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Abstract. This paper formalizes a family of prioritized multicriteria optimization problems and
assesses the corresponding up-to-date known suboptimal solutions. The resulting framework is then
employed to characterize and search for Boolean functions which are valuable for a robust symmet-
ric (mainly block) cipher design. The proposed optimality definitions generalize the lexicographic
method by establishing an ordered sequence of multiobjective combinatorial optimization problems,
which, in turn, gathers the relative relevance of the criteria, so that the optimal solutions can be
obtained from a sequential application of the Pareto efficiency. The relationship among the different
formulable problems is characterized in terms of both their respective solutions sets and computing
costs. Since, in practice, only a limited set of functions can be evaluated (i.e., are known), the best
known Pareto efficient functions are also defined. Finally, this framework is employed to obtain new
functions having known (Pareto) maximal robustness against linear, differential, randomness-based,
interpolation, algebraic and correlation attacks.
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1. Introduction. In recent decades, multicriteria optimization (also known as
multiobjective optimization or, in a more general setting, vector optimization) has
become an expansive and mature field of research [9, 21, 28, 32]. When operating
in such a vast arena, different subfields can be considered depending on the mathe-
matical structures in both the search and criteria sets and the analytical properties
of the criteria (or cost) functions. In this framework, multiobjective combinatorial
optimization (MOCO) addresses those problems wherein the search set is discrete,
usually finite but huge, such that an exhaustive search is not computationally viable.

The solution of a multiobjective problem is executed through the following two
stages: the proper determination of the optimal solutions set and the multicriteria
decision-making among the existing solutions, where preferences among the criteria
play an important role. Accordingly, the most established classification of multiob-
jective techniques relies on the different manners of articulation of such preferences
between those two stages: a priori (make decisions before searching), a posteriori
(search before making decisions), and progressive (integrating search and decision
[21]). In this context, the definition of user preferences among criteria and its appli-
cation to the efficient design of evolutionary algorithms has been extensively addressed
[8, 7, 23, 22, 25, 26, 30, 46, 53].
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Due to the limitations in terms of the analytical treatment of the criteria func-
tions in MOCO problems, the expected structure of the Pareto front set cannot be
easily characterized. Taking that into consideration, the determination of the optimal
solutions is a bigger challenge than the posterior decision-making; hence, an a priori
articulation of preferences seems to be the most suitable approach. Among the several
existing techniques, the lexicographic method can be considered as a basic reference
due to its conceptual and computational simplicity, although generalizations of such
method and more sophisticated methods are frequently employed in practice [6]. Here,
one such generalization of the lexicographic method is formalized to help define and
compare sets of solutions and computational costs.

MOCO techniques are being applied to the existing design of Boolean functions
with good ciphering properties, as the fundamental components of the S-boxes em-
ployed in robust cipher design [44, 45]. These properties are characterized via several
relevant criteria from the cryptographic perspective [43], usually posing a trade-off
between them [19, 36, 11, 54, 51, 16], so that the resultant design of robust Boolean
functions looks for a compromise among these criteria [17, 20, 33, 41, 24, 18, 1, 10,
34, 48, 47, 50, 35, 14, 38, 4, 49, 52]. The systematic selection of such criteria (not to
mention the determination of their relative relevance) is an open issue in the existing
literature on the subject matter. For instance, [38, 49] address only nonlinearity, [34]
focuses on balancedness and autocorrelation (although nonlinearity, algebraic degree
and algebraic immunity are also considered), [35] considers nonlinearity, balancedness,
and autocorrelation (interestingly, they also look at resiliency and propagation as sec-
ondary criteria), while [19, 36, 18] address balancedness, nonlinearity, autocorrelation,
and algebraic degree. Recently, in the context of stream ciphers, [52, 14, 54, 51, 16]
take into account balancedness, nonlinearity, algebraic degree, algebraic immunity,
and immunity to fast algebraic attacks; [14, 54] focus on optimizing balancedness and
algebraic immunity, [51] optimizes algebraic immunity and algebraic degree, whereas
[16] additionally keeps track of correlation immunity order. In brief, very different
optimization problems keep getting addressed, depending on the cipher specific ap-
plication and the expected types of attacks.

The first part of this paper formalizes a family of prioritized MOCO problems [28]
that depend on the selected criteria and their assigned relative relevance. The set
of potentially formulable problems is partially ordered, its elements being compar-
atively characterized with regard to their corresponding solution sets and computa-
tional costs. The solution functions of each MOCO problem are defined as optimal
(or efficient) in the Pareto sense. Since the determination of the whole Pareto efficient
(PE) set is computationally unfeasible for many of the typically employed values of
n (e.g., n ≥ 8), a practical objective is to find those solutions that are PE within
the set of known (analyzed) up-to-date functions. These are called best known Pareto
efficient (BKPE) functions.

Based on the previous characterization, the second part of the paper addresses
the determination of optimal Boolean functions for robust block cipher design. The
selected relevant criteria are balancedness, nonlinearity, algebraic degree, algebraic
immunity, absolute indicator, and sum-of-squares indicator, as well as two secondary
ones, which are correlation immunity order and propagation criterion degree. The
search for BKPE functions employs the vector Boolean function (VBF) library devel-
oped in [3, 5] to characterize VBFs from a cryptographic perspective. Several opti-
mization computational techniques have been developed and integrated with VBF to
address MOCO problems for the design of Boolean functions with 8, 9, and 11 input
variables, leading to new BKPE Boolean functions.
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The paper is organized as follows. In section 2, the MOCO formulation is pre-
sented, the significance of removing or including new criteria is analyzed, and the
implications of defining preferences among the criteria are also characterized. BKPE
functions for any given MOCO problem are defined in section 3. The Pareto optimal-
ity of Boolean functions with respect to (wrt) the criteria relevant for cipher design
is presented in section 4, where the fundamental concepts are also illustrated with a
simple example. The proposed search schemes for solving Pareto optimality problems
and the obtained BKPE functions are presented in section 5. Finally, conclusions are
summarized in section 6.

2. Problem formulation. Since the construction of Boolean functions for ci-
pher design must satisfy several performance criteria, it can be formalized via a multi-
objective optimization problem [28]. We begin by formulating the classical basic
problem that does not consider preferences among the criteria.

2.1. Multiobjective optimization. Let f ∈ Fn be the set of n-input variable
Boolean functions, let C = {C1, . . . , CK} be a set of criteria (whose order is not
relevant a priori for solving the problem), and let C(f) = (C1(f), . . . , CK(f)) be the
vector of the criteria that have been ordered for the ease of notation, applied on f , so
that each

Ck : Fn → R, k = 1, . . . ,K,(1)

represents a measure of the goodness of f wrt criterion k (we keep a general formu-
lation, although, usually, Ck(f) ∈ Z ⊂ R).

The fact that all the criteria of C(f) need to be taken into account for determining
the goodness of a given function makes the problem a multiobjective one as well.
Moreover, since the set of n-variable Boolean functions Fn is a finite set, the search
within Fn is framed as a combinatorial optimization problem. Hence, we can formulate
the problem as obtaining

En = arg max
f∈Fn

C(f),(2)

where the multiobjective maximality will be grounded on the concepts of (weak)
dominance and (strict) Pareto efficiency [28].1

Definition 2.1. Let f, g ∈ Fn; if C(g) = C(f) (i.e., Ck(g) ≥ Ck(f), k =
1, . . . ,K), then we say that C(g) weakly dominates C(f), and g weakly dominates f .

Note that although dominance is defined in the criterion space, the domination
relationship can also be transferred to be able to relate the corresponding elements
in the decision space [28]; from now on, this definition form will be employed in this
paper.

Definition 2.2. If C(g) ≥ C(f) (i.e., C(g) = C(f) and C(g) 6= C(f)), then we
say that g dominates f .

Note that if g dominates f , then g is preferred over f .

Definition 2.3. f ∈ Fn is PE if @ g ∈ Fn, such that g dominates f .

1The concepts of strong dominance, weak Pareto efficiency [28], and proper efficiency [31] (the
last one always being satisfied in combinatorial optimization) do not have relevant applicability in
this paper.
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Definition 2.4. f ∈ Fn is strict Pareto efficient (SPE) if @ g ∈ Fn (g 6= f) such
that g weakly dominates f .

If f is PE, then we will call vector C(f) a nondominated profile. The set of all PE
functions f is called the efficient set, En ⊆ Fn; since Fn is finite and the dominance
relationship defines a partial ordering under which only dominated functions are dis-
carded, then it is always En 6= ∅. The set of profiles of all nondominated functions is
called the nondominated profiles set, Nn = C(En) ⊂ RK . Note that different elements
f1 6= f2 ∈ En may satisfy C(f1) = C(f2) = Cd for some d ∈ {1, . . . , D}. Accordingly,
since Nn = {C1, . . . ,CD} is a finite set, we can partition En = E1

nt· · ·tEd
nt· · ·tED

n ,
where each

Ed
n = {f ∈ En : C(f) = Cd}, d = 1, . . . , D,(3)

is called a same profile efficient set. When |Ed
n| = 1 (i.e., the set has only one element),

it contains a single SPE function. On the other hand, when |Ed
n| > 1, it contains some

f1 6= f2 such that {f1, f2} ⊂ Ed
n, meaning that they are PE but not SPE. This allows

one to define En = Eo
n t Et

n, so that Eo
n = ∪dEd

n, for those Ed
n satisfying |Ed

n| = 1, and
Et

n = ∪dEd
n, for those Ed

n satisfying |Ed
n| > 1. We call Eo

n the optimal set (composed
of SPE functions) and Et

n the ties set (composed of PE but not SPE functions).
Ideally, our final aim would be to determine set Nn and its subsets Ed

n, d =
1, . . . D, that correspond to the optimal and ties sets.

2.2. Significance of removing or adding new criteria. As to be illustrated
in section 4, many practical design problems may not have a unique clear-cut state-
ment of the criteria set C to be considered when defining problem (2); obviously, the
selection of C determines the corresponding solution set En. We begin by illustrating
the manner in which the PE property depends on the exclusion of criteria or the
inclusion of new ones (by considering subsets or supersets of C).

Lemma 2.5. Let C, C′, and C′′ be three criteria sets, such that C′ ( C ( C′′.
1. If f1 is SPE wrt C, then it is SPE wrt C′′, but it may or may not be PE wrt
C′.

2. If f2 is PE (but not SPE) wrt C, then f2 may or may not be PE wrt C′ and
C′′. Let us call its corresponding same profile efficient set Ed

n = {f ∈ En :
C(f) = C(f2) = Cd} ⊂ Et

n; then
(a) ∃f ′2 ∈ Ed

n, which is also PE wrt C′′ \ C when restricted to Ed
n, and this f ′2

will be PE wrt C′′ in the whole Fn;
(b) if such f ′2 is also SPE wrt C′′ \ C when restricted to Ed

n, it will be SPE
wrt C′′ in the whole Fn.

3. If f3 is not PE wrt C, then f3 may or may not be PE wrt C′ and C′′.
Proof. Respectively, the following apply:
1. If f1 is not SPE in Fn wrt C′′, then ∃f2 6= f1 ∈ Fn, which weakly dominates
f1 wrt C′′ ⊃ C, implying that f2 weakly dominates f1 wrt C, which leads to
a contradiction.
On the other hand, there may exist f2 6= f1 ∈ Fn, which weakly dominates
f1 wrt C′ ⊂ C; however, f2 does not weakly dominate f1 wrt C.

2. Let us consider Ed
n, the same profile efficient set of f2 where all functions are

PE wrt C.
(a) Since problems of type (2) always produce nonempty solution, ∃f ′2 ∈ Ed

n

that is PE wrt C′′\C in Ed
n. If f ′2 is not PE in Fn wrt C′′, then ∃f ′′2 ∈ Fn,

which strictly dominates f ′2 wrt C′′. Since f ′2 is not strictly dominated
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wrt C, f ′′2 must only weakly dominate f ′2 in C (i.e., it must belong to
the Ed

n set of f2) and must strictly dominate f ′2 wrt C′′ \ C, leading to a
contradiction.

(b) Let us now consider that f ′2 is SPE wrt C′′ \ C in Ed
n. If f ′2 is not SPE

in Fn wrt C′′, then ∃f ′′2 ∈ Fn, which dominates f ′2 wrt C′′. Then f ′′2
dominates f ′2 wrt C′′ \ C, leading to a contradiction.

Finally, since the initial f2 may or may not be equal to f ′2, we conclude that
f2 may or may not be PE wrt C′′.

3. Functions initially discarded as not being PE wrt C (such as f3) may be SPE
wrt C′′ \ C, becoming SPE (and hence, PE) wrt C′′. Finally, f3 might have
been (nonstrict) PE wrt C′ (i.e., tied with another function), such that the
additional criteria considered in C would have broken the tie against it.

Note that Lemma 2.5.3 can be concluded from Lemma 2.5.2, but it has been
included as an additional statement for the sake of completeness. Lemma 2.5.2 states
a refinement of an obvious weaker result: if f is both PE wrt C1 and (S)PE wrt C2 in
the whole Fn, then it will be (S)PE wrt C1 ∪ C2 in Fn.

The properties demonstrated in Lemma 2.5 will be the basis for analyzing the va-
riety of problems that are posed in section 2.3, encountered when considering different
types of preferences among the criteria.

2.3. Preferences or priorities among criteria. Problem (2) does not con-
sider any preference (i.e., relative relevance or priority) among the criteria Ck. In the
case that some criteria are more important than others, such additional information
can be incorporated into the problem, leading to a new formulation, sometimes a
computationally simpler one. In fact, the study of preferences among criteria can be
seen from two different perspectives. In some cases, it reflects a refinement in the
formulation of the problem that needs to be solved; in other cases, it may help to
simplify the formulation while guaranteeing the derivation of some solutions of the
original problem.

Here, we propose to characterize preferences among criteria by splitting the cri-
teria set into a sequence of disjoint subsets

C = C1 t · · · t Cj t · · · t CL, L ≤ K,(4)

ordered by preference. Then, a new optimization problem can be defined, where only
C1 = {C11, . . . , C1l1} is initially considered (with corresponding criteria vector C1(f));
once this initial subproblem is solved, then C2 = {C21, . . . , C2l2} is considered (with
corresponding criteria vector C2(f)), but only for choosing among the elements of
the ties set obtained in the previous stage and so forth. This formulation generalizes
the well-known lexicographic ordering [28], and it has been recently employed to
computationally address some search problems in continuous spaces [6]. Overall, this
optimization problem can be formulated, in a recurrent manner, as obtaining

En = Eo
n,1 t Eo

n,2 t · · · t Eo
n,L−1 t Eo

n,L t Et
n,L,(5)

where

Et
n,0 = Fn,(6)

En,j = Eo
n,j t Et

n,j = arg max
f∈Et

n,j−1

Cj(f), j = 1, . . . , L,(7)

and where each Eo
n,j , j ≥ 1, represents the optimal set of SPE elements obtained

at stage j, and each Et
n,j , j ≥ 1, represents the ties set of (nonstrict) PE elements



GENERALIZED MULTIOBJECTIVE OPTIMIZATION 2187

obtained at this stage. Finally, En would be the corresponding solution set. Note that
the elements of Eo

n,j obtained in step j, according to Lemma 2.5.1, will always remain
SPE when considering larger criteria sets, so that they can be preserved without
considering them in the following steps. On the other hand, elements of Et

n,j belong
to the ties set, and hence (based on Lemma 2.5.2) we perform a search within them
to obtain functions with are PE wrt Cj+1 (hence, PE wrt C1t . . .tCj+1 in Fn) and so
on. Note that if Et

n,j = ∅ (i.e., all obtained functions are SPE and there are no more
ties), the iterative procedure can be stopped since Eo

n,j′ = Et
n,j′ = ∅ ∀j′ > j.

In this context, we redefine the profile P (f) of a Boolean function to also reflect
the criteria priorities as

P (f) = (n|C11(f), . . . , C1l1(f)| . . . |CL1(f), . . . , CLlL(f)),(8)

where the vertical bar “|” separates the different sets of criteria C1, . . . , CL, classified by
priority. Once the optimal Pareto set is obtained wrt Cj , the corresponding nonstrict
PE set is “piped” to become the whole search space where a new multi-objective
optimization process is applied, based on the set of criteria Cj+1, and so forth. Note
that the value of n can be interpreted as a most preeminent criterion implicitly satisfied
(since we restrict the search within Fn); one might formally name this criterion C0(f),
although it will not be explicitly stated in our exposition, and, whenever obvious, this
information will be removed from the profile (e.g., in the tables shown in section 5).
Note that the profile provides information on both the type of problem addressed (in
this case, problem (5)) and the values associated with such function f .

Given an ordered set C = (C1, . . . , CK) of K criteria, there are 2K−1 different ways
to split it into disjoint subsets in the form of (4), preserving the order, so that each
splitting defines a corresponding different optimization problem (5). Each splitting
of C can be represented either by the collection of subsets (4) or, equivalently, as
following the profile notation (8), by a set of (at most K − 1) vertical bars between
the ordered elements of C. If the presence of a bar between two criteria is coded as
“1,” when there is the absence as “0,” all possible splittings can be labeled with the
number corresponding to this form of binary representation (no bars would correspond
to 0 and all the bars to 2K−1 − 1).

Let SC = {s0, . . . , s2K−1−1} be the set of all 2K−1 possible ways to split C (re-
member that this set includes the special case s0 ∈ SC of no splitting of C). Whenever
suitable, we will use notation si to denote both the splitting (4) and the correspond-
ing problem (5), whose associated solution set will be denoted E(si) as well. One can
define the relationship “�” (“finer than”) between some of the elements of SC .

Definition 2.6. Let si1 , si2 ∈ SC be two splittings of C. si2 � si1 (si2 is finer
than si1) if it can be obtained from si1 by splitting some subset(s) characterizing si1

(i.e., by adding some vertical bar(s) to its profile).

The relationship � defines a partial order in SC . Note that if si1 is defined by
(4), and, for instance, if C1 is split into C1 = C11 t C12 to define si2 � si1 , then from
Lemma 2.5.1, it is clear that there may exist elements of En(si1) that do not belong to
En(si2), since a function may be PE wrt C1 while being fully dominated wrt C11 ( C1.

The following lemma illustrates the relationship between the solutions of ordered
problems.

Lemma 2.7. If si2 � si1 then En(si2) ⊆ En(si1).

Proof. Given any pair si1 ≺ si2 , we can find a sequence {si1 , si′1
, . . . , si′m , si2} so

that si1 ≺ si′1
≺ · · · ≺ si′m

≺ si2 , wherein each next element is obtained by applying a
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single splitting to the previous one. Then, it suffices to prove that Lemma 2.7 applies
to consecutive elements, differing by only one splitting since, by recursively applying
the reasoning, we can conclude that the lemma applies to any pair si1 ≺ si2 .

Hence, without loss of generality, let s11 correspond to partition C = C1 t . . . t
Cj t . . . t CL and si2 correspond to C = C1 t · · · t Cj−1 t Cj1 t Cj2 t Cj+1 t . . . t CL.
Let En(s11) = Eo

n,1(si1) t · · · t Eo
n,j(si1) t · · · t Eo

n,L−1(si1) t Eo
n,L(si1) t Et

n,L(si1),
and En(si2) = Eo

n,1(si2)t · · · tEo
n,j1

(si2)tEo
n,j2

(si2)t · · · tEo
n,L−1(si2)tEo

n,L(si2)t
Et

n,L(si2). Since both splittings are the same until stage j − 1, so is the search for
si1 and si2 , meaning that Eo

n,j′(si2) = Eo
n,j′(si1)∀j′ ≤ j − 1; then it suffices to prove

that Eo
n,j1

(si2) ∪ Eo
n,j2

(si2) ⊂ Eo
n,j(si1) and Et

n,j2
(si2) ⊂ Et

n,j(si1). Since Eo
n,j1

(si2)
contains SPE functions wrt Cj1 , they are also SPE wrt Cj (Lemma 2.5.1) and, hence,
belong to Eo

n,j(si1).
Let us now consider Et

n,j1
(si2), whose elements are PE wrt Cj1 . The algorithm per-

forms the next search step in Et
n,j1

(si2) by considering Cj2 . Following Lemma 2.5.2(b),
the resulting set satisfies Eo

n,j2
(si2) ⊆ Eo

n,j(si1), and following Lemma 2.5.2(a), we get
Et

n,j2
(si2) ⊆ Et

n,j(si1). Then, since the following criteria Cj+1 t · · · t CL are the same
for si1 and si2 , we recursively obtain Eo

n,j′(si2) ⊆ Eo
n,j′(si1), j′ = j + 1, . . . , L, and

Et
n,L(si2) ⊆ Et

n,L(si1).

On the other hand, if we call T (s) the computational (time) cost of determining
the solution set En(s) of a problem s, then we have the following.

Lemma 2.8. If si2 � si1 , then T (si2) ≤ T (si1).

Proof. Following the same reasoning applied in the previous proof of Lemma
2.7, if suffices to prove that Lemma 2.8 applies to elements differing in only one
splitting since, by recursively applying the reasoning, we would conclude that the
lemma applies to any pair si1 ≺ si2 . Hence, without loss of generality, we consider
that s11 corresponds to partition C = C1 t · · · t Cj t · · · t CL, and si2 corresponds to
C = C1 t · · · t Cj−1 t Cj1 t Cj2 t Cj+1 t · · · t CL.

Let us call T (Cij) the computational (time) cost of evaluating criterion Cij . The
cost of determining the solution set En(si1) involves, at each stage j′, the computation
of the corresponding criteria for each function (with cost |Et

n,j′−1(s)| ·
∑lj′

l=1 T (Cj′l))
and the ordering (at least partial) of the corresponding search set of functions E(s)
(with cost lj′ · |Et

n,j′−1(s)| · O(log(|Et
n,j′−1(s)|))). Hence,

T (si1) =
L∑

j′=1

|Et
n,j′−1(si1)| ·

 lj′∑
l=1

T (Cj′,l) + lj′ · O(log(|Et
n,j′−1(si1)|))

(9)

=
L∑

j′=1
j′ 6=j

|Et
n,j′−1(si1)| ·

 lj′∑
l=1

T (Cj′,l) + lj′ · O(log(|Et
n,j′−1(si1)|)



+ |Et
n,j−1(si1)| ·

 lj∑
l=1

T (Cj,l) + lj · O(log(|Et
n,j−1(si1)|))


=

L∑
j′=1
j′ 6=j

|Et
n,j′−1(si1)| ·

 lj′∑
l=1

T (Cj′,l) + lj′ · O(log(|Et
n,j′−1|))


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+ |Et
n,j−1(si1)| ·

 lj1∑
l=1

T (Cj1,l) + lj1 · O(log(|Et
n,j−1(si1)|))

+
lj2∑
l=1

T (Cj2,l) + lj2 · O(log(|Et
n,j−1(si1)|))


=

L∑
j=1
j′ 6=j

|Et
n,j′−1(si1)| ·

 lj′∑
l=1

T (Cj′,l) + lj′ · O(log(|Et
n,j′−1(si1)|))



+ |Et
n,j−1(si1)| ·

 lj1∑
l=1

T (Cj1,l) + lj1 · O(log(|Et
n,j−1(si1)|))


+ |Et

n,j−1(si1)| ·

 lj2∑
l=1

T (Cj2,l) + lj2 · O(log(|Et
n,j−1(si1)|))


≥

L∑
j=1
j′ 6=j

|Et
n,j′−1(si2)| ·

 lj′∑
l=1

T (Cj′,l) + lj′ · O(log(|Et
n,j′−1(si2)|))



+ |Et
n,j−1(si2)| ·

 lj1∑
l=1

T (Cj1,l) + lj1 · O(log(|Et
n,j−1(si2)|))


+ |Et

n,j1(si2)| ·

 lj2∑
l=1

T (Cj2,l) + lj2 · O
(
log(|Et

n,j1(si2)|)
)

= T (si2).

Note that we have denoted Et
n,j2

(si2) = Et
n,j(si2) to simplify the notation. The

inequality is based on the following facts: lj = lj1 + lj2 ; |Et
n,j′−1(si1)| = |Et

n,j′−1(si2)|
∀j′ ∈ {1, . . . , j}; |Et

n,j−1(si1)| ≥ |Et
n,j1

(si2)|; and |Et
n,j′−1(si1)| ≥ |Et

n,j′−1(si2)|∀j′ ∈
{j+1, . . . L}; all of these are directly derived from the inclusion relationships obtained
in the (previous) proof of Lemma 2.7.

Hence, if we are interested in solving problem si1 , the following trade-off is posed:
to address a finer (and, hence, computationally simpler) problem si2 at the cost
of obtaining only a subset of the initially desired set of solutions. Alternatively, if
problem si1 has been initially solved, the solution of si2 is easily computable by just
solving its corresponding problem (5), with the search restricted to Et

n,0(si2) = En(si1)
instead of the whole Fn.

In the following section, we illustrate some special cases of interest.

2.3.1. From problem (2) to the sequence of single priorities (lexico-
graphic order). The splitting refinement contains two extremes. On the one hand,
problem s0 corresponding to no splitting (i.e., no vertical bar in the profile), which is
precisely what problem (2) entails, and on the other hand, problem s2K−1−1, where
each Ck, k = 1, . . . ,K, follows a strict order of preference, the profile taking the form
(n|C1| . . . |CK). Note that s2K−1−1 corresponds to the above-mentioned optimality
problem based on the lexicographic order.
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Then, since any splitting si ∈ SC satisfies s2K−1−1 � si � s0 (i.e., si is finer than
or equal to the null splitting of C and coarser than or equal to its full splitting), we
have the following.

Corollary 2.9. Let En(s0) be the solution set of problem (2), let En(s2K−1−1) be
the solution set of the lexicographic optimality problem, and let En(si) be the solution
set of any problem of the form (5). Then, En(s2K−1−1) ⊆ En(si) ⊆ En(s0) and
T (s2K−1−1) ≤ T (si) ≤ T (s0).

2.3.2. Prioritizing only one criterion. In the case that some subset Cj of
(4) gathers only one criterion, the corresponding En,j will be either En,j = Eo

n,j

(when |En,j | = 1, hence finishing the search procedure) or En,j = Et
n,j . A simple

and relevant case gets defined when C1 = {C1}, meaning that C1 is the single most
relevant criterion, so that we are only interested in functions reaching the value cmax

1 =
maxf∈Fn C1(f). This will be the case when only either the bent functions or the
balanced functions are considered. The corresponding problem (5) boils down to a
search restricted within the subset En,1 = {f ∈ Fn : C1(f) = cmax

1 }; if |En,1| > 1,
the remaining criteria (with the established priority) are considered for optimization
in the following stages, so that the corresponding profile for the searched functions
would be (n|cmax

1 |C2(f), . . . , CK(f)).
This framework relates to the so-called ε-constraint methods [28], where restric-

tions of the type Ck(x) ≤ εk are imposed to guide the search. If εk = Cmax
k was

selected, then Ck(x) ≤ εk would be equivalent to imposing Ck(x) = Cmax
k . Note that

although ε-restriction methods could serve to approximate the (fully) restricted search
performed in the second and the following steps of the problem (5) formulation, their
efficiency depends highly on the a priori appropriate selection of the ε values.

The following case corresponds to a formulation alternative to (5), which, in turn,
leads to scalar optimization problems.

2.3.3. Scalarizations. The weighted sum method. Scalarization methods
[29] provide an alternative way to simplify the search, although they are more rele-
vant in a continuous search setting than in a combinatorial one. Among them, the
weighted sum method (WSM) [28, 55] can be interpreted as having defined a (soft)
relative relevance among the criteria. It assigns different “weights” to each criterion,
so that solutions of (2) can be searched by addressing an associated simpler scalar
optimization problem:

max
f∈Fn

K∑
i=1

wi · Ci(f), w ≥ 0.(10)

Obviously, the ordering induced in Fn by this scalarization (and, hence, the corre-
sponding solutions of (10)) depend on the assigned weights wi, i = 1, . . . ,K, and the
shape of the PE set of (2) [28, 55]. Unique solutions (optima) of (10) are also SPE
solutions of problem (2), whereas for w > 0, any solution (unique or not) of (10) is
also a PE solution of (2). Note that the WSM can be applied at each stage of problem
(5) [6]. For instance, the set of solutions of (10) with wi > 0 for i = 1, . . . l1 (set of
weights associated with criteria set C1) and wi = 0 for i = l1 + 1, . . . ,K (rest of the
criteria) would be a subset of En,1 in (5), and it would be composed by the union of
same profile efficient sets.

Furthermore, the WSM could also be used to define problems that establish soft
priorities among the criteria, whose solutions would approximate solutions of the
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whole problem (5) at a stroke. For instance, a set of weights satisfying wi > O(1) for
i = 1, . . . l1 (weights associated with criteria set C1), wi > O(ε) for i = l1 +1, . . . l1 + l2
(weights associated with criteria set C2), wi > O(ε2) for i = l1 + l2 + 1, . . . l1 + l2 +L3
(weights associated with criteria set C3), and so on, for ε� 1, defines a WSM problem
whose solutions are expected to be close to the solutions of (5).

Simulations have shown both the sensitivity of the WSM method wrt the selected
weights values and its limited efficiency when it comes to finding solutions when
addressing combinatorial problems (such as Boolean function design) due to the con-
fined applicability of topological properties and the computational requirements in
this scenario.

The efficiency and theoretical results corresponding to the above-mentioned meth-
ods suffer from serious limitations when dealing with highly computationally demand-
ing practical scenarios where only a partial search can be performed, as is the case with
the Boolean function design problem. The next section formalizes how to interpret
any search result obtained in this context.

3. Best known Pareto efficient Boolean functions. Let us consider problem
(5) without loss of generality. For practical values of n, the size of Fn is too large,
so that the determination of PE functions (elements of En) becomes computationally
unfeasible. In practice, the profile P (f) will be known only for a subset of known
functions (i.e., functions whose criteria values are known), which we denote as follows.

Definition 3.1. Kn = {f ∈ Fn : P (f) is known}.
We can now define the BKPE set.

Definition 3.2. Bn = {f ∈ Kn : @g ∈ Kn such that g dominates f}.
The elements of Bn are the BKPE functions. In general, if f ∈ Bn, we cannot

guarantee f ∈ En, until Kn = Fn (unless it can be supported by some theoretical
results). Accordingly, elements of f ∈ Bn may or may not be PE. Conversely, we can
guarantee that f ∈ Kn ∩ En implies f ∈ Bn, meaning that all known functions that
happen to be PE (even if at this stage we do not have a guarantee of them being PE)
will be BKPE. In Figure 1, we illustrate the evolution of Bn as Kn increases: time
index t symbolically indicates successive research steps, so that K t

n ( K t+1
n , meaning

that the number of known functions increases with time.
Note that Bt

n can be considered as an approximation of En, in the sense that, as
K t

n increases toward Fn, Bt
n tends to En (dashed lines approach the boundary of En

and eventually limt→∞ Bt
n = En ⊂ limt→∞ K t

n = Fn).
From now on, this paper addresses the practical problem of improving the sets

Bt
n (i.e., increasing t) to approximate En, the solution set of the corresponding prob-

lem (5).

4. Application in S-box design. Block ciphers can suffer mainly linear, dif-
ferential, randomness-based, interpolation, algebraic, and correlation attacks; hence,
Boolean functions for S-box design in block ciphers are required to be as balanced as
possible,2 to achieve high nonlinearity, high algebraic degree, high algebraic immunity,
and low autocorrelation (both absolute3 and sum-of-squares indicators).

2Although only strictly balanced functions are used for ciphers design in practice, this condition
has been initially relaxed in order to illustrate the generality of the problem formulation. Balanced-
ness is imposed in the next section.

3The linearity distance property is not explicitly considered in this paper, since it can be di-
rectly derived from the absolute indicator, which is more frequently employed in the literature and
characterizes the same Boolean function property.
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Fn

En

K t
n

K t+1
n

Bt
n

Bt+1
n

f1•f2•f3•

f4 •

f5•

Fig. 1. Relationship between En, Kn, and Bn at different stages of knowledge. f1, f2, f3 ∈ Bt
n

(i.e., they are BKPE), when K t
n is the set of known functions. Note that, since f3 ∈ En (i.e., it is PE,

although we may not be aware of that), additional knowledge will not discard it (f3 ∈ Bt+k
n ∀k > 0).

On the other hand, when the set of known functions increases to K t+1
n , f1 6∈ Bt+1

n (i.e., it is not
BKPE anymore) and f2, f3, f4, f5 ∈ Bt+1

n , meaning that two new solutions show up: f4, which
eventually will be discarded (together with f2) as the set of known functions keeps increasing, and
f5, which is PE (together with f3).

Furthermore, two common additional criteria in cryptoanalysis, but not so rel-
evant for block cipher design, are the correlation immunity order (t-CI) and the
propagation criterion degree (PC(m)). These criteria will be considered with less
priority, only for tie-breaking purposes, and their notation will be simplified to CI
and PC, respectively.

Therefore, we initially define C = C1tC2, where C1 = {C1, . . . , C6} = {-I,NL, deg,
AI, -ACmax, -σ} and C2 = {C7, C8} = {CI, PC}. Accordingly, the profile P (f) is

P (f) = (n|-I,NL, deg,AI, -ACmax, -σ|CI, PC),(11)

where I stands for the imbalance, NL the nonlinearity, deg the algebraic degree, AI

the algebraic immunity, ACmax the absolute indicator, σ the sum-of-squares indicator,
CI the correlation immunity order, and PC the propagation criterion degree. When
the value of n is obvious from the context, it will be removed from the profile. Note
that criteria NL, deg,AI, CI, and PC are to be maximized, whereas I, ACmax, and
σ are to be minimized (hence, their minus sign in the profile).

As explained above, the selected order for enumerating the profile criteria within
each Ci, i = 1, 2, does not indicate any formal priority; nevertheless, in (11) such
enumeration has been ordered according to the most common relative importance
given to the criteria in the existing literature. Any relative importance of this kind
could be formalized by accordingly splitting the corresponding Ci, i = 1, 2, into smaller
subsets, so that a new (finer) problem would be posed. (Remember that, according
to Lemma 2.7, the solution set of the new problem would be a subset of the solution
set of the original problem.)

4.1. Further priority requirements. Frequently, [27, 42, 39, 15, 40, 37, 14] the
balancedness criterion is considered preeminent and is required to reach the optimal
value (I = 0) corresponding to balanced functions, so that we enter the framework
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analyzed in section 2.3.2. Hence, the problem is redefined via C = C1 t C2 t C3, so
that the new profile P (f) becomes

P (f) = (n|0|NL, deg,AI, -ACmax, -σ|CI, PC).(12)

On the other hand, some authors have considered NL to be preeminent [12, 13,
35, 38, 49] (postponing balancedness). In the following example, we will illustrate
results for both the approaches.

4.2. Basic example for n = 4. For n = 4, it is computationally viable to carry
out an exhaustive analysis of F4 (composed by 224

functions). If problems defined
by profile (4|-I| . . .) are considered, the first stage solution set E4,1 (which we will
call E4,1(-I)) contains 12870 balanced functions (I = 0 is attained); obviously none
of them is SPE (i.e., Eo

4,1(-I) = ∅ and E4,1(-I) = Et
4,1(-I)). On the other hand if

we define problems prioritizing nonlinearity (i.e., C1 = {NL} being the profiles of the
form (4|NL| . . .), the corresponding first stage solution set E4,1 (redenoted now as
E4,1(NL)) contains 896 bent functions (i.e., those which attain the maximum nonlin-
earity, NL = 6, that can be attained); again none of them is SPE (i.e., Eo

4,1(NL) = ∅
and E4,1(NL) = Et

4,1(NL)). Note that E4,1(-I) ∩ E4,1(NL) = ∅ since, as is well
known, there is no function that is both balanced and bent.

Let us now consider a respective second stage in each of the two types of problems
considered above. The problem represented by profile (4|-I|NL), has a solution set
E4,2 (which we may call E4,2(-I|NL)), composed of 10920 balanced functions (1950
dominated ones have been neglected in the second stage when breaking the ties with
criterion NL) whose profile is (4|0|4). Equivalently, the problem represented by profile
(4|NL|-I) has a solution set (now called E4,2(NL|-I)) composed of the same 896 bent
functions (no tie is broken in the second stage with criterion -I), whose profile is
(4|6| − 2).

Alternatively, if we define a problem that equally prioritizes both balancedness
and nonlinearity (i.e., C1 = {-I,NL}, with profile (4|-I,NL)), the solution set E4,1
(-I,NL) has 20776 functions. From Lemma 2.7, we know that 10920 of them are
balanced with profile (4|0, 4), and 896 are bent with profile (4|−2, 6), since all elements
of E4,2(NL|-I) and E4,2(-I|NL) are in E4,1(-I,NL) (i.e., they are also PE in this new
problem), whereas there are 8960 PE functions that are neither balanced nor bent,
with profile (4|−1, 5). Further selection could be performed by considering successive
new criteria on these sets of PE functions.

Finally, if we solve the optimization problem corresponding to profile (11) via
the procedure indicated in (5), the solution set E4,1 (result of first stage, solving
wrt the C1 = {-I,NL, deg,AI, -ACmax, -σ}) is composed of 19936 functions, where
there is no SPE function (i.e., Eo

4,1 = ∅ and E4,1 = Et
4,1), and whose corresponding

nondominated set is N4 = {(4| − 2, 6, 2, 2, 0,−256|∗, ∗),(4| − 1, 5, 4, 2,−4,−496|∗, ∗),
(4|0, 4, 3, 2,−8,−640|∗, ∗)} whose elements are associated with 896, 8960, and 10080
functions, respectively (note that E4,1(-I,NL, deg,AI, -ACmax, -σ) ⊂ E4,1(-I,NL)
from which 840 balanced functions have been now discarded). The symbol ∗ indicates
that, at this stage, we do not care about criteria in C2.

When considering the two additional criteria in C2 (correlation immunity and
propagation criterion), ties are broken only in the set of balanced functions. The re-
sulting nondominated set is N ′4 = {(4|−2, 6, 2, 2, 0,−256|0, 4), (4|−1, 5, 4, 2,−4,−496|
0, 0), (4|0, 4, 3, 2,−8,−640|0, 1)}, whose elements are associated with 896, 8960, and
1056 functions, respectively. Note that the second stage optimization has led to a
much reduced (sub)set of optimal balanced functions.
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Table 1
BKPE results for I = 0, wrt (NL, deg,ACmax) upon [36].

n = 8 n = 9 n = 10 n = 11

Kavut and Yücel
[36]

(116, 7,−24) (238, 8,−40) (486, 9,−56) (984, 10,−80)
(114, 7,−16) (234, 8,−32)

(236, 8,−32)

Clark et al.
[17], [19], [20]

(116, 7,−24) (238, 8,−40) (486, 9,−72) (984, 9,−96)
(112, 5,−16) (484, 9,−56) (982, 10,−88)

5. Search schemes and results.

5.1. History of some BKPE functions for n = 8, 9, 11. Although the for-
mal definition of BKPE is new to the best of our knowledge, such functions have
been (implicitly) searched upon by many authors. Kavut and Yücel in [36] addressed
the determination of balanced Boolean functions that have good properties wrt the
following criteria: high nonlinearity, low autocorrelation, and high algebraic degree.
They presented some balanced 8-and 9-variable functions that were the best-known
ones in the computer search literature (i.e., they were BKPE according to our defini-
tion). Table 1, from [36], compares the best achieved computer search results up to
that time.

Note that the results of Kavut and Yücel in [36] proved that some of the pro-
files provided by Clark et al. [17], [19], [20] were not PE (precisely, the second one
for n = 8, and all for n = 10 and n = 11). Later on, Burnett et al. [11] pro-
vided the profiles (8|116, 7,−16) and (10|488, 9,−40), showing that the functions
presented in [36] were not PE wrt to these three criteria. Kavut and Yücel [36]
provide the representation of only one of the 8-input balanced functions (see Ap-
pendix A), whose profile (including now all the criteria in C1 and C2 of profile (12))
is P (f) = (8|0|114, 7, 4,−16,−88960). Similarly, Burnett et al. [11] provide the rep-
resentation of only one of the 8-input balanced functions (see Appendix A), whose
profile wrt profile (12) is P (f) = (8|0|116, 7, 3,−16,−89728). Hence, both functions
(in [11] and [36]) are still BKPE wrt the profile in (12) (note that criteria of C3 need
not be considered since there are no ties in the comparative analysis).

5.1.1. 9-input balanced functions. The case for 9-variable balanced Boolean
functions with good profiles was further studied, now taking into account the first
stage of the optimization problem defined in profile (12), meaning balanced functions
with high nonlinearity, high algebraic degree, high algebraic immunity, low abso-
lute indicator, and low sum-of-squares indicator comprising the preeminent criteria.
In [34], results are provided, shown here in Table 2.

Table 2
BKPE functions n = 9, I = 0, upon [34].

Authors profile

Kavut, Maitra, and Yücel [34] (240, 7, 4,−24,−354176)
Saber, Uddin, and Youssef [48] (240, 5, 4,−160,−524288)
Read [47] (240, 5, 3,−32,−524288)
Burnett [10] (240, 5, 4,−128,−524288)
Stan̆ică and Sung [50] (240, 2, 2,−512,−524288)
Misty 1 and KASUMI 9× 9 S-box [1] (240, 2, 2,−512,−524288)
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Table 3
Comparison of profiles with n = 11, I = 0.

Reference Profile

[33] (992, 5, ∗, ∗, ∗)
[41] (992, 6, ∗,−240, ∗)
[34] (988, 10, 5,−56,−5980928), (992, 8, ∗,−64, ∗)

[47] (992, 4, 3,−64,−8388608), (992, 5, 3,−96,−8388608)
(984, 9, 4, 232, 8514560), (970, 10, 3,−192,−9404288)

[24] (992, 5, 5, ∗, ∗)

Note again that the Kavut, Maitra, and Yücel results in [34] proved that all the
profiles provided by other authors or the ones corresponding to the known systems
were not PE. (It is worth mentioning that in [11] functions with (240, 7, ∗, ∗, ∗) are
obtained, whose resilience degree is 1 as a relevant criterion, but no values for the
remaining criteria are provided.)

5.1.2. 11-input balanced functions. Table 3 illustrates further results for 11-
variable balanced Boolean functions with good profiles. Note that different authors
have considered different criteria sets, limiting the comparison between results. Again,
the results of Kavut, Maitra, and Yücel in [34] proved that the profiles provided by
Johansson and Passalic [33] and Maximov, Hell, and Maitra [41] were not PE (wrt to
the corresponding set of criteria considered in each case). They also proved that the
two profiles in the second row provided by Read [47] were not PE either.

5.2. Our search schemes and results for n = 9, 11. When problem (2) with
no preferences among the criteria (i.e., problem s0) was considered, a search scheme
based on a genetic algorithm and the WSM4 provided limited results. Although
functions with degrees deg = 8, 9, and 11 for n = 8, 9, and 11, respectively, were found,
none of them were balanced and their nonlinearity was below NL = 112, 232, and
962, respectively. Hence, despite the fact that these solutions are BKPE (wrt problem
(2)) when compared with published results, their applicability in cryptography is very
limited due to the practical prioritized relevance among the criteria.

Therefore, we focused on problems of type (5), keeping in mind the practical
preferences among criteria. As a general procedure, when addressing a given prob-
lem si1 of type (5), we first solved a problem si2 , which was computationally more
treatable, its solution set E(si2) satisfying E(si2) ⊆ E(si1), as stated in Lemma 2.7.
Thereafter, elements of E(si2) were employed as initial starting points for applying
different iterative search procedures to problem si1 in order to find new elements of
E(si1). Search procedures of this type have already been employed by other authors
in a heuristic manner [11].

5.2.1. Hill climbing and derivatives of criteria. If the truth table of f is
modified in a single output bit, the corresponding values of several criteria do not
change significantly. This fact can be characterized by computing the derivative of
the criteria wrt bit changes in the truth table of f . Precisely, a single bit change in the
truth table of f leads to a change of one nonlinearity unit and two balancedness units.
This fact implies that if a step hill climbing search algorithm is employed, one can

4Computations were performed over several months on a cluster of computers using the VBF
library [5].
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compute a bound on both the nonlinearity and the balancedness differences between
the initial and the final elements, depending on the number of performed iterations.

5.2.2. Prioritizing nonlinearity for n = 9 functions. The search for 9-
input Boolean functions of highest nonlinearity (i.e., the corresponding profile being
P (f) = (9|NL)) was performed (with the VBF library) by applying a one-step hill
climbing search. Millions of Boolean functions were found with maximum known
nonlinearity 242 (the same as obtained in [38]), which can be grouped into five different
affine equivalence classes [3]. There are some function properties that are invariant
under affine equivalence. In fact, the five obtained affine equivalence classes can be
identified by invariant properties such as the frequency distribution of the absolute
values of the Walsh spectrum and the autocorrelation spectrum. The truth tables
of these Boolean functions together with their corresponding frequency distribution
of the absolute values of the Walsh spectrum and the autocorrelation spectrum are
available at [2].

Using the VBF library, the value of other cryptographic criteria (algebraic degree,
algebraic immunity, absolute indicator, and sum-of-squares indicator) was easily com-
puted for each one of these millions of Boolean functions. Since such criteria values
are invariant under affine transformations, they take the same value within each class;
such values are also provided in [2]. If we consider the profile characteristics of the five
classes, four of them are not found to be PE, since they are dominated by a fifth one
(our best choice). To the best of our knowledge, this whole set may be PE (i.e., it is
BKPE), the profile of its functions being the same as the one provided by Kavut and
Yücel [38]. If balancedness is considered as a tie-breaking criterion, Kavut’s function
weight is 250 (6 steps away from balancedness), whereas function f1 with weight 254
and function f2 with weight 258 (2 steps away from balancedness) were found in our
set with profile P (f1) = P (f2) = (9| − 2|242, 7, 4,−32,−324608) (see Appendix A for
their hexadecimal representation). Hence, the function provided by Kavut’s would
not be BKPE anymore.

In the following sections, 5.2.3 and 5.2.4, balancedness is prioritized, and the
profile P (f) = (n|0|NL, deg,AI, -ACmax, -σ) is considered for comparative purposes
along with existing results.

5.2.3. Prioritizing balancedness for n = 9 functions. Looking back to
balancedness, an ad hoc one-step iteration was applied to the functions we already
had with nonlinearity 242, whose unbalancedness was I = 2. Changing only two bits in
order to obtain balanced Boolean functions guarantees that the resulting nonlinearity
is either greater than or equal to than 240. A detailed description of the ranges of
the values obtained for the different criteria can be seen in [2]. Here, we show several
examples of balanced Boolean functions with BKPE profiles:

• P (f3) = (9|0|240, 8, 4,−24,−339200) with hexadecimal representation shown
in Appendix A. Note that by obtaining this profile, we have proved that the
profile provided by Kavut, Maitra, and Yücel [34] is not PE.

• P (f4) = (9|0|240, 8, 5,−40,−347648) with hexadecimal representation shown
in Appendix A.

5.2.4. Prioritizing balancedness for n = 11 functions. The same algo-
rithm was executed to obtain balanced Boolean functions for n = 11, and a detailed
description of the ranges of values obtained for the different criteria can be seen
in [2]. Two examples of balanced Boolean functions with BKPE profiles are P (f5) =
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Table 4
Comparison of the best results for (NL, deg,AI,ACmax, σ).

Results (NL, deg,AI,ACmax, σ) for

n = 9, I = 0 n = 11, I = 0

Kavut, Maitra, and Yücel
[36], [34]

(238, 8, ∗,−40, ∗) (984, 10, ∗,−80, ∗)
(240, 7, 4,−24,−354176) (988, 10, 5,−56,−5980928)

(992, 8, ∗,−64, ∗)

This paper
(240, 8, 4,−48,−323456) (992, 10, 5,−120,−5309312)
(240, 8, 4,−32,−323840) (992, 10, 5,−128,−5255168)
(240, 8, 4,−24,−339200) (992, 10, 5,−168,−5253632)
(240, 8, 5,−40,−347648) (992, 10, 5,−224,−5244800)

(11|0|992, 10, 5,−120,−5309312) and P (f6) = (11|0|992, 10, 5,−168, −5253632), with
hexadecimal representations shown in Appendix A.

In Table 4, we compare the profiles of these functions with the best profiles for
balanced Boolean functions obtained for n = 9 and n = 11.

5.3. Discussion. The new BKPE Boolean functions obtained satisfy the
following:

• For n = 9, they are the only BKPE existing functions, since they dominate
all the functions provided by other authors. (Remember that the functions
provided in Kavut, Maitra, and Yücel [36], [34] discarded all alternative pro-
posals, and now, we have discarded Kavut’s functions by proving that they
were not PE either).

• For n = 11, they provide better values for criteria (NL, deg,AI, -σ) and worse
values for -ACmax. In general, (NL, deg) are considered to be more relevant
than −ACmax. Hence, the obtained BKPE functions would dominate the
solutions found in [36], [34] for any problem of type (5) with associated profile
P = (11| − I|(NL, deg)| . . .).

6. Concluding remarks. The proposed formalization of the selected criteria
and their relative relevance via a family of MOCO problems has been proven to be
useful for rigorously defining, characterizing, and addressing the design of optimal
Boolean functions for robust block cipher design. This new framework may especially
help for a more systematic comparison of the different functions provided in the
existing literature.

The successful determination of new BKPE functions suggests that alternative
search algorithms will also be easily and profitably applicable within this framework.

Appendix A. Hexadecimal representations.
• f from [36] such that P (f) = (8|0|114, 7, 4,−16,−88960):

149016cdd1931f10860b4b8becef5557b8177a8565229b775e08f97b7692c32d.

• f from [11] such that P (f) = (8|0|116, 7, 3,−16,−89728):

7eb4719b4da742a8bbe124ce18fa17fd7e6b716c4d58c2572b3e3431180d1702.

• f1 such thatP (f1) = (9| − 2|242, 7, 4,−32,−324608) with weight 254:

b80170795f932563fad9532b2e44b87b70a73d66beac2304802094fcb858f154a41
810df91877a17c930be0da9f5efebce85993c2be0b42c63b25ec1dea3abaa.
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• f2 such that P (f2) = (9| − 2|242, 7, 4,−32,−324608) with weight 258:

b7f18076af9c2a930ad65cdb21b4487480a83296b15cd30b8fd064f34857fea454
171f2f9e778a18c6c04e0259fae01bc1756933dbefbbdc93bd5131d1535ba5.

• f3 such that P (f3) = (9|0|240, 8, 4,−24,−339200):

115bd52305367fc6a07c098e8b1e1d21d5fd983ce40979a1da85ce591d02540efe
bd4a7a34dddf4d6c6a1b57f350b54e9420c3998eba1176c6e8fb9b8406f10f.

• f4 such that P (f4) = (9|0|240, 8, 5,−40,−347648):

1de90d23b5024350f57f9f6020396aa70b8775b1ccb4c9b01dec1d00b6435a0e631
4f2d55afcfd3955df9b7383dc69f1c786b9a0cc91daae7529a9323d274047.

• f5 such that P (f5) = (11|0|992, 10, 5,−120,−5309312):

0377887778778388877887878887787877888887877877787778877787778788877
8887877877778787887888788778737777777788877888778778888787787787777
8788778787887788887887888887787878777778887787788878778777877787888
8778877778787888778878887878877887877787878788777888777878887788888
7878877778877778887787888887878777887888788777887887777787887878777
7777877878777888778787888788777777778877878878778778887888887878777
8788888888788888777788877788888788787777878777887887788787777778887
7888777888888887778778777878878888887777887.

• f6 such that P (f6) = (11|0|992, 10, 5,−168,−5253632):

fcb4b4bb4bbb4b44bb4b44bb444b44cb4bb444bbbbbbb44444bb444b444444b4b44bbb4
444bb444b4bbb4b4b4bb4b4b44b4b444bbbb44b4b4b4bb44b44b4b44bbb44444bb4444b
4b4444b4bbb444444bb444b4b4bbb4b44b444bbbbb4b44bbbbb4444bb4bbb44b4bbbbb44
b444bb444b444b444b4b4b44bb444bbb44bbb44bbb4bbb4b44b44bbb44bb4bbbbb4444bb
4bb4444bb4b4b4b4bb4444b4444bbb44b4cb44bbbb4b4b4b444b44bb4444bb44bbbbbb4b
bb444bb4444b44444b44b444bb4b4bb44b444bbbbbbb4bb4bbb4b4b4b4bb4bbb4bb44b4b
b4b4444bb44b444444b4bb4b4bb44bbbbbbbbbb444b4b4bb4b44bbb4bb4bb4b4bbbbb44bb
b44b4bbb4.
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