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1 Introduction

There are a extensive research devoted to the study of periodic solutions in
the the Sitnikov problem, which is defined as follows: Two bodies with equal
mass m1 = m2 (called primaries) are moving in the plane x, y around their
center of mass (barycenter) as solutions of the planar two body problem, a
third body m3 with zero mass move along z-axis through the barycenter of
the primaries. The Sitnikov problem deals with the study of the orbits of
m3. In appropriate units the equation of motion of the zero mass body is

z̈ = − z

(z2 + r(t, e)2)3/2
, (1)

where e ∈ [0, 1[ is the eccentricity of the elliptic orbits described by the
primaries and r(t, e) denotes the distance from the primaries to the origin
(center of mass). The function r(·, e) has minimal period 2π and is implicitly
defined in terms of Kepler’s equation, namely

r =
1

2
(1− e cosu), u− e sinu = t. (2)

Many contributions has been given about the dynamics in the Sitnikov
problem both from the analytical and numerical point of view, since its for-
mulation by K.A. Sitnikov in 1960. We refer to [1, 15] for the most classical
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results and [12] for numerical results. Since the Sitnikov equation is a forced
oscillator with minimal period 2π (for e 6= 0) one of the first questions is
the study of families of periodic solutions which depend continuously on the
eccentricity. It can be proved that the period of this families must be equal
to 2Nπ for some N ∈ N, see [22]. We call this solutions subharmonics. The
searching of subhamonics became more simpler if one is restricted to the
symmetric case: even or odd solutions. Notice that the function r(·, e) is
even and so (1) is invariant under the symmetries

(t, z) 7→ (−t, z), (t, z) 7→ (t,−z),

so one can obtained for all N ∈ N an even 2Nπ-periodic solution by solving
the boundary value problem

z̈ = − z

(z2 + r(t, e)2)3/2
, ż(0) = ż(Nπ) = 0, (3)

and by extending symmetrically on the interval [−Nπ, 0] and finally exten-
ding periodically over all R. This approach is called the shooting method : the
searching the suitable initial position ξ = z(0) for each e ∈ [0, 1[ from the rest
in order to obtain the second boundary condition in (3). In this way ξ = ξ(e)
will be a continuous function for small values of e, provided local families of
periodic solutions parametrized by the eccentricity. Using the method of
global continuation of Leray-Schauder, Llibre and Ortega in [10] proved that
these families can be continued from the known 2Nπ-periodic solutions in
the circular case (e = 0) for nonnecessarily small values of the eccentricity e
and in some cases for all values of e ∈ [0, 1[. However this approach does not
say anything about the stability properties of this periodic solutions.

It is well known that for e = 0 there are a finite number of nontrivial sub-
harmoncis (with period 2Nπ). On the other hand all them are parabolic and
unstable (in the Lyapunov sense) if we consider the unperturbed autonomous
equation (e = 0) like a 2π-periodic equation.
In this document we present a new method that quantifies the mentioned
bifurcating families and them stabilities properties at least in first approx-
imation. Our approach proposes two general methods: The first one is to
estimate the growing of the canonical solutions for one-parametric differential
equation of the form

ẍ+ a(t, λ)x = 0,

2



with a ∈ C1([0, T ] × [0,Λ]) (Lemma 1, Section 2). The second one gives
stability criteria for one-parametric Hill’s equation of the form

ẍ+ q(t, λ)x = 0, (∗)

where q(·, λ) is T -periodic and q ∈ C3(R × [0,Λ]), such that for λ = 0 the
equation (∗) is parabolic (Lemma 2, Section 2). The Lemma 2 determines
an explicit λ-interval of ellipticity of hiperbolicity for (∗). Henceforth this
can be viewed as a quantified version of stability classical results for Hill’s
equation like in [11]. To sum up, the main contributions of this document
besides of the two mentioned before are the following:

1. For any N ∈ N odd, we gives sufficient conditions for the ellipticity of
hyperbolicity of the families of nontrivial even, 2Nπ-periodic solutions
of (1) in a computable interval of eccentricities e (Theorem, Section 4
).

2. For N = 1, 3 we shows that all families of nontrivial even, 2Nπ-periodic
solutions of (1) are elliptic for e ∈]0, e∗[ for a computable e∗ (Section 4
and Section 5).

2 Fundamental results

In this part of the document we introduce, to the best of our knowledge, a
novel technique to estimate uniform bounds for the growing of the canonical
solutions of second order differential equations of the form

ÿ + a(t, λ)y = 0, (∗) (4)

for a(t, λ) ∈ C1([0, T ]× [0,Λ]) based on the zeros of an appropriate function.
Notice that in the particular case a(t+T, λ) = a(t, λ) for all (t, λ) ∈ R×[0,Λ]
and T > 0 we have a parametric Hill’s equation.

Lemma 1. Consider the family of equations (4) with the previous hypo-
thesis on the function a(t, λ). Suppose that φ1(t, λ), φ2(t, λ) are the canonical
solutions of (4), i.e.

φ1(0, λ) = φ̇2(0, λ) = 1, φ̇1(0, λ) = φ2(0, λ) = 0,
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for all λ ∈ [0,Λ]. For each λ define

Rλ := sup
µ∈[0,λ]

max
{
‖φi(· , µ)‖∞, ‖φ̇i(· , µ)‖∞ : i = 1, 2

}
(5)

Let r0 a positive number greater than R0. Assume the following conditions

1. Exist a positive continuous function d = d(λ,R) which is increasing in
both variables and such that

d(λ,Rλ) ≥ sup
t∈[0,T ]

|∂λa(t;λ)|

2. There is a λ∗ ∈ ]0,Λ] such that the function Q(λ, ·) has at least two
consecutive zeros for each λ ∈ [0, λ∗] where

Q(λ,R) = 2TλR3d(λ,R)−R + r0,

and moreover if R1,λ, R2,λ are the first two consecutive zeros of Q(λ, ·)
then

(a) r0 ≤ R1,λ for all λ ∈ [0, λ∗]

(b) Q(λ,R) > 0 (< 0) for all R ∈ [0, R1,λ[ (R ∈ [R1,λ, R2,λ[) and for
all λ ∈ [0, λ∗].

Then Rλ ≤ R1,λ for all λ ∈]0, λ∗].

Proof. For a fixed λ ∈ [0,Λ] and µ ∈ [0, λ], let φi(·, µ), i = 1, 2 the canonical
solutions of (4). By the Mean Value Theorem we obtain∣∣φi(t, µ)− φi(t, 0)

∣∣ ≤ max
µ∈[0,Λ]

‖∂µφi(· , µ)‖∞ µ,

for all t ∈ [0, T ]. By differentiability respect to parameters, the function
yi(t) = ∂µφi(t, µ) satisfies the following Cauchy problem{

ÿ + a(t;µ)y = −∂µa(t;µ)φi(t, µ)

y(0) = ẏ(0) = 0,
(6)
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Therefore by the method of variation of parameters we obtain

|yi(t)| ≤
∫ t

0

∣∣∣G(s, t, µ)∂µa(s;µ)φi(s, µ)
∣∣∣ds,

|ẏi(t)| ≤
∫ t

0

∣∣∣∂tG(s, t, µ)∂µa(s;µ)φi(s, µ)
∣∣∣ds,

where G(t, s, µ) = φ1(s;µ)φ2(t, µ) − φ1(t, µ)φ2(s, µ). In consequence, for all
t ∈ [0, T ] we have

|yi(t)|, |ẏi(t)| ≤ 2TR3
µd(µ,Rµ).

The above inequalities implies∣∣φi(t, µ)
∣∣ ≤ ∣∣φi(t, 0)

∣∣+ 2TµR3
µd(µ,Rµ),∣∣φ̇i(t, µ)

∣∣ ≤ ∣∣φ̇i(t, 0)
∣∣+ 2TµR3

µd(µ,Rµ).

From the monotonicity of d(λ,R) we deduce

‖φi(t, µ)‖∞, ‖φ̇i(t, µ)‖∞ ≤ r0 + 2TλR3
λd(λ,Rλ)

for all µ ∈ [0, λ] and λ ∈ [0, λ∗]. Therefore, Q(λ,Rλ) ≥ 0 for all λ ∈ [0, λ∗].
Then, from the assumption 2. (part (b)) we have that

Rλ ∈ [0, R1,λ] ∪ [R2,λ,∞[

By continuity the set {Rλ : λ ∈ [0, λ∗]} is an interval. Besides, limλ→0Rλ =
R0 this implies that Rλ ∈ [0, R1,λ] for all λ ∈ [0, λ∗]. This completes the
proof.

In Lemma 2 we present a simple quantified stability criteria for parametric
Hill’s equation of the form

ẍ+ q(t, λ)x = 0, (7)

with q ∈ C(R × [0,Λ]) and T -periodic in t, when |∆(0)| = 2, with ∆(λ) is
the discriminant function, defined as the trace of a monodromy matrix for
the associated first order system to (7).
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Lemma 2. Consider the Hill’s equation (7) where q ∈ C3(R × [0,Λ]) and
T -periodic in t. Let ∆(λ) the discriminant function of (7) that satisfies

∆(0) = 2, ∆′(0) = 0, and ∆′′(0) 6= 0.

Define

p(λ) = Kλ3 − 3∆′′(0)λ2 − 24, and µ =
3|∆′′(0)|
K

,

where K a positive constant such that K ≥ sup
λ∈[0,Λ]

|∆′′′(λ)|.

i) If ∆′′(0) > 0 then ∆(λ) > 2 for all λ ∈ I1 =]0,min {µ,Λ} [,

ii) If ∆′′(0) < 0 and p(Λ) > 0 (resp. p(Λ) ≤ 0) then |∆(λ)| < 2 for
all λ ∈ I2 =]0,min {µ, µ0,Λ} [ (resp. λ ∈ I1) where µ0 is the unique
positive root of p(λ) = 0.

Proof. For the classical Taylor’s expansion over ∆(λ) in [0,Λ] we have

∆(λ) = 2 +
∆′′(0)λ2

2
+R(λ), ∀λ ∈ [0,Λ], (8)

where R(λ) is the remainder bounded by

|R(λ)| ≤ λ3K
3!

.

Assume that ∆′′(0) > 0 then

∆′′(0)λ2

2
− Kλ

3

3!
> 0, if 0 < λ < µ.

In consequence, from (8) and the estimative over R(λ), we obtain

∆(λ)− 2 =
∆′′(0)λ2

2
+R(λ) >

∆′′(0)λ2

2
− Kλ

3

3!
> 0, (9)

if λ ∈ I1, proving i).

Now, we suppose ∆′′(0) < 0. Notice that |∆(λ)| < 2 is equivalent to

−4 < ∆(λ)− 2 < 0.
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Therefore, it is sufficient solve the following system of inequalities

∆′′(0)λ2

2
+
Kλ3

3!
< 0,

Kλ3

3!
− ∆′′(0)λ2

2
< 4,

(10)

for λ ∈ [0,Λ]. The first inequality in (10) is equivalent to λ ∈ I1. The second
one can be rewritten as p(λ) < 0. Notice that p(λ) is a strictly increasing
function for all λ ∈]0,Λ]. Then, if p(Λ) ≤ 0 the second inequality holds for
λ ∈ I1. Else, p(Λ) > 0 then p(λ) < 0 for all λ ∈ [0, µ0[ with p(µ0) = 0 proving
ii).

Remarks.

1. Recall that in the case |∆(λ)| < 2 the equation (7) is called Elliptic,
in such a case all solutions are bounded in the C1-norm. If |∆(λ)| > 2
the Hill’s equation (7) is called hyperbolic, in such a case there exists a
nontrivial unbounded solution xλ(t) of (7). Finally, when |∆(λ)| = 2
(Parabolic case) all solutions are C1-bounded if and only if the associ-
ated monodromy matrix is ±I2, with I2 the identity matrix of second
order.

2. Lemma 2 can be viewed as a generalized and quantified version of
classical stability results for parametric Hill’s equation with potential
q(t, λ) = q(t) + λ (see [11]).

3 Quantifying the bifurcating families from

the circular Sitnikov problem

Let fix a natural number N . The aim of this section is to present the study
of the families of even and 2Nπ periodic solutions of the Sitnikov problem
(1) parametrized by the eccentricity from the quantified point of view, i.e.,
each family is presented as a graphic of the initial condition as a function of
e in a computable interval. This requirement will be essential for the study
of the linear stability of this families in our approach. As a by product we
will obtain a posteriori bounds of this families that could be used for the
nonlinear stability analysis which is out of the scope of this work.
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Consider the boundary value problem (3). For given ξ, η ∈ R and e ∈ [0, 1[
let z(t; ξ, e) be the solution of (1) satisfying the initial conditions

z(0) = ξ, ż(0) = 0.

This solution is real analytic in the arguments (t, ξ, e) ∈ R × R × [0, 1[ and
is globally defined in R since the nonlinearity in (1) is real analytic and
bounded. The shooting method allows us to search for even and 2Nπ-periodic
solutions of (1) by studying the zeros of the function

FN : R× [0, 1[→ R, FN(ξ, e) = ż(Nπ; ξ, e).

We denote by Σ the set of zeros of FN , i.e.

Σ =
{

(ξ, e) : FN(ξ, e) = 0
}
.

It is a well known fact that Σ has nice topological properties ([10, 18]). First,
for a fixed e∗ ∈ [0, 1[ the section

Σe∗ =
{

(ξ, e∗) : FN(ξ, e∗) = 0
}
,

is finite (see Proposition 2 in [18]). This implies that for each fixed e ∈ [0, 1[
there exist a finite number of even sub-harmonics of (1). Secondly, Σ is
bounded (see Proposition 5.1 of [10]). More precisely, there exists a positive
ξ∗ such that if z(t) is a even 2Nπ periodic solution of (1) then |z(t)| < ξ∗ for
all t ∈ R. For instance a numerical computation shows that if e ∈ [0, 0.99]
and N = 1 then ξ∗ = 1.99 (see section 5). Finally every connected subset of
Σ is arcwise connected. This corresponds to the intuitive idea of continuation
of zeros.

Since FN is odd in ξ, the set Σ is symmetric with respect to the ξ-axis, in
consequence it is enough to consider the region

Σ+ =
{

(ξ, e) ∈ R+ × [0, 1[: FN(ξ, e) = 0
}
,

on the right half plane.

In the case e = 0 (The circular Sitnikov problem) following the results in [10]
the set Z0 = Σ+ ∩ {e = 0} is given by

Z0 =
{
ξ1, . . . , ξν

}
,
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where ν := νN = [2
√

2N ] and ξp (with ξp > ξq for q > p) is the initial
condition of the solution z(t; ξp, 0) for the Cauchy problem

z̈ = − z

(z2 + 1/4)3/2
, z(0) = ξp, ż(0) = 0. (11)

Moreover ϕp(t) = z(t; ξp, 0) has p zeros in [0, Nπ]. Therefore, there exists νN
nontrivial, even and 2Nπ periodic solutions in the circular Sitnikov problem
with

ϕ1(0) = ξ1 > ϕ2(0) = ξ2 > · · · > ϕν(0) = ξν ,

labelled according to its number of zeros, going from p = 1 to ν. Also
in [10] the authors prove that Brouwer index of FN(ξ, 0) in ξp denoted by
ind(FN(·, 0), ξp) satisfies

ind(FN(·, 0), ξp) = (−1)p.

From here it follows that there exists a local branch emanating from (ξp, 0)
which is the graph of a smooth function ξ = H(e) with ξ(0) = ξp for small
values of e (See figure 1).

From now on we fix 0 < E < 1 and we shall study the existence of nontrivial
solutions of the implicit equation

FN(ξ(e), e) = 0, (12)

with (ξ, e) ∈ [0, ξ∗] × [0, E]. The equation (12) near to ξp could be thought
(by implicit derivation) as the following Cauchy problem

dξ

de
= h(e, ξ)

ξ(0) = ξp,
(13)

where the function h(e, ξ) is given by

h(e, ξ) = −∂eFN(ξ, e)

∂ξFN(ξ, e)
. (14)

Notice that the right hand side in (13) contains the following derivatives of
the flow respect to the initial conditions and parameters

∂eFN(ξ, e) = ∂eż(Nπ, ξ, e),

∂ξFN(ξ, e) = ∂ξż(Nπ, ξ, e).

9
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Figure 1: Bifurcating families from the circular case for N = 1 and p = 1
p = 2.

For now on we call the differential equation in (13) the continuation equation.

The continuation equation makes sense in an open region U (relative to
[0, 1[×[0,∞[) where ∂ξż(Nπ, ξ, e) 6= 0. So we are interested in a rectan-
gle Ωp = [0, E]× [ξp−∆, ξp + ∆] ⊂ U , where ∆ and E will be parameters to
be determined. The objectives are to solve (13) in Ωp starting from p = 1 to
ν to obtain:

• A solution ξ = H(e) with domain quantified.

• Explicit bounds ‖Ze‖∞ for the corresponding even periodic solution
Ze(t) = z(t;H(e), e).

With this in mind, we define ξ0 := ξ∗ and ξν+1 := 0 and consider

0 < ∆ ≤ ∆∗, 0 < E ≤ E∗, (15)

where
∆∗ = min

{
ξp − ξp+1 : 0 ≤ p ≤ ν

}
, E∗ = 0.99. (16)
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This allows us to isolate each initial zero ξp in each rectangle Ωp ⊆
[0, 1[×[0, ξ∗].

On this approach will lead us to the following main result that will be proved
in the subsection 3.3.

Theorem 1. Given a integer N ≥ 1 and p = 1, · · · , · · · [2
√

2N ] there exist
a constant e∗N,p ∈ ]0, 1[, an a affine function G : [0, e∗N,p] 7→ R+ and a smooth
function ξ = HN,p(e), e ∈ [0, e∗N,p[ with HN,p(0) = ξp such that ZN

e,p(t) =
z(t;HN,p(e), e), is an even 2Nπ periodic solution of (3) with

|ZN
e,p| ≤ G(e),

where G(e) = ξp + γe and γ = γN,p is a constant that can be explicitly
computed (see (40)).

3.1 Bounds for the variational equation

From now on we consider fix an integer N ≥ 1 and p = 1 to ν = [2
√

2N ].
We rewrite the equation (1) in the form

z̈ + f(t, z, e) = 0, f(t, z, e) =
z

(z2 + r(t, e)2)3/2
. (17)

An elementary computations shows that the first variational equation asso-
ciated to (17) is

ÿ + aξ,e(t)y = 0, aξ,e(t) :=
r(t, e)2 − 2z2(
z2 + r2(t, e)

)5/2
, (18)

with z = z(t, ξ, e) and t ∈ [0, Nπ].

In order to find explicit uniform bounds for the numerator and the denomi-
nator in (13), we need to find a uniform bound for the canonical solutions of
the variational equation (18). For this purpose we will apply the Lemma 2
to the equation (18) with ξ ∈ [0, ξ∗].

After several computations (see Appendix 1) we have∣∣∣∣∂aξ,e∂e

∣∣∣∣ ≤ 6σ (1 + 3NπσR2
e)

(1− e)2
, (19)
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for all t ∈ [0, Nπ], where Re is given as in the Lemma 1 taking λ = e, and

σ = σ(e) =
16

(1− e)3
, (20)

In consequence we can take the function d(e, R) as

d(e, R) =
6σ (1 + 3NπσR2)

(1− e)2
,

which verifies the assumptions 1. in Lemma 1. Straightforward computations
gives the following expression for the function Q(e, R)

Q(e, R) = Q̃(e, R) + r0 where Q̃(e, R) = b1(e)R5 + b2(e)R3 −R

with

b1(e) =
9216(Nπ)2e

(1− e)8
, b2(e) =

192Nπe

(1− e)5
.

and
r0 = sup

ξ∈[0,ξ∗]

R0(ξ), (21)

where R0 = R0(ξ) is given by (5) for the equation (18) with e = 0. For
instance in the case N = 1, e ∈ [0, 0.99] we have

ξ∗ = 1.999901.. r0 = 6.621635..

In order to check the assumptions 2. we present some properties of the
function Q̃.

• For all e ∈ [0, E] all roots of Q̃(e, ·) has two real roots different from
zero (one positive and one negative for e > 0) and they are simple.
This follows directly by the positivity of the coefficients b1(e), b2(e).

• Let R∗(e) the first positive root of Q̃ given by

R∗(e) =
√
y∗(e), y∗(e) =

√
b2

2(e) + 4b1(e)− b2(e)

2b1(e)

Notice that lim
e↘0

R∗(e) =∞.

12



• For R positive, and e ∈ [0, E] the minimum value Q̃m(e) of Q̃(e, R) is
given by

Q̃m(e) = Q̃(e, Rm(e)) = −2R3
m(e)

(
2b1(e)R2

m(e) + b2(e)
)
,

with Rm(e) given by

R2
m(e) =

√
9b2

2(e) + 20b1(e)− 3b2(e)

10b1(e)
.

Notice that
lim
e→0

Rm(e) =∞, lim
e→1

Rm(e) = 0,

therefore
lim
e→0

Q̃m(e) = −∞, lim
e→1

Q̃m(e) = 0.

Hence, there exits a critical value E∗ ∈ ]0, 1[ such that Q̃m(E∗) = −r0

More precisely, E∗ is the positive root of

Q̃m(e) = −r0 (22)

This implies Q̃m(e) < −r0 for all e ∈ [0, E∗[, and therefore there exist

exactly two positive roots R1,e, R2,e of Q̃(e, R) = −r0 with

R1,e < Rm(e) < R2,e

verifying

Q(e, R) > −r0 ( i.e.Q(e, R) > 0) ∀R ∈ [0, R1,e[

Q(e, R) < −r0 ( i.e.Q(e, R) < 0) ∀R ∈ ]R1,e, R2,e[

Moreover, for e ∈ [E∗, 1[ it holds Q̃m(e) > −r0 and therefore Q(e, R) > 0 for
all R > 0.

On the other hand, r0 ≤ R1,e for all e [0, E∗]. In fact, since b1(e), b2(e) > 0
for e > 0 on has

Q(e, R) > −R + r0, ∀e ∈]0, 1[, R > 0,

then
0 = Q(e, R1,e) > −R1,e + r0 ⇒ R1,e > r0.

13



Finally the assumption 2. (part (b)) is fulfilled for all e ∈ [0, E∗[ and in
consequence

Re ≤ Rm(E∗), ∀e ∈ [0, E∗] (23)

From now on, in the rest of the paper we use the following notation

R = Rm(E∗).

0 2 4 6 8 10 12
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

R

Q̃
(e

,R
)

e = 10 e*

e = e*

e = e* / 10

e = 10 e*

e = e*

e = e* / 10

e = 10 e*

e = e*

e = e* / 106.6 6.65 6.7

Figure 2: Function Q̃(e, R) and the behaviour of the solutions of the equation

Q̃(e, R) = −r0, i.e., Q(e, R) = 0.

3.2 Bounds for the continuation equation

In this part of the manuscript we present an explicit positive upper bound
for ∂ξFN(ξ, e), the numerator on the continuation equation (13) and also a
positive lower bound for ∂ξFN(ξ, e), the respective denominator. Remember
that we have fixed N ≥ 1 and p = 1 to ν.

We star with the numerator, with this in mind, notes that β(t) = ∂ez(t, ξ, e)
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solves the initial value problem

ÿ + aξ,e(t)y = p(t, ξ, e),

y(0) = ẏ(0) = 0.
(24)

with p(t, ξ, e) = −∂ef(t, z, e), z = z(t, ξ, e) and ξ ∈]ξp −∆∗, ξp + ∆∗[. Using
(2) the computations show that

p(t, ξ, e) =
3rz

2(z2 + r2)5/2

(
cosu− esin2 u

2r

)
. (25)

From (2) the function r(t, e) satisfies

1− e
2
≤ r(t, e) ≤ 1 + e

2
, (26)

for all (t, e) ∈ R× [0, 1[, therefore we get

|p(t, ξ, e)| ≤ 3

2(z2 + r2)3/2

(
1 +

e

2r

)
,

in consequence

‖p‖∞ ≤
12

(1− E)4
. (27)

From the method of variations of parameters, we obtain

β(t) =

∫ t

0

G(t, s, e)p(s, ξ, e)ds, (28)

where G(t, s, e) = φ1(s, e)φ2(t, e) − φ1(t, e)φ2(s, e) and φ1 and φ2 are the
solutions of (18) satisfying the initial conditions

y(0) = 1, ẏ(0) = 0 and y(0) = 0, ẏ(0) = 1,

respectively. With the previous results we are able to present a uniform
bound on Ωp for the function β̇(t) on [0, Nπ]. Integrating over the equation
(24) we arrive to

β̇(t) = −
∫ t

0

aξ,e(s)β(s)ds+

∫ t

0

p(s, ξ, e)ds.
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From (19) and (20) we get

|β̇(Nπ)| ≤ 12(Nπ)

(1− e)4

(
1 +Nπσ ‖G(·, ·, e)‖∞

)
,

valid for all (e, ξ) ∈ Ωp = [0, E∗] × [ξp − ∆∗, ξp + ∆∗]. Here ‖G(·, ·, e)‖∞ is
defined as

‖G(·, ·, e)‖∞ = sup
[0,Nπ]2

|G(·, ·, e)|.

From (23) it follows ‖G(·, ·, e)‖∞ ≤ 2R2, in consequence we obtain a uniform
bound over the numerator of the continuation equation (13) on Ωp as follows∣∣∂eFN(ξ, e)

∣∣ ≤ 12Nπ

(1− E∗)4

(
1 + 2Nπσ∗R2

)
:= Υ. (29)

with σ∗ = σ(E∗) given by (20).

For the denominator, we proceed as before. Notice that φ1(·, e) = ∂ξz(·, ξ, e),
is the canonical solution of (18) that satisfies the initial conditions

y(0) = 1, ẏ(0) = 0.

By the Mean Value Theorem we obtain∣∣φ̇1(t, e)− φ̇1(t, 0)
∣∣ ≤ max

e∈[0,E∗]
‖∂eφ̇1(·, e)‖∞ e,

for all t ∈ [0, Nπ]. The function ∂eφ1(t, e) satisfies the Cauchy problem{
ÿ + aξ,e(t)y = −∂eaξ,e(t)φ1(t, e)

y(0) = ẏ(0) = 0.
(30)

In consequence

∂eφ̇1(t, e) = −
∫ t

0

∂tG(t, s, e)∂eaξ,e(s, e)φ1(s, e)ds, (31)

therefore, using (19) and (23) we arrive at

∣∣∂eφ̇1(t, e)
∣∣ ≤ 12Nπσ∗(1 + 3Nπσ∗R2)R3

(1− E∗)2
:= Ψ (32)
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Finally, ∣∣φ̇1(Nπ, e)− φ̇1(Nπ, 0)
∣∣ ≤ eΨ (33)

Now we impose the restriction

(R) eΨ <
∣∣φ̇1(Nπ, 0)

∣∣
Combining (33) and (R) we obtain 1

|φ̇1(Nπ, e)| > Γ(e) := |φ̇1(Nπ, 0)| − eΨ > 0, (34)

for all e ∈ [0, E∗∗[ where E∗∗ is given by

E∗∗ = min
{
E∗, Ê

}
, Ê =

|φ̇1(Nπ, 0)|
2Ψ

. (35)

Therefore the Cauchy problem (13) is well defined in the rectangle

Ω∗p = [0, E∗∗[×]ξp −∆∗, ξp + ∆∗[,

with ∆∗ given by (16), and moreover from (29) and (34) we get (see (14))

|h(e, ξ)| ≤M = Υ/Γ. (36)

with Γ = |φ̇1(Nπ, 0)| −ΨE∗∗ and M given by

M =
12Nπ

(
1 + 2Nπσ∗R2

)
(1− E∗)4

(∣∣φ̇1(Nπ, 0)
∣∣−ΨE∗∗

) . (37)

3.3 Proof of Theorem 1

Following the previous results in the subsections 3.1 and 3.2, we are able to
proof the Theorem 1 stated in the section 3. For a fixed integer N ≥ 1 and
p = 1 to ν we can apply the existence Peano’s Theorem in Ω∗p to conclude
that there exists a solution ξ = H(e), e ∈ [0, e∗[ of the continuation equation
(13) with

e∗ = e∗N,p := min

{
E∗∗,

∆∗
M

}
. (38)

1For all a, b, c ∈ R if |a− b| < c < |b| then |a| > |b| − c.
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In consequence, we obtain an nontrivial, even, 2Nπ-periodic solution ZN
e,p(t) :=

z(t;HN,p(e), e) of (1) as a continuation of the solution ϕp(t) = z(t; ξp, 0) for
e ∈ [0, e∗[. On the other hand,

∣∣∣∣∣∂ZN
e,p

∂e

∣∣∣∣∣ ≤
∣∣∣∣∂z∂ξ

∣∣∣∣ ∣∣∣∣ dξd e
∣∣∣∣+

∣∣∣∣∂z∂e
∣∣∣∣

≤MR+
3Nπσ∗R2

2(1− e∗)
.

(39)

The estimative for

∣∣∣∣∂z∂e
∣∣∣∣ can be found in the Appendix 1. Finally, by the

Mean Value Theorem we arrive to

|ZN
e,p| ≤ ξp + γe := G(e), (40)

with γ := γN,p given by

γ :=

(
MR+

3Nπσ∗R2

2(1− e∗)

)
.

and this complete the proof. �

4 Linear Stability

In the previous sections we have found, for each natural number N and
1 ≤ p ≤ ν , ν = [2

√
2N ], an even 2Nπ−periodic family of solutions ZN

e,p

of the Sitnikov problem, bifurcating from the circular ones ϕp = ZN
0,p (see

section 2) and with the remarkable property of having p zeros on [0, Nπ],
see Lemma 7.2 in [10]. This family was parametrized by the eccentricity e
in a computable interval. Now, we will search the stability properties of the
families ZN

e,p at least in the linear sense. For this purpose we deal with the
discriminant function associated with the first variational equation along to
the periodic solution ZN

e,p,

ÿ + q(t, e, p,N)y = 0, (41)
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where

q(t, e, p,N) :=
r(t, e)2 − 2ZN

e,p(t)
2

(ZN
e,p(t)

2 + r(t, e)2)5/2
. (42)

Hereinafter we fix N -odd and we denote Ze(t) := ZN
e,p(t), and q(t, e) :=

q(t, e, p,N), in order to simplify the notations. For i = 1, 2, let yi(t, e) be the
canonical solutions of (41), satisfying

y1(0, e) = ẏ2(0, e) = 1, ẏ1(0, e) = y2(0, e) = 0.

The discriminant function associated to (41) is defined by

∆(e) = y1(2Nπ, e) + ẏ2(2Nπ, e), (43)

which is the trace of the monodromy matrix associated to the first order pla-
nar system regard to the Hill’s equation (41). It is a well known fact that (41)
is stable (equivalently Ze is linearly stable) if and only if the corresponding
Floquet’s multipliers ρ1(e), ρ2(e) satisfy some of the following conditions:

i) ρ1(e) = ρ2(e) /∈ R, |ρ1,2(e)| = 1 ( Elliptic Case ),

ii) ρ1,2(e) = ±1 and the monodromy matrix is equal to ±Id where Id is
the identity matrix, i.e. ẏ1(2Nπ, e) = y2(2Nπ, e) = 0 (Stable Parabolic
Case).

Notice that the Elliptic case is equivalent to have |∆(e)| < 2, and in the
Stable Parabolic case one has |∆(e)| = 2. In particular we have ∆(0) = 2,
since the function ϕ̇p is a 2Nπ-periodic solution of (41) with e = 0 (how a
direct computation shows) and therefore ρ1,2(0) = 1 in the circular case.

Following a standard approach as in [11] the formula of ∆′(e) is given by

∆′(e) = −
[∫ 2Nπ

0

(
G(2Nπ, s, e)y1(s, e) + ∂tG(2Nπ, s, e)y2(s, e)

)
∂eq(s, e)ds

]
where G(t, s, e) = y1(s, e)y2(t, e)− y1(t, e)y2(s, e). Since q(t, e) = q(−t, e) for
all (t, e) ∈ R× e ∈ [0, 1[ from the Theorem 1.1 in [11] we obtain

∆′(e) = −
[∫ 2Nπ

0

(
y2

1(s, e)y2(2Nπ, e)− ẏ1(2Nπ, e)y2
2(s, e)

)
∂eq(s, e)ds

]
(44)
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In particular for e = 0 we have

∆′(0) = ẏ1(2Nπ, 0)

∫ 2Nπ

0

y2
2(s, 0)∂eq(s, 0)ds, (45)

since y2(t, 0) is a multiple of ϕ̇p and therefore is odd and 2Nπ-periodic, in
consequence y2(2Nπ, 0) = 0. Moreover, by the Theorem 1.1 and 1.2 in [11]
we deduce that ẏ1(2Nπ, 0) 6= 0 therefore Z0 is linearly unstable.

The study of the sign of ∆′(0) clearly implies a stability result for the linea-
rized equation (41) for small e. However, some numerical computations re-
veals that this quantity could be nule. This fact is not deducible from (45),
and in order to prove it we shall consider “negative eccentricities” in the Sit-
nikov equation. The first observation (see the Appendix 2) is the following
The function r(t, e) can be analytically extended for e ∈ [−0.6627434..., 0],
and it verifies for N odd

r(t,−e) = r(t+Nπ, e), ∀t ∈ R, ∀e ∈ [0, 0.6627434...]. (46)

This implies that the extended Sitnikov equation (1) will be analytical for
small |e|. Thus, we can consider again the continuation equation (13) which
makes sense and is analytical in e on a small ξe−rectangle centered in (ξp, 0)
for each p = 1 to ν. A similar procedure like in the section 3 led us to the
existence of an unique function ξ = hp(e) for small |e| such that hp(0) =
ξp > 0 and the solution Z±e(t) = z(t, hp(±e),±e), of the extended Sitnikov
equation

z̈ +
z

(z2 + r(t,±e))3/2
= 0,

is even and 2Nπ-periodic for 0 ≤ e < 0, 6627434...

Lemma 3. For N odd we have

Z−e(t) = (−1)pZe(t+Nπ).

Proof. In fact, ξ = hp(−e) is by definition the unique initial condition such
that

FN(ξ,−e) = ż(Nπ, hp(−e), 0,−e) = 0.

On the other hand, because the relation (46), the Sitnikov equation for −e
can be written like
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z̈ = −f(t, z,−e) = −f(t+Nπ, z, e). (47)

From here is clear that if z(t) is a solution for e > 0 then z(t + Nπ) is a
solution for −e. This implies the following identity in term of flows

z(t, z(Nπ, ξ, 0, e), 0,−e) = z(t+Nπ, ξ, e), (48)

where z(t, ξ, η, e) denotes the general solution for the extended Sitnikov equa-
tion. With this in mind it is not difficult to prove the following interesting
relation

hp(−e) = (−1)pz(Nπ, hp(e), e). (49)

From the symmetry f(t, (−1)pz, e) = (−1)pf(t, z, e), we have that y(t) =
(−1)pz(t+Nπ, hp(e), e) is a solution of (47) and satisfies

y(0) = (−1)pz(Nπ, hp(e), e), ẏ(0) = (−1)pż(Nπ, hp(e), e) = 0.

Thus y(0) will be hp(−e) depending on the sign of z(Nπ, hp(e), e), since
hp(−e) > 0 for small |e|. On the other hand

z(Nπ, hp(e), e)hp(e) ≷ 0, for p even(odd),

because Ze(t) has p zeroes at ]0, Nπ[. If p is even necessarily hp(−e) =
z(Nπ, hp(e), e), and if p is odd necessarily hp(−e) = −z(Nπ, hp(e), e). This
prove (49). Finally the proof of (3) is as follows. Using (49), (48) and the
symmetries of f we arrive at

Z−e(t) = z(t, hp(−e),−e) = z(t, (−1)pz(Nπ, hp(e), e),−e)
= (−1)pz(t, z(Nπ, hp(e), e),−e)
= (−1)pz(t+Nπ, hp(e), e)

= (−1)pZe(t+Nπ)

(50)

and this complete the proof.

Proposition 1. The discriminant function ∆(e) given by (44) is well defined
for small |e| and moreover is an even function.

Proof. Let us consider the first order linear periodic system associate to (41)

u̇ = v

v̇ = −q(t, e)u
(51)
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Let Φ(Nπ; t) be the fundamental matrix of (51) which is principal at t = Nπ.
Since q(t,−e) = q(t+Nπ, e) then Ψ(0; t) = Φ(Nπ; t+Nπ) is a fundamental
matrix of the system

u̇ = v

v̇ = −q(t,−e)u
(52)

which is principal at t = 0. Henceforth the systems (51) and (52) share the
same monodromy matrix Φ(Nπ; 3Nπ). In consequence

∆(e) = ∆(−e).

This completes the proof.

Since ∆(0) = 2 and ∆′(0) = 0, the study of the stability for the family ZN
e,p

depends on the sign of ∆′′(0). For instance, if ∆′′(0) > 0, then ∆(e) > 2 for
small positive e and in consequence ZN

e,p is unstable. Elsewhere if ∆′′(0) < 0
we have that Ze is stable for small positive e. How small? To answer this
question we will apply the Lemma 2, therefore will be necessary to compute
some constants in that lemma. First we initiate with an estimation of |∆′′′(e)|
on [0, e∗] for the cases N = 1 and N = 3. From the (44) we have

∆′(e) = −
[∫ 2Nπ

0

w(t, s, e)∂eq(s, e)ds

]
(53)

with w(s, e) = y2
1(s, e)y2(2Nπ, e)− ẏ1(2Nπ, e)y2

2(s, e). Therefore

∆′′(e) = −
[∫ 2Nπ

0

(
∂ew(s, e)∂eq(s, e) + w(s, e)∂2

eq(s, e)
)
ds

]
(54)

and

∆′′′(e) = −
[∫ 2Nπ

0

(
∂2
ew(s, e)∂eq(s, e) + 2∂ew(s, e)∂2

eq(s, e) + w(s, e)∂3
eq(s, e)

)
ds

]
(55)
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Theorem 2. Let N ∈ N odd, and p = 1 to ν fixed. For e ∈ [0, e∗] where
e∗ = e∗N,p given by the Theorem 1, let ∆(e) the discriminant function defined
by (43), K = sup

e∈[0,e∗]

|∆′′′(e)| and µ, µ0 and p(e) defined as in Lemma 2 with

λ = e for the Hill’s equation (41)-(42). Then, the periodic solution ZN
e,p is:

1. Hyperbolic if ∆′′(0) > 0 for all e ∈ ]0,min {µ, e∗} [.

2. Elliptic if ∆′′(0) < 0 and p(e∗) > 0 (resp. p(e∗) ≤ 0) then |∆(e)| < 2
for all λ ∈ I2 =]0,min {µ, µ0, e

∗} [ (resp. λ ∈ I1) where µ0 is the unique
positive root of p(e) = 0.

Proof. The proof follows as a direct consequence of the Lemma 2, the Propo-
sition 1 applied to the Hill’s equation (41)-(42).

5 Numerical Results

In this section we discuss the application of the previous theoretical results
to the even and periodic solutions of the Sitnikov problem with N = 1 and
N = 3 to obtain the numerical values of the quantified interval of existence
of the branches and their stability.

The detailed calculations for other values of N , the numerical results for
values of eccentricity close to one, the countable number of branches that
emanate from the trivial equilibrium solution as well as the comparison with
previous results [8, 12] will be presented elsewhere.

The different variables and coefficients that have to be evaluated for the
quantification of the intervals depend on the 2Nπ-periodic solutions of the
integrable circular problem (e = 0) and in some cases on the solution along
the bifurcating branch of periodic orbits for the non-integrable case (e 6= 0).

The first quantities can be easily computed by direct integration of the
full and linearized equations once the initial condition z(0) that correspond
to even periodic solutions has been found.

However, the non zero eccentricity quantities require the explicit calcula-
tion of the emanating branch (ξ = H(e)) which can be obtained by numerical
continuation. We have made used of the continuation procedure presented
in [16] for the conservative case and later extended to properly treat the
symmetries and reversibilities in [16]. See also [7] for a review and examples
from Mechanics.
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In the Sitnikov problem a two steps procedure has been necessary; first
we have continued the circular family of period orbits for e = 0 parametrized
by the period. We have detected the initial conditions ξ whose associated
period is commensurate with that of the primaries. Precisely with that ini-
tial condition we have computed by initial value integration an appropriate
starting solution for the emanating branch that was the input of a boundary
value continuation in the eccentricity. The result is the branch that can be
labelled by N and p where p is the number of zeros in half a period [0, Nπ].
As a by product of the numerical continuation we compute with negligible
cost the multipliers of the 2Nπ periodic solution and detect the possible
bifurcations.

The final outcome of the calculation is a branch in the ξ, e plane for each
N and p and the linear stability of the associated periodic solution. In Figure
1 we plot the two branches for N = 1 in a reduced interval of eccentricities
( [0, 0.25]). The numerical results shows that the branches extend up to
eccentricities close to 1 with a change of stability along the way.

It is a straightforward calculation to evaluate the different quantities that
are needed in our quantitative stability analysis. The quantities that, in
principle, do not depend on p for a fixed N are cast in table 1 for N = 1 and
N = 3: ξ∗, r0, R and E∗. However, for the two cases considered the value r0

is the same and consequently also for R and E∗.

N ξ∗ r0 R E∗

1 1.999901 6.621636 8.277124 4.684299 e-10
3 4.160101 6.621636 8.277124 4.684299 e-10

Table 1: Numerical results for the relevant variables in the quantification for
N = 1 and N = 3.

For a fixed N , the a priori bound ξ∗ for the initial conditions of the 2Nπ-
periodic solutions of (1) is computed by comparison with an auxiliary circular
Sitnikov problem with an appropriate radius. ξ∗ is thee initial displacement
corresponding to a period 4Nπ (see [10]). It can be computed from the
analytical expression of the period function.

The estimation of the upper bound r0 for the canonical solutions deserves
a comment; it does not depend on the branch and has to be valid for the
whole [0, ξ∗] interval of initial conditions. We have computed R0(ξ) (equation
(21)) with 0 ≤ ξ ≤ ξ∗ (see figure 3) and its supreme value r0.
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Figure 3: Estimation of the upper bound r0 for N = 1. The function R0(ξ) is
plotted for 0 ≤ ξ ≤ ξ∗ = 1.999901. The leftmost blue square coincides with
the analytical value for e = 0 at a height of 2

√
2. The green (blue) circle

corresponds to the p = 2 (p = 1) starting value of the branches. The red
circle and the dotted red line indicates the upper bound valid in the whole
range of values of ξ.

In tables 2 and 3 we list the coefficients that do depend on the specific branch
p for N= 1 and N = 3 respectively: Ê, ∆′′(0), K and µ0.

In all the cases analysed in this work the sign of ∆′′(0) turns out to be
negative; i.e., all the families of periodic solutions are elliptic for all e ∈
[0, E∗], because the rest of bounds for the existence and stability of the
families are less restrictive than E∗.

The final result for the interval length is a small quantity (∼ 10−10)
specially if compared with the numerical continuation result that extends it
up to e ∼ 0.6 along some of the branches. We should highlight that in our
case E∗ is a rigorously quantified value and almost 30 orders of magnitude
larger than the value of a standard quantification via the application of the
fundamental inequality comparing with the circular problem that generates
exponentially small intervals. Here the key ingredient has been the use of
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p Ê ∆′′(0) K µ0

1 6.2314169e-10 -10.10096 1 0.88995
2 1.582592e-9 -0.034051(*) 1 15.328

Table 2: Numerical results for the relevant variables in the stability quan-
tification for N = 1 for the two families (p = 1 and p = 2). The case p = 2
produces an extremely flat curve for ∆(e) close to the origin. The estimation
of ∆′′(0) cannot be accurately determined but the relevant issue is the sign,
which is negative (stable).

p Ê ∆′′(0) K µ0

1
2
3
4
5
6
7
8

Table 3: Numerical results for the relevant variables in the quantification for
N = 1 for the eight families (p = 1 through p = 8).

Lemma 1. The moderate change in the value ofR compared with the starting
value of r0 indicates that our novel quantification Lemma 1 is an useful tool
for the quantification of the canonical function and their derivatives.

Besides, a higher order bound for some of the expressions that appear
in the quantification would significantly increase the interval of validity but
would introduce more complexity and technical details to the analysis. For
the sake of simplicity we have decided to use only first order estimates.

Remarks.

1. The values of ∆′′(0) and K have been computed by polynomial inter-
polation. The value of ∆′′(0) has been satisfactorily compared with the
exact expression (54).

2. We have not presented results for N = 2 because for even values of
N we have not been able to prove the eccentricity evenness of ∆(e)
that explains the vanishing of the odd derivatives of the discriminant
function. Those results will be presented elsewhere but they display a
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similar behaviour to the odd N cases (i.e. all the even periodic solutions
emanate as elliptic branches from the circular case).
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Appendix 1

In this appendix we present some inequalities used in this manuscript. Firstly
we present an uniform bound of |aξ,e(t)| with

aξ,e(t) :=
r(t, e)2 − 2z2(
z2 + r2(t, e)

)5/2
,

with z = z(t, ξ, 0, e) for all t ∈ [0, Nπ] with (ξ, e) ∈ Ωp. From (18) and (26)
we get the following estimation

|aξ,e(t)| ≤
2

(z2 + r2(t, e))3/2
≤ 16

(1− e)3
.

Thus ∣∣aξ,e(t)∣∣ ≤ σ, σ = σ(E) :=
16

(1− e)3
,

uniformly on Ωp. Applying the Mean Value Theorem uniformly in ξ is not
difficult to obtain the following inequalities

∣∣∂er∣∣ ≤ 1

2(1− e)
,

∣∣∣∣∂aξ,e∂z

∣∣∣∣ ≤ 12σ

1− e
, and

∣∣∣∣∂aξ,e∂r

∣∣∣∣ ≤ 12σ

1− e
.

For instance, for obtain the second inequality we proceed as follows
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∣∣∣∣∂aξ,e∂z

∣∣∣∣ =

∣∣∣∣3z(3r2 − 2z2)

(z2 + r2)7/2

∣∣∣∣
=

∣∣∣∣ 3z

z2 + r2

(
2r2

(z2 + r2)5/2
+

r2 − 2z2

(z2 + r2)5/2

)∣∣∣∣
=

∣∣∣∣ 3z

z2 + r2

(
2r2

(z2 + r2)5/2
+ aξ,e

)∣∣∣∣
≤ 6

(z2 + r2)1/2

(
r2

(z2 + r2)5/2

)
+

3|aξ,e|
(z2 + r2)1/2

≤ 6

r4
+

3σ

r
=

12σ

1− e
,

and for the third one we have∣∣∣∣∂aξ,e∂r

∣∣∣∣ =

∣∣∣∣3r(r2 − 4z2)

(z2 + r2)7/2

∣∣∣∣
=

∣∣∣∣ 3r

z2 + r2

(
r2 − 2z2

(z2 + r2)5/2
− 2z2

(z2 + r2)5/2

)∣∣∣∣
=

∣∣∣∣ 3r

z2 + r2

(
aξ,e −

2z2

(z2 + r2)5/2

)∣∣∣∣
≤ 3

r

(
|aξ,e|+

∣∣∣∣ 2z2

(z2 + r2)5/2

∣∣∣∣) ≤ 3

r

(
|aξ,e|+

2

r3

)
≤ 12σ

1− e
.

On the other hand, ∣∣∣∂z
∂e

∣∣∣ ≤ 3NπσR2
e

2(1− e)
,

with Re is defined like in Lemma 1 with λ = e. In fact, by the equations
(27)-(28) in section 3.1 we have∣∣∣∂z

∂e

∣∣∣ ≤ 2Nπ ‖p‖∞R
2
e ≤

24NπR2
e

(1− e)4
≤ 3NπσR2

e

2(1− e)
.

Finally, from the chain rule and previous estimates we get∣∣∣∣∂aξ,e∂e

∣∣∣∣ =

∣∣∣∣∂aξ,e∂z

∂z

∂e
+
∂aξ,e
∂r

∂r

∂e

∣∣∣∣
≤ 18NπσR2

e

(1− e)2
+

6σ

(1− e)2
=

6σ (1 + 3NπσR2
e)

(1− e)2
.

28



Appendix 2

The purpose of this appendix is to show how the distance of the primaries
to their center of mass given by the function r(t, e) can be formally extended
for negative values of e around e = 0. To this end, we recall that the function
r(·, e) has minimal period 2π and satisfies

r(t, e) =
1

2
[1− e cos(u(t, e))] ,

where u(t, e) is the eccentric anomaly. In appropriate units u(t, e) is a func-
tion of the time via the transcendental Kepler’s equation

u− e sinu = t.

It is well know that u(t, e) satisfies the following

u(t+ 2Nπ, e) = u(t, e) + 2Nπ, u(−t, e) = −u(t, e), N ≥ 1, (56)

for all (t, e) ∈ R × [0, 1[. Hereinafter we assume N ∈ N odd. From the left
equation follows directly

u(t+Nπ, e) = u(t+ π, e) + (N − 1)π (57)

Now, using the Lagrange formula for the local inversion of holomorphic func-
tions we can represent u(t, e) as an analytic function around e = 0 in the
following form

u(t, e) = t+
∞∑
k=1

ck(t)
ek

k!
, with ck(t) =

dk−1

dtk−1
sink(t) k ≥ 1. (58)

The series (58) converges for all t ∈ R and small values of e. Moreover, notice
that the coefficients ck(t) satisfies

ck(t+Nπ) = (−1)kck(t),

and therefore for negative values of e we obtain

u(t,−e) := t+
∞∑
k=1

ck(t)(−1)k
ek

k!

u(t,−e) = t+
∞∑
k=1

ck(t+Nπ)
ek

k!

= u(t+Nπ, e)−Nπ.

(59)
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This property of the function u(t, e) lead us to obtain the following property
over the function r(t, e)

r(t+Nπ, e) =
1

2
[1− e cos (u(t+ π, e) + (N − 1)π)]

=
1

2
[1− e cos (u(t,−e) + π)]

=
1

2
[1 + e cos (u(t,−e))] := r(t,−e)
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