high performance
computing. This motivates much effort to improve their parallel scalability [2, 26, 30, 37]. For the
same purpose, the interpolative butterfly factorization is proposed as a general framework for highly
parallel scalable implementation of a wide range of transforms in harmonic analysis. Since the con-
struction of the butterfly factorization is just a few essentially independent low-rank approximations
and the application is a sequence of small matrix-vector multiplications, the butterfly factorization
framework significantly reduces communication if implemented in parallel computation.

To be more specific, the interpolative butterfly factorization is proposed for the rapid application
of integral transforms of the form

u(x) =

∫
Rd
a(x, ξ)e2πıΦ(x,ξ)g(ξ)dξ, (1)

where d is the dimension, andK(x, ξ) = a(x, ξ)e2πıΦ(x,ξ) is the kernel function that satisfies following
properties:

Assumption 1.1. Smoothness properties

• a(x, ξ) is an amplitude function that is smooth both in x and ξ;

• Φ(x, ξ) is a phase function that is real analytic for x and ξ and obeys the homogeneity condition
of degree 1 in ξ, namely, Φ(x, λξ) = λΦ(x, ξ) for λ > 0.

This transform is also known as the Fourier integral operator (FIO). FIOs are a wide class of
operators in harmonic analysis including the (nonuniform) Fourier transform, pseudo-differential
operators, and the generalized Radon transform. All these are popular tools in computational
physics and chemistry [11, 17, 27, 32, 35], imaging science [6, 8, 23, 38]. For higher dimensional
FIOs, the phase function might not be smooth when ξ = 0. Fortunately, the interpolative butterfly
factorization can be adapted to this case following the idea in the multiscale butterfly algorithm in
[22].

In most examples, since a(x, ξ) is a smooth symbol of order zero and type (1, 0) [3, 5, 9, 34],
a(x, ξ) is numerically low-rank in the joint X and Ω domain and its numerical treatment is relatively
easy. Therefore, we will simplify the problem by assuming a(x, ξ) = 1 in the following discussion.

In a typical setting, it is often assumed that the function g(ξ) decays sufficiently fast so that
one can embed the problem in a sufficiently large periodic cell. Without loss of generality, a simple
discretization considers functions given on a Cartesian grid

X =
{
x =

( n1

N1/d
, . . . ,

nd
N1/d

)
, 0 ≤ n1, . . . , nd < N1/d with n1, . . . , nd ∈ Z

}
(2)

in a unit box in x and defines the discrete integral transform by

u(x) =
∑
ξ∈Ω

K(x, ξ)g(ξ), x ∈ X, (3)
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where

Ω =

{
ξ = (n1, . . . , nd),−

N1/d

2
≤ n1, . . . , nd <

N1/d

2
with n1, . . . , nd ∈ Z

}
. (4)

Using the notation in numerical linear algebra, the evaluation of (3) is a matrix-vector multiplication
u = Kg. Under Assumption 1.1, it can be proved that K is essentially complementary low-rank
[7, 22].

1.1 Complementary low-rank matrices and interpolative butterfly factorization

Complementary low-rank matrices have been widely studied in [12, 13, 20, 21, 25, 24, 36]. Let X
and Ω be point sets (not necessary uniformly distributed) in Rd for some dimension d. When the
kernel K(x, ξ) is discretized on X×Ω, points in X and Ω are indexed with row and column indices
in the matrix K. For simplicity, we also use X and Ω to denote the sets of row and column indices.
Two trees TX and TΩ of the same depth L = O(logN), associated with X and Ω respectively, are
constructed by dyadic partitioning. Denote the root level of the tree as level 0 and the leaf one as
level L. Such a matrix K of size O(N) × O(N) is said to satisfy the complementary low-rank
property if for any level `, any node A in TX at level `, and any node B in TΩ at level L − `,
the submatrix KA,B, obtained by restricting K to the rows indexed by the points in A and the
columns indexed by the points in B, is numerically low-rank, i.e., for a given precision ε there exists
a low-rank approximation of KA,B with an error bounded by ε and the rank bounded polynomially
in log(1/ε) and is independent of N . See Figure 1 for an illustration of low-rank submatrices in a
complementary low-rank matrix of size 16× 16.
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Figure 1: Hierarchical decomposition of the row and column indices of a one-dimensional comple-
mentary low-rank matrix of size 16× 16. The trees TX (TΩ) has a root containing 16 column (row)
indices and leaves containing a single column (row) index. The rectangles above indicate some of
the low-rank submatrices.

It will be shown that, for a complementary low-rank matrix K, the matrix-vector multiplication
u = Kg can be carried out efficiently via a preliminary interpolative butterfly factorization
(IBF) constructed by interpolative low-rank approximations:

K ≈ ULGL−1 · · ·GhMh(Hh)∗ . . . (H1)∗(V 0)∗,

where the depth L = O(logN) of TX and TΩ is assumed to be even, h = L/2 is a middle level
index, all factors are sparse matrices with O(N) nonzero entries and a large prefactor. Dense blocks
in these sparse factors come from interpolative low-rank approximations of low-rank submatrices
as illustrated in Figure 1. When the kernel function K satisfies Assumption 1.1, each low-rank
approximation of these submatrices can be constructed explicitly by Lagrange interpolation with
q Chebyshev grid points in each dimension, resulting in dense submatrices of size qd × qd in sparse
factors. Hence, all the matrix factors are available explicitly. However, the low-rank approximation
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by interpolation is not optimal in the sense that it over estimates the numerical rank r0 of the low-
rank matrix, i.e. qd > r0. Hence, dense blocks in these sparse factors can be further compressed to
smaller submatrices of size r0 × r0 by a truncated SVD.

The preliminary IBF above can be further compressed by a novel sweeping matrix compression
method in two stages. In the sweep-out stage, a sequence of structure-preserving matrix compres-
sion is conducted:

Mh ≈ ChM̄h(Rh)
∗
,

G`C` ≈ C`+1Ḡ`

for ` = h, h+ 1, . . . , L− 1,
(H`R`)∗ ≈ (H̄`)∗(R`−1)∗

for ` = h, h − 1, . . . , 1, starting from the middle matrix Mh and moving towards outer matrices.
Let

ŪL = ULCL,

and
V̄ 0 = V 0R0,

then we have a further compressed factorization

K ≈ ŪLḠL−1 · · · ḠhM̄h(H̄h)∗ · · · (H̄1)∗(V̄ 0)∗,

where all sparse factors have dense submatrices of size closer to r0×r0. ŪL and V̄ 0 are block-diagonal
matrices and the sizes of diagonal blocks depend on the distribution of points in X and Ω. In the
case of nonuniform distribution, there might be diagonal blocks with size smaller than r0×r0 in ŪL

and V̄ 0. This motivates the sweep-in stage that contains another sequence of structure-preserving
matrix compression:

ŪL ≈ U̇LC̄L,

V̄ 0 ≈ V̇ 0R̄0,

C̄`+1Ḡ` ≈ Ġ`C̄`

for ` = L− 1, L− 2, . . . , h,
(H̄`)∗(R̄`−1)∗ ≈ (R̄`)∗(Ḣ`)∗

for ` = 1, 2, . . . , h, starting from outer matrices to the middle matrix. Finally, let Ṁh = C̄hM̄h(R̄h)∗,
and one reaches the optimal IBF

K ≈ U̇LĠL−1 · · · ĠhṀh(Ḣh)∗ · · · (Ḣ1)∗(V̇ 0)∗, (5)

where all sparse factors have dense submatrices of nearly optimal size.
The optimal IBF represents K as a product of L + 3 sparse matrices, where all factors are

sparse matrices with O(N) nonzero entries, and the prefactor of O(N) is nearly optimal. Once
constructed, the cost of applying K to a given vector g ∈ CN is O(N logN).
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1.2 Content

The rest of this paper is organized as follows. Section 2 briefly reviews low-rank factorization
techniques and the butterfly algorithm in [7]. Section 3 describes the one-dimensional preliminary
interpolative butterfly factorization based on interpolative low-rank factorization. Section 4 in-
troduces a structure-preserving matrix compression technique and a sweeping method to further
compress the preliminary IBF into an optimal one. Multidimensional extension to a general case
when the phase function has singularity at ξ = 0 is discussed in Section 5. In Section 6, numerical
examples are provided to demonstrate the efficiency of the proposed algorithms. Finally, Section 7
concludes this paper with a short discussion.

2 Preliminary

2.1 Low-rank factorization

This section reviews basic tools for efficient low-rank approximations that are repeatedly used in
this paper.

Randomized low-rank approximation
For a matrix Z ∈ Cm×n, we define a rank-r approximate singular value decomposition (SVD)

of Z as
Z ≈ U0Σ0V

∗
0 ,

where U0 ∈ Cm×r is unitary, Σ0 ∈ Rr×r is diagonal, and V0 ∈ Cn×r is unitary. A straightforward
method to obtain the optimal rank-r approximation of Z is to compute its truncated SVD, where
U0 is the matrix with the first r left singular vectors, Σ0 is a diagonal matrix with the first r singular
values in decreasing order, and V0 is the matrix with the first r right singular vectors.

The original truncated SVD of Z takes O(mnmin(m,n)) operations. More efficient tools have
been proposed by introducing randomness in computing approximate SVDs for numerically low-
rank matrices. To name a few, the one in [16] is based on applying the matrix to random vectors
while another one in [13, 34] relies on sampling the matrix entries randomly. Throughout this
paper, the second one is applied to compute large low-rank approximations because it only takes
linear operations with respect to the matrix size. Readers are referred to [13, 34] for detailed
implementation.

When an approximate SVD Z ≈ U0Σ0V
∗

0 is ready, it can be rearranged in several equivalent
ways. First, one can write

Z ≈ USV ∗,

where
U = U0Σ

1/2
0 , S = I and V ∗ = Σ

1/2
0 V ∗0 , (6)

so that the left and right factors inherit similar singular values of the original numerical low-rank
matrix. Depending on certain applications, sometimes it is better to write the approximation as

Z ≈ UV ∗

where
U = U0 and V ∗ = Σ0V

∗
0 , (7)

or
U = U0Σ0 and V ∗ = V ∗0 (8)

so that only one factor shares the singular values of Z.
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Interpolative low-rank approximation
The randomized low-rank approximation is efficient if a kernel matrix is given, while the in-

terpolative low-rank approximation is efficient when the explicit formula of the kernel function
K(x, ξ) = e2πıΦ(x,ξ) is available, because the approximation can be constructed explicitly.

Following the theorems in [7, 22], it can be proved that the kernel function K(x, ξ) = e2πıΦ(x,ξ)

satisfies the complementary low-rank property if it fulfills the properties in Assumption 1.1. We
will refresh the key idea here for one-dimensional kernels. Let the set X and Ω refer to the sets
defined in (2) and (4). Let A and B be a box pair in the dyadic trees TX and TΩ such that their
levels satisfy `A + `B = L. Then a low-rank separated representation

K(x, ξ) = e2πıΦ(x,ξ) ≈
rε∑
t=1

αABt (x)βABt (ξ) for x ∈ A, ξ ∈ B

exists and can be constructed via the interpolative low-rank approximation as follows.
Let

RAB(x, ξ) := Φ(x, ξ)− Φ(cA, ξ)− Φ(x, cB) + Φ(cA, cB), (9)

where cA and cB are the centers of A and B respectively, then the kernel can be written as

e2πıΦ(x,ξ) = e2πıΦ(cA,ξ)e2πıΦ(x,cB)e−2πıΦ(cA,cB)e2πıRAB(x,ξ). (10)

Hence, the low-rank approximation of K(x, ξ) in A×B is reduced to the low-rank approximation

of e2πıRAB(x,ξ).
Let wA and wB denote the lengths of intervals A and B, respectively. A Lagrange interpolation

with Chebyshev points in x when wA ≤ 1/
√
N and in ξ when wB ≤

√
N is applied to construct

the low-rank approximation of e2πıRAB(x,ξ). For this purpose, we associate with each interval a
Chebyshev grid as follows.

For a fixed integer r, the Chebyshev grid of order r on [−1/2, 1/2] is defined by{
zt =

1

2
cos

(
tπ

r − 1

)}
0≤t≤r−1

.

A grid adapted to an interval A with center cA and length wA is then defined via shifting and scaling
as

{xt}t=0,1,...,r−1 = {cA + wAzt}t=0,1,...,r−1.

Given a set of grid points {xt}t=0,1,...,r−1 in A, define Lagrange interpolation polynomials MA
t (x)

taking value 1 at xt and 0 at the other Chebyshev grid points

MA
t (x) =

∏
0≤j≤r−1,j 6=t

x− xj
xt − xj

.

Similarly, MB
t is denoted as the Lagrange interpolation polynomials for the interval B.

Now we are ready to construct the low-rank approximation of e2πıRAB(x,ξ) with rε Chebyshev
points for ε-accuracy by interpolation:

• when wB ≤
√
N , the Lagrange interpolation of e2πıRAB(x,ξ) in ξ on a Chebyshev grid {gBt }1≤t≤rε

adapted to B obeys

e2πıRAB(x,ξ) ≈
rε∑
t=1

e2πıRAB(x,gBt )MB
t (ξ), ∀x ∈ A, ∀ξ ∈ B, (11)
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• when wA ≤ 1/
√
N , the Lagrange interpolation of e2πıRAB(x,ξ) in x on a Chebyshev grid

{gAt }1≤t≤rε adapted to A obeys

e2πıRAB(x,ξ) ≈
rε∑
t=1

MA
t (x)e2πıRAB(gAt ,ξ), ∀x ∈ A,∀ξ ∈ B. (12)

Finally, we are ready to construct the low-rank approximation for the kernel e2πıΦ(x,ξ):

• when wB ≤
√
N , we multiply (11) with e2πıΦ(cA,ξ)e2πıΦ(x,cB)e−2πıΦ(cA,cB), which gives that

∀x ∈ A, ∀ξ ∈ B

e2πıΦ(x,ξ) ≈
rε∑
t=1

e2πıΦ(x,gBt )
(
e−2πıΦ(cA,g

B
t )MB

t (ξ)e2πıΦ(cA,ξ)
)

; (13)

• when wA ≤ 1/
√
N , multiply (12) with e2πıΦ(cA,ξ)e2πıΦ(x,cB)e−2πıΦ(cA,cB) and obtain that ∀x ∈

A,∀ξ ∈ B

e2πıΦ(x,ξ) ≈
rε∑
t=1

(
e2πıΦ(x,cB)MA

t (x)e−2πıΦ(gAt ,cB)
)
e2πıΦ(gAt ,ξ). (14)

The interpolative low-rank factorization can be constructed on-the-fly from the explicit formulas
above, which is the main advantage over randomized low-rank approximations. However, since
it relies on the information on a fixed Chebyshev grid, the number of Chebyshev points must be
sufficiently large to obtain an accurate approximation, i.e., the ε-separation rank rε might be greater
than the true numerical rank with ε accuracy.

2.2 Butterfly algorithm

This section provides a brief description of the overall structure of the butterfly algorithm based on
the interpolative low-rank approximation in the previous section. In this section, X and Ω refer to
two general sets of N points in R, respectively. With no loss of generality, we assume the points in
these two sets are distributed quasi-uniformly but they are not necessarily the sets defined in (2)
and (4).

Given an input {g(ξ), ξ ∈ Ω}, the goal is to compute the potentials {u(x), x ∈ X} defined by

u(x) =
∑
ξ∈Ω

K(x, ξ)g(ξ), x ∈ X,

where K(x, ξ) is a kernel function. The main data structure of the butterfly algorithm is a pair
of dyadic trees TX and TΩ. Recall that for any pair of intervals A × B ∈ TX × TΩ obeying the
condition `A + `B = L, the submatrix {K(x, ξ)}x∈A,ξ∈B is approximately of a constant rank. An
explicit method to construct its low-rank approximation is given by the interpolative low-rank
approximation. More precisely, for any ε > 0, there exists a constant rε independent of N and two
sets of functions {αABt (x)}1≤t≤rε and {βABt (ξ)}1≤t≤rε given in (13) or (14) such that∣∣∣∣∣K(x, ξ)−

rε∑
t=1

αABt (x)βABt (ξ)

∣∣∣∣∣ ≤ ε, ∀x ∈ A,∀ξ ∈ B. (15)

For a given interval B in Ω, define uB(x) to be the restricted potential over the sources ξ ∈ B

uB(x) =
∑
ξ∈B

K(x, ξ)g(ξ).
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The low-rank property gives a compact expansion for {uB(x)}x∈A as summing (15) over ξ ∈ B
with coefficients g(ξ) gives∣∣∣∣∣∣uB(x)−

rε∑
t=1

αABt (x)

∑
ξ∈B

βABt (ξ)g(ξ)

∣∣∣∣∣∣ ≤
∑
ξ∈B
|g(ξ)|

 ε, ∀x ∈ A.

Therefore, if one can find coefficients {λABt }1≤t≤rε obeying

λABt ≈
∑
ξ∈B

βABt (ξ)g(ξ), 1 ≤ t ≤ rε, (16)

then the restricted potential {uB(x)}x∈A admits a compact expansion∣∣∣∣∣uB(x)−
rε∑
t=1

αABt (x)λABt

∣∣∣∣∣ ≤
∑
ξ∈B
|g(ξ)|

 ε, ∀x ∈ A.

The butterfly algorithm below provides an efficient way for computing {λABt }1≤t≤rε recursively. The
general structure of the algorithm consists of a top-down traversal of TX and a bottom-up traversal
of TΩ, carried out simultaneously. A schematic illustration of the data flow in this algorithm is
provided in Figure 2.

Algorithm 2.1. Butterfly algorithm

1. Preliminaries. Construct the trees TX and TΩ.

2. Initialization. Let A be the root of TX . For each leaf interval B of TΩ, construct the expansion
coefficients {λABt }1≤t≤rε for the potential {uB(x)}x∈A by simply setting

λABt =
∑
ξ∈B

βABt (ξ)g(ξ), 1 ≤ t ≤ rε. (17)

By the interpolative low-rank approximation, we can define the expansion coefficients {λABt }1≤t≤rε
by

λABt := e−2πıΦ(cA,g
B
t )
∑
ξ∈B

(
MB
t (ξ)e2πıΦ(cA,ξ)g(ξ)

)
. (18)

3. Recursion. For ` = 1, 2, . . . , L/2, visit level ` in TX and level L − ` in TΩ. For each pair
(A,B) with `A = ` and `B = L− `, construct the expansion coefficients {λABt }1≤t≤rε for the
potential {uB(x)}x∈A using the low-rank representation constructed at the previous level. Let
P be A’s parent and C be a child of B. Throughout, we shall use the notation C � B when
C is a child of B. At level ` − 1, the expansion coefficients {λPCs }1≤s≤rε of {uC(x)}x∈P are
readily available and we have∣∣∣∣∣uC(x)−

rε∑
s=1

αPCs (x)λPCs

∣∣∣∣∣ ≤
∑
ξ∈C
|g(ξ)|

 ε, ∀x ∈ P.

Since uB(x) =
∑

C�B u
C(x), the previous inequality implies that∣∣∣∣∣uB(x)−
∑
C�B

rε∑
s=1

αPCs (x)λPCs

∣∣∣∣∣ ≤
∑
ξ∈B
|g(ξ)|

 ε, ∀x ∈ P.

8



Since A ⊂ P , the above approximation is of course true for any x ∈ A. However, since `A +
`B = L, the sequence of restricted potentials {uB(x)}x∈A also has a low-rank approximation
of size rε, namely, ∣∣∣∣∣uB(x)−

rε∑
t=1

αABt (x)λABt

∣∣∣∣∣ ≤
∑
ξ∈B
|g(ξ)|

 ε, ∀x ∈ A.

Combining the last two approximations, we obtain that {λABt }1≤t≤rε should obey

rε∑
t=1

αABt (x)λABt ≈
∑
C�B

rε∑
s=1

αPCs (x)λPCs , ∀x ∈ A. (19)

This is an over-determined linear system for {λABt }1≤t≤rε when {λPCs }1≤s≤rε,C�B are avail-
able. The butterfly algorithm uses an efficient linear transformation approximately mapping
{λPCs }1≤s≤rε,C�B into {λABt }1≤t≤rε as follows

λABt := e−2πıΦ(cA,g
B
t )
∑
C�B

rε∑
s=1

MB
t (gCs )e2πıΦ(cA,g

C
s )λPCs . (20)

4. Switch. For the levels visited, the Chebyshev interpolation is applied in variable ξ, while
the interpolation is applied in variable x for levels ` > L/2. Hence, we are switching the
interpolation method at this step. Now we are still working on level ` = L/2 and the same
domain pairs (A,B) in the last step. Let λABs denote the expansion coefficients obtained by
Chebyshev interpolation in variable ξ in the last step. Correspondingly, {gBs }s are the grid
points in B in the last step. We take advantage of the interpolation in variable x in A and
generate grid points {gAt }1≤t≤rε in A. Then we can define new expansion coefficients

λABt :=

rε∑
s=1

e2πıΦ(gAt ,g
B
s )λABs .

5. Recursion. Similar to the discussion in Step 3, we go up in tree TΩ and down in tree TX at
the same time until we reach the level ` = L. We construct the approximation functions by
Chebyshev interpolation in variable x as follows:

αABt (x) = e2πıΦ(x,cB)MA
t (x)e−2πıΦ(gAt ,cB), βABt (ξ) = e2πıΦ(gAt ,ξ). (21)

Hence, the new expansion coefficients {λABt }1≤t≤rε can be defined as

λABt :=
∑
C�B

e2πıΦ(gAt ,cC)
rε∑
s=1

(
MP
s (gAt )e−2πıΦ(gPs ,cC)λPCs

)
, (22)

where again P is A’s parent and C is a child interval of B.

6. Termination. Finally, ` = L and set B to be the root node of TΩ. For each leaf interval
A ∈ TX , use the constructed expansion coefficients {λABt }1≤t≤rε in (22) to evaluate uB(x) for
each x ∈ A,

u(x) = uB(x) =

rε∑
t=1

αABt (x)λABt

= e2πıΦ(x,cB)
rε∑
t=1

(
MA
t (x)e−2πıΦ(gAt ,cB)λABt

)
.

(23)

9



TX TΩ

L
2

L
2

Figure 2: Trees of the row and column indices. Left: TX for the row indices X. Right: TΩ for the
column indices Ω. The interaction between A ∈ TX and B ∈ TΩ starts at the root of TX and the
leaves of TΩ.

3 Preliminary interpolative butterfly factorization (IBF)

This section presents the preliminary interpolative butterfly factorization (IBF) for a matrix K ∈
CN×N when its kernel function satisfies Assumption 1.1. In fact, the preliminary interpolative
butterfly factorization is a matrix representation of the butterfly algorithm [7]. Similar to the
butterfly algorithm, we adopt the same notation of point sets X and Ω, trees TX and TΩ of depth
L (assumed to be an even number). At each level `, ` = 0, . . . , L, we denote the ith node at
level ` in TX as A`i for i = 0, 1, . . . , 2` − 1 and the jth node at level L − ` in TΩ as BL−`

j for

j = 0, 1, . . . , 2L−` − 1. These nodes naturally partition K into O(N) submatrices KA`i ,B
L−`
j

. For

simplicity, we write K`
i,j := KA`i ,B

L−`
j

, where the superscript is used to indicate the level (in TX).

With abuse of notation, sometimes we use the subscripts i, j and the superscript ` on a matrix or
a vector corresponding the domain pair (A`i , B

L−`
j ) for simplicity, although it is not a submatrix or

a subvector restricted in (A`i , B
L−`
j ).

The preliminary IBF is based on the observation that the butterfly algorithm in Section 2.2 can
be written in a form of matrix factorization. The operations in Step 2 to 6 in Algorithm 2.1 are
essentially a sequence of matrix vector multiplications with O(logN) multiplications, each matrix
of which has only O(r2

εN) nonzero entries. Since all the operations are given explicitly based on
Chebyshev interpolation, these sparse matrices can be formed by explicit formulas. By formulating
these matrices step by step following the flow in Algorithm 2.1, the preliminary IBF is proposed as
follows.

1. Preliminaries. Construct the trees TX and TΩ.

2. Initialization. At level ` = 0, for each j = 0, 1, . . . , 2L − 1, let A be Ω and B be BL
j of TΩ.

Construct the expansion coefficients {λABt }1≤t≤rε for the potential {uB(x)}x∈A by simply
setting

λABt := e−2πıΦ(cA,g
B
t )
∑
ξ∈B

(
MB
t (ξ)e2πıΦ(cA,ξ)g(ξ)

)
. (24)

For each j = 0, 1, . . . , 2L − 1, a column vector Λ0
j corresponding to the domain pair (A,B) =

(Ω, BL
j ) is defined as

Λ0
j =

λ
AB
1
...

λABrε

 .
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Let (V 0
j )∗ ∈ Crε×O(1) represent the linear transformation in (24) and g0

j be the vector repre-

senting g(ξ) for ξ ∈ BL
j . Then we have

Λ0
j = (V 0

j )∗g0
j . (25)

As we shall see later, the conjugate transpose ∗ is applied for the purpose of notation consis-
tency. By assembling the matrix-vector multiplications in (25), all the operations in this step
can be written as

Λ0 =

 Λ0
0
...

Λ0
2L−1

 = (V 0)∗g,

where
V 0 = diag

{
V 0

0 , V
0

1 , · · · , V 0
2L−1

}
.

3. Recursion. For ` = 1, 2, . . . , L/2, visit level ` in TX and level L − ` in TΩ. At each level
`, for each pair (A,B) with `A = ` and `B = L − `, construct the expansion coefficients
{λABt }1≤t≤rε using the low-rank representation constructed at the previous level (` = 0 is
the initialization step). Let P be A’s parent and C be a child of B. An efficient linear
transformation approximately mapping {λPCs }1≤s≤rε,C�B into {λABt }1≤t≤rε is constructed by

λABt := e−2πıΦ(cA,g
B
t )
∑
C�B

rε∑
s=1

MB
t (gCs )e2πıΦ(cA,g

C
s )λPCs . (26)

At each level `, for each i = 0, 1, . . . , 2` − 1 and j = 0, 1, . . . , 2L−` − 1, a column vector Λ`i,j is
defined as

Λ`i,j =

λ
AB
1
...

λABrε

 ∈ Crε , (27)

where the domain pair (A,B) = (A`i , B
L−`
j ). For a fixed j, stacking vectors {Λ`i,j}i together

forms a larger column vector Λ`j and stacking vectors {Λ`j}j together forms a column vector

Λ`,

Λ`j =

 Λ`0,j
...

Λ`
2`−1,j

 , Λ` =

 Λ`0
...

Λ`
2L−`−1

 .

The linear transformation in (26) maps two small column vectors Λ`−1
i,2j and Λ`−1

i,2j+1 at the

previous level `−1 to a small column vector Λ`2i,j if A is the first child of P (or Λ`2i+1,j if A is the

second child of P ) at the current level ` for all i = 0, 1, . . . , 2`−1−1 and j = 0, 1, . . . , 2L−`−1.
Hence, for each pair (i, j), the linear transformation in (26) can be written as a matrix vector
multiplication

Λ`2i,j =
(
H`

2i,2j H`
2i,2j+1

)( Λ`−1
i,2j

Λ`−1
i,2j+1

)
, (28)

where H`
2i,2j ∈ Crε×rε and H`

2i,2j+1 ∈ Crε×rε , or

Λ`2i+1,j =
(
H`

2i+1,2j H`
2i+1,2j+1

)( Λ`−1
i,2j

Λ`−1
i,2j+1

)
, (29)
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where H`
2i+1,2j ∈ Crε×rε and H`

2i+1,2j+1 ∈ Crε×rε . Assemble the above small matrices together
to get

H`
j =



H`
0,2j H`

1,2j

H`
2,2j H`

3,2j
. . .

H`
2`−2,2j

H`
2`−1,2j

H`
0,2j+1 H`

1,2j+1

H`
2,2j+1 H`

3,2j+1
. . .

H`
2`−2,2j+1

H`
2`−1,2j+1


for j = 0, 1, . . . , 2L−` − 1 and

H` =


H`

0

H`
1

. . .

H`
2L−`−1

 ,

then all the operations in this step can be represented by a large matrix-vector multiplication

Λ` = (H`)∗Λ`−1

for ` = 1, 2, . . . , L/2.

4. Switch. For the levels visited, the Chebyshev interpolation is applied in variable ξ, while the
interpolation is applied in variable x for levels ` > L/2. Hence, we are switching the interpo-
lation method at this step. Now we are still working at level ` = L/2 and the same domain

pairs (A,B) = (A
L/2
i , B

L/2
j ) in the last step. Recall that ΛL/2 denote the expansion coeffi-

cients obtained by Chebyshev interpolation in variable ξ in the last step. Correspondingly,
{gBs }s are the grid points in B in the last step. We take advantage of the interpolation in
variable x in A and generate grid points {gAt }1≤t≤rε in A. Then we can define new expansion
coefficients for Chebyshev interpolation in variable x for future steps as

λABt :=

rε∑
s=1

e2πıΦ(gAt ,g
B
s )λABs . (30)

Let M̃
L/2
i,j ∈ Crε×rε represent the linear transformation introduced by {e2πıΦ(gAt ,g

B
s )}1≤t≤rε,1≤s≤rε

for i, j = 0, 1, · · · , 2L/2 − 1. Then (30) is equivalent to

Λ̃
L/2
i,j = M̃

L/2
i,j Λ

L/2
i,j

for each domain pair (A,B) = (A
L/2
i , B

L/2
j ). Recall that

Λ
L/2
j =


Λ
L/2
0,j
...

Λ
L/2

2L/2−1,j

 , and ΛL/2 =


Λ
L/2
0
...

Λ
L/2

2L/2−1

 .
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If we define the expansion coefficients in a new order by

Λ̃
L/2
i =


Λ̃
L/2
i,0
...

Λ̃
L/2

i,2L/2−1

 , and Λ̃L/2 =


Λ̃
L/2
0
...

Λ̃
L/2

2L/2−1

 ,

then all the operations in (30) for all domain pairs can be represented by a large matrix-vector
multiplication

Λ̃L/2 = ML/2ΛL/2,

where

ML/2 =


M

L/2
0,0 M

L/2
0,1 · · · M

L/2

0,2L/2−1

M
L/2
1,0 M

L/2
1,1 M

L/2

1,2L/2−1
...

. . .

M
L/2

2L/2−1,0
M

L/2

2L/2−1,1
M

L/2

2L/2−1,2L/2−1

 ∈ CrεN×rεN

and M
L/2
i,j ∈ Crε

√
N×rε

√
N is also a 2L/2 × 2L/2 block matrix with the only nonzero block at

the location (j, i) being M̃
L/2
i,j ∈ Crε×rε . By the abuse of notation, we drop the tilde notation

·̃ of the expansion coefficients in the second half of the algorithm description.

5. Recursion. Similar to the discussion in Step 3, we go up in tree TΩ and down in tree TX
at the same time for all level ` = L/2 + 1, · · · , L. At each level `, for any domain pair
(A,B) = (A`i , B

L−`
j ), for i = 0, 1, . . . , 2` − 1 and j = 0, 1, . . . , 2L−` − 1, we construct the new

expansion coefficients {λABt }1≤t≤rε by

λABt :=
∑
C�B

e2πıΦ(gAt ,cC)
rε∑
s=1

(
MP
s (gAt )e−2πıΦ(gPs ,cC)λPCs

)
, (31)

where again P is A’s parent and C is a child interval of B. The coefficients are assembled as

Λ`i,j =

λ
AB
1
...

λABrε

 , Λ`i =

 Λ`i,0
...

Λ`
i,2L−`−1

 , and Λ` =

 Λ`0
...

Λ`
2`−1

 ,

for i = 0, 1, . . . , 2` − 1, j = 0, 1, . . . , 2L−` − 1.

Similarly to the first recursion step, the linear transformation in (31) maps two small column
vectors Λ`−1

i,2j and Λ`−1
i,2j+1 at the previous level ` − 1 to a small column vector Λ`2i,j if A

is the first child of P (or Λ`2i+1,j if A is the second child of P ) at the current level ` for

all i = 0, 1, . . . , 2`−1 − 1 and j = 0, 1, . . . , 2L−` − 1. Hence, for each pair (i, j), the linear
transformation in (31) can be written as a matrix vector multiplication

Λ`2i,j =
(
G`−1

2i,2j G`−1
2i,2j+1

)( Λ`−1
i,2j

Λ`−1
i,2j+1

)
, (32)

where G`−1
2i,2j ∈ Crε×rε and G`−1

2i,2j+1 ∈ Crε×rε , or

Λ`2i+1,j =
(
G`−1

2i+1,2j G`−1
2i+1,2j+1

)( Λ`−1
i,2j

Λ`−1
i,2j+1

)
, (33)
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where G`−1
2i+1,2j ∈ Crε×rε and G`−1

2i+1,2j+1 ∈ Crε×rε . Assemble the above small matrices together
to get

G`−1
i =



G`−1
2i,0 G`−1

2i,1

G`−1
2i,2 G`−1

2i,3
. . .

G`−1
2i,2L−`−2

G`−1
2i,2L−`−1

G`−1
2i+1,0 G`−1

2i+1,1

G`−1
2i+1,2 G`−1

2i+1,3
. . .

G`−1
2i+1,2L−`−2

G`−1
2i+1,2L−`−1


for i = 0, 1, . . . , 2`−1 − 1 and

G`−1 =


G`−1

0

G`−1
1

. . .

G`−1
2`−1−1

 ,

then all the operations in this step can be represented by a large matrix-vector multiplication

Λ` = G`−1Λ`−1

for ` = L/2 + 1, . . . , L.

6. Termination. Finally, ` = L again and set B = Ω. For each leaf interval A = ALi ∈ TX ,
i = 0, 1, . . . , 2L − 1, use the constructed expansion coefficients δL in the last step to evaluate
uB(x) for each x ∈ A,

u(x) = uB(x) =

rε∑
t=1

αABt (x)λABt

= e2πıΦ(x,cB)
rε∑
t=1

(
MA
t (x)e−2πıΦ(gAt ,cB)λABt

)
.

(34)

For each domain pair (A,B) = (ALi ,Ω), let ULi ∈ CO(1)×rε be the matrix representing the
linear transformation in (34). Define

UL = diag
{
UL0 , U

L
1 , · · · , UL2L−1

}
.

By the same argument in the initialization step, the matrix-vector multiplication format of
all the operations in this step is

u = ULΛL.

In sum, by the discussion above, K is approximated by the preliminary IBF as

K ≈ ULGL−1 · · ·GL/2ML/2(HL/2)∗ . . . (H1)∗(V 0)∗.

Since the total number of nonzero entries of the above sparse factors is O(r2
εN logN) and each

factors can be constructed explicitly by the Chebyshev interpolation, the operation and memory
complexity of constructing and applying the IBF is O(r2

εN logN).
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4 Optimal interpolative butterfly factorization

Recall that at each level ` the kernel matrix K restricted in a domain pair (A,B) = (A`i , B
L−`
j ),

denoted as K`
ij , is a numerically low-rank matrix. For a given ε, let r0(ε, `, i, j) be the numerical

rank provided by a truncated SVD of K`
ij . With abuse of notation, let us use r0 for simplicity.

Similarly, let rε denote the numerical rank provided by the low-rank approximation by Chebyshev
interpolation. Since rε might not be able to reveal the optimal numerical rank r0, i.e. rε > r0. The
O(r2

ε ) prefactor in the complexity of the preliminary IBF might be far from the optimal one, r2
0.

The above observation motivates the design of the novel sweeping matrix compression based on
a sequence of structure-preserving matrix compression. The sweeping matrix compression further
compresses the preliminary IBF into an optimal one. The main idea is to propagate low-rank
property among matrix factors in the preliminary IBF and to shrink the size of dense submatrices
in these matrix factors by the randomized low-rank approximation in Section 2.

The structure-preserving matrix compression is introduced in Section 4.1. The sweeping matrix
compression consists of two stages, the sweep-out and the sweep-in stages. They will be presented
in Section 4.2 and Section 4.3, respectively.

4.1 Structure-preserving matrix compression

One key idea to construct the optimal IBF is the sweeping matrix compression via a sequence of
structure-preserving matrix compression introduced below. Suppose S is a block matrix with m×k
blocks, i.e.,

S =


S0,0 S0,1 · · · S0,k−1

S1,0 S1,1 S1,k−1
...

. . .

Sm−1,0 Sm−1,1 Sm−1,k−1

 ∈ Cmr×kr.

For simplicity, we assume that each block in S is of size r × r. The structure-preserving matrix
compression can be easily extended to block matrices with different block sizes. Let D be a block-
diagonal matrix with k diagonal blocks and each diagonal block is of size r × r0 with r0 < r,
i.e.,

D =


D0

D1

. . .

Dk−1

 ∈ Ckr×kr0 .

Let P be the product of S and D, i.e.,

P =


P0,0 P0,1 · · · P0,k−1

P1,0 P1,1 P1,k−1
...

. . .

Pm−1,0 Pm−1,1 Pm−1,k−1

 =


S0,0D0 S0,1D1 · · · S0,k−1Dk−1

S1,0D0 S1,1D1 S1,k−1Dk−1
...

. . .

Sm−1,0D0 Sm−1,1D1 Sm−1,k−1Dk−1

 ∈ Cmr×kr0 .

We call that the matrix pencil (S,D) has the structure-preserving low rank property
of type (m, k, r, r0), if it satisfies the following condition. For each i = 1, . . . , m, there exists a
low-rank approximation(

Pi,0 Pi,1 · · · Pi,k−1

)
≈ D̃i

(
S̃i,0 S̃i,1 · · · S̃i,k−1

)
(35)
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where D̃i ∈ Cr×r0 and S̃i,j ∈ Cr0×r0 for j = 0, 1, . . . , k− 1. Under the assumption of the structure-
preserving low-rank property of type (m, k, r, r0), by assembling the low-rank approximations in
(35) into two large factors D̃ and S̃, the structure-preserving matrix compression of type (m, k, r, r0)
factorizes SD as

SD ≈ D̃S̃,

where D̃ is again a block-diagonal matrix with k diagonal blocks of size r× r0, S̃ is a block matrix
with m× k blocks of size r0× r0, S and S̃ share the same column indices of nonzero blocks in each
row block (see Figure 3 for an example).









=





≈









Figure 3: The structure-preserving matrix compression of type (4, 4, 4, 1) SD = P ≈ D̃S̃, where
S ∈ C16×16 (left matrix), P ∈ C16×4 (middle matrix), and S̃ ∈ C4×4 (right matrix) are 4× 4 block
matrices with the same sparsity pattern, D ∈ C16×4 (middle left matrix) and D̃ ∈ C16×4 (middle
right matrix) are 4× 4 block-diagonal matrices,

4.2 Sweeping matrix compression: sweep-out stage

The optimal IBF of K is built in two stages. In the first stage, we further compress the matrix
factors in the preliminary IBF,

K ≈ ULGL−1 · · ·GhMh(Hh)∗ . . . (H1)∗(V 0)∗,

sweeping from the middle matrix Mh and moving out towards UL and V 0. Recall that each nonzero
submatrix M̃h

ij ∈ Crε×rε in Mh is the kernel function K(x.ξ) evaluated at the Chebyshev grid points

in the domain pairs (A,B) = (Ahi , B
h
j ) at level h. Hence, M̃h

ij is a numerically low-rank matrix if
rε > r0 (which is usually the case in existing butterfly algorithms using Chebyshev interpolations
to construct low-rank factorizations). Hence, Mh can be further compressed via a rank-revealing
low-rank approximation of each M̃h

ij , e.g., the truncated SVD, into

Mh ≈ ChM̄h(Rh)
∗
,

resulting the middle level factorization

K ≈ ULGL−1 · · ·GhChM̄h(Rh)
∗
(Hh)∗ . . . (H1)∗(V 0)∗. (36)

The middle level factorization is described in detail in Section 4.2.1.
Next, we recursively factorize

G`C` ≈ C`+1Ḡ`

for ` = h, h+ 1, . . . , L− 1,
(H`R`)∗ ≈ (H̄`)∗(R`−1)∗
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for ` = h, h−1, . . . , 1, since the matrix pencils (G`, C`) and (H`, R`) satisfy the structure-preserving
low-rank property. In another word, C` and R` propagate the low-rank property of Mh to G` and
H`, respectively, so that we can further compress G` and H`. After this recursive factorization, let

ŪL = ULCL,

and
V̄ 0 = V 0R0,

then one reaches at a more compressed IBF of K:

K ≈ ŪLḠL−1 · · · ḠhM̄h(H̄h)∗ · · · (H̄1)∗(V̄ 0)∗, (37)

where all factors are sparse matrices with almost O(r2
0N) nonzero entries. We refer to this stage

as the recursive factorization and it is discussed in detail in Section 4.2.2 and 4.2.3.

4.2.1 Middle level factorization

Recall that we denote the ith node at level ` in TX as A`i for i = 0, 1, . . . , 2` − 1 and the jth node
at level L − ` in TΩ as BL−`

j for j = 0, 1, . . . , 2L−` − 1. Let h = L/2 and m = 2L/2. Since the

nonzero submatrix M̃h
ij in Mh is a matrix representation of the kernel function K(x, ξ) evaluated

at the Chebyshev grid points {gAt }t and {gBs }s for the domain pair (A,B) = (Ahi , B
h
j ) at the middle

level ` = h. M̃h
ij ∈ Crε×rε is numerically rank r0. Hence, a rank-r0 approximation to every M̃h

i,j is

computed by the SVD algorithm via random sampling in [13, 34] with O(rεr0 + r3
0) operations. In

fact, when rε is already very small, a direct method for SVD truncation of order r3
ε is efficient as

well. Once the approximate SVD of M̃h
i,j is ready, it is transformed in the form

M̃h
i,j ≈ Chi,jShi,j(Rhj,i)∗

following (6). We would like to emphasize that the columns of Chi,j and Rhj,i are scaled with the
singular values of the approximate SVD so that they keep track of the importance of these columns
in approximating M̃h

i,j .

After calculating the approximate rank-r0 factorization of each M̃h
i,j , we assemble these factors

into three block matrices Ch, M̄h and Rh as follows:

Mh =

 Mh
0,0 · · · Mh

0,m−1
...

. . .
...

Mh
m−1,0 · · · Mh

m−1,m−1


=

C
h
0

. . .

Chm−1


 M̄h

0,0 · · · M̄h
0,m−1

...
. . .

...
M̄h
m−1,0 · · · M̄h

m−1,m−1


(Rh0)∗

. . .

(Rhm−1)∗


=ChM̄h(Rh)∗,

(38)

where

Chi =


Chi,0

Chi,1
. . .

Chi,m−1

 ∈ Cmrε×mr0 , (39)
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Rhj =


Rh0,j

Rh1,j
. . .

Rhm−1,j

 ∈ Cmr0×mrε , (40)

and M̄h
i,j ∈ Cmr0×mr0 is also a m×m block matrix with block size r0× r0 where all blocks are zero

except that the (j, i) block is equal to the diagonal matrix Shi,j ∈ Cr0×r0 .

It is obvious that there are only r0N nonzero entries in M̄h and rεr0N nonzero entries in Ch

and Rh. See Figure 4 for an example of a middle level factorization of a 64× 64 matrix with r0 = 1
and rε = 4.





≈













Figure 4: The middle level factorization of a 64 × 64 matrix M2 ≈ C2M̄2(R2)∗ assuming r0 = 1
and rε = 4. Grey blocks indicate nonzero blocks. C2 and R2 are block-diagonal matrices with 16
blocks of size 4 × 1. The diagonal blocks of C2 and R2 are assembled according to Equation (39)
and (40), respectively, as indicated by black rectangles. M̄2 is a 4× 4 block matrix with each block
M̄2
i,j itself an 4× 4 block matrix containing diagonal weights matrix on the (j, i) block.

4.2.2 Recursive factorization towards UL

Each recursive factorization at level `

G`C` ≈ C`+1Ḡ` (41)

results from the structure-preserving low-rank property that originates from the low-rank property
of K`

i,j for all index pairs (i, j). At level `, recall that

G` =


G`0

G`1
. . .

G`
2`−1

 ,
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where

G`i =



G`2i,0 G`2i,1
G`2i,2 G`2i,3

. . .

G`
2i,2L−`−1−2

G`
2i,2L−`−1−1

G`2i+1,0 G`2i+1,1

G`2i+1,2 G`2i+1,3
. . .

G`
2i+1,2L−`−1−2

G`
2i+1,2L−`−1−1


for i = 0, 1, . . . , 2` − 1. By construction, [G`2i,2j G`2i,2j+1] is an interpolation matrix that inter-

polates the kernel function K(x, ξ) from Chebyshev grid points in the domain pairs (A`i , B
L−`
2j )

and (A`i , B
L−`
2j+1) to the points in the domain pair (A`+1

2i , BL−`−1
j ). Similarly, [G`2i+1,2j G`2i+1,2j+1]

interpolates the kernel function K(x, ξ) from (A`i , B
L−`
2j ) and (A`i , B

L−`
2j+1) to (A`+1

2i+1, B
L−`−1
j ).

At level ` = h,

Ch =

C
h
0

. . .

Chm−1


where

Chi =


Chi,0

Chi,1
. . .

Chi,m−1

 ∈ Crεm×r0m.

By construction, the column space of Chi,j comes from the column space of Kh
i,j for all i =

0, 1, . . . ,m − 1 and j = 0, 1, . . . ,m − 1. Hence,
(
Gh2i,2jC

h
i,2j Gh2i,2j+1C

h
i,2j+1

)
represents the col-

umn space of Kh+1
2i,j , which implies that

(
Gh2i,2jC

h
i,2j Gh2i,2j+1C

h
i,2j+1

)
is numerically rank r0. By

the randomized low-rank approximation, we have(
Gh2i,2jC

h
i,2j Gh2i,2j+1C

h
i,2j+1

)
≈ Ch+1

2i,j

(
Ḡh2i,2j Ḡh2i,2j+1

)
,

where Ch+1
2i,j ∈ Crε×r0 , Ḡh2i,2j ∈ Cr0×r0 , and Ḡh2i,2j+1 ∈ Cr0×r0 . By a similar argument, we have(

Gh2i+1,2jC
h
i,2j Gh2i+1,2j+1C

h
i,2j+1

)
≈ Ch+1

2i+1,j

(
Ḡh2i+1,2j Ḡh2i+1,2j+1

)
,

where Ch+1
2i+1,j ∈ Crε×r0 , Ḡh2i+1,2j ∈ Cr0×r0 , and Ḡh2i+1,2j+1 ∈ Cr0×r0 . Hence, the matrix pencil

(Gh, Ch) satisfies the conditions of the structure-preserving low-rank property of type (2L, 2L, rε, r0).
Assembling {Ḡhi,j} and {Ch+1

i,j } together to generate Ḡh ∈ Cr0N×r0N and Ch+1 ∈ CrεN×r0N , respec-

tively, in the same way as generating Gh and Ch, we have

GhCh ≈ Ch+1Ḡh.

At other levels ` = h, . . . , L − 1, similarly to the discussion above, the matrix pencil (G`, C`)
satisfies the structure-preserving low-rank property of type (2L, 2L, rε, r0). By assembling the results
of randomized low-rank approximations, we have

G`C` ≈ C`+1Ḡ`
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for ` = h, . . . , L− 1.
At the final level ` = L, both matrices UL, CL are block diagonal matrices, we simply multiply

them together and let
ŪL = ULCL.

After the recursive factorization of each G`C`, we have

K ≈ ŪLḠL−1 · · · ḠhM̄h(Rh)∗(Hh)∗ · · · (H1)∗(V 0)∗, (42)

where Ḡ` contains only r2
0N nonzero entries and ŪL contains r0N nonzero entries.

4.2.3 Recursive factorization towards V 0

The recursive factorization towards V 0 is similar to the one towards UL. In each step of the
factorization

(H`R`)∗ ≈ (H̄`)∗(R`−1)∗ (43)

for all ` = h, h + 1, . . . , 1, we take advantage of the structure-preserving low-rank property of the
matrix pencil (H`, R`). The same procedure of Section 4.2.2 now to (H`, R`) leads to the recursive
factorization in (43). Define

V̄ 0 = V 0R0, (44)

then we have
(Rh)∗(Hh)∗ · · · (H1)∗(V 0)∗ ≈ (H̄h)∗ · · · (H̄1)∗(V̄ 0)∗,

where H̄` contains only r2
0N nonzero entries and V̄ 0 contains r0N nonzero entries.

After the recursive factorization sweeping from the middle matrix towards UL and V 0, we reach
a more compressed IBF

K ≈ ŪLḠL−1 · · · ḠhM̄h(H̄h)∗ · · · (H̄1)∗(V̄ 0)∗. (45)

4.3 Sweeping matrix compression: sweep-in stage

If the points in the sets X and Ω are distributed uniformly, the IBF in (45) is already optimal in
the butterfly factorization scheme, i.e., nearly all dense submatrices in its factors are of size r0×r0,
where r0 is the numerical rank of the kernel function K(x, ξ) sampled uniformly in a domain pair
(A,B) ∈ TX ×TΩ. However, when the point sets are nonuniform, e.g., in the nonuniform FFT, the
number of samples in (A,B) might be far smaller than r0. This means that there might be dense
submatrices of size less than r0 × r0 in the block diagonal matrices ŪL and V̄ 0. This motivates a
sequence of structure-preserving low-rank matrix compression to further compress the IBF in (45),
sweeping from outer matrices and moving towards the middle matrix M̄h as follows.

ŪL ≈ U̇LCL

and
C`+1Ḡ` ≈ Ġ`C`

for ` = L− 1, L− 2, . . . , h; similarly, we have,

(V̄ 0)∗ ≈ (R0)∗(V̇ 0)∗

and
(H̄`)∗(R`−1)∗ ≈ (R`)∗(Ḣ`)∗
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for ` = 1, 2, . . . , h. The sweeping matrix compression above is due to the fact that the matrix pencils
((Ḡ`)∗, (C`+1)∗) and ((H̄`)∗, (R`−1)∗) satisfy the structure-preserving low-rank property. In another
word, C` and R` propagate the low-rank property of ŪL and V̄ L to Ḡ` and H̄`, respectively, so
that we can further compress Ḡ` and H̄`. After this recursive factorization, let Ṁh = ChM̄h(Rh)∗,
then one reaches the optimal IBF of K:

K ≈ U̇LĠL−1 · · · ĠhṀh(Ḣh)∗ · · · (Ḣ1)∗(V̇ 0)∗. (46)

where all factors are sparse matrices with almost O(r2
0N) or less nonzero entries.

For a given input vector g ∈ CN , the O(N2) matrix-vector multiplication u = Kg can be ap-
proximated by a sequence of O(logN) sparse matrix-vector multiplications given by the optimal
IBF. Since computing the factors in the preliminary IBF takes only O(r2

εN logN) operations and
there are only O(r2

0N logN) nonzero entries in the optimal IBF, the construction and application
complexity in operation is O(r2

εN logN) and O(r2
0N logN), respectively. Since all the matrix fac-

tors in the preliminary IBF can be generated explicitly, the peak memory complexity O(r2
εN logN)

occurs when the preliminary IBF is completed.

5 High dimensional extension

Although we limited our discussion to one-dimensional problems in previous discussion, the inter-
polative butterfly factorization, along with its construction algorithm, can be easily generalized to
higher dimensions.

By the theorems in [7, 22], a multidimensional kernel function K(x, ξ) satisfying Assumption
1.1 is complementary low-rank (e.g., the nonuniform FFT). In this case, similarly to Section 3, by
writing the multidimensional butterfly algorithm [7, 22] into a matrix factorization form, we have
a preliminary multidimensional IBF

K ≈ ULGL−1 · · ·GhMh(Hh)∗ . . . (H1)∗(V 0)∗,

where the depth L = O(logN) of TX and TΩ is assumed to be even, h = L/2 is a middle level index,
all factors are sparse matrices with O(N) nonzero entries and a large prefactor. The preliminary
IBF can be further compressed by the sweeping matrix compression to obtain the optimal IBF

K ≈ U̇LĠL−1 · · · ĠhṀh(Ḣh)∗ · · · (Ḣ1)∗(V̇ 0)∗.

However, many important multidimensional kernel matrices fail to satisfy Assumption 1.1 and
is not complementary low-rank in the entire domain X × Ω. The most significant example, the
multidimensional Fourier integral operator, typically has a singularity when ξ = 0 in the Ω domain.
Fortunately, it was proved that this kind of kernel functions satisfies the complementary low-rank
property in the domain away from ξ = 0. An multiscale interpolative butterfly factorization (MIBF)
hierarchically partitions the domain Ω into subdomains {Ωt}t excluding the singular point ξ = 0
and apply the multidimensional IBF to the kernel restricted in each subdomain pair X × Ωt.

To be more specific, in two-dimensional problems, suppose

Ω =

{
ξ = (n1, n2),−N

1/2

2
≤ n1, n2 <

N1/2

2
with n1, n2 ∈ Z

}
.
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Let

Ωt =

{
(ξ1, ξ2) :

N1/2

2t+2
< max(|ξ1|, |ξ2|) ≤

N1/2

2t+1

}
∩ Ω, (47)

for t = 0, 1, . . . , log2 n− s, where n = N1/2 and s is a small constant, and ΩC = Ω \∪tΩt. Equation
(47) is a corona decomposition of Ω, where each Ωt is a corona subdomain and ΩC is a square
subdomain at the center containing O(1) points.

The FIO kernel function satisfies the complementary low-rank property when it is restricted in
each subdomain X × Ωt as proved in [22]. Hence, the MIBF evaluates

u(x) =
∑
ξ∈Ω

e2πıΦ(x,ξ)g(ξ)

via a multiscale summation,

u(x) = uC(x) +

log2 n−s∑
t=0

ut(x) =
∑
ξ∈ΩC

e2πıΦ(x,ξ)g(ξ) +

log2 n−s∑
t=0

∑
ξ∈Ωt

e2πıΦ(x,ξ)g(ξ). (48)

For each t, the MIBF evaluates ut(x) =
∑

ξ∈Ωt
e2πıΦ(x,ξ)g(ξ) with a standard multidimensional IBF

and the final piece uC(x) is evaluated directly in O(N) operations. Let Kt and KC denote the
matrix representation of the kernel K(x, ξ) restricted in X ×Ωt and X ×ΩC , respectively, then by
the standard multidimensional IBF, we have

Kt ≈ U̇Ltt ĠLt−1
t · · · Ġ

Lt
2
t Ṁ

Lt
2
t

(
Ḣ

Lt
2
t

)∗
· · ·
(
Ḣ1
t

)∗ (
V̇ 0
t

)∗
.

Once we have computed the optimal IBF in each restricted domain, the multiscale summation in
(48) is approximated by

u = Kg ≈ KCRCg +

log2 n−s∑
t=0

U̇Ltt ĠLt−1
t · · · Ṁ

Lt
2
t · · ·

(
Ḣ1
t

)∗ (
V̇ 0
t

)∗
Rtg, (49)

where RC and Rt are the restriction operators to the domains ΩC and Ωt respectively.
The construction and application complexity of the MIBF is O(N logN) with an optimally

small prefactor in the butterfly scheme.

6 Numerical results

This section presents several numerical examples to demonstrate the efficiency of the interpolative
butterfly factorization. The numerical results were obtained on a single node of a server cluster
with quad socket Intel R© Xeon R© CPU E5-4640 @ 2.40GHz (8 core/socket) and 1.5 TB RAM. All
implementations are in MATLAB R© and can found in authors’ homepages.

Let {ud(x), x ∈ X}, {ui(x), x ∈ X} and {um(x), x ∈ X} denote the results given by the di-
rect matrix-vector multiplication, the interpolative butterfly factorization (IBF) and the multiscale
interpolative butterfly factorization (MIBF). The accuracies of applying the IBF and MIBF are
estimated by the relative error defined as follows,

εi =

√∑
x∈S |ui(x)− ud(x)|2∑

x∈S |ud(x)|2
and εm =

√∑
x∈S |um(x)− ud(x)|2∑

x∈S |ud(x)|2
, (50)
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where S is a point set of size 256 randomly sampled from X. Meanwhile, let Rcomp denotes
the compression ratio of the optimal interpolative butterfly factorization against the preliminary
interpolative butterfly factorization, which is defined as

Rcomp =
Memory usage of the preliminary interpolative butterfly factorization

Memory usage of the optimal interpolative butterfly factorization
. (51)

Rcomp accurately evaluates the rank compression ratio in the optimal interpolative butterfly fac-
torization without lost of accuracy.

Although we define Rcomp as a ratio of memory usage, it also reflects the ratio of running time.
Since the application of IBF is a sequence of matrix-vector multiplications, the total running time
is linearly depends on the number of non-zeros which is linearly depends on the memory usage.
Therefore, Rcomp also equals the running time of the preliminary IBF over the optimal IBF.

6.1 Nonuniform Fourier Transform in 1D

We first present the numerical result of the most widely used Fourier integral operator, Fourier
transform. More specifically, we focus on one-dimensional nonuniform Fourier transform of type I

û(ξi) =
∑
xj

e−2πıxjξiu(xj), i, j = 1, 2, . . . , N, (52)

where {xi} are N random points in [0, 1) each of which is drawn from uniform distribution [0, 1),
and ξj = j − 1−N/2. The values of the input function {u(xj)}Nj=1, are randomly generated.

Table 1 summarizes the results of this example for varying problem sizes, N , and numbers
of Chebyshev points, rε. In Table 2, we further provide the detailed comparison between the
application cost of IBF and unifom/non-uniform FFTs.

The result in Table 1 reflects the O(N logN) complexity for both the construction and applica-
tion. The relative error slightly increases as the problem size N increases. In general, nonuniform
FFT requires more effect to interpolate the irregular point distribution, which means there is an
underlying penalty factor coming from the problem itself. Based on the numbers in Table 1, the
penalty factor is on average 9 for approximation with accuracy 1e-3 and 25 for approximation with
accuracy 1e-7. This implies that if the proposed algorithm is well implemented and the code is
deeply optimized, the application time of the IBF for the nonuniform Fourier transform is about 9
and 25 times slower than the FFT for an approximation accuracy 1e-3 and 1e-7, respectively. Ta-
ble 2 provides the concrete running time comparison. The actual time penalty over the NUFFT [15]
is on average about 3 and 6. As we shall discuss later, the IBF would have better scalability in
distributed and parallel computing (future work) than the existing NUFFT framework. Hence, the
distributed and parallel IBF could be better than the existing NUFFT framework for large-scale
computing.

6.2 General Fourier integral operator in 1D

Our second example is to evaluate a one-dimensional FIO [20] of the following form:

u(x) =

∫
R
e2πıΦ(x,ξ)f̂(ξ)dξ, (53)

where f̂ is the Fourier transform of f , and Φ(x, ξ) is a phase function given by

Φ(x, ξ) = x · ξ + c(x)|ξ|, c(x) = (2 + sin(2πx))/8. (54)
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N, rε εi Rcomp TFactor(min) Td(sec) Tapp(sec) Td/Tapp

256, 6 4.35e-04 1.33 1.49e-02 2.73e-02 6.99e-04 3.90e+01
1024, 6 7.80e-04 1.38 9.47e-02 1.82e-01 1.78e-03 1.03e+02
4096, 6 8.89e-04 1.40 5.20e-01 1.48e+00 7.58e-03 1.96e+02

16384, 6 1.09e-03 1.42 2.66e+00 1.25e+01 3.66e-02 3.41e+02
65536, 6 1.12e-03 1.42 1.31e+01 1.60e+02 1.68e-01 9.54e+02

262144, 6 1.20e-03 1.43 6.16e+01 2.69e+03 7.63e-01 3.53e+03
1048576, 6 1.18e-03 1.43 2.66e+02 4.30e+04 3.56e+00 1.21e+04

256,10 3.57e-08 1.50 1.56e-02 2.66e-02 8.67e-04 3.07e+01
1024,10 5.09e-08 1.44 1.04e-01 1.85e-01 3.58e-03 5.17e+01
4096,10 1.02e-07 1.46 5.76e-01 1.54e+00 1.55e-02 9.92e+01

16384,10 1.13e-07 1.49 2.95e+00 1.27e+01 7.59e-02 1.67e+02
65536,10 1.27e-07 1.53 1.45e+01 1.75e+02 3.36e-01 5.22e+02

262144,10 1.34e-07 1.55 6.86e+01 2.57e+03 1.57e+00 1.64e+03
1048576,10 1.43e-07 1.56 2.99e+02 4.26e+04 1.44e+01 2.96e+03

Table 1: Numerical results for the one-dimensional Fourier transform given in (52). N is the
problem size; rε is the number of Chebyshev points; εi is the sampled relative error given in (50);
Rcomp is the compression ratio defined as (51); TFactor is the construction time of the IBF; Td is
the running time of the direct evaluation; Tapp is the application time of the IBF; Td/Tapp is the
speedup factor over the direct evaluation.

N εi Tapp(sec) Pop TNUFFT (sec) Tapp/TNUFFT

256 4.35e-04 6.99e-04 6.64e+00 2.25e-04 3.11e+00
1024 7.80e-04 1.78e-03 7.82e+00 6.17e-04 2.88e+00
4096 8.89e-04 7.58e-03 8.65e+00 2.57e-03 2.95e+00

16384 1.09e-03 3.66e-02 9.24e+00 9.88e-03 3.70e+00
65536 1.12e-03 1.68e-01 9.71e+00 4.13e-02 4.07e+00

262144 1.20e-03 7.63e-01 1.01e+01 1.80e-01 4.25e+00
1048576 1.18e-03 3.56e+00 1.04e+01 7.74e-01 4.60e+00

256 3.57e-08 8.67e-04 1.41e+01 2.18e-04 3.97e+00
1024 5.09e-08 3.58e-03 1.93e+01 6.34e-04 5.65e+00
4096 1.02e-07 1.55e-02 2.23e+01 2.59e-03 5.97e+00

16384 1.13e-07 7.59e-02 2.44e+01 1.00e-02 7.57e+00
65536 1.27e-07 3.36e-01 2.57e+01 4.11e-02 8.18e+00

262144 1.34e-07 1.57e+00 2.66e+01 1.74e-01 9.01e+00
1048576 1.43e-07 1.44e+01 2.74e+01 7.45e-01 1.93e+01

Table 2: Numerical comparison between IBF and NUFFT [15] for the one-dimensional Fourier
transform given in (52). Pop is the operator-wise penalty over the uniform FFT [18, 4], i.e., the
number of operation count over the one of the FFT; TNUFFT is the running time of the NUFFT [15]
where the implementation is in Fortran; Tapp/TNUFFT is the time penalty of the non-uniform FFT.
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The discretization of (53) is

u(xi) =
∑
ξj

e2πıΦ(xi,ξj)f̂(ξj), i, j = 1, 2, . . . , N, (55)

where {xi} and {ξj} are points uniformly distributed in [0, 1) and [−N/2, N/2) following

xi = (i− 1)/N and ξj = j − 1−N/2. (56)

Table 3 summarizes the results of this example for different grid sizes N and Chebyshev points
rε.

N, rε εi Rcomp TFactor(min) Td(sec) Tapp(sec) Td/Tapp

256, 7 4.58e-03 2.19 1.52e-02 2.86e-02 8.26e-04 3.47e+01
1024, 7 6.53e-03 2.28 9.38e-02 1.84e-01 1.78e-03 1.03e+02
4096, 7 7.68e-03 2.34 5.05e-01 1.47e+00 8.57e-03 1.71e+02

16384, 7 8.22e-03 2.38 2.57e+00 1.23e+01 2.82e-02 4.37e+02
65536, 7 1.04e-02 2.41 1.25e+01 1.48e+02 1.23e-01 1.20e+03

262144, 7 1.05e-02 2.45 5.91e+01 2.48e+03 5.93e-01 4.18e+03
1048576, 7 1.25e-02 2.50 2.59e+02 5.70e+04 2.39e+00 2.39e+04

256,10 1.87e-05 1.82 1.60e-02 2.78e-02 9.81e-04 2.84e+01
1024,10 9.47e-06 1.87 9.99e-02 1.86e-01 3.08e-03 6.03e+01
4096,10 1.03e-05 2.00 5.48e-01 1.50e+00 1.19e-02 1.26e+02

16384,10 1.09e-05 2.07 2.80e+00 1.22e+01 5.76e-02 2.12e+02
65536,10 1.29e-05 2.14 1.37e+01 1.51e+02 3.09e-01 4.88e+02

262144,10 1.37e-05 2.18 6.45e+01 2.58e+03 1.13e+00 2.28e+03
1048576,10 1.70e-05 2.20 2.87e+02 5.86e+04 5.03e+00 1.17e+04

Table 3: Numerical results for the one-dimensional FIO given in (55).

Table 3 presents two groups of numerical results. The first group adopts 7 Chebyshev points
and the relative error is around 8.00e-03, whereas the second group adopts 10 Chebyshev points
and the relative error is around 1.00e-05. Theoretically, the relative error should be independent
of problem size N [7, 22]. In practice, even though the relative error increases slowly as the size of
the problem increases due to the accumulation of the numerical error, the error stays in the same
order. The third column of the table indicates that the compression ratio is around 2.3 for the
first group and 2 for the second group. This implies that the sweeping compression procedure in
the nearly optimal IBF compresses the factorization by a factor greater than 2, which results in
saving in both memory and application time. The saving is greater in higher dimensional problems
as we can see in previous analysis and in the example later. On the time scaling side, both the
factorization time and the application time strongly support the complexity analysis. Every time
we quadripule the problem size, the factorization time increases on average by a factor of 5, and
the increasing factor decreases monotonically down to 4. The increasing factor for the application
time is on average lower but close to 4. The speedup factor over the direct method may catch the
eye ball of the users who are interested in the application of the FIO.

6.3 General Fourier Integral Operator in 2D with MIBF

This section presents a numerical example to demonstrate the efficiency of the multiscale interpola-
tive butterfly factorization (MIBF).
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We revisit a similar example in [21],

u(x) =
∑
ξ∈Ω

e2πıΦ(x,ξ)g(ξ), x ∈ X, (57)

with a kernel Φ(x, ξ) given by

Φ(x, ξ) =x · ξ +
√
c2

1(x)ξ2
1 + c2

2(x)ξ2
2 ,

c1(x) =(2 + sin(2πx1) sin(2πx2))/32,

c2(x) =(2 + cos(2πx1) cos(2πx2))/32,

(58)

where X and Ω are defined as,

X =
{
x =

( n1

N1/2
,
n2

N1/2

)
, 0 ≤ n1, n2 < N1/2 with n1, n2 ∈ Z

}
(59)

and

Ω =

{
ξ = (n1, n2),−N

1/2

2
≤ n1, n2 <

N1/2

2
with n1, n2 ∈ Z

}
. (60)

In the multiscale decomposition of Ω, we recursively divide Ω until the center part is of size 16 by
16.

N, rε εm Rcomp TFactor(min) Td(sec) Tapp(sec) Td/Tapp

322, 6 2.52e-03 2.45 7.63e-02 2.45e-01 7.52e-03 3.25e+01
642, 6 4.13e-03 2.47 4.00e-01 2.17e+00 3.71e-02 5.86e+01

1282, 6 3.11e-03 2.41 2.19e+00 2.11e+01 2.65e-01 7.98e+01
2562, 6 1.71e-02 3.08 1.91e+01 2.61e+02 1.19e+00 2.20e+02
5122, 6 5.32e-02 3.35 9.58e+01 4.88e+03 5.59e+00 8.74e+02

322, 9 5.58e-06 3.79 1.77e-01 2.44e-01 1.17e-02 2.08e+01
642, 9 7.21e-06 2.96 1.07e+00 2.27e+00 7.68e-02 2.95e+01

1282, 9 6.98e-06 2.66 5.55e+00 2.09e+01 6.12e-01 3.41e+01
2562, 9 8.37e-06 3.16 6.34e+01 2.85e+02 8.48e+00 3.36e+01
5122, 9 1.23e-05 2.95 3.11e+02 4.79e+03 5.25e+01 9.13e+01

Table 4: Numerical results for the two-dimensional FIO given in (57) by the MIBF.

Table 4 summarizes the results of this example by the MIBF. The results agree with the
O(N logN) complexity analysis. As we double the problem size N , the factorization time in-
creases by a factor 5 on average. Similarly, the actual application time matches the theoretical
complexity as well. The relative error is essentially independent of the problem size N and the
speedup factor is attractive. Comparing Table 3 and Table 4, we notice that Rcomp in two dimen-
sions is larger than that in one-dimension. This matches our expectation because the numerical
rank by the Chebyshev interpolation is rdε , which increases with the dimension d. Therefore, the
sweeping compression benefits more in multidimensional problems.

7 Conclusion and discussion

This paper introduces an interpolative butterfly factorization as a data-sparse approximation of
complementary low-rank matrices when their kernel functions satisfy certain analytic properties.
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More precisely, it represents such an N ×N dense matrix as a product of O(logN) sparse matrices
with nearly optimal number of entries. The construction and application of the interpolative
butterfly factorization is highly efficient with O(N logN) operation and memory complexity. The
prefactor of the complexity is nearly optimal in the butterfly scheme.

Since applying the sparse factors is essentially a sequence of sparse matrix-vector multiplications
with structured sparsity, this algorithm is especially of interest in distributed parallel computing.
Based on the data distribution patten given in [28], the problem can be easily distributed in a
d-dimensional way, which is of great interests for extreme-scale computing. In another word, for a
problem of size N = nd, we could distribute the problem among P = O(N) processes and achieve
communication complexity, O(α log p + βNP r0 logP ), where α is the message latency and β is the
per-process inverse bandwidth. It is a promising general framework for scalable implementation of
a wide range of transforms in harmonic analysis.
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