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SYMMETRIC INTERIOR PENALTY DISCONTINUOUS GALERKIN

DISCRETISATIONS AND BLOCK PRECONDITIONING FOR

HETEROGENEOUS STOKES FLOW∗

D.E. CHARRIER†§‡ , D.A. MAY§¶, AND S.M. SCHNEPP§

Abstract. Provable stable arbitrary order symmetric interior penalty discontinuous Galerkin
(SIP) discretisations of heterogeneous, incompressible Stokes flow utilising Q2

k
–Qk−1 elements and

hierarchical Legendre basis polynomials are developed and investigated. For solving the resulting
linear system, a block preconditioned iterative method is proposed. The nested viscous problem is
solved by a hp-multilevel preconditioned Krylov subspace method. For the p-coarsening, a twolevel
method utilising element-block Jacobi preconditioned iterations as a smoother is employed. Piece-
wise bilinear (Q2

1
) and piecewise constant (Q2

0
) p-coarse spaces are considered. Finally, Galerkin

h-coarsening is proposed and investigated for the two p-coarse spaces considered. Through a number
of numerical experiments, we demonstrate that utilising the Q2

1
coarse space results in the most

robust hp-multigrid method for heterogeneous Stokes flow. Using this Q2

1
coarse space we observe

that the convergence of the overall Stokes solver appears to be robust with respect to the jump in the
viscosity and only mildly depending on the polynomial order k. It is demonstrated and supported
by theoretical results that the convergence of the SIP discretisations and the iterative methods rely
on a sharp choice of the penalty parameter based on local values of the viscosity.

Key words. heterogeneous Stokes flow, variable viscosity, incompressible flow, block precondi-
tioners, DG, SIP, Galerkin multigrid, geodynamics,
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1. Introduction.

1.1. Background and Motivations. Earth exhibits a diverse range of unique
geological processes: mountain building, subduction and continental rifting, earth-
quakes and volcanism. These phenomena are the result of multi-phase, history-
dependent, large-deformation processes spanning million year time scales.

Computational models provide a viable technique to study the evolution in both
space and time of geological processes. A prototypical continuum description of the
behaviour of rocks is stationary, incompressible Stokes flow with Boussinesq approxi-
mation [44, 40]:

−div
[

η̄(u , p, T, θ(x)) ε(u)
]

+∇p = ρ0(θ)
(

1− α(θ)(T − T0)
)

ĝ

−div(u) = 0,
(1.1)

where u , p, ε(·) is the velocity, pressure and strain rate, respectively, T is the tem-
perature, θ is the material composition, η̄ the effective viscosity, ρ0 is the reference
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density at reference temperature T0, and ĝ is the gravity vector. The conservation of
momentum and mass for the creeping fluid is coupled with the conservation of energy
equation:

(1.2) ρ0(θ)Cp
DT

Dt
= div

(

k(θ)∇T
)

+Q(θ),

where Cp is the specific heat at constant pressure, k the conductivity, and Q the
external heat source; and the evolution of the composition:

(1.3)
∂θ

∂t
+ u · ∇θ = 0.

From high-pressure and temperature laboratory experiments of minerals, it is known
that rocks exhibit thermally activated creep and follow an Arrhenius type law [37, 26]:

(1.4) η̄(u, p, T, θ) = A(θ)ε
n(θ)
II exp

[

E(θ) + pV (θ)

n(θ)RT

]

,

where A is a compositional dependent experimentally determined constant, εII is the
second invariant of the strain rate tensor, E, V are the activation energy and activation
volume, R is the universal gas constant and n is the power-law exponent. To facilitate
brittle behaviour at low temperature, the ductile creep laws are augmented with a
plasticity model (e.g. Drucker-Prager [37]).

When such a composite flow law is applied to geodynamics scenarios, the effec-
tive viscosity (η̄) is highly heterogeneous. At depths > 200 km, ductile behaviour
dominates and the viscosity profile can to first order be characterised by a smooth,
exponential function. Above, due to material failure or compositional variations asso-
ciated with crustal layers, the viscosity profile will be discontinuous and can possess
jumps on the order of 104–108 Pa s. Realistic forward models of both mantle- and
crust-scale simulations are adversely affected by the degree of heterogeneity within
the viscosity due to both accuracy concerns associated with the particular spatial
discretisation used, and a lack of solver (linear and nonlinear) robustness.

1.2. Related work. Geodynamics forward models of incompressible Stokes which
permit highly heterogeneous viscosity structures have traditionally utilised finite dif-
ference (FD) (e.g. [48, 49]), finite volume (e.g. [23, 41, 42]), or finite element (FE)
(e.g. [35, 21, 33, 36, 9, 28, 31]) spatial discretisations. The relative merits of FD and
FE methods for geodynamics applications can be broadly summarised as follows:

Staggered grid FD methods are “cheap” (few non-zeros in the stencil), the general
implementation is rather straight-forward. However, geometric flexibility is limited,
and boundary condition imposition is non-trivial. Introducing new physics may fur-
ther require the development of a modified stencil; see e.g. [22, 18]. In the context
of nonlinear problems, Newton linearisation causes stencil growth and thus increases
the overall cost of the discretisation.

Whilst being more expensive than FD methods (on the same grid), inf-sup stable
FE methods permit geometric versatility and natural boundary conditions are trivial
to impose. Spatial adaptivity (h) can be readily introduced without requiring redevel-
oping the underlying numerical method (e.g. [30, 13, 27]). Newton linearisation does
not cause the equivalent of stencil growth. For both FD and FE discretisations, ro-
bust multi-level preconditioners suitable for highly heterogeneous viscosity structures
exist [42, 13, 27, 31].
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Inf-sup stable discontinuous Galerkin (DG) methods of the interior penalty type
for the Stokes equations can be constructed by using the tensor product element
pairs Q2

k–Qk−1, and Q2
k–Qk−2 [43, 38], as well as the H(div; Ω)-conforming Raviart-

Thomas, Brezzi-Douglas-Marini, and Brezzi-Douglas-Fortin-Marini kind element pairs;
see [47, 14, 3, 25].

The fact that adaptivity in space and approximation order (k or “p” in the pre-
conditioner context) is realised with comparably less effort than for other discretisa-
tions makes DG very appealing for geodynamics applications given the very nature of
mantle-lithosphere-crust systems. The inf-sup constants of stable DG discretisations
are further not sensitive to the element aspect ratio which is highly desirable, for
example, within a crustal scale model with a domain spanning 1000× 1000× 20 km
where the domain itself possesses a high aspect ratio, or if anisotropic refinement was
employed [39, Theorem 9].

Regarding the solution of the equation system arising from symmetric interior
penalty DG (SIP) [1, 2] based discretisations of incompressible Stokes flow, we note
that for H(div; Ω)-conforming discretisations, efficient preconditioners have been in-
troduced very recently [3] [25]. Recent advances in developing efficient and robust
solvers for interior penalty DG discretisations of second order elliptic problems with
heterogeneous coefficients involve the algebraic multigrid preconditioner proposed in
[8, 7], as well as the twolevel methods proposed in [15] and [45, 46].

To the best of our knowledge, employing DG methods for heterogeneous Stokes
flow problems in geodynamics was so far only considered in [29]. Preconditioning was
not discussed there.

1.3. Contributions. We examine the applicability of using mixed SIP based
Stokes discretisations for studying heterogeneous, incompressible Stokes flow problems
associated with prototype problems arising in geodynamics. Through comparison with
an analytic solution employing a discontinuous viscosity structure, we numerically
demonstrate that the discretisation yields optimal order of accuracy for Q2

k–Qk−1

elements for k = 1, . . . , 6.
Our main contribution is the development of a preconditioned iterative method

for the discrete saddle point system resulting from the Stokes discretisation. To
this end, we follow a block preconditioning approach; e.g. [20]. The nested viscous
problem is solved by a hp-multilevel preconditioned Krylov subspace method. For
the p-coarsening, a twolevel method utilising element-block Jacobi preconditioned
iterations as a smoother is employed. Two p-coarse spaces are considered: the space
of element-wise constants and the space of continuous, element-wise bilinear functions
Through numerical experiments with heterogeneous viscosity, we demonstrate that the
variant utilising the element-wise bilinear coarse space has a convergence rate which
is independent of the number of elements, largely insensitive to the jump in viscosity,
and only weakly dependent on the polynomial order.

The heterogeneous nature of the viscosity in geodynamics applications requires
a careful choice of the SIP penalty parameters. We provide a brief analysis of the
influence of the penalty parameters on the discretisation error as well as on the quality
of the element-block Jacobi smoothers.

1.4. Limitations. We restrict ourselves to linear problems with element-wise
constant viscosity distributions in this study.

2. Governing equations. Neglecting nonlinearities and the effect of tempera-
ture on the viscosity, we restrict ourselves to a model that is solely depending on the
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material composition of the rocks in the Earth’s mantle:

−div(2 η(θ) ε(u)) +∇p = f(θ) in Ω,(2.1a)

div(u) = 0 in Ω,(2.1b)

where u is a velocity field, p is a pressure, η denotes the viscosity, f denotes a
volumetric force, θ denotes the material composition with 0 ≤ θ ≤ 1, and ε(u) denotes
the (linearised) strain rate tensor with εij(u) = 1

2 (∂xj
ui + ∂xi

uj), i, j = 1, . . . , d.

Further, Ω ⊂ R
2, denotes a rectangular domain with boundary ∂Ω = ∂ΩM ∪ ∂ΩN

consisting of a Neumann part ∂ΩN, and a Navier part ∂ΩM. We require the velocity
and pressure to satisfy homogeneous Neumann boundary conditions,

(2 η ε(u)− pI)n = 0 on ∂ΩN,(2.1c)

as well as homogeneous Navier boundary conditions,

u · n = 0, t · 2 η ε(u)n = 0 on ∂ΩM,(2.1d)

where n denotes the outward normal to the boundary, and t denotes a vector belong-
ing to the tangential space of ∂Ω. In case the Neumann boundary is empty, we ensure
uniqueness of the pressure solution by enforcing the following constraint:

∫

Ω

p dx = 0.(2.1e)

We further require that the domain Ω is restrained against rigid motions (A1).
Let us denote by L2(Ω) and H 1(Ω) the usual Sobolev spaces and by ‖·‖L2(Ω) and

‖·‖H 1(Ω) their norms.
Let us assume that the viscosity η ∈ L2(Ω) is bounded according to

0 < ηmin ≤ η ≤ ηmax,(2.2)

(AS1), and that f ∈ L2(Ω)
2
(AS2), then it is well-known that problem (2.1a) – (2.1d)

s.t. to the other named constraints admits a unique weak solution; see e.g. [11].

3. Computational grid and trace operators. Let Th be a regular Cartesian
grid on Ω (Ah1). We refer to the disjoint open sets K ∈ Th as elements and denote
their diameter by h. The number of elements is denoted by NK . Finally, n denotes
the outward normal unit vector to the element boundary ∂K.

An interior face of Th is the d−1 dimensional intersection ∂K+∩∂K−, where K+

and K− are two adjacent elements of Th. Similarly, a boundary face of Th is the d− 1
dimensional intersection ∂K ∩ ∂Ω which consists of entire faces of ∂K. We denote by
Γh the union of all interior faces of Th , by ΓN, and ΓM the union of all boundary faces
belonging to the Neumann part, and the Navier part of the boundary, respectively,
and set Γ = Γh ∪ΓN ∪ΓM. Here and in the following, we refer generically to a “face”
although we consider only two-dimensional problems in this paper.

Let K ∈ Th; we denote by H s(K) the space of real-valued functions v ∈ L2(K)
such that the function v and its weak derivatives up to order s are measurable and
square integrable in K. We will denote the norms on all three spaces H s(K), H s(K)2,
and H s(K)2×2 by the symbol ‖·‖s,K . We further introduce the broken Sobolev space

H s(Th) = {v ∈ L2(Ω) : v |K ∈ H s(K), K ∈ Th}.(3.1)
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Let us denote the norms of H s(Th), H s(Th)2, and H s(Th)2×2 by the symbol ‖·‖H s(Th).
Let q ∈ H 1(Th), and ϕ either belong to H 1(Th), H 1(Th)2, or H 1(Th)2×2. Let

e ∈ Γh be an interior face shared by the elements K+ and K−. Let ϕ± and q± denote
the traces of ϕ and q on e from the interior of K±, respectively. Further, let n

±

denote the outward normal unit vector to the boundary ∂K±. We define the mean
value {{ϕ}} and the jump JqnK at x ∈ e by

{{ϕ}} =
1

2
(ϕ+ + ϕ−), JqnK = q+n+ + q−n−.(3.2)

Let w denote a vector-valued function in H 1(Th)2, and w± denote its traces on e
from the interior of K±. We define the jumps Jw ⊗ nK and Jw · nK at x ∈ e by

Jw ⊗ nK = w+ ⊗ n
+ +w− ⊗ n

−, Jw · nK = w+ · n+ +w− · n−,(3.3)

where “⊗” denotes the dyadic product.

4. Discretisation of the Stokes problem. Let us introduce ηK = η|K , K ∈
Th, and define:

ηemax =

{

max
{

ηK
+

, ηK
−

}

e ∈ Γh,

ηK e ∈ ΓM.
(4.1)

For simplicity, we assume here that the viscosity is element-wise constant (ASh1).
Let us additionally define the constants

Ctr(k, e) =

{

max {Ctr(k, e,K
+), Ctr(k, e,K

−)} e ∈ Γh,

Ctr(k, e,K) e ∈ ΓM.
(4.2)

where the constants Ctr(k, e,K), K ∈ Th, stem from the following discrete trace
inequality [24]:

Lemma 4.1 (Discrete trace inequality). Let K be an affine quadrilateral, and let
e be an edge belonging to the boundary of K. Then, it holds that

‖ϕh‖2L2(e) ≤ Ctr(k, e,K) ‖ϕh‖2L2(K), ∀ϕh ∈ Qk(K),(4.3)

with the trace inequality constant

Ctr(k, e,K) = (k + 1)2
|e|
|K| .(4.4)

We approximate velocity and pressure in the discontinuous finite element spaces

V k =
{

v ∈ L2(Ω)
2
: v |K ∈ Qk(K)2, K ∈ Th

}

,(4.5)

Mk−1 =

{

{

q ∈ L2(Ω) : q|K ∈ Qk−1(K), K ∈ Th
}

|∂ΩN| > 0,
{

q ∈ L2(Ω) \ R : q|K ∈ Qk−1(K), K ∈ Th
}

else,
(4.6)

where Qk(K) is the space of polynomials of maximum degree k in each variable on
the mesh cell K ∈ Th.
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As approximation to (2.1a) – (2.1e), we then consider the problem of finding
uh ∈ V k and ph ∈ Mk−1 such that:

Ah(uh, vh) + Bh(vh, ph) = Fh(vh), ∀vh ∈ V k,(4.7)

Bh(uh, qh) = Gh(qh), ∀qh ∈ Mk−1,(4.8)

where we use a SIP form Ah, and a form Bh similar to the one used in [43]:

Ah(uh, vh) =
∑

K∈Th

∫

K

2 η ε(uh) : ε(vh) dx

−
∑

e∈Γh

∫

e

{{2 η ε(uh)}} : Jvh ⊗ nKds−
∑

e∈Γh

∫

e

{{2 η ε(vh)}} : Juh ⊗ nKds(4.9)

−
∑

e∈ΓM

∫

e

(n · 2 η ε(uh)n) (vh · n) ds−
∑

e∈ΓM

∫

e

(n · 2 η ε(vh)n) (uh · n) ds

+
∑

e∈Γh

δe

∫

e

Juh ⊗ nK : Jvh ⊗ nKds+
∑

e∈ΓM

δe

∫

e

(uh · n) (vh · n) ds,

and

Bh(uh, qh) =
∑

K∈Th

∫

K

−div(uh) qh dx+
∑

e∈Γh

∫

e

{{qh}} Juh · nKds(4.10)

+
∑

e∈ΓM

∫

e

qh (uh · n) ds,

Fh(vh) =
∑

K∈Th

∫

K

f · vh dx, Gh(qh) = 0,(4.11)

with uh, vh ∈ V k, qh ∈ Mk−1, and the face-wise penalties δe = σe Ctr(k, e), e ∈ Γ.
The parameters σe are the so-called penalty or stability parameters that must be
chosen sufficiently large (to be specified below) to guarantee that the bilinear form
Ah is coercive on the discrete space V k.

Consistency of the discrete variational problem can be shown by following the
proof of [43, Lemma 7.5.].

4.1. Stability of the Stokes discretisation. For the analysis of the Stokes
discretisation, it is necessary to introduce the functionals

‖q‖20,h =
∑

K∈Th

‖q‖2L2(K) +
∑

e∈Γh

k−2 h ‖{{q}}‖2L2(e) +
∑

e∈ΓM

k−2 h ‖q‖2L2(e),(4.12)

‖v‖21,h =
∑

K∈Th

‖∇v‖2L2(K) +
∑

e∈Γh

k2 h−1 ‖Jv ⊗ nK‖2L2(e),(4.13)

+
∑

e∈ΓM

k2 h−1 ‖v · n‖2L2(e),

|||v |||21,h = ‖v‖21,h +
∑

e∈Γh

k−2 h ‖{{∇ v}}‖2L2(e)

∑

e∈ΓM

k−2 h ‖∇ v‖2L2(e),(4.14)

with v ∈ H 2(Th)2 and q ∈ L2(Ω). By definition, ‖·‖0,h is a norm on L2(Ω). Under
assumption (A1), we assume that ‖·‖1,h is a norm on H 2(Th)2 for the considered
boundary conditions. (ASh2).
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Stability of the Stokes discretisation follows from the discrete inf-sup stability of
Bh, the discrete coercivity of Ah, and Brezzi’s lemma:

Lemma 4.2 (Discrete inf-sup stability). Let the assumptions (Ah1) be satisfied
and let k ≥ 1, K ∈ Th. Then, it holds that

sup
06=uh∈V k

Bh(uh, qh)

‖uh‖1,h
≥ βh ‖qh‖L2(Ω) = c k−1 ‖qh‖L2(Ω), ∀qh ∈ Mk−1,(4.15)

with c > 0 independent of h and k.

Proof. This follows from [38, Theorem 6.2] for k ≥ 2. The case k = 1 is covered
by [38, Theorem 6.12.].

We rely on a discrete Korn inequality to show coercivity of the bilinear form Ah.

Lemma 4.3 (Discrete Korn inequality,[10]). Let the assumptions (A1) and (Ah1)
be satisfied. Then, it holds for all v ∈ H 1(Th)2 that

(

‖ε(v )‖2L2(Ω) +
∑

e∈Γh

h−1 ‖Jv ⊗ nK‖2L2(e)

)

≥ CKn,h ‖∇v‖2L2(Ω)(4.16)

with a constant CKn,h > 0 independent of h.

Proof. This is a slight modification to the result in [10] relying on assumption
(A1) as well as on the affinity and shape regularity of the grid elements (Ah1).

Lemma 4.4 (Discrete coercivity). Let the assumptions (A1), (Ah1), and (ASh1)
– (ASh2) hold. Assume that the penalty parameters are chosen according to

σe > Ne η
e
max (1 + τ)

{

1 e ∈ Γh,

2 e ∈ ΓM,
(4.17)

with ηemax from (4.1), and with Ne = 4 denoting the number of faces of an element.
Then, it holds that

Ah(vh, vh) ≥ αh ‖vh‖21,h, ∀vh ∈ V k,(4.18)

with a constant αh = C 2 ηmin > 0 independent of h and k. Here, ηmin is from
assumption (AS1). The parameter τ > 0 is a small value that is necessary to use the
discrete Korn inequality.

Proof. The proof is based on the most part on the stability analysis for the
element-wise penalty approach presented in [16, Section 3.3.3.]. Let uh = vh,
uh, vh ∈ V k; we apply a Young’s inequality to the second and third term of (4.9).
Thus, we obtain

Ah(vh, vh) ≥
∑

K∈Th

∫

K

2 η ε(vh) : ε(vh) ds−
∑

e∈Γh

ǫ−1
e

∫

e

{{2 η ε(vh)}}
2 ds

−
∑

e∈ΓM

ǫ−1
e

∫

e

(2 η ε(vh))
2 ds+

∑

e∈Γh

(δe − ǫe) ‖Jvh ⊗ nK‖2L2(e)

+
∑

e∈ΓM

(δe − ǫe) ‖vh · n‖2L2(e),(4.19)

where ǫe > 0, ∀e ∈ Γh ∪ΓM. As a next step, we will bound the second and third term
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of (4.19) below. We have for interior faces e ∈ Γh,

∫

e

{{2 η ε(vh)}}
2 ds ≤

∫

e

1

2

(

(2 η ε(vh))|2K+ + (2 η ε(vh))|2K−

)

ds(4.20)

(I)

≤ 2 ηemax

1

2
Ctr(k, e)

(

∫

K+

2 η ε(vh) : ε(vh) dx

+

∫

K−

2 η ε(vh) : ε(vh) dx

)

.

In step (I), we have applied the trace inequality (4.3) from lemma (4.1), and further
have introduced constant Ctr(k, e) defined as in (4.2), as well as constant ηemax defined
as in (4.1). Analogously, we obtain for boundary faces e ∈ ΓM ,

∫

e

(2 η ε(vh))
2 dx ≤ 2 ηemaxCtr(k, e)

∫

K

2 η ε(vh) : ε(vh) ds.(4.21)

Inserting (4.20) – (4.21) in (4.19), leads to

Ah(vh, vh) ≥
∑

K∈Th

∫

K

2 η ε(vh) : ε(vh)(4.22)

×
(

1−
∑

e⊂∂K,e∈Γh

ǫ−1
e ηemaxCtr(k, e)−

∑

e⊂∂K,e∈ΓM

ǫ−1
e 2 ηemax Ctr(k, e)

)

dx

+
∑

e∈Γh

(σe Ctr(k, e)− ǫe) ‖Jvh ⊗ nK‖2L2(e)

+
∑

e∈ΓM

(σe Ctr(k, e)− ǫe) ‖vh · n‖2L2(e), vh ∈ V k.

We see that this expression is positive for any vh ∈ V k if

σe Ctr(k, e) > ǫe > σ∗
e Ctr(k, e) = Ne η

e
max Ctr(k, e), e ∈ Γh,(4.23)

σe Ctr(k, e) > ǫe > σ∗∗
e Ctr(k, e) = Ne 2 η

e
maxCtr(k, e), e ∈ ΓM,(4.24)

where Ne denotes the number of faces of a quadrilateral element. In the following, we
choose the penalty parameters according to (4.17). We add a small value τ ηemax/Ne ≥
τ ηmin/Ne once/twice to each penalty parameter σe in order to use the discrete Korn
inequality (4.16) from lemma 4.3 in step (I) of the next derivations. Thus, if we choose
the penalty value according to (4.17), we obtain from (4.22) that

Ah(vh, vh)
(I)

≥C
(

CKn,h 2 ηmin

∑

K∈Th

‖∇vh‖2L2(K)(4.25)

+
∑

e∈Γh

2 ηemaxCtr(k, e) ‖Jvh ⊗ nK‖2L2(e)

+
∑

e∈ΓM

2 ηemaxCtr(k, e) ‖vh · n‖2L2(e)

)

(II)

≥ C 2 ηmin ‖vh‖21,h, vh ∈ V k,
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where ηmin is from assumption (AS1), and CKn,h is from the discrete Korn inequality
(4.16) from lemma 4.3. In step (II), we have used that due to the affinity and shape
regularity of the grid elements (Ah1), it holds that h−1 ≤ |e|/|K| ≤ γ2 h−1 for K ∈ Th
and e ⊂ ∂K, with γ denoting the shape regularity constant. We have further bounded
σe below by ηmin Ne. The constant C is assigned a different value in every step and
independent of h and k.

We typically choose the penalty parameters as the lower bound since estimate
(4.17) is not totally sharp due to the utilised inequalities. Even smaller values can be
chosen in practice [24]. We note that the parameter τ is set to zero in our computa-
tions. We further remark that estimate (4.17) assumes piecewise constant viscosity
distributions. For piecewise polynomial viscosity distributions, it is necessary to re-
place k by k ← k +mη in the discrete trace inequality constant.

4.2. A-priori error estimates for the Stokes discretisation. Let us state
the continuity properties of the forms Ah and Bh:

Lemma 4.5 (Continuity ofAh and Bh). Under assumptions (A1) – (AS2), (Ah1),
and (ASh1), bilinear forms Ah and Bh are continuous in the sense that

Ah(u , v) ≤ Ca,h |||u |||1,h |||v |||1,h, ∀(u , v ) ∈ H 2(Th)2 × H 2(Th)2(4.26)

Bh(u , q) ≤ Cb,h ‖u‖1,h ‖q‖0,h, ∀(u , q) ∈ H 2(Th)2 ×H 1(Th)(4.27)

with Ca,h = (2 ηmax +maxe∈Γh∪ΓM
{σe}) > 0 and Cb,h =

√
d > 0. Here, ηmax is from

assumption (AS1), and σe denotes the penalty value on face e. Both constants Ca,h

and Cb,h are independent of h and k.
Proof. The proof of both inequalities follows from standard inequalities. See e.g.

the proofs of [43, Lemma 7.1] and [43, Lemma 7.2] for more details.
Further note that the norms ‖·‖1,h and ||| · |||1,h are equivalent on the discrete

spaces V k and Mk−1. This is also the case for the norms ‖·‖0,h and ‖·‖L2(Ω).
Using the consistency of the discretisation, the discrete inf-sup stability of Bh,

the discrete coercivity of Ah, the continuity of both bilinear forms together with the
discrete equivalency of norms, as well as suitable element-wise hp-interpolants, we can
derive the following a-priori error estimate:

Lemma 4.6. Let the assumptions. (A1), (AS1) – (AS2), (Ah1), and (ASh1) hold.
Assume that the weak solution (u , p) to (2.1a) – (2.1e) belongs to Hm(K)2×H n(K),
K ∈ Th, with m ≥ 2 and n ≥ 1. Further, let uh ∈ V k and ph ∈ Mk−1 denote the
discrete solution to problem (4.7) – (4.8). Then, it holds hat

‖u − uh‖1,h + ‖p − ph‖0,h ≤

C
∑

K∈Th

(

Ca,h

αh

1

βh

hs−1

km−3/2
‖u‖Hm(K) +

hr

kn
‖p‖Hn(K)

)

,(4.28)

with 1 ≤ s ≤ min{k + 1,m} and 1 ≤ r ≤ min{k, n}. The constant C > 0 is
independent of h and k but depends on the shape regularity of the grid elements. The
constant Ca,h is from lemma 4.5, and αh is from lemma 4.4. Note that this estimate
holds up to the discrete inf-sup constant βh from lemma 4.2 that depends on k.

Proof. The proof requires arguments analogous to the ones used for the proofs of
[43, Lemma 8.1] and [43, Lemma 8.2].

Utilising a duality argument, additional requirements on the regularity of the
solution to the continuous variational problem (and on the solution to the adjoint
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problem), as well as hp-interpolants for the whole domain Ω, we can derive the fol-
lowing L2 error estimate for the discrete velocity solution:

Lemma 4.7 (L2 error). Let the assumptions (A1) – (AS2), (Ah1), and (ASh1)
hold. Assume further that the weak solution (u , p) to (2.1a) – (2.1e) belongs to
H n+1(Ω)2 × H n(Ω), with m ≥ 1. Choose the penalty values according to (4.17)
in lemma 4.4. Let uh ∈ V k and ph ∈ Mk−1 denote the discrete solution to problem
(4.7) – (4.8). Then, it holds that

‖u − uh‖L2(Ω) ≤ C hmin(k+1,n+1)

(

C2
a,h

αh

1

β2
h

‖u‖Hn+1(Ω) + Ca,h
1

βh
‖p‖Hn(Ω)

)

,

(4.29)

where the constant C > 0 is independent of h and k but depends on the shape regularity
of the grid. See Lemma 4.6 for a definition of the remaining constants.

Remark 4.8. We emphasise that the discretisation errors depend on the size of
the largest penalty parameter as well as on the viscosity contrast by means of the
constants Ca,h and αh.

5. Preconditioning the Stokes system. The discrete variational problem
(4.7) – (4.8) is equivalent to the saddle point problem

[

A B

BT 0

] [

u
p

]

=

[

f
g

]

.(5.1)

We solve (5.1) using a right preconditioned Krylov method, with an upper block
triangular preconditioner P of the form:

P =

[

A B
0 S

]

,(5.2)

where S = BTA−1B is the pressure Schur complement.
Our implementation employs tensor products of pairwise orthogonal Legendre

polynomials as basis functions for the pressure and the velocity components. The zero
pressure average is not build into the pressure basis functions. In case the Neumann
boundary is empty, we thus solve a singular system. As we typically use Krylov
methods which are mathematically equivalent to GMRES, we then require that the
right-hand side is consistent (e.g., we remove the constant pressure null space) [12,
Theorem 2.4.].

Noting that both A is symmetric positive definite (stemming from the SIP for-
mulation) and S is symmetric positive definite (stemming from the inf-sup stability),
this choice for P will result in convergence in at most two iterations in exact arith-
metic [19]. Whilst optimal (in the sense of iteration counts), the definition of P is not
practical as it involves an exact inverse for A and S. A practical Stokes preconditioner
replaces A−1 and S−1 by spectrally equivalent operators such that their application
of the inverse on a vector is significantly cheaper.

In our computations, we replace the Schur complement S by the pressure mass
matrix scaled by the inverse of the element viscosity (S∗). The proof of spectral
equivalence between S and S∗ for our DG spaces stems immediately from [19, Theorem
5.22]. Due to the use of an orthonormal basis for the pressure space, S∗ is diagonal.
The definition of y = A−1x is further replaced with a preconditioned Krylov method
with a fixed relative stopping condition which is described in detail in section 6.
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6. Preconditioning the viscous block. When used in conjunction with a
Krylov method, we are required to apply the action of P−1 on an arbitrary vector x =
(xu, xp). We consider replacing the definition y

u
= A−1xu with a spectrally equivalent

operation: solve Ay
u
= xu for y

u
using a preconditioned Krylov method such that at

the i-th iteration, ‖Ayi
u
− xu‖/‖xu‖ < ǫ. In order to develop an optimal and scalable

preconditioner for A, in this work we utilise a hp-multilevel preconditioner. The
hp-multilevel preconditioner employs coarsening with respect to both the polynomial
order k of the velocity function space (“p-coarsening”) and the spatial resolution h.
The rational for coarsening in both p and h will be elaborated below.

To introduce the hp-multilevel preconditioner, we first recall the basic twolevel
multigrid method (see Algorithm 1). The essential components of the multigrid algo-

Algorithm 1 Twolevel Multigrid

1: procedure MGVCycle(A, f,M, R, P, Ā, y)

2: Set i = 0, u0 = y
3: repeat

4: ui = ui +M−1 (f −Aui) ⊲ pre-smooth m times
5: r̄ = R (f −Aui) ⊲ restrict residual
6: Solve Ā ē = r̄ ⊲ solve for the coarse grid correction
7: ui = ui + P ē ⊲ prolongate error
8: ui = ui +M−T(f −Aui) ⊲ post-smooth m times
9: ui+1 = ui ⊲ update for next iteration

10: i = i+ 1
11: until converged
12: u = ui

13: end procedure

rithm are the fine level operator A, the coarse level operator Ā, the restriction and
prolongation operators R, P, which map vectors from the fine level to the coarse level
(and vice-versa), and the smoothing operatorM.

In the context of p-multigrid, restriction refers to mapping a discrete vector
defined using a function space of order k to a function space of order s, where
0 ≤ s < k, Contrary to traditional p-coarsening strategies with hierarchies like
V k → V k/2 → V k/4 . . . , here we follow [45, 46] and consider “aggressive” coars-
ening from V k to an a-priori defined p-coarse space in a single step. This implicitly
defines a twolevel hierarchy in p-space. In this work, we study two different p-coarse
spaces, namely the space of element-wise constants V 0 and the space of d-linear
functions V 1. We will use the symbols A0 and A1 for the associated coarse grid
operators.

The construction of the restriction and prolongation operators between differ-
ent order basis functions is natural to implement as we have employed a hierarchical
basis. Furthermore, the prolongation operators are identical to the transposed re-
striction operators. We define coarse operators via Galerkin projection. Denoting
the prolongation from polynomial degree k to s via P s

k , the coarse level operators we
consider are thus given by

A0 =
(

P0
k

)T
AP0

k, A1 =
(

P1
k

)T
AP1

k.

The smoother is defined as a Chebyshev iteration preconditioned with a element-
block Jacobi operator that consists of the diagonal blocks of A. The minimum (λ0)
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and maximum (λ1) eigenvalue bounds required by Chebyshev are defined in the fol-
lowing manner. First, we estimate the maximum eigenvalue (λ∗) of A by performing
10 iterations of GMRES with a random right hand side vector. We then choose
λ0 = 0.1λ∗ and λ1 = 1.1λ∗ respectively. The choice of factors 0.1 and 1.1 have
been determined empirically, however they are robust for variable coefficient scalar /
vector elliptic problems and in fact are the default values used PETSc’s Chebyshev
implementation.

The bilinear form associated with the element-block Jacobi operator is:

Âh(uh, vh) =
∑

K∈Th

(

∫

K

2 η ε(uh) : ε(vh) dx(6.1)

−
∑

e⊂∂K
e∈Γh

∫

e

ηK ε(uK
h ) : (vK

h ⊗ n
K) ds−

∑

e⊂∂K
e∈Γh

∫

e

ηK ε(vK
h ) : (uK

h ⊗ n
K) ds

+
∑

e⊂∂K
e∈Γh

δe

∫

e

(uK
h ⊗ n

K) : (vK
h ⊗ n

K) ds+ boundary terms

)

,

with uh, vh ∈ V k, v
K
h = vh|K , and n

K denoting the outward normal to the boundary
of element K ∈ Th. Notice the division by two in the second and third term stemming
from the averaging on interior faces.

From similar arguments as in the proof of lemma 4.4 follows that the form (6.1)
is elliptic on V k. Consequently, the element-block Jacobi operatorMk is symmetric
and positive-definite. Following the proofs of [46, Corollary 1 and Equation (54)], one
can then show that

κ2

(

M−1
k A

)

≤ 1 + C1 max
K∈Th

{

maxe⊂∂K σe

minx∈K η

}

+ C2
1

ηmin
(6.2)

with constants C1 > 0 and C2 > 0 independent of h. This result emphasises the
importance of choosing the penalty parameters based on local values of the viscosity.

6.1. Preconditioning the coarse problem. In the context of high-resolution
simulations, a pure p-multilevel preconditioner will never yield optimal O(n) solve
times due to the increasing cost of performing the solve on the coarsest level. This
motivates us to employ a h-multigrid preconditioner for the coarse operators A0 and
A1, respectively. To realise this, we have adopted standard multigrid techniques
which have been developed for finite difference discretisations and low-order finite
discretisations. Below we elaborate on how these techniques are fused with our SIP-
DG spatial discretisation.

6.1.1. Element-wise constant coarse problem. Let us denote by Ah.0 the
bilinear form inherited from Ah that corresponds to the element-wise constants. Dis-
cretising Ah.0 for an isoviscous fluid yields a stencil which mimics a standard 5-point
finite difference (FD) stencil [45]. Hence, heuristically it seems plausible to assume
that any geometric multigrid preconditioner suitable for a 5-point FD stencil should
be appropriate to use as a preconditioner for the coarse grid solver associated with
A0.

We first generate a hierarchy of meshes (with differing h) by isotropically coarsen-
ing the mesh defining A0. The maximum number of times coarsening can be applied,
and thus the number of levels in the h-multilevel preconditioner, is determined by
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the spatial resolution of the grid. Note however that our implementation does not
support semi-coarsening, thus the finest grid must always employ an odd number of
elements in the i and j directions. Between each mesh in the hierarchy, we have a
restriction operator Rh defined by bilinear interpolation (Q2

1) and again we will use
Ph = RT

h .
As in the p-multigrid implementation, we define coarse operators via Galerkin

projection, e.g. Āh = PT
hA0 Ph. The construction of Galerkin coarse operators is

applied recursively for all levels in the mesh hierarchy. The smoother used within
the h-multilevel hierarchy is Chebyshev preconditioned with Jacobi. The Chebyshev
bounds are estimated similarly as for the p-coarsening smoother. On the coarsest
level of the h-hierarchy, we will apply an exact LU factorisation.

6.1.2. Element-wise bilinear coarse problem. In the case when the coarse
space is Q2

1, rather than leverage a finite difference analog to build a h-multigrid
preconditioner, we will exploit methods designed for low order finite elements. Specif-
ically, we consider projecting the Q2

1 discontinuous space into the space of continuous
bilinear functions.

We first define the discontinuous to continuous projector as the transpose of the
continuous to discontinuous projector. The latter is a simple element-wise nodal to
modal projection. Let us denote the continuous-to-discontinuous and discontinuous-
to-continuous projectors by Pcd and Rdc = PT

cd, respectively. We then project the
discontinuous coarse level problem A1 into Q2

1 via A1,c = PT
cdA1 Pcd. As in the

element-wise constant case, a mesh hierarchy is created via isotropic coarsening and
again we utilise linear interpolation and transposed restriction between each level. All
coarse operators are then constructed from A1,c and recursive application of Galerkin
projection. The same smoother and coarse level solver are used as in the element-wise
constant case.

It is important to note that the size of the continuous p-coarse grid problem A1,c

equals the size of the element-wise constant coarse grid problem Ac for comparable
problem sizes. For a 33 × 33 element mesh, e.g., the element-wise constant p-coarse
space is spanned by 33 × 33 × 2 constants while for a 32 × 32 element mesh, the
continuous p-coarse space is spanned by 33× 33× 2 bilinear (hat) functions.

7. The heterogeneous viscosity Stokes benchmark SolCx. In order to
verify the theoretical approximation properties of our SIP based Stokes discretisation
for heterogeneous problems, we consider the SolCx benchmark which has been con-
sidered extensively for both solver and discretisation developments [32, 17, 27]. The
analytic solution to the above problem is described in [50] and is available as part of
the Underworld package [34].

Let Ω be the unit square and let the viscosity η contain a jump in the lateral
direction located along the line 0 < xc < 1. We consider the problem of finding a
solution to (2.1a) – (2.1b) s.t. homogeneous Navier boundary conditions. The free
parameters of the model are chosen according to xc = 0.5, η2 = 1, and η1 = 106.

Let us denote by eu = u − uh and ep = p − ph the discretisation error of the
velocity and the pressure fields, respectively. The errors measured in the L2(Ω) norm
for grids employing an even number of elements in each direction and for different
polynomial orders are reported in Table 1. The discrete problem is solved to machine
(double) precision.

For grids with an even number of elements in each coordinate direction, the jump
in viscosity is aligned with the edges of the elements. Consequently the discontinuous
basis functions accurately resolve the pressure field and thus optimal convergence in
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Table 1: SolCx Stokes benchmark. Results for grids with a even number of elements
in the x and y directions (∆x = ∆y). All values below the horizontal lines in the
second table are considered as affected by machine precision.

Q2

1
–Q0 Q2

2
–Q1 Q2

3
–Q2

∆x ‖eu‖L2 ‖ep‖L2 ‖eu‖L2 ‖ep‖L2 ‖eu‖L2 ‖ep‖L2

1/2 1.3× 10−3 6.7× 10−2 6.5× 10−4 1.4× 10−2 9.9× 10−5 2.0× 10−3

1/4 7.6× 10−4 3.5× 10−2 9.7× 10−5 3.7× 10−3 7.0× 10−6 2.6× 10−4

1/8 2.2× 10−4 1.7× 10−2 1.2× 10−5 9.4× 10−4 4.5× 10−7 3.2× 10−5

1/16 5.7× 10−5 8.7× 10−3 1.5× 10−6 2.3× 10−4 2.9× 10−8 4.0× 10−6

1/32 1.4× 10−5 4.4× 10−3 1.9× 10−7 5.9× 10−5 1.8× 10−9 5.1× 10−7

1/64 3.6× 10−6 2.2× 10−3 2.4× 10−8 1.5× 10−5 1.1× 10−10 6.3× 10−8

1/128 9.1× 10−7 1.1× 10−3 3.0× 10−9 3.7× 10−6 7.0× 10−12 7.9× 10−9

O(h1.98) O(h1.00) O(h3.00) O(h2.02) O(h3.97) O(h3.00)

Q2

4
–Q3 Q2

5
–Q4 Q2

6
–Q5

∆x ‖eu‖L2 ‖ep‖L2 ‖eu‖L2 ‖ep‖L2 ‖eu‖L2 ‖ep‖L2

1/2 7.1× 10−6 2.1× 10−4 4.8× 10−7 1.4× 10−5 3.7× 10−8 9.7× 10−7

1/4 2.5× 10−7 1.3× 10−5 9.4× 10−9 4.5× 10−7 3.4× 10−10 1.6× 10−8

1/8 8.2× 10−9 8.4× 10−7 1.6× 10−10 1.4× 10−8 5.4× 10−12 2.8× 10−10

1/16 2.6× 10−10 5.3× 10−8 4.8× 10−12 4.8× 10−10

1/32 8.3× 10−12 3.3× 10−9

1/64 1.8× 10−12 2.2× 10−10

O(h4.96) O(h4.01) O(h5.88) O(h5.01) O(h6.77) O(h5.92)

h is obtained. This was predicted in lemma 4.6. From the same lemma, we could
only expect L2(Ω) convergence in velocity that is suboptimal by one order however we
observe optimal convergence rates. Note that the L2(Ω) error estimate from lemma
4.7 is not applicable here since the pressure solution is discontinuous. The measured
order of accuracy is shown in the final row within Table 1.

For grids employing N2 elements, where N is an odd number, convergence de-
grades to first order convergence in velocity and convergence by half an order in
pressure (results not shown). Degraded convergence was expected due to standard
interpolation error results.

8. Solver performance. In this section, we evaluate the robustness and scala-
bility of the Stokes solver discussed in Sec. 6. Specifically we consider four variants
of the preconditioner associated with the A operator described in Sec. 6. The first
two configurations Ap(Q

2
0) and Ahp(Q

2
0) employ a two level p-coarsening strategy in

which the polynomial order is aggressively coarsened until we obtain a Q2
0 basis. The

latter additionally applies geometric coarsening as detailed in section 6.1.1. Similarly
we introduce Ap(Q

2
1) and Ahp(Q

2
1) where the latter uses a geometric coarsening strat-

egy as outlined in 6.1.2. The number of Chebyshev-accelerated element-block Jacobi
smoothing steps for the two level p−coarsening is set to 2 for all preconditioners (up
and down smoothing each). The smoothers employed in the h-coarsening part of
Ahp(Q

2
0) and Ahp(Q

2
1) run 3 iterations (up and down smoothing each). In all experi-

ments, the coarsest level in both the p-multigrid, and hp-multigrid variants employed



SIP AND PRECONDITIONING FOR HETEROGENEOUS STOKES 15

LU factorisation.

All numerical experiments were performed on a single node of “Hamilton”, located
at Durham University (UK), equipped with two Intel Xeon E5-2650 v2 (Ivy Bridge)
8 core 2.6 GHz processors with 64 GB of RAM. Experiments that state solve times
have been performed using only a single processor. If not other otherwise indicated,
we will perform experiments in double precision.

8.1. SolCx. We consider the SolCx benchmark (Sec. 7) with parameters xc =
0.5, η2 = 1. As free parameters we use the viscosity contrast ∆η = η1 : η2, and the
grid resolution in our tests. We discretise the problem using a second order velocity
space and a first order pressure space (Q2

2–Q1 elements). For preconditioners Ap(Q
2
0),

Ap(Q
2
1), and Ahp(Q

2
1), we consider meshes with the sizes 642, 1282, 2562,and 5122.

We remark that we have to use odd numbers of elements in each coordinate direction
if we want to use the preconditioner Ahp(Q0); see Sec. 6.1.1. We then consider the
mesh with element resolutions of 652, 1292, 2572,and 5132. We further perform an
L2 projection of the original viscosity on the element-wise constants since the mesh
does not align with the viscosity structure for these meshes. For both preconditioners
Ahp(Q

2
0) and Ahp(Q

2
1), we use 3, 4, 5, and 6 h-multigrid levels for the considered mesh

sizes, respectively.

We used right preconditioned FGMRES to solve the Stokes problem. Conver-
gence of the saddle point problem is deemed to have occurred when the 2-norm
of the residual is 106 times smaller than the initial residual (which we denote via
rtol(FGMRES) = 10−6). The inner solver applied to A is preconditioned CG and is
terminated according to a relative tolerance criterion of rtol(CG) = 10−3. A flexible
Krylov method is not required for the viscous block solve since the p- and hp-multigrid
preconditioners are linear operators. The wall-clock time and iterations required to
solve the Stokes problem, as well as the iterations required by the viscous block solve
are reported in Table 2.

The overall Stokes solver is observed to be scalable for all four preconditioners as
the number of outer and inner iterations are virtually independent of the grid reso-
lution for a given viscosity contrast. The viscous block preconditioners Ap(Q

2
1) and

Ahp(Q
2
1) yield significantly less inner iterations than the other two preconditioners.

We note that due to the usage of an LU factorisation on the coarsest level problem,
we do not observe optimal (e.g. O(n)) solve times for the variants which do not employ
hp-multigrid. Clearly, Ap(Q

2
1) has a significantly larger coarse grid problem than the

other solvers; (no discontinuous-to-continuous projection is performed), thus CPU
time is far from optimal. We note that the timings for Ap(Q

2
0) are close to optimal.

However, for increasing problem sizes, can can expect further departure from O(n) as
observed when using Ap(Q

2
1). Variant Ahp(Q

2
1) clearly outperforms the three other

preconditioners in terms of solve time, and the inner solver only needs one more
iterations (at maximum) than Ap(Q

2
1).

8.2. SolCx checkerboard. In the last section we observed that the precondi-
tioners based on an element-wise bilinear p-coarse space are significantly more efficient
in terms of iterations than their counterparts using an element-wise constant coarse
space. The preconditioner Ahp(Q

2
1) applying h-coarsening was further found to yield

solve times that scale optimally and which are significantly smaller than those of the
other three preconditioners. In the following tests, we will thus only considerAhp(Q

2
1).

In order to demonstrate the robustness of this preconditioner for harder problems,
we again solve a SolCx setting but this time with an additional viscosity jump in the
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Table 2: SolCx: Performance of the Stokes solver using different viscous block pre-
conditioners (see text for details) as a function viscosity jump (∆η) and the number
of elements NK . The polynomial order of the velocity is fixed to k = 2. Here, #it
indicates the number of outer iterations applied to the Stokes operator, whilst num-
bers in brackets indicate the average and maximum iterations required by the viscous
block solver. t denotes the CPU time required for the solve. See the text for details
on the stopping criteria.

∆η = 100 ∆η = 106

Preconditioner for A NK #it t (s) #it t (s)

Ap(Q2

0
) 642 3 (21.3, 23) 2.76 5 (34.2, 43) 12.23

1282 3 (20.7, 22) 12.24 5 (36.6, 45) 54.19

2562 3 (20.7, 23) 54.71 5 (35.4, 46) 212.55

5122 3 (20.0, 23) 302.21 6 (33.5, 46) 965.76

Ahp(Q
2

0
) 652 3 (21.3, 23) 4.90 5 (36.6, 45) 13.61

1292 3 (21.0, 22) 19.26 5 (39.0, 46) 57.74

2572 3 (20.7, 22) 75.43 5 (40.4, 46) 237.43

5132 3 (20.7, 23) 301.30 5 (43.8, 54) 1028.10

Ap(Q2

1
) 642 3 (3.3, 4) 1.47 5 (4.8, 6) 3.55

1282 3 (3.3, 4) 21.74 5 (4.8, 6) 30.87

2562 3 (3.3, 4) 323.77 5 (4.6, 6) 355.21

5122 3 (3.3, 4) 2681.80 5 (4.6, 6) 2805.20

Ahp(Q
2

1
) 642 3 (4.0, 4) 1.14 5 (5.2, 7) 2.22

1282 3 (3.7, 4) 4.29 5 (5.4, 7) 10.75

2562 3 (3.7, 4) 17.66 5 (5.2, 6) 37.18

5122 4 (3.7, 4) 70.59 5 (5.4, 7) 155.52

y–direction at y = 0.5. The resulting viscosity structure is a 2 × 2 checkerboard. All
solver components are configured as detailed in the previous section.

This time we further investigate the influence of the polynomial order on the
convergence, and we consider the viscosity contrasts η2 : η1 = ∆η ∈ {103, 106, 108}.

The wall-clock time and iterations required to solve the Stokes problem, as well
as the iterations required by the viscous block solve are reported in Table 3.

Incrementing the polynomial order by one increments the iterations necessary
to converge the viscous solve by around 5 independent of the viscosity jump. A
slight dependence of the outer iterations on the polynomial order k is observed for
this problem. The most noticeable dependence of the outer iterations on k can be
observed between the elements Q2

1–Q0 and Q2
2–Q1.

For a given Q2
k–Qk−1 element pair, the following additional observations can be

made: (1) close to optimal solve times are observed under mesh refinement, and (2)
the solve times are almost independent of the jump in viscosity.

8.3. Sedimenting viscous circular inclusions. In our final test, we place
six circular inclusions with viscosity η2 ∈ {103, 106, 108} and density ρ2 = 1.2 in a
medium with viscosity η1 = 1 and density ρ1 = 1. We then consider a forcing term
f = (0,−g ρ), where the gravity constant is chosen as g = 10. The inclusions are
placed at (0.84, 0.39), (0.79, 0.91), (0.33, 0.76), (0.55, 0.47), (0.14, 0.60), (0.24, 0.13)
and have radii 0.089, 0.059, 0.063, 0.081, 0.05 and 0.09 respectively. The model
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Table 3: SolCx checkerboard: Performance of the Stokes solver using configuration
Ahp(Q

2
1) (see text for details) as a function of element order, viscosity jump (∆η) and

the number of elements NK . Refer to Table 2 for the definition of the data reported.
Columns reporting iterations which are marked with a (∗) indicate jobs which required
> 64 GB of RAM and thus could not be executed.

Q2

1
–Q0 Q2

2
–Q1 Q2

3
–Q2

∆η NK #it t (s) #it t (s) #it t (s)

103 642 14 (4.0, 5) 0.97 17 (7.9, 10) 10.47 18 (11.7, 15) 47.50

1282 15 (4.2, 5) 5.38 17 (8.1, 11) 43.35 18 (11.4, 16) 187.51

2562 16 (4.9, 6) 27.20 18 (8.2, 11) 188.94 22 (11.0, 17) 892.24

5122 15 (5.1, 7) 108.45 17 (8.4, 12) 731.49 23 (11.0, 18) 3697.00

10242 15 (5.1, 7) 458.02 * *

106 642 15 (4.1, 5) 1.08 17 (8.4, 11) 11.15 17 (12.4, 16) 47.85

1282 19 (4.6, 6) 7.27 17 (8.3, 11) 44.60 17 (12.4, 17) 193.43

2562 15 (4.7, 6) 24.79 17 (8.6, 12) 187.26 20 (11.3, 17) 833.87

5122 17 (5.2, 7) 122.68 19 (8.7, 12) 847.84 19 (12.4, 18) 3846.70

10242 17 (5.4, 8) 508.84 * *

108 642 15 (4.2, 6) 1.10 16 (9.0, 11) 11.20 18 (13.1, 17) 52.84

1282 15 (4.9, 6) 8.03 16 (9.2, 12) 46.58 18 (13.3, 18) 218.42

2562 14 (5.1, 6) 24.69 17 (9.3, 12) 201.54 19 (13.3, 18) 918.59

5122 19 (5.2, 7) 136.65 17 (9.6, 13) 829.67 18 (13.5, 19) 3795.30

10242 21 (5.6, 8) 814.33 * *

configuration is such that the inclusions sediment under gravity. At the top boundary,
homogeneous Neumann boundary conditions are imposed while on the remaining parts
of the boundary, homogeneous Navier boundary conditions are imposed.

An approximation of the model and a corresponding numerical velocity solution
computed using Q2

2–Q1 discontinuous finite elements is depicted in Fig. 1. The model
is approximated using a uniform mesh consisting of 2562 elements.

A Cartesian grid can never resolve these viscosity and density distributions ex-
actly, we thus always take the element-wise maximum viscosity and the element-wise
minimum density. Thus, the discrete problem has by construction a mesh dependence.

We consider meshes with element resolutions of 642, 1282, 2562, 512, and 10242

and employ 2, 3, 4, 5 and 6 h-coarsening levels; one level less than in the previous
experiments. We use GCR for both the Stokes (outer) problem and the viscous block
(inner) problem.

The wall-clock time and iterations required to solve the Stokes problem, as well
as the iterations required by the viscous block solve are reported in Table 4. We vary
again the polynomial order k ∈ 1, 2, 3 and the viscosity contrast ∆η ∈ {103, 106, 108}.
As in the previous two experiments which used a simpler viscosity structure, using
Ahp(Q

2
1) with the sinker model configuration we observe that the Stokes precondi-

tioner is both scalable and near optimal. Outer iterations are observed to be only very
weakly dependent on the jump in viscosity, and mildly dependent on the polynomial
degree. The inner iterations required to converge the viscous block are approximately
independent of the viscosity jump for each polynomial degree considered. As per
other experiments, the average number of iterates required to converge the viscous
block are mildly dependent on the polynomial degree.
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Fig. 1: Sedimenting circular inclusions: Approximate material composition (pseudo-
colour plot) and a corresponding numerical velocity solution (vector plot) computed
using discontinuous Q2

2–Q1 elements. The model is discretised using a uniform mesh
consisting of 2562 elements. Viscosity and density are chosen η1 = 1 and ρ1 = 1,
respectively, for the background material while they are chosen η2 = 106 and ρ2 = 1.2
for the circular inclusions.

Table 4: Six circular inclusions: Performance of the Stokes solver using configuration
Ahp(Q

2
1) (see text for details) as a function of element order, viscosity jump (∆η) and

the number of elements NK . Refer to Table 2 for the definition of the data reported.

Q2

1
–Q0 Q2

2
–Q1 Q2

3
–Q2

∆η NK #it t (s) #it t (s) #it t (s)

103 642 17 (3.3, 6) 0.97 20 (6.7, 11) 9.54 21 (8.9, 16) 38.12

1282 16 (3.5, 7) 4.47 19 (6.6, 12) 36.36 22 (9.0, 16) 163.31

2562 17 (3.8, 8) 21.16 19 (6.8, 12) 151.00 22 (8.9, 17) 650.42

5122 19 (3.8, 9) 96.98 20 (6.7, 12) 668.22 26 (9.4, 35) 3502.30

10242 25 (4.0, 9) 589.39 ∗ ∗

106 642 17 (3.4, 6) 0.98 20 (6.7, 11) 9.50 20 ( 8.9, 16) 36.28

1282 17 (3.6, 8) 4.92 18 (6.8, 12) 35.47 21 ( 8.7, 16) 151.37

2562 19 (4.1, 10) 25.43 18 (6.9, 13) 145.18 24 ( 9.0, 17) 715.33

5122 19 (4.4, 11) 108.61 21 (6.9, 12) 710.49 25 (10.2, 35) 4606.20

10242 22 (4.6, 11) 603.12 ∗ ∗

8.3.1. Quadruple-precision floating point arithmetic. GCR was adopted
in the previous experiment as we observed that the orthogonalisation procedures
of CG, GMRES, and FGMRES would break-down for viscosity jumps ∆η > 103

at a given mesh size. We further note that this break-down behaviour appears to
be independent of the viscous block preconditioner as it also occurred when using
Ap(Q

2
1).

We could trace the break-down back to being related to a lose of floating point
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Table 5: Six circular inclusions (quad precision): Performance of the Stokes solver
using configuration Ahp(Q

2
1) (see text for details) as a function of element order,

extreme viscosity jumps (∆η), and the number of elements NK . Refer to Table 2 for
the definition of the data reported. CPU time columns marked with (–) indicate the
job required longer than 24 hrs to complete.

Q2

1
–Q0 Q2

2
–Q1 Q2

3
–Q2

∆η NK #it t (s) #it t (s) #it t (s)

1010 642 17 (4.1, 7) 57.32 18 (10.1, 15) 571.04 18 (13.3, 20) 2154.60

1282 16 (4.6, 9) 236.45 17 ( 9.9, 17) 2087.30 18 (13.9, 21) 9153.80

2562 18 (5.6, 11) 1236.20 17 ( 8.8, 15) 7325.30 18 (14.7, 23) 37673.00

5122 16 (6.1, 12) 4693.20 17 ( 8.4, 16) 27888.00 - -

1020 642 18 (8.3, 10) 118.30 21 (14.9, 19) 984.84 26 (17.8, 26) 4257.80

1282 18 (10.7, 13) 596.19 18 (17.6, 21) 4088.10 25 (19.6, 27) 18110.00

2562 18 (12.3, 16) 2697.60 19 (15.0, 19) 14058.00 28 (17.7, 27) 78188.00

5122 18 (13.4, 17) 11480.00 16 (14.8, 20) 60247.00 - -

precision. Using quadruple-precision floating point arithmetic, break-down of the
orthogonalisation does not occur and our preconditioner is able to solve problems
with extreme viscosity contrasts (∆η ∼ 1020). A selected number of results using
∆η = 1010, 1020 are reported in Table 5. As per the results obtained with double-
precision, the Stokes and viscous block preconditioner are observed to be scalable, and
solve times are close to optimal. For these experiments, the outer solver was chosen
as FGMRES and the inner solver used was CG.

9. Conclusions. We have investigated high order SIP based discretisations of
the variable viscosity Stokes flow. We have demonstrated that the discretisations are
optimally convergent in h for prototypical geodynamics problems where the viscosity
discontinuity can be resolved by the grid.

For the solution of the saddle point system arising from the discretisation of the
Stokes equations, we proposed an iterative method based on block preconditioned
FGMRES for the overall linear system and hp-multilevel preconditioned CG for the
viscous block. We considered coarsening the polynomial degree of the viscous block
to either the space of piecewise constants (Q2

0), or bilinear functions (Q2
1), and for

each coarse space, a h-multigrid preconditioner was proposed.

Through a series of numerical experiments with heterogeneous viscosity, we have
demonstrated that the h-multigrid strategy results in a more robust coarse level pre-
conditioner. This was attributed to the fact that the Q2

0 coarse space by construction
excludes cross derivatives which appear in the definition of the stress tensor when the
viscosity is a function of space. Neglecting these terms in the coarse space does not
result in error corrections which drive the fine level residual to zero. In contrast, the
h-multigrid variant considered for the Q2

1 coarse space problem results in a solver with
a convergence rate that was observed to be independent of the number of elements,
largely insensitive to the both the viscosity structure and the jump in viscosity, and
only weakly dependent on the approximation order.

Lastly, we have outlined the importance of choosing the face-wise SIP penalty
parameters depending on the local viscosity and close to the lower bound of the
stable regime in order to minimise discretisation errors and the number of iterations
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of the nested inner solver.

9.1. Outlook. Subject of future research could be an extension of the method-
ology to h- and p-adaptive methods, to three dimensions, as well as to distributed
and shared memory parallelism. Furthermore, it might be interesting to perform an
analysis of the p-coarse level operator defined on the space of continuous, element-wise
bilinear functions. The operator might be related to a Nitsche type discretisation. In
the context of extreme viscosity contrast problems (∆η > 106), one might want to
analyse for which substeps and constituents of the considered preconditioned Krylov
methods high precision is required.
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