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Abstract

Legged locomotion involves various gaits. It has been observed that fast running insects
(cockroaches) employ a tripod gait with three legs lifted off the ground simultaneously in swing,
while slow walking insects (stick insects) use a tetrapod gait with two legs lifted off the ground
simultaneously. Fruit flies use both gaits and exhibit a transition from tetrapod to tripod
at intermediate speeds. Here we study the effect of stepping frequency on gait transition in
an ion-channel bursting neuron model in which each cell represents a hemi-segmental thoracic
circuit of the central pattern generator. Employing phase reduction, we collapse the network of
bursting neurons represented by 24 ordinary differential equations to 6 coupled nonlinear phase
oscillators, each corresponding to a sub-network of neurons controlling one leg. Assuming that
the left and right legs maintain constant phase differences (contralateral symmetry), we reduce
from 6 equations to 3, allowing analysis of a dynamical system with 2 phase differences defined
on a torus. We show that bifurcations occur from multiple stable tetrapod gaits to a unique
stable tripod gait as speed increases. Finally, we consider gait transitions in two sets of data
fitted to freely walking fruit flies.

Key words. bifurcation, bursting neurons, coupling functions, insect gaits, phase reduction, phase
response curves, stability
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1 Introduction: idealized insect gaits

Legged locomotion involves alternating stance and swing phases in which legs respectively provide
thrust to move the body and are then raised and repositioned for the next stance phase. Insects,
having six legs, are capable of complex walking gaits in which various combinations of legs can
be simultaneously in stance and swing. However, when walking on level ground, their locomotive
behavior can be characterized by the following kinematic rules, [1, 2].
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1. A wave of protractions (swing) runs from posterior to anterior legs.

2. Contralateral legs of the same segment alternate approximately in anti-phase.

In addition, in [1], Wilson assumed that:

3. Swing duration remains approximately constant as speed increases.

4. Stance (retraction) duration decreases as speed increases.

Rules 3 and 4 have been documented in fruit flies by Mendes et. al. [3].

In the slow metachronal gait, the hind, middle and front legs on one side swing in succession
followed by those on the other side; at most one leg is in swing at any time. As speed increases, in
view of rules 3 and 4, the swing phases of contralateral pairs of legs begin to overlap, so that two
legs swing while four legs are in stance in a tetrapod gait, as observed for fruit flies in [3]. At the
highest speeds the hind and front legs on one side swing together with the contralateral middle leg
while their contralateral partners provide support in an alternating tripod gait which is typical for
insects at high speeds.

Motivated by observations and data from fruit flies, which use both tetrapod and tripod gaits, and
from cockroaches, which use tripod gaits [4], and stick insects, which use tetrapod gaits [5], our goal
is to understand the transition between these gaits and their stability properties, analytically. Our
dynamical analysis provides a mechanism that supplements the kinematic description given above.
This will allow us to distinguish tetrapod, tripod, and transition gaits precisely and ultimately to
obtain rigorous results characterizing their existence and stability. For gait transitions in vertebrate
animals, see e.g. [6, 7].

In [4], a 6-oscillator model, first proposed in [8], was used to fit data from freely running cockroaches
that use tripod gaits over much of their speed range [9]. Here, in addition to the tripod gait, we
consider tetrapod gaits and study the transitions among them and tripod gaits. We derive a 6-
oscillator model from a network of 6 bursting neurons with inhibitory nearest neighbor coupling.
After showing numerically that it can produce multiple tetrapod gaits as well as a tripod gait, we
appeal to the methods of phase reduction and bifurcation theory to study gait transitions. Our
coupling assumption is supported by studies of freely running cockroaches in [4], in which various
architectures were compared and inhibitory nearest neighbor coupling provided the best fits to data
according to Akaike and Bayesian Information Criteria (AIC and BIC). The inhibitory assumption
is motivated by the fact that neighboring oscillators’ solutions are out of phase [10].

Phase reduction is also used by Yeldesbay et. al. in [11, 12] to model stick insect locomotion
and display gait transitions. Their reduced model contains 3 ipsilateral legs and has a cyclical
coupling architecture, with a connection from hind to front segments. Here we show that the
nearest neighbor architecture also produces such gait transitions.

Our main contributions are as follows. First, we confirm that speed changes in the bursting neuron
model can be achieved by parameter variations (cf. [8, 13]) and we numerically illustrate that
increasing speed leads to transition from tetrapod to tripod gaits. We then reduce the bursting
neuron model from 24 ODEs to 2 phase difference equations and characterize coupling functions
that produce these gait transitions. We illustrate them via analysis and simulations of the 24 ODE
model and the phase difference equations, using parameters derived from fruit fly data, thereby
showing biological feasibility of the mechanisms.
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This paper is organized as follows. In Section 2, we review the ion-channel model for bursting neu-
rons which was developed in [8, 13], study the influence of the parameters on speed and demonstrate
gait transitions numerically. In Section 3, we describe the derivation of reduced phase equations,
and define tetrapod, tripod and transition gaits. At any fixed speed, we assume constant phase
differences between left- and right-hand oscillators, so that an ipsilateral network of 3 oscillators
determines the dynamics of all 6 legs. We further reduce to a pair of phase-difference equations
defined on a 2-dimensional torus. In Section 4 we prove the existence of tetrapod, tripod and
transition gaits under specific conditions on the intersegmental coupling strengths, and establish
their stability types.

In Section 5 we apply the results of Section 4 to the bursting neuron model. We show that
the form of the coupling functions, which depend upon speed, imply the existence of transition
solutions connecting tetrapod gaits to the tripod gait. In Section 6 we characterize a class of
explicit coupling functions that exhibit transitions from tetrapod gaits to the tripod gait. As an
example, we analyze phase-difference equations, using coupling functions approximated by Fourier
series and derive bifurcation diagrams via branch-following methods. In Section 7 we describe gait
transitions in a phase model with coupling strengths estimated by fitting data from freely running
fruit flies, and show that such transitions occur even when coupling strengths are far from the
special cases studied in Sections 4 and 5. We conclude in Section 8.

2 Bursting neuron model

In this section we define the bursting neuron model, describe its behavior, and illustrate the gait
transitions in a system of 24 ODEs representing 6 coupled bursting neurons.

2.1 A single neuron

CPGs in insects are networks of neurons in the thoracic and other ganglia that produce rhythmic
motor patterns such as walking, swimming, and flying. CPGs for rhythmic movements are reviewed
in e.g. [14, 15]. In this work, we employ a bursting neuron model which was developed in [13] to
model the local neural network driving each leg. This system includes a fast nonlinear current,
e.g., ICa, a slower potassium current IK , an additional very slow current IKS , and a linear leakage
current IL. The following system of ordinary differential equations (ODEs) describes the bursting
neuron model and its synaptic output s(t).

Cv̇ = −{ICa(v) + IK(v,m) + IKS(v, w) + IL(v)}+ Iext, (1a)

ṁ =
ε

τm(v)
[m∞(v)−m], (1b)

ẇ =
δ

τw(v)
[w∞(v)− w], (1c)

ṡ =
1

τs
[s∞(v)(1− s)− s], (1d)

where the ionic currents are of the following forms

ICa(v) = ḡCan∞(v)(v − ECa), IK(v,m) = ḡK m (v − EK),

IKS(v, w) = ḡKSw (v − EKS), IL(v) = ḡL(v − EL).
(2)
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The steady state gating variables associated with ion channels and their time scales take the forms

m∞(v) =
1

1 + e−2kK(v−vK)
, w∞(v) =

1

1 + e−2kKS(v−vKS)
,

n∞(v) =
1

1 + e−2kCa(v−vCa)
, s∞(v) =

a

1 + e−2ks(v−Epre
s )

,
(3)

and
τm(v) = sech (kK(v − vK)), τw(v) = sech (kKS(v − vKS)). (4)

Here the variable s represents neurotransmitter released at the synapse and the constant parameter
τs specifies the synaptic time scale. The constant parameters are generally fixed as specified in
Table 1. Most of the parameter values are taken from [13], but some of our notations are different.

δ Iext ḡCa ḡK ḡKS ḡL ḡsyn ECa EK EKS EL Eposts

δ control varies 35.6 4.4 9.0 0.19 2.0 0.01 120 -80 -80 -60 -70

Iext control 0.027 varies 4.4 9.0 0.5 2.0 0.01 120 -80 -80 -60 -70

kCa kK kKS ks vCa vK vKS Epres a C ε τs

δ control 0.056 0.1 0.8 0.11 -1.2 2 -27 2 55.56 1.2 4.9 5.56

Iext control 0.056 0.1 0.8 0.11 -1.2 2 -26 2 444.48 1.2 5.0 5.56

Table 1: The constant parameters in the bursting neuron model, as δ (first row) and Iext (second
row) vary.

Figure 1 (first row) shows the solution of Equation (1) for the parameters specified in the first row
of Table 1, and for δ = 0.02. Figure 1 (second row) shows the solution of Equation (1) for the
parameters specified in the second row of Table 1, and for Iext = 36.5. We solved the equation
using a fourth order explicit Runge-Kutta method in a custom-written code, with fixed time step,
0.001 ms and ran the simulation for 1000 ms with initial conditions:

v(0) = −70, m(0) = −10, w(0) = −4, s(0) = 2.

The periodic orbit in (v,m,w) space contains a sequence of spikes (a burst) followed by a quiescent
phase, which correspond respectively to the swing and stance phases of one leg. The burst from
the CPG inhibits depressor motoneurons, allowing the swing leg to lift from the ground [8, 10] (see
also [16, 17]). We denote the period of the periodic orbit by T , i.e., it takes T time units (ms here)
for an insect to complete the cycle of each leg. The number of steps completed by one leg per unit
of time is the stepping frequency and is equal to ω = 2π/T . The period of the limit cycles shown in
Figure 1 are approximately 202 ms and 88.57 ms, and their frequencies are approximately 4.95 Hz
and 11.29 Hz, respectively. The swing phase (SW ) is the duration of one burst and represents the
time when the leg is off the ground, and the stance phase (ST ) is the duration of the quiescence in
each periodic orbit and represents the time when the leg is on the ground. Hence, SW + ST = T .
The swing duty cycle, denoted by DC, is equal to SW/T . Note that an insect decreases its speed
primarily by decreasing its stance phase duration (see the data in [3], and the rules from [1], given
in the introduction).
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Figure 1: First row: A solution of Equation (1) for the parameters in the first row of Table 1, and
for δ = 0.02. Second row: A solution of Equation (1) for the parameters in the second row of Table
1, and for Iext = 36.5. Each case is shown for one period of the bursting process.

In what follows, we show the effect of two parameters in the bursting neuron model, δ and Iext,
on period, swing, stance and duty cycle. We will see that these parameters have a major effect on
speed; i.e., when either δ and Iext increase, the period of the periodic orbit decreases, primarily
by decreasing stance phase duration, and so the insect’s speed increases. We consider the effects
of each parameter separately but in parallel. As we study the effect of δ (resp. Iext), we fix
all other parameters as in the first (resp. second) row of Table 1. We let δ vary in the range
[δ1, δ2] = [0.0097, 0.04] and Iext vary in the range [I1, I2] = [35.65, 37.7].

2.1.1 Effect of the slowest time scale δ and external input Iext on stepping frequency

Figure 2 shows the frequency, duty cycle, stance, and swing as functions of δ. We computed these
quantities by numerically solving the bursting neuron model (1) for a fixed set of parameters (first
row of Table 1) as δ varies. As the figure depicts, as δ increases from 0.0097 to 0.04, stepping
frequency increases from approximately 2.66 Hz to 8.59 Hz, i.e., the speed of the animal increases.
Also, note that the stance and swing phase durations decrease, while the duty cycle remains
approximately constant.

We repeat the scenario with fixed parameters in the second row of Table 1 and varying Iext.
Figure 3 shows frequency, duty cycle, stance, and swing as functions of Iext. As Iext increases from
35.65 to 37.7, stepping frequency increases from approximately 6.9 Hz to 14.9 Hz. Now, the duty
cycle increases slightly, in contrast to Figure 2, while the swing duration remains approximately
constant. This is closer to the rules given in Section 1.

For the rest of the paper, we use the symbol ξ to denote the speed parameter δ or Iext. We note
that it is more realistic to use Iext as speed parameter, for the following three reasons.

1. Input currents provide a more biologically relevant control mechanism, [18].
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Figure 2: The effect of δ on frequency, duty cycle, stance, and swing in a single uncoupled bursting
neuron model. See the first row of Table 1 for parameters.

Figure 3: The effect of Iext on frequency, duty cycle, stance, and swing in a single uncoupled
bursting neuron model. See the second rows of Table 1 for parameters.

2. Swing duration remains approximately constant, as proposed in rule 3 of Section 1, while δ
affects burst duration [13].

3. The frequency range obtained is closer to that seen in fruit fly [3] and cockroach data [4].

Remark 1. We have observed that ḡKS has a similar influence on stepping frequency as δ and
Iext, but we will not study the effects of this parameter on gait transition in this paper.

2.2 Weakly interconnected neurons

2

3

4

5

6

c1

c2

c3

c4c4 c5c5

c6c6 c7c7

1

Figure 4: Network of CPGs

We now consider a network of six mutually inhibiting units, repre-
senting the hemi-segmental CPG networks contained in the insect’s
thorax, as shown in Figure 4. We assume that inhibitory coupling is
achieved via synapses that produce negative postsynaptic currents.
The synapse variable s enters the postsynaptic cell in Equation (1a)
as an additional term, Isyn,

Cv̇i = −{ICa + IK + IKS + IL}+ Iext + Isyn , (5)

where

Isyn =
∑
j∈Ni

Isyn(vi, sj) =
∑
j∈Ni

−c̄jiḡsynsj
(
vi − Eposts

)
, (6)
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ḡsyn denotes the synaptic strength, and Ni denotes the set of the nodes adjacent to node i. The
multiplicative factor c̄ji accounts for the fact that multiple bursting neurons are interconnected
in the real animals, and −c̄jiḡsyn represents an overall coupling strength between hemi-segments.
Following [4] we assume contralateral symmetry and include only nearest neighbor coupling, so
that there are three contralateral coupling strengths c1, c2, c3 and four ipsilateral coupling strengths
c4, c5, c6, and c7; see Figure 4. For example, c̄21 = c5, c̄41 = c1, etc. Furthermore, we assume that
all connections are inhibitory, i.e., −ciḡsyn < 0, therefore, all the ci’s are positive.

A system of 24 equations describes the dynamics of the 6 coupled cells in the network as shown in
Figure 4. We assume that each cell which is governed by Equation (1), represents one leg of the
insect. Cells 1, 2, and 3 represent right front, middle, and hind legs, and cells 4, 5, and 6 represent
left front, middle, and hind legs, respectively. For example, assuming that each cell is described
by (vi,mi, wi, si)

T , i = 1, . . . , 6, the synapses from presynaptic cells 2 and 4, denoted by s2 and s4,
respectively, enter the postsynaptic cell 1. The following system of 4 ODEs describe the dynamics
of cell 1 when connected to cells 2 and 4:

Cv̇1 = −{ICa(v1) + IK(v1,m1) + IKS(v1, w1) + IL(v1)}+ Iext

− c1ḡsyns4(v1 − Eposts )− c5ḡsyns2(v1 − Eposts ),

ṁ1 =
ε

τm(v1)
[m∞(v1)−m1],

ẇ1 =
δ

τw(v1)
[w∞(v1)− w1],

ṡ1 =
1

τs
[s∞(v1)(1− s1)− s1],

(7)

where c1 and c5 are the coupling strengths from cell 4 and cell 2 to cell 1, respectively. Note
that we assume contralateral symmetry, so the coupling strength from cell 1 to cell 4 is equal to
the coupling strength from cell 4 to cell 1, etc. Five sets, each of analogous ODEs, describe the
dynamics of the other five legs. Moreover, unlike the front and hind legs, the middle leg cells are
connected to three neighbors; see Figure 4. Thus, the full model is described by 24 ODEs.

2.3 Tetrapod and tripod gaits

In this section, we show numerically the gait transition from tetrapod to tripod as the speed
parameter ξ increases. An insect is said to move in a tetrapod gait if at each step two legs swing
in synchrony while the remaining four are in stance. The following four patterns are possible.

1. Forward right tetrapod: (R2, L3), (R1, L2), (R3, L1).

2. Forward left tetrapod: (R2, L1), (R1, L3), (R3, L2).

3. Backward right tetrapod: (R2, L3), (R3, L1), (R1, L2).

4. Backward left tetrapod: (R2, L1), (R3, L2), (R1, L3).

Here R1, R2, R3 denote the right front, middle and hind legs, and L1, L2, L3 denote the left front,
middle and hind legs, respectively. The legs in each pair swing simultaneously, and touchdown of
the legs in each pair coincides with lift off of the next pair. For example, in (R1, L3), the right front
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leg and left hind legs are in synchrony, etc. Figure 5 (left) shows cartoons of an insect executing
one cycle of the forward and backward tetrapod gaits, in which each leg completes one swing and
one stance phase.Tetra_right_forward_cartoon

R2

R1

R3L3

L2

L1

L3

L2

L1

R2

R1

R3

Tetra_left_forward_cartoon

R2

R3

R1

R3

R2

R1

L3

L2

L1

L3

L2

L1

Tetra_right_backward_cartoon

R2

R1

R3L3

L2

L1

L3

L2

L1

R2

R1

R3

Tetra_left_backward_cartoon

R2

R3

R1

R3

R2

R1

L3

L2

L1

L3

L2

L1

Tripod_cartoon

R2

R1

R3L3

L2

L1

L3

L2

L1

R2

R1

R3

Figure 5: (Left to right) one cycle of forward right, forward left, backward right, backward left
tetrapod gaits, and a tripod gait are shown. The diagonal lines connect legs that swing together;
arrows indicate forward (resp. backward) waves.

In forward gaits, a forward wave of swing phases from hind to front legs causes a movement, while
in backward gaits, the swing phases pass from front to hind legs. In right gaits, the right legs
lead while in left gaits the left legs lead. We will exhibit a gait transition from forward right
tetrapod to tripod as Iext varies, and a gait transition from forward left tetrapod to tripod as δ
varies. Backward gaits have not been observed in forward walking; however, see Figure 29 and the
corresponding discussion in the text.

An insect is said to move in a tripod gait (also called alternating tripod), when the following triplets
of legs swing simultaneously, and touchdown of each triplet coincides with lift off of the other.

(R1, L2, R3), (L1, R2, L3).

Figure 5 (right) shows a cartoon of an insect executing one cycle of the tripod gait, in which each
leg completes one swing and one stance phase.

Figure 6 depicts a gait transition from a forward right tetrapod to a tripod in the bursting neuron
model as Iext increases (first column) and from a forward left tetrapod to a tripod as δ increases
(second column), and for a fixed set of parameters, initial conditions, and coupling strengths ci as
given below. Figure 7 shows the corresponding voltages. Coupling strengths ci are fixed at the
following values for the simulations shown in Figures 6 and 7:

c1 = c2 = c3 = c4 = 1, c5 = c6 = 3, c7 = 2. (8)

In the simulations shown in first column of Figure 6 (as Iext varies), the 24 initial conditions for
the 24 ODEs are equal to

v1(0) = −31.93, v2(0) = −38.55, v3(0) = −23.83, v4(0) = −24.12, v5(0) = −31.93, v6(0) = −38.55,
(9)

and for i = 1, · · · , 6, mi, wi, and si take their steady state values as in Equation (11). We computed
the solutions up to time t = 4000 ms but only show the time window [3750, 4000], after transients
have died out. In the simulations shown in second column of Figure 6 (as δ varies), the 24 initial
conditions for the 24 ODEs are equal to

v1(0) = −10, v2(0) = −40, v3(0) = −30, v4(0) = −40, v5(0) = 5, v6(0) = 20, (10)
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Figure 6: Interconnected bursting neuron model: gait transitions from forward right tetrapod to
tripod as Iext increases, Iext = 35.9, 36.2, 37.0 (left column, top to bottom), and from forward left
tetrapod to tripod as δ increases, δ = 0.01, 0.019, 0.03 (right column, top to bottom). Width of
horizontal bars indicate swing durations. Note the transitional gaits with partial overlap of swing
durations in the middle row.

and for i = 1, · · · , 6, mi, wi, and si take their steady state values:

mi(0) = m∞(vi(0)), wi(0) = w∞(vi(0)), si(0) =
s∞(vi(0))

s∞(vi(0)) + 1
. (11)

We computed solutions up to time t = 5000 ms but only show the time window [4000, 5000], after
transients have died out.

Our goal is to show that, for the fixed set of parameters in Table 1, and appropriate coupling
strengths ci, as the speed parameter ξ, Iext or δ, increases, a gait transition from (forward) tetrapod
to tripod gait occurs. We will provide appropriate conditions on the ci’s in Section 4. To reach
our goal we first need to define the tetrapod and tripod gaits mathematically. To this end, in the
following section, we reduce the interconnected bursting neuron model to 6 interconnected phase
oscillators, each describing one leg’s cyclical movement.

3 A phase oscillator model

In this section, we apply the theory of weakly coupled oscillators (see Section 9) to the coupled
bursting neuron models to reduce the 24 ODEs to 6 phase oscillator equations. For a comprehensive
review of oscillatory dynamics in neuroscience with many references see [19].
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Figure 7: The corresponding voltages for the gaits presented in Figure 6. Color code matches that
for legs in Figure 6. Note that some traces are hidden due to in-phase bursts.

3.1 Phase equations for a pair of weakly coupled oscillators

Let the ODE
Ẋ = f(X), X ∈ Rn, (12)

describe the dynamics of a single neuron. In our model, X = (v,m,w, s)T and f(X) is as the right
hand side of Equations (1). Assume that Equation (12) has an attracting hyperbolic limit cycle
Γ = Γ(t), with period T and frequency ω = 2π/T .

Now consider the system of weakly coupled identical neurons

Ẋ1 = f(X1) + εg(X1, X2),

Ẋ2 = f(X2) + εg(X2, X1),
(13)

where 0 < ε � 1 is the coupling strength and g is the coupling function. The phase of a neuron,
denoted by φ, is the time that has elapsed as its state moves around Γ, starting from an arbitrary
reference point in the cycle. For each neuron, the phase equation is:

dφi
dt

(t) = ω + εH(φj(t)− φi(t)), (14)

where

H = H(θ) =
1

T

∫ T

0
Z(Γ(t̃)) · g(Γ(t̃),Γ(t̃+ θ)) dt̃,

is the coupling function: the convolution of the synaptic current input to the neuron via coupling g
and the neuron’s infinitesimal phase response curve (iPRC), Z. For more details see the Appendix
(Section 9).
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In the interconnected bursting neuron model, the coupling function g is defined as follows.

g(xi, xj) =
(
−ḡsynsj

(
vi − Eposts

)
, 0, 0, 0

)T
, (15)

where xi = (vi,mi, wi, si)
T represents a single neuron (cf. Equations (5)-(7)). Therefore, Z · g =

−Zv ḡsynsj
(
vi − Eposts

)
, where Zv is the iPRC in the direction of voltage (Figures 8 and 9 (first

rows)), and the coupling function, denoted by HBN , takes the following form:

HBN (θ) = − ḡsyn
T

∫ T

0
Zv(Γ(t̃))

(
vi(Γ(t̃))− Eposts

)
sj
(
Γ(t̃+ θ)

)
dt̃. (16)

In Figures 8 and 9 (second rows), we show the coupling functions HBN derived in Equation (16)
for two different values of δ and Iext, respectively. Note that HBN (θ) < 0 over most of its range,
and in particular over the interval [T/3, 2T/3] corresponding to tetrapod and tripod gaits. Here
and for the remainder of the paper, coupling functions are plotted with domain [0, 1], although we
continue to specify the period T and stepping frequency ω = 2π/T in referring to gaits in the text.

Similar iPRCs to ours have been obtained for the non-spiking half center oscillator model used by
Yeldesbay et. al. [12], apart from in the region of the burst (personal communication).

Figure 8: First row: iPRC (in the direction of v) for δ = 0.0097 (left), δ = 0.03 (right). Second
row: the coupling functions HBN (θ) for δ = 0.0097 (left), δ = 0.03 (right)

3.2 Phase equations for six weakly coupled neurons

We now apply the techniques from Section 3.1 to six coupled neurons and derive the 6-coupled
phase oscillator model via phase reduction. We assume that all six hemi-segmental units have
the same intrinsic (uncoupled) frequency ω and that the coupling functions Hi are all identical
(Hi = H) and T-periodic, T = 2π/ω. Recalling Equation (14) for a pair of neurons, this leads to
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Figure 9: First row: iPRC (in the direction of v) for Iext = 35.9 (left), Iext = 37.1 (right). Second
row: the coupling functions HBN (θ) for Iext = 35.9 (left), Iext = 37.1 (right).

the following system of ODEs describing the six legs’ motions.

φ̇1 = ω + c1H(φ4 − φ1) + c5H(φ2 − φ1),

φ̇2 = ω + c2H(φ5 − φ2) + c4H(φ1 − φ2) + c7H(φ3 − φ2),

φ̇3 = ω + c3H(φ6 − φ3) + c6H(φ2 − φ3),

φ̇4 = ω + c1H(φ1 − φ4) + c5H(φ5 − φ4),

φ̇5 = ω + c2H(φ2 − φ5) + c4H(φ4 − φ5) + c7H(φ6 − φ5),

φ̇6 = ω + c3H(φ3 − φ6) + c6H(φ5 − φ6).

(17)

Oscillators 1, 2, and 3 drive the front, middle, and hind legs on the right with phases φ1, φ2, and
φ3, and oscillators 4, 5, and 6 drive the analogous legs on the left with phases φ4, φ5, and φ6

(φi ∈ [0, T )). Note that the derivation of the phase reduced system in Section 3.1 assumes that the
coupling strength ε is small, implying that the product of the coefficients ci and H in Equations (17)
should be small compared to the uncoupled frequency ω. Since H includes ḡsyn, (Equation (16))
and ḡsyn = 0.01, (Table 1), we have H = O(0.1) (Figures 8 and 9). In the examples studied below
we will take ci = O(1).

Next, we provide sufficient conditions such that an insect employs a tetrapod gait at low speeds and
a tripod gait at high speeds. We first define idealized tetrapod and tripod gaits mathematically.

Definition 1 (Tetrapod and tripod gaits). We define four versions of tetrapod gaits as follows.
Each gait corresponds to a T -periodic solution of Equation (17). In each version two legs swing
simultaneously in the sequences indicated in braces, and all six oscillators share the common coupled
stepping frequency ω̂.

1. Forward right tetrapod gait AFR, {(R2, L3), (R1, L2), (R3, L1)}, corresponds to

AFR :=

(
ω̂t+

2T

3
, ω̂t, ω̂t+

T

3
; ω̂t+

T

3
, ω̂t+

2T

3
, ω̂t

)
.

2. Forward left tetrapod gait AFL, {(R2, L1), (R1, L3), (R3, L2))}, corresponds to

AFL :=

(
ω̂t+

2T

3
, ω̂t, ω̂t+

T

3
; ω̂t, ω̂t+

T

3
, ω̂t+

2T

3

)
.
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3. Backward right tetrapod gait ABR, {(R2, L3), (R3, L1), (R1, L2)}, corresponds to

ABR :=

(
ω̂t+

T

3
, ω̂t, ω̂t+

2T

3
; ω̂t+

2T

3
, ω̂t+

T

3
, ω̂t

)
.

4. Backward left tetrapod gait ABL, {(R2, L1), (R3, L2), (R1, L3)}, corresponds to

ABL :=

(
ω̂t+

T

3
, ω̂t, ω̂t+

2T

3
; ω̂t, ω̂t+

2T

3
, ω̂t+

T

3

)
.

Finally the tripod gait ATri, {(R1, L2, R3), (R2, L1, L3)}, corresponds to

ATri :=

(
ω̂t+

T

2
, ω̂t, ω̂t+

T

2
; ω̂t, ω̂t+

T

2
, ω̂t

)
.

The frequency ω̂ will be determined later in Proposition 2. Depending on the sign of the coupling,
ciH, ω̂ is either larger or smaller than ω. Since we assumed that all the connections are inhibitory,
ciH(φ) < 0 in the relevant range [T/3, 2T/3], and therefore ω̂ < ω.

Note that in both tetrapod and tripod gaits, the phase difference between the left and right legs in
each segment is constant and is either equal to T/3 or 2T/3 (in tetrapod gaits) or T/2 (in tripod
gaits).

We would like to show that Equations (17) admit a stable solution at AFR or AFL corresponding
to a forward right or left tetrapod gait, respectively, when the speed parameter ξ (representing
either δ or Iext) is “small,” and a stable solution at ATri corresponding to a tripod gait, when the
speed parameter ξ is “large.” Since we are interested in studying the effect of the speed parameter
ξ on gait transition, we let the coupling function H and the frequency ω depend on ξ and write
H = H(φ; ξ) and ω = ω(ξ).

Definition 2 (Transition gaits). For any fixed number η ∈ [0, T/6], the forward right and forward
left transition gaits, AFR(η) and AFL(η) respectively, are as follows.

AFR(η) :=

(
ω̂t+

2T

3
− η, ω̂t, ω̂t+

T

3
+ η; ω̂t+

T

3
− 2η, ω̂t+

2T

3
− η, ω̂t

)
, (18a)

AFL(η) :=

(
ω̂t+

2T

3
− η, ω̂t, ω̂t+

T

3
+ η; ω̂t, ω̂t+

T

3
+ η, ω̂t+

2T

3
+ 2η

)
. (18b)

We call AFR(η) and AFL(η) “transition gaits” since as η varies from 0 to T/6, AFR(η) (resp.
AFL(η)) transits from the forward right (resp. left) tetrapod gait to the tripod gait. For η = 0,
AFR(0) = AFR corresponds to the forward right tetrapod gait, and AFL(0) = AFL corresponds to
the forward left tetrapod gait. Also for η = T/6, AFR(T/6) = AFL(T/6) = ATri corresponds to
the tripod gait. In addition, the phase differences between the left and right legs (φ4 − φ1, φ5 −
φ2, φ6 − φ3), are constant and equal to 2T/3 − η in AFR(η), and T/3 + η in AFL(η). This value
is equal to 2T/3 (resp. T/3) when η = 0, as in the forward right (resp. left) tetrapod gait, and is
equal to T/2, when η = T/6, as in the tripod gait.
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We further assume that the phase differences between the left and right legs are equal to the steady
state phase differences in AFR(η) or AFL(η) (later we will see that there are no differences between
these two choices), i.e., we assume that for a fixed η, and for any i = 1, 2, 3,

φi+3 = φi + φ̄(η), (19)

where φ̄(η) = 2T/3 − η or φ̄(η) = T/3 + η. For steady states, this assumption is supported by
experiments for tripod gaits [4], where φ̄(η) = T/2, and by simulations for tripod and tetrapod
gaits in the bursting neuron model, Figures 6 and 7. We make a further simplifying assumption
that the steady state contralateral phase differences remain constant for all t.

Thus, assuming that the phase difference between the left and right legs φi+3 − φi = φ̄(η) =
2T/3− η or φ̄(η) = T/3 + η, and noting that since H = H(φ; ξ) is T -periodic in its first argument,
φi − φi+3 = −φ̄(η) = T/3 + η or 2T/3 − η (recall that −2T/3 = T/3 mod T ), we can rewrite
Equation (17) for the forward right transition gait AFR(η) as follows.

φ̇1 = ω(ξ) + c1H

(
2T

3
− η; ξ

)
+ c5H(φ2 − φ1; ξ), (20a)

φ̇2 = ω(ξ) + c2H

(
2T

3
− η; ξ

)
+ c4H(φ1 − φ2; ξ) + c7H(φ3 − φ2; ξ), (20b)

φ̇3 = ω(ξ) + c3H

(
2T

3
− η; ξ

)
+ c6H(φ2 − φ3; ξ), (20c)

φ̇4 = ω(ξ) + c1H

(
T

3
+ η; ξ

)
+ c5H(φ5 − φ4; ξ), (20d)

φ̇5 = ω(ξ) + c2H

(
T

3
+ η; ξ

)
+ c4H(φ4 − φ5; ξ) + c7H(φ6 − φ5; ξ), (20e)

φ̇6 = ω(ξ) + c3H

(
T

3
+ η; ξ

)
+ c6H(φ5 − φ6; ξ). (20f)

A similar equation is obtained for AFL(η) as follows.

φ̇1 = ω(ξ) + c1H

(
T

3
+ η; ξ

)
+ c5H(φ2 − φ1; ξ), (21a)

φ̇2 = ω(ξ) + c2H

(
T

3
+ η; ξ

)
+ c4H(φ1 − φ2; ξ) + c7H(φ3 − φ2; ξ), (21b)

φ̇3 = ω(ξ) + c3H

(
T

3
+ η; ξ

)
+ c6H(φ2 − φ3; ξ), (21c)

φ̇4 = ω(ξ) + c1H

(
2T

3
− η; ξ

)
+ c5H(φ5 − φ4; ξ), (21d)

φ̇5 = ω(ξ) + c2H

(
2T

3
− η; ξ

)
+ c4H(φ4 − φ5; ξ) + c7H(φ6 − φ5; ξ), (21e)

φ̇6 = ω(ξ) + c3H

(
2T

3
− η; ξ

)
+ c6H(φ5 − φ6; ξ). (21f)

Although we are interested in gait transitions in the bursting neuron model and in the phase reduc-
tion equations derived from the bursting neuron model, we prove our results for more general H.
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Our goal is to provide sufficient conditions on the coupling function H and the coupling strengths
ci that guarantee for any η ∈ [0, T/6], AFR(η) or AFL(η) is a stable solution of Equations (20)
and (21). To this end, in the following section we reduce the 6 equations (20a)-(20f) and the 6
equations (21a)-(21f) to 2 equations on a 2-torus. The coupling strengths ci may also depend on
the speed parameter ξ (see Section 7 below). For the rest of the paper, we assume that ci depends
on ξ, ci = ci(ξ), but for simplicity, we drop the argument ξ.

3.3 Phase differences model

In this section, the goal is to reduce the 6 equations (20a)-(20f) and the 6 equations (21a)-(21f) to
2 equations on a 2-torus. To this end, we assume the following condition for the coupling function
H.

Assumption 1. Assume that H = H(θ; ξ) is a differentiable function, defined on R× [ξ1, ξ2] which
is T -periodic on its first argument and has the following property. For any fixed ξ ∈ [ξ1, ξ2],

H

(
2T

3
− η; ξ

)
= H

(
T

3
+ η; ξ

)
, (22)

has a unique solution η(ξ) such that η = η(ξ) : [ξ1, ξ2] → [0, T/6] is an onto and non-decreasing
function. Note that Equation (22) is also trivially satisfied by the constant solution η = T/6.

For the rest of the paper, we assume that the coupling function H satisfies Assumption 1. In
Proposition 9, Section 6, we characterize a class of functions H, that guarantee solutions of Equa-
tion (22). Also, we will show that the coupling functions HBN derived from the bursting neuron
model satisfy Assumption 1, see Figures 8 and 9, and Section 5 below.

Using Equations (19) and (22), Equations (20) and (21) can be reduced to the following 3 equations
describing the right legs’ motions:

φ̇1 = ω(ξ) + c1H

(
2T

3
− η; ξ

)
+ c5H(φ2 − φ1; ξ), (23a)

φ̇2 = ω(ξ) + c2H

(
2T

3
− η; ξ

)
+ c4H(φ1 − φ2; ξ) + c7H(φ3 − φ2; ξ), (23b)

φ̇3 = ω(ξ) + c3H

(
2T

3
− η; ξ

)
+ c6H(φ2 − φ3; ξ). (23c)

Because only phase differences appear in the vector field, we may define

θ1 := φ1 − φ2 and θ2 := φ3 − φ2,

so that the following equations describe the dynamics of θ1 and θ2:

θ̇1 = (c1 − c2)H

(
2T

3
− η; ξ

)
+ c5H(−θ1; ξ)− c4H(θ1; ξ)− c7H(θ2; ξ), (24a)

θ̇2 = (c3 − c2)H

(
2T

3
− η; ξ

)
+ c6H(−θ2; ξ)− c4H(θ1; ξ)− c7H(θ2; ξ). (24b)

Note that Equations (24) are T -periodic in both variables, i.e., (θ1, θ2) ∈ T2, where T2 is a 2-torus.
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In Equations (24), the tripod gait ATri corresponds to the fixed point (T/2, T/2), the forward
tetrapod gaits, AFR and AFL, correspond to the fixed point (2T/3, T/3), and the transition gaits,
AFR(η) and AFL(η), correspond to (2T/3 − η, T/3 + η). Note that since AFR(η) and AFL(η)
correspond to the same fixed point on the torus, we may assume the contralateral phase differences
to be equal to φi+3 − φi = 2T/3 − η or T/3 + η. See [20] for another example of conditions on
coupling functions that produce specific phase differences.

3.4 Qualitative behavior of the solutions of phase difference equations

In this section, as an example, we illustrate the nullclines and phase plane of Equations (24) with
H = HBN and the coupling strengths as follows.

c1 = 1, c2 = 2.5, c3 = 1.5, c4 = 5, c5 = 7.5, c6 = 7, c7 = 1. (25)

Here and henceforth, in all the simulations, we normalize the range of the coupling function HBN

and so the torus is represented by a 1× 1 square. For example (2T/3, T/3) is shown by a point at
(2/3, 1/3), etc. To obtain phase portraits we solved Equations (24) using the fourth order Runge-
Kutta method with fixed time step 0.001 ms and ran the simulation up to 100 ms with multiple
initial conditions.

Figure 10 (left to right) shows the nullclines and phase planes of Equations (24) with H = HBN

computed in Figure 8(left), for a small δ = 0.0097 and Figure 8(right), for a large δ = 0.03,
respectively. Intersections of the nullclines indicate the location of fixed points. We observe that
for small δ, the fixed points (2/3, 1/3) (corresponding to the forward tetrapod) and (1/3, 2/3)
(corresponding to the backward tetrapod) are stable, while (1/2, 1/2) (corresponding to the tripod)
is unstable. For larger δ, the two tetrapod gaits merge to (1/2, 1/2), which becomes a sink.

Figure 10: (Left to right) Nullclines and phase planes of Equations (24) when ci’s satisfy Equa-
tion (25), and δ = 0.0097 and 0.03, respectively. For computation of coupling functions, all bursting
neuron parameters are as in the first rows of Table 1.

In the following sections we will address existence and stability of these fixed points and associated
gaits and explore nonlinear phenomena involved in gait transitions.
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4 Existence and stability of tetrapod and tripod gaits

We now prove that, under suitable conditions on the coupling functions and coupling strengths,
multiple fixed points exist for Equations (24) and we derive explicit expressions for eigenvalues of
the linearized system at these fixed points.

4.1 Existence with balance condition

We first provide conditions on the coupling strengths ci such that Equations (24) admit a stable
fixed point at (θ1

1, θ
1
2) := (2T/3− η, T/3 + η), for any η ∈ [0, T/6].

Proposition 1. If the coupling strengths ci satisfy the following relations

c1 + c5 = c2 + c4 + c7 = c3 + c6, (26)

then for any η ∈ [0, T/6], Equations (24) admit a fixed point at (θ1
1, θ

1
2) = (2T/3 − η, T/3 + η).

Note that (θ1
1, θ

1
2) = (2T/3−η, T/3+η) corresponds to forward tetrapod (η = 0), forward transition

(0 < η < T/6), and tripod (η = T/6) gaits. In addition, if the following inequalities hold, then the
fixed point is stable.

Tr := −(c5 + c7)H ′
(
T

3
+ η; ξ

)
− (c4 + c6)H ′

(
2T

3
− η; ξ

)
< 0, (27a)

Det := c5c6H
′
(
T

3
+ η; ξ

)
H ′
(

2T

3
− η; ξ

)
+ c4c6

[
H ′
(

2T

3
− η; ξ

)]2

+ c5c7

[
H ′
(
T

3
+ η; ξ

)]2

> 0.

(27b)

Equation (26) is called the balance equation; it expresses the fact that the sum of the coupling
strengths entering each leg are equal. The equalities were assumed, without biological support,
in [8], and were subsequently found to approximately hold for fast running cockroaches in [4,
Figure 9c], according to the best data fits, judged by AIC and BIC, as reported in that paper.

Proof. Since by Equation (22), H(2T/3− η; ξ) = H(T/3 + η; ξ), and

−(T/3 + η) = 2T/3− η mod T ,

the right hand sides of Equations (24) at (θ1
1, θ

1
2) = (2T/3− η, T/3 + η) are

(c1 − c2 + c5 − c4 − c7)H

(
T

3
+ η; ξ

)
, (28a)

(c3 − c2 + c6 − c4 − c7)H

(
T

3
+ η; ξ

)
, (28b)

which both are zero by Equations (26). Therefore, (θ1
1, θ

1
2) is a fixed point of Equations (24).

To study the stability of (θ1
1, θ

1
2), we consider the linearization of Equations (24) and evaluate the

Jacobian of their right hand side at (θ1
1, θ

1
2) = (2T/3− η, T/3 + η):

J1 = −

 c5H
′ (T

3 + η; ξ
)

+ c4H
′ (2T

3 − η; ξ
)

c7H
′ (T

3 + η; ξ
)

c4H
′ (2T

3 − η; ξ
)

c6H
′ (2T

3 − η; ξ
)

+ c7H
′ (T

3 + η; ξ
)
 , (29)
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where H ′ stands for the derivative dH/dθ. A calculation shows that the trace and the determinant
of J1 at (θ1

1, θ
1
2) are as in Equation (27). Since Tr < 0 and Det > 0, both eigenvalues of J1 have

negative real parts and (θ1
1, θ

1
2) is a stable fixed point of Equations (24).

Corollary 1. Assume that (θ1
1, θ

1
2) = (2T/3− η, T/3 + η) is a fixed point of Equations (24). Then,

• (θ2
1, θ

2
2) = (T/3 + η, T/3 + η),

• (θ3
1, θ

3
2) = (T/3 + η, 2T/3− η) which corresponds to a backward transition gait; and

• (θ4
1, θ

4
2) = (2T/3− η, 2T/3− η),

are also fixed points of Equations (24).

Proof. Since −(T/3+η) = 2T/3−η mod T and by Equation (22), H(2T/3−η; ξ) = H(T/3+η, ; ξ),
the right hand sides of Equations (24) at (θ1

1, θ
1
2) = (2T/3− η, T/3 + η) are equal to the right hand

sides of Equations (24) at (θi1, θ
i
2), i = 2, 3, 4, and both are therefore equal to zero.

Remark 2. Besides the four fixed points (θi1, θ
i
2), i = 1, 2, 3, 4, and depending on their stability

types, Equations (24) may or may not admit more fixed points. By the Euler characteristic [21,
Section 1.8], the sum of the indices of all the fixed points on a 2-torus must be zero; thus allowing
us to infer the existence of additional fixed points.

Next we determine the coupled stepping frequency ω̂ such that the transition gaits defined in
Equations (18) become solutions of Equations (20).

Proposition 2. If the coupling strengths ci satisfy Equations (26) and (27), then for any η ∈
[0, T/6], Equations (20) admit the following stable T -periodic solutions

AFR(η) :=

(
ω̂t+

2T

3
− η, ω̂t, ω̂t+

T

3
+ η; ω̂t+

T

3
− 2η, ω̂t+

2T

3
− η, ω̂t

)
, (30a)

AFL(η) :=

(
ω̂t+

2T

3
− η, ω̂t, ω̂t+

T

3
+ η; ω̂t, ω̂t+

T

3
+ η, ω̂t+

2T

3
+ 2η

)
, (30b)

where the coupled stepping frequency ω̂ = ω̂(ξ), satisfies

ω̂ = ω(ξ)+(c1+c5)H

(
2T

3
− η; ξ

)
= ω(ξ)+(c2+c4+c7)H

(
2T

3
− η; ξ

)
= ω(ξ)+(c3+c6)H

(
2T

3
− η; ξ

)
.

Proof. By the definition of ω̂, and using Equation (22), it can be seen that both AFR(η) and
AFL(η) are T -periodic solutions of Equations (20). To check the stability of these solutions, we
linearize the right hand side of Equations (20) at AFR(η) and AFL(η) to obtain

J2 =

(
A 0
0 A

)
,

where 0 represents a 3× 3 zero matrix and

A =


−c5H

′ (T
3 + η; ξ

)
c5H

′ (T
3 + η; ξ

)
0

c4H
′ (2T

3 − η; ξ
)
−c4H

′ (2T
3 − η; ξ

)
− c7H

′ (T
3 + η; ξ

)
c7H

′ (T
3 + η; ξ

)
0 c6H

′ (2T
3 − η; ξ

)
−c6H

′ (2T
3 − η; ξ

)

 .
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Note that since we assumed a constant contralateral symmetry between the right and left legs in
Equations (20), these sets of legs are effectively decoupled and hence J2 is a block diagonal matrix.

Some calculations show that the characteristic polynomial of A is

g(λ) = −λf(λ),

where
f(λ) = λ2 − Trλ+ Det,

is the characteristic polynomial of J1 (Equation (29)) and Tr and Det are defined in Equations (27).
The non-zero eigenvalues of A therefore have the same stability properties as the non-zero eigen-
values of J2, and Equations (27) guarantee the stability of both AFR(η) and AFL(η), up to overall
shifts in phase

φi → φi + φ̄R, for i = 1, 2, 3, and φi → φi + φ̄L, for i = 4, 5, 6,

that correspond to the two zero eigenvalues of J2.

Remark 3. The balance condition Equation (26) is sufficient for the existence of tripod or tetrapod
gaits. In Section 7, we will show the existence of such gaits for coupling strengths which approximate
balance and also which are far from balance.

4.2 Existence with balance condition and equal contralateral couplings

In Proposition 1, we provided sufficient conditions for the stability of tetrapod gaits when the
coupling strengths satisfy the balance condition, Equation (26).

In this section, in addition to the balance condition, we assume that c1 = c2 = c3. Then under some
extra conditions on ci’s and H, we show that for any η ∈ [0, T/6], the fixed point (2T/3−η, T/3+η)
is stable. The reason that we are interested in the assumption c1 = c2 = c3 is the following estimated
coupling strengths from fruit fly data [22]. We will return to this data set in Section 7.

c1 = 2.9145, c2 = 2.5610, c3 = 2.6160, c4 = 2.9135, c5 = 5.1800, c6 = 5.4770, c7 = 2.6165.

In this set of data, the ci’s approximately satisfy the balance condition and also

c1 ≈ c2 ≈ c3, c5 ≈ c4 + c7 ≈ c6.

Proposition 3. Assume that the coupling strengths ci satisfy Equation (26) and c1 = c2 = c3.
Also assume that ∀η ∈ [0, T/6], H ′ = dH/dθ satisfies

H ′
(
T

3
+ η; ξ

)
+H ′

(
2T

3
− η; ξ

)
> 0. (31)

Let α and αmax be as follows:

α :=
c4

c4 + c7
, αmax :=

H ′
(
T
3 + η; ξ

)
H ′
(
T
3 + η; ξ

)
−H ′

(
2T
3 − η; ξ

) . (32)
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If

(αmax − α)

(
H ′
(
T

3
+ η; ξ

)
−H ′

(
2T

3
− η; ξ

))
> 0, (33)

then (θ1
1, θ

1
2) = (2T/3− η, T/3 + η) is a stable fixed point of Equations (24) and if

(αmax − α)

(
H ′
(
T

3
+ η; ξ

)
−H ′

(
2T

3
− η; ξ

))
< 0, (34)

then (θ1
1, θ

1
2) = (2T/3− η, T/3 + η) is a saddle point.

Proof. Using the assumption c1 = c2 = c3 and Equation (26), the following relations among the
coupling strengths hold:

c1 = c2 = c3, c5 = c4 + c7 = c6. (35)

Letting

α :=
c4

c4 + c7
, (0 < α < 1), (36)

and making a change of time variable that eliminates c5, Equations (24) become

θ̇1 = H(−θ1; ξ)− αH(θ1; ξ)− (1− α)H(θ2; ξ), (37a)

θ̇2 = H(−θ2; ξ)− αH(θ1; ξ)− (1− α)H(θ2; ξ). (37b)

Consider the linearization of Equation (37) at (θ1, θ2):

J3(θ1, θ2) = −

 H ′(−θ1; ξ) + αH ′(θ1; ξ) (1− α)H ′(θ2; ξ)

αH ′(θ1; ξ) H ′(−θ2; ξ) + (1− α)H ′(θ2; ξ)

 .

Standard calculations show that the eigenvalues of J3 at (θ1
1, θ

1
2) = (2T/3− η, T/3 + η) are

λ1
1 = −H ′

(
2T

3
− η; ξ

)
−H ′

(
T

3
+ η; ξ

)
, and λ1

2 = −(1−α)H ′
(
T

3
+ η; ξ

)
−αH ′

(
2T

3
− η; ξ

)
.

By Equation (31), H ′
(

2T
3 − η; ξ

)
+ H ′

(
T
3 + η; ξ

)
> 0, hence λ1

1 < 0. A calculation shows that

λ1
2 < 0 if H ′

(
T
3 + η; ξ

)
− H ′

(
2T
3 − η; ξ

)
> 0 and α < αmax or H ′

(
T
3 + η; ξ

)
− H ′

(
2T
3 − η; ξ

)
< 0

and α > αmax. Therefore, if Inequality (33) holds, then (θ1
1, θ

1
2) = (2T/3 − η, T/3 + η) is a stable

fixed point. Otherwise, (θ1
1, θ

1
2) = (2T/3− η, T/3 + η) is a saddle point.

In the following corollary, assuming that Equation (31) holds and H ′ (2T/3− η; ξ) < 0, we verify
the stability types of the other fixed points introduced in Corollary 1 (in Section 5 we will see that
the coupling function computed for the bursting neuron model satisfies both of these assumptions):

Proposition 4. Assume that for some η ∈ [0, T/6], Equation (31) holds and H ′ (2T/3− η; ξ) < 0.
Then

1.
(
θ2

1, θ
2
2

)
= (T/3 + η, T/3 + η) is a saddle point.
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2.
(
θ3

1, θ
3
2

)
= (T/3 + η, 2T/3− η), which corresponds to a backward tetrapod gait, is a sink if

α > αmin :=
H ′
(

2T
3 − η; ξ

)
H ′
(

2T
3 − η; ξ

)
−H ′

(
T
3 + η; ξ

) , (38)

and a saddle point if αmin > 0 and α < αmin.

3.
(
θ4

1, θ
4
2

)
= (2T/3− η, 2T/3− η) is a sink.

Proof. Note that for any i = 1, . . . , 4, the fixed point
(
θi1, θ

i
2

)
either lies on the line θ1 = θ2 or on

the line θ1 = −θ2.

1. The eigenvalues of J3 at
(
θ2

1, θ
2
2

)
= (T/3 + η, T/3 + η) are

λ2
1 = −H ′(2T/3− η; ξ)−H ′(T/3 + η; ξ) and λ2

2 = −H ′(2T/3− η; ξ).

By Equation (31), λ2
1 < 0 and since we assumed H ′(2T/3 − η; ξ) < 0, λ2

2 > 0. Therefore,
independent of the choice of α,

(
θ2

1, θ
2
2

)
is always a saddle point.

2. The eigenvalues of J3 at
(
θ3

1, θ
3
2

)
= (T/3 + η, 2T/3− η) are

λ3
1 = −H ′(2T/3−η; ξ)−H ′(T/3+η; ξ) and λ3

2 = −(1−α)H ′(2T/3−η; ξ)−αH ′(T/3+η; ξ).

By Equation (31), λ3
1 < 0. Since H ′ (2T/3− η; ξ) < 0, for α > αmin, λ3

2 < 0. Therefore, (θ3
1, θ

3
2)

is a sink. Note that for α < αmin, λ3
2 becomes positive and so (θ3

1, θ
3
2) becomes a saddle point.

3. The eigenvalues of J3 at (θ4
1, θ

4
2) = (2T/3− η, 2T/3− η) are

λ4
1 = −H ′(2T/3− η; ξ)−H ′(T/3 + η; ξ) and λ4

2 = −H ′(T/3 + η; ξ).

H ′(2T/3 − η; ξ) + H ′(T/3 + η; ξ) > 0 and H ′(2T/3 − η; ξ) < 0 imply that H ′(T/3 + η; ξ) > 0.
Therefore, both eigenvalues are negative and independent of the choice of α, (θ4

1, θ
4
2) is always

a sink.

On the other hand, if we assume that H ′(2T/3 − η; ξ) > 0, then all stable fixed points become
saddle points and the saddle points become stable fixed points.

Proposition 5. In addition to
(
θi1, θ

i
2

)
, i = 1, . . . , 4, when c1 = c2 = c3, Equations (24) admit the

following fixed points.

1. (θ5
1, θ

5
2) = (T/2, T/2) is a fixed point and if ∃ ξ∗ ∈ [ξ1, ξ2] such that for ξ < ξ∗, H

′ (T/2; ξ) < 0,
while for ξ > ξ∗, H

′ (T/2; ξ) > 0, then the fixed point (T/2, T/2) changes its stability to a sink
from a source as ξ increases.

2.
(
θ6

1, θ
6
2

)
= (0, 0) is a fixed point and when H ′(0; ξ) < 0, it is a source.

Proof. 1. The eigenvalues of J3 at (T/2, T/2) are

λ5
1 = −H ′(T/2; ξ) and λ5

1 = −2H ′(T/2; ξ),

so the stability depends on the sign of H ′(T/2; ξ), which by assumption is positive for ξ < ξ∗.
Hence, for ξ < ξ∗, both eigenvalues are positive and (θ5

1, θ
5
2) is a source and for for ξ > ξ∗, both

eigenvalues becomes negative and hence (θ5
1, θ

5
2) = (T/2, T/2) becomes a sink.

21



2. The eigenvalues of J3 at (0, 0) are

λ6
1 = −H ′(0; ξ) and λ6

1 = −2H ′(0; ξ),

so the stability depends on the sign of H ′(0; ξ), which we assumed is negative. Therefore, (0, 0)
is a source.

Note that as explained in Remark 2, by the Euler characteristic of zero for the 2-torus, there should
exist more fixed points (e.g. saddle points).

Proposition 6. If c1 = c3 and c5 = c6, then θ1 = θ2 is an invariant line.

Proof. Setting c1 = c3 and c5 = c6 in Equations (24), we conclude that θ̇1 = θ̇2. Hence θ1 = θ2 is
invariant.

Corollary 2. Under the conditions of Proposition 3, θ1 = θ2 is an invariant line. In addition, if
c4 = c7, then the system is reflection symmetric with respect to θ1 = θ2; i.e., if (θ̇1, θ̇2) = (a, b) at
(θ̄1, θ̄2), then (θ̇1, θ̇2) = (b, a) at (θ̄2, θ̄1).

Proof. Setting (θ1, θ2) = (θ̄1, θ̄2) and (θ1, θ2) = (θ̄2, θ̄1) in Equations (37) yields the result.

In the following sections we first apply the results of this section to the coupling functions computed
for the bursting neuron model (Section 5). Then, we characterize a class of functions H which
satisfies Assumption 1 (Section 6).

5 Application to the bursting neuron model

In Section 3.1, for some δ and Iext values, we numerically computed the coupling function HBN

for the bursting neuron model (see Figures 8 and 9). Here we show that the results of Section 4
apply to the coupling function HBN .

Lemma 1. The coupling function HBN , which is computed numerically from the bursting neuron
model, satisfies Assumption 1.

Proof. Figure 11 shows the graphs of η = η(ξ), the solutions of Equation (22) for H = HBN ,
where ξ = δ ∈ [δ1, δ2] = [0.0097, 0.04] (left) and ξ = Iext ∈ [I1, I2] = [35.65, 37.7] (right). (Note
that solving Equation (22) is equivalent to solving GBN (θ; ξ) = 0 for θ, where GBN (θ; ξ) :=
HBN (θ; ξ) − HBN (−θ; ξ).) Note that η is the unique solution of Equation (22) which is non-
decreasing and onto. Therefore, Assumption 1 is satisfied.

5.1 Balance condition

Since HBN satisfies Assumption 1, one can apply Proposition 1 to show that under balance con-
dition for the coupling strengths, and Equations (27), (2T/3 − η, T/3 + η) is a stable fixed point
of Equation (24) with H = HBN . In Section 3.4, Figure 10, we showed the nullclines and phase
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Figure 11: The solution η(ξ) of HBN (2T/3− η; ξ) = HBN (T/3 + η; ξ) where ξ = δ and η :
[0.0097, 0.04]→ [0, 1/6] (left); and where ξ = Iext and η : [35.65, 37.7]→ [0, 1/6] (right).

planes of Equations (24) with coupling strengths given in Equation (25). Note that those cou-
pling strengths satisfy the balance equation and for δ = 0.0097, they satisfy Equations (27) (Tr
≈ −2.78 < 0 and Det ≈ 0.61 > 0). In Figure 10 (left to right) we observe that for small δ, there
exist 3 sinks corresponding to (θi1, θ

i
2), i = 1, 3, 4, and 1 saddle point corresponding to (θ2

1, θ
2
2).

In addition, there exist 2 sources (one located at (1/2, 1/2) and the other one at (0, 0)), and 4
more saddle points. When δ is large, for i = 1, 2, 3, 4, (θi1, θ

i
2) merge to (1/2, 1/2), and (1/2, 1/2),

which corresponds to the tripod gait, becomes a sink. The unstable fixed point (0, 0) and the two
remaining saddle points, near the boundary, preserve their stability types.

5.2 Balance condition and equal contralateral couplings

In this section we apply Proposition 3 to HBN to show existence and stability of tetrapod and
tripod gaits.

Proposition 7. Consider Equations (37) for H = HBN . If α < αmax (as defined in Equa-
tion (32)), then (θ1

1, θ
1
2) = (2T/3 − η, T/3 + η) is a stable fixed point of Equations (24) and if

α > αmax then (θ1
1, θ

1
2) = (2T/3− η, T/3 + η) is a saddle point.

Proof. Figure 12 shows that H ′BN (2T/3 − η; ξ) + H ′BN (T/3 + η; ξ) > 0, for ξ = δ and ξ = Iext.
Hence, Equation (31) holds. Figure 13 shows that H ′BN (2T/3−η; ξ) < 0 and H ′BN (T/3+η; ξ) > 0.
Therefore, H ′BN (T/3 + η; ξ) − H ′BN (2T/3 − η; ξ) > 0. Hence, by Proposition 3, If α < αmax,
Equation (33) holds and (θ1

1, θ
1
2) = (2T/3 − η, T/3 + η) is a stable fixed point of Equations (24)

and if α > αmax, Equation (34) holds and (θ1
1, θ

1
2) = (2T/3− η, T/3 + η) is a saddle point.

Moreover, we apply Propositions 4 and 5 to show the existence and stability of more fixed points.

Proposition 8. In Equations (37) with H = HBN :

1.
(
θ2

1, θ
2
2

)
= (T/3 + η, T/3 + η) is a saddle point.

2. If α > αmin (as defined in Equation (38)), then (θ3
1, θ

3
2) = (T/3 + η, 2T/3− η) is a stable fixed

point, otherwise, it is a saddle point.
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Figure 12: λ1
1 = −H ′BN (2T/3 − η; ξ) −H ′BN (T/3 + η; ξ) vs. ξ = δ (left) and ξ = Iext (right) are

shown.

Figure 13: H ′BN (2T/3 − η; ξ), H ′BN (T/3 + η; ξ), and H ′BN (T/2; ξ) vs. ξ = δ (left) and ξ = Iext
(right) are shown. Note that the curves first meet at δ∗ (left) and I∗ (right) and subsequently
overlap for δ > δ∗ and Iext > I∗.

3.
(
θ4

1, θ
4
2

)
= (2T/3− η, 2T/3− η) is a sink.

4. For ξ < ξ∗ (ξ∗ = δ∗ ≈ 0.0208 and ξ∗ = I∗ ≈ 36.3), (T/2, T/2) is a source and for ξ > ξ∗,
(T/2, T/2) becomes a sink.

Proof. By Figure 12, H ′BN (2T/3−η; ξ)+H ′BN (T/3+η; ξ) > 0 and by Figure 13, H ′BN (2T/3−η; ξ) <
0, and H ′BN (T/2; ξ) changes sign from negative to positive at ξ = ξ∗ (ξ∗ = δ∗ ≈ 0.0208 and
ξ∗ = I∗ ≈ 36.3). Therefore, Propositions 4 and 5 give the desired results.

5.3 Phase plane analyses

We now study Equations (37) by analyzing phase planes. In the following cases we preserve
the balance condition and let c1 = c2 = c3, but allow α to vary. First we assume that α = 1/2
(rostrocaudal symmetry), for which, by Corollary 2, the system is reflection symmetric with respect
to θ1 = θ2. For example, we let

c1 = c2 = c3 = 0.5, c4 = c7 = 1, c5 = c6 = 2.
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Figure 14: Nullclines and phase planes of Equation (37) when α = 1/2. First row: δ = 0.0097
(left) and δ = 0.03 (right). Second row: Iext = 35.65 (left) and Iext = 37.1 (right). Note reflection
symmetry.

Figure 14 (first row, left to right) shows the nullclines and phase planes of Equations (37), for a
small δ = 0.0097 < δ∗, and a large δ = 0.03 > δ∗, respectively. Figure 14 (second row, left to
right) shows the nullclines and phase planes of Equations (37), for a small Iext = 35.65 < I∗ and a
large Iext = 37.1 > I∗, respectively. As expected from Proposition 3 and Proposition 4, we observe
that when δ or Iext is small, there exist 3 sinks corresponding to (θi1, θ

i
2), i = 1, 3, 4, and 2 sources

corresponding to (θi1, θ
i
2), i = 5, 6. In addition, there exist 5 saddle points, of which one corresponds

to (θ2
1, θ

2
2). When δ or Iext is large, (θi1, θ

i
2), for i = 1, 2, 3, 4 merge to (θ5

1, θ
5
2) = (1/2, 1/2), and we

observe that (1/2, 1/2) which corresponds to the tripod gait, becomes a sink. The unstable fixed
point (0, 0) and two saddle points continue to exist and preserve their stability types.

Next, we let α 6= 1/2 but keep it close to 1/2, i.e., we want αmin < α < αmax. Specifically, we set

c1 = c2 = c3 = c4 = 1, c7 = 2, c5 = c6 = 3,

so that α = 1/3. Figure 15 (first row, left to right) shows the nullclines and the phase planes of
Equations (37), for a small δ = 0.0097, and a large δ = 0.03, respectively. Figure 15 (second row,
left to right) shows the nullclines and the phase planes of Equations (37), for a small Iext = 35.65
and a large Iext = 37.1, respectively. As we expect, the qualitative behaviors of the fixed points do
not change, but reflection symmetry about the diagonal θ1 = θ2 is broken, most easily seen in the
nullclines.

Finally, we let α ≈ 1, i.e., α > αmax. For δ < δ∗ (resp. Iext < I∗), we expect to have a
stable backward tetrapod gait at (T/3 + η, 2T/3 − η) and an unstable forward tetrapod gait at
(2T/3− η, T/3 + η). For δ > δ∗ (resp. Iext > I∗), the tripod gait at (T/2, T/2) becomes stable. In
the simulations shown below we let

c1 = c2 = c3 = 0.5, c4 = 2, c7 = 0.1, c5 = c6 = 2.1,
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Figure 15: Nullclines and phase planes of Equations (37) when α = 1/3. First row: δ = 0.0097
(left) and δ = 0.03 (right). Second row: Iext = 35.65 (left) and Iext = 37.1 (right). Reflection
symmetry is slightly broken, but the invariant line θ1 = θ2 persists.

so that α ≈ 0.952.

Figure 16: Nullclines and phase planes of Equations (37) when α ≈ 0.95 > αmax. First row:
δ = 0.0097 (left) and δ = 0.03 (right). Second row: Iext = 35.65 (left) and Iext = 37.1 (right).
Reflection symmetry is clearly broken.
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Figure 16 (first row, left to right) shows the nullclines and phase planes of Equation (37) for a
small δ = 0.0097, and a large δ = 0.03, respectively. Figure 16 (second row, left to right) shows the
nullclines and the phase planes of Equation (37), for a small Iext = 35.65 and a large Iext = 37.1,
respectively. Here reflection symmetry is broken more obviously. Similarly, when α is near zero, i.e.,
α < αmin, we expect to have a stable forward tetrapod gait, and an unstable backward tetrapod
gait. In Figure 17, we let c1 = c2 = c3 = 0.5, c4 = 0.1, c7 = 3, c5 = c6 = 3.1, so that α ≈ 0.032.
As we expect, the forward tetrapod gait remains stable while the backward tetrapod gait becomes
a saddle through a transcritical bifurcation. However, a stable fixed point appears (through the
same transcritical bifurcation) very close to the backward tetrapod gait.

Figure 17: Nullclines and phase planes of Equations (37) when α ≈ 0.032 < αmin. First row:
δ = 0.0097 (left) and δ = 0.03 (right). Second row: Iext = 35.65 (left) and Iext = 37.1 (right).
Reflection symmetry is clearly broken.

In this section, using the coupling functions HBN that we computed numerically and with appro-
priate conditions on coupling strengths ci, we saw that the phase difference equations admit 10
fixed points when the speed parameter is small (Figures 14-15 (left)), and 4 fixed points when the
speed parameter is high (Figures 14-15 (right)). We saw how 4 fixed points (located on the corners
of a square) together with 2 saddle points (near the corners of the square), merged to one fixed
point (located on the center of the square). We would like to show that in fact 7 fixed points merge
and one fixed point bifurcates. To this end, in Section 6.1, we approximate the coupling function
HBN by a low order Fourier series.

6 A class of coupling functions producing gait transitions

In this section, we first characterize a class of functions satisfying Assumption 1 and then provide
an example based on the bursting neuron model.
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Proposition 9. Let H(θ; ξ) be C2 and T -periodic on θ ∈ [0, T ] and C1 on ξ ∈ [ξ1, ξ2] and let
G(θ; ξ) = H(θ; ξ)−H(−θ; ξ). Assume that

(1) ∃ ξ̄ ∈ [ξ1, ξ2) such that G(T/3; ξ̄) = 0;

(2) ∀ ξ > ξ̄ and T/3 ≤ θ < T/2,
dG

dξ
(θ; ξ) < 0;

(3) ∃ ξ∗ ∈ (ξ̄, ξ1] such that ∀ θ ∈ (T/3, T/2), and ξ̄ < ξ < ξ∗,
d2G

dθ2
(θ; ξ) = G′′(θ; ξ) < 0.

Then, ∀ ξ ∈ (ξ̄, ξ∗), G(θ; ξ) has a unique solution in [T/3, T/2] denoted by θ̂(ξ) such that θ̂(ξ̄) = T/3,
θ̂(ξ∗) = T/2 and θ̂(ξ) is a continuous and increasing function on [ξ̄, ξ∗].

Moreover, Equations (24), with the balance equation (26) and η(ξ) = θ̂(ξ) − T/3, admit a fixed
point at (T − θ̂(ξ), θ̂(ξ)) = (2T/3 − η, T/3 + η), which corresponds to a forward tetrapod gait at
ξ = ξ̄, a tripod gait at ξ = ξ∗, and a transition gait for ξ ∈ (ξ̄, ξ∗).

Proof. Since H is T -periodic, G(T/2; ξ) = 0, ∀ ξ, and because G′′(θ; ξ) < 0 for θ ∈ (T/3, T/2) and
∀ ξ < ξ∗,

G(T−/2; ξ) > 0 where T−/2 < T/2 is sufficiently close to T/2. (39)

Also, since G(T/3; ξ̄) = 0 and dG
dξ (T/3; ξ) < 0,

G(T/3; ξ) < 0, ∀ ξ > ξ̄. (40)

Equations (39) and (40) and Bolzano’s intermediate value theorem imply that for any ξ ∈ (ξ̄, ξ∗),
G(θ; ξ) has a zero θ̂(ξ) ∈ (T/3, T/2). G′′(θ; ξ) < 0 for θ ∈ (T/3, T/2) guarantees uniqueness of
θ̂(ξ).

Next we show that θ̂(ξ) is increasing; i.e., for any x2 > x1 ⇒ θ̂(x2) > θ̂(x1). Fix x1 > ξ̄. By
definition of θ̂(ξ), G(θ̂(x1);x1) = 0, and because dG

dξ (θ̂(x1); ξ) < 0, ∀ ξ > x1,

G(θ̂(x1);x2) < 0. (41)

Equations (39) and (41) and Bolzano’s theorem imply that G(θ;x2) has a zero in (θ̂(x1), T/2).
Since the zero is unique, it lies at θ̂(x2) and so θ̂(x2) > θ̂(x1). Moreover, θ̂(x) is continuous:
∀ ε > 0,∃ δ > 0 such that

|x1 − x2| < δ ⇒ |θ̂(x1)− θ̂(x2)| < ε. (42)

We now prove inequality (42). Fix x1 ∈ (ξ̄, ξ∗) and choose ξ̄ < x1 small enough such that

0 < b := G
(
θ̂(ξ̄) +

ε

2
;x1

)
< a := G

(
θ̂(ξ̄) +

ε

2
; ξ̄
)
.

Now G(θ; ξ) is continuous, decreasing with ξ, and ξ̄ < x1, therefore G(θ̂(ξ̄);x1) < 0. Since G(θ̂(ξ)+
ε/2;x1) > 0 and G(θ̂(ξ̄);x1) < 0 we find that θ̂(x1) ∈ (θ̂(ξ̄), θ̂(ξ̄) + ε/2), and hence that

|θ̂(ξ̄)− θ̂(x1)| < ε

2
. (43)
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Since G(θ, ξ) is continuous on ξ, for ε1 = (a− b)/4 > 0, ∃ δ1 < (x1 − ξ̄)/2 such that |x2 − x1| < δ1

implies that ∣∣∣G(θ̂(ξ̄) +
ε

2
;x2

)
−G

(
θ̂(ξ̄) +

ε

2
;x1)

)∣∣∣ < ε1,

and this in turn implies that G(θ̂(ξ̄) + ε/2;x2) > 0. Since δ1 < (x1 − ξ̄)/2, x2 > ξ̄ and so
G(θ̂(ξ̄);x2) < 0. Therefore if θ̂(x2) ∈ (θ̂(ξ̄), θ̂(ξ̄) + ε/2) then

|θ̂(x2)− θ̂(ξ̄)| < ε

2
. (44)

Finally, Equations (43) and (44) imply that for δ = δ1, if |x1−x2| < δ then |θ̂(x1)− θ̂(x2)| < ε.

As an example, we next show that Happ(θ; ξ), an explicit function which approximates HBN (θ; ξ),
satisfies assumptions (1), (2) and (3) in Proposition 9.

6.1 Example of an explicit coupling function

In this section, we approximate Happ by its Fourier series and derive an explicit function Happ as
follows. To derive Happ, we first computed the coefficients of the Fourier series of HBN , and then,
using polyfit in Matlab, fitted an appropriate quadratic function for each coefficient, obtaining

Figure 18: Fourier coefficients of Happ

a0(δ) = −80.8384δ2 + 2.6862δ − 0.0986, (45a)

a1(δ) = −137.9839δ2 + 7.5308δ − 0.1433, (45b)

b1(δ) = 77.9417δ2 − 3.9694δ − 0.0720, (45c)

a2(δ) = −184.2374δ2 + 8.9996δ − 0.0420, (45d)

b2(δ) = 68.0350δ2 + 0.6692δ − 0.1077. (45e)

By definition, Happ(θ; δ) on [0 1]× [0.008 0.024] is

Happ(θ; δ) :=
2∑

k=0

ak(δ) cos(2πkθ) +
2∑

k=1

bk(δ) sin(2πkθ).

In Figure 19, we compare the approximate coupling function Happ with HBN for the values of δ at
the endpoints of the interval of interest.

We next verify that

Gapp(θ; δ) := Happ(θ; δ)−Happ(−θ; δ) = 2b1(δ) sin(2πθ) + 2b2(δ) sin(4πθ), (46)

satisfies conditions (1), (2), and (3) of Proposition 9.

Conditions of Proposition 9 Figure 20 shows the graphs of Gapp for different values of δ. Since
we are only interested in the interval [1/3, 1/2], we only show the Gapp’s in this interval. As
Figure 20 shows, for δ̄ = 0.008, Gapp equals to zero at 1/3: Gapp(1/3; 0.008) = 0. In the interval
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Figure 19: The coupling function HBN and its approximation Happ are shown for δ = 0.01 (left)
and δ = 0.024 (right).

Figure 20: The graphs of Gapp on [1/3, 1/2] and for different values of δ are shown.

[1/3, 1/2], as δ increases, at each point θ, Gapp decreases: dGapp/dδ < 0. For δ < δ∗ = 0.0218, the
graph of Gapp is concave down: G′′app < 0. One can compute the zero of Gapp(1/3; δ), dGapp/dδ,
and G′′app explicitly and verify the above conditions.

Computing η. We show that

η(δ) =
1

2π
arccos

(
−b1(δ)

2b2(δ)

)
− 1

3
, (47)

is a unique non-constant and non-decreasing solution of Happ (2/3− η; δ) = Happ (1/3 + η, δ).
Note that η is defined only where |−b1(δ)/2b2(δ)| ≤ 1. Figure 21 (left) shows that ∃δ∗ ≈ 0.0218
such that for δ ∈ [0.008, δ∗], −1 ≤ −b1(δ)/2b2(δ) < 0. Therefore, we let [0.008, δ∗] be the domain
of η, where δ∗ satisfies

−b1(δ∗)

2b2(δ∗)
= −1. (48)

Figure 21 (right) shows the graph of η. Note that the range of η is approximately [0, 1/6], as
desired. A simple calculation shows that because cos(2π − x) = cosx,

cos (2πk (2/3− η)) = cos (2πk − (2πk (2/3− η))) = cos (2πk (1/3 + η)) ,
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Figure 21: (Left) the graph of −b1(δ)/2b2(δ) which determines the domain of η defined in Equa-
tions (47); (right) the graph of η.

and therefore the cosine terms in the Fourier series cancel, resulting in

Happ

(
2

3
− η; δ

)
= Happ

(
1

3
+ η; δ

)
⇐⇒

2∑
k=1

bk(δ) sin (2πk (2/3− η)) =

2∑
k=1

bk(δ) sin (2πk (1/3 + η)) .

(49)

Using the fact that sin(2π − x) = − sinx, we have

sin (2πk (2/3− η)) = − sin (2πk − (2πk (2/3− η))) = − sin (2πk (1/3 + η)) ,

and so the right hand equality of Equation (49) can be written as follows.

2∑
k=1

bk(δ) sin (2πk (2/3− η)) =
2∑

k=1

bk(δ) sin (2πk (1/3 + η)) (50a)

⇐⇒ −
2∑

k=1

bk(δ) sin (2πk (1/3 + η)) =

2∑
k=1

bk(δ) sin (2πk (1/3 + η)) (50b)

⇐⇒ b1(δ) sin (2π (1/3 + η)) + b2(δ) sin (4π (1/3 + η)) = 0. (50c)

Now using the double-angle identity, sin(2x) = 2 sinx cosx, we get

Happ

(
2

3
− η; δ

)
= Happ

(
1

3
+ η; δ

)
⇐⇒ sin (2π(1/3 + η)) [b1(δ) + 2b2(δ) cos (2π(1/3 + η))] = 0.

Since we are looking for a non-constant and non-decreasing solution, we solve

b1(δ) + 2b2(δ) cos (2π(1/3 + η)) = 0,

for η, which gives η as in Equation (47).

Therefore, by Proposition 9, Equations (24), with H = Happ and the balance equation (26) admit

a fixed point at (T − θ̂(ξ), θ̂(ξ)) = (2T/3− η, T/3 + η), which corresponds to a forward tetrapod
gait at ξ = ξ̄, a tripod gait ξ = ξ∗, and a transition gait for ξ ∈ (ξ̄, ξ∗).
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In what follows we assume Equations (37) with H = Happ. We compute H ′app, and show that it
satisfies conditions of Propositions 3, 4, and 5.

H ′app = −2π
2∑

k=1

k ak(δ) sin(2πkθ) + 2π
2∑

k=1

k bk(δ) cos(2πkθ). (51)

Conditions of Proposition 3 First, we verify the stability of (2/3− η, 1/3 + η).

H ′app (1/3 + η, δ)±H ′app (2/3− η, δ) > 0, ∀δ ∈ [0.01, δ∗].

Substituting Equation (47) in the derivative of Happ, Equation (51), and using trigonometrical
identities yields

H ′app

(
1

3
+ η; δ

)
+H ′app

(
2

3
− η; δ

)
= −2π

4b22(δ)− b21(δ)

b2(δ)
> 0,

and

H ′app

(
1

3
− η; δ

)
+H ′app

(
2

3
− η; δ

)
= π

(
a1(δ)− 2

a2(δ)b1(δ)

b2(δ)

) √
4b22(δ)− b21(δ)

b2(δ)
> 0,

which are positive because 4b22(δ)− b21(δ) > 0 on [0.008, δ∗], a1(δ), b1(δ), b2(δ) < 0, and a2(δ) > 0
(see Figures 21(left) and 18). Therefore, by Proposition 4, for α < αmax (resp. α > αmax),
(2/3− η, 1/3 + η) is a sink (resp. saddle point).

Conditions of Proposition 4 Next, we verify the stability of (1/3+η, 1/3+η), (1/3+η, 2/3−η),
and (2/3− η, 2/3− η).

H ′app (2/3− η, δ) changes sign, on the domain of η, i.e., [0.01, δ∗]. Substituting Equation (47) in
the derivative of Happ, Equation (51), and using trigonometrical identities yields

H ′app

(
2

3
− η; δ

)
= − π

b2(δ)

√
4b22(δ)− b21(δ)

(
a1(δ)− 2

a2(δ)b1(δ)

b2(δ)
+
√

4b22(δ)− b21(δ)

)
.

Figure 22 (left) shows thatH ′app (2/3− η; δ) changes sign from positive to negative on δ ∈ [0.01, δ∗],
at some δ near 0.01. We will see that through a transcritical bifurcation, (1/3+η, 1/3+η) becomes
a saddle point from a sink. The reason is that by Proposition 4, as H ′app(2/3− η; δ) changes sign,
one of the eigenvalues of (1/3 +η, 1/3 +η) becomes positive while the other one remains negative.
For α > αmin, the fixed points (1/3 + η, 2/3− η) and (2/3− η, 2/3− η) are always sinks.

Conditions of Proposition 5 Finally, we verify the stability types of (1/2, 1/2) and (0, 0).

• For δ < δ∗, H
′
app (1/2; δ) < 0, while for δ > δ∗, H

′
app (1/2; δ) > 0. Setting θ = 1/2 in

Equation (51), we get
H ′app(1/2; δ) = 2π(2b2(δ)− b1(δ)).

By the definition of δ∗, for δ < δ∗, −b1/2b2 < −1. Figure 22 (right) shows that H ′app(1/2, δ)
changes sign from negative to positive at δ = δ∗. This guarantees that the fixed point
(1/2, 1/2) becomes stable as δ passes δ∗.

• H ′app(0; δ) < 0. Setting θ = 0 in Equation (51), we obtain H ′app(0; δ) = 2π(b1(δ) + 2b2(δ)),
which is negative because for δ ∈ [0.0080.024] both b1(δ) and b2(δ) are negative (see Fig-
ure 18). This guarantees that (0, 0) is always a source.
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Figure 22: (Left) H ′app
(

2
3 − η; δ

)
< 0, (right) H ′app

(
1
2 ; δ
)
.

6.2 Bifurcation diagrams: balance conditions and equal contralateral couplings

In this section, we consider Equations (37) for H = Happ and study the bifurcations as δ increases.
We draw the bifurcation diagrams (Figure 24) using Matcont, a Matlab numerical continuation
packages for the interactive bifurcation analysis of dynamical systems [23]. We first consider the
system with α = 1/3. When δ is small, δ = 0.01, as Figures 23 (first row, left) shows, there exist
12 fixed points: 6 saddle points, 2 sources, and 4 sinks. In this case, (1/3 + η, 1/3 + η) is a sink
(shown by a green dot in Figure 23). As δ increases and reaches δ(0) (Figure 24 (left)), through a
transcritical bifurcation, (1/3 + η, 1/3 + η) becomes a saddle. Further, as δ reaches δ(1), through a
saddle node bifurcation, a sink (green dot) and a saddle (orange star) annihilate each other and 10
fixed points remain: 5 saddle points, 2 sources, and 3 sinks (see Figures 23 (first row, right) and
24 (left)). Note that the two extra fixed points were not observed in the case of the numerically
computed H and the transcritical and saddle node bifurcations did not occur.

As δ increases further to δ(2), through a degenerate bifurcation, 4 fixed points disappear and only
6 fixed points remain (see Figures 23 (second row, left) and 24 (left)).

When δ reaches δ(3), 2 fixed points vanish in a saddle node bifurcation and 4 fixed points remain:
2 saddle points, a source, and a sink (see Figures 23 (second row, right) and 24 (left)). Note that 2
saddle points and 1 source near the edges of the square remain unchanged while δ varies. Figure 24
(left) shows the bifurcation diagram when α = 1/3.

Remark 4. Figure 24 (right) shows the bifurcation diagram when α = 1/2. In this case, due to
reflection symmetry about θ(1) = θ(2), there is no saddle node bifurcation at δ = δ(3) (as in the
case of α = 1/3), and 7 fixed points merge to (1/2, 1/2) in a very degenerate bifurcation.

7 Gaits deduced from fruit fly data fitting

In this section, we use two sets of coupling strengths which were estimated for slow, medium,
and fast wild-type fruit flies in our reduced model on the torus and show the existence of stable
tetrapod gaits at low frequency and stable tripod gaits at higher frequency. To vary frequency,
we change Iext in the first set of estimates in Section 7.1, and we change δ in the second set of
estimates in Section 7.2. Unlike the gait transitions of Section 4, the fitted data predict different
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Figure 23: Nullclines of Equations (37) with H = Happ, α = 1/3 and 4 values of δ are shown.
Note enlargements of nullcline intersections in left column. First row: δ = 0.01 (left), δ = 0.014
(right); as δ increases, a transcritical bifurcation at δ = δ(0) > 0.01 and a saddle node bifurcation at
δ = δ(1) < 0.014 occur. Second row: δ = 0.023 (left), δ = 0.025 (right); as δ increases, a degenerate
bifurcation at δ = δ(2) > 0.023 and a saddle node bifurcation at δ = δ(3) > 0.025 occur. The
corresponding bifurcation diagram is shown in Figure 24 (left)). Note that the green dot indicates
a sink and the orange star indicates a saddle point. See text for further explanation.

Figure 24: Partial bifurcation diagrams of Equations (37) with H = Happ for α = 1/3 (left) and
α = 1/2 (right). In both cases the coupling strengths are balanced, but the α = 1/3 case is not
rostrocaudally symmetric. The source (0, 0) and two saddle points near θ1 = 0 and θ2 = 0 are
omitted.
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coupling strengths across the speed range. As in previous sections, we display both results from
the bursting neuron model and the nullclines and phase planes from the reduction to the (θ1, θ2)
plane.

7.1 Dataset 1

We first exhibit a gait transition from tetrapod to tripod as Iext increases. Table 2 shows the

ω̂ c1 c2 c3 c4 c5 c6 c7

slow 9.92 0.3614 0.1478 0.1780 0.1837 0.2509 0.3409 0.1495

medium 12.48 0.2225 0.6255 0.4715 0.1436 0.3895 0.7921 0.2964

fast 15.52 0.0580 0.8608 0.6726 0.0470 0.4294 1.1498 0.8500

Table 2: Values of estimated frequency and coupling strengths for slow, medium, and fast wild-type
fruit flies.

coupling strengths ci which were estimated for slow (represented by coupled frequency ω̂ = 9.92),
medium (ω̂ = 12.48), and fast (ω̂ = 15.52) wild-type fruit flies. These fits were obtained after
linearizing Equations (17) and adding i.i.d. zero mean Gaussian noise to each equation. The
touchdown times of every leg are treated as measurements of the phase of its associated oscillator in
Equations (17), additionally corrupted by a zero mean Gaussian measurement noise. To incorporate
the circular nature of phase measurements, the initial condition distribution for Equations (17) is
modeled by a mixture Gaussian distribution. For each sequence of leg touchdowns, a Gaussian sum
filter [24] is used to compute the distribution and the log-likelihood of leg touchdown times. The
aggregate log-likelihood for pooled sequences of leg touchdowns for different flies is maximized to
compute the maximum likelihood estimates (MLEs) of coupling strengths, phase differences, and
variance of the i.i.d. measurement noises.

We choose 3 different values of Iext: Iext = 35.95 for slow (represented by uncoupled frequency
ω = 8.76), Iext = 36.85 for medium (ω = 12.64), and Iext = 37.65 for fast (ω = 14.85) speeds. Note
that in general ω̂ < ω, because we assume that all the couplings are inhibitory, ciH < 0, although
the coupled frequency corresponding to the slow and fast speed are not less than the uncoupled
frequency in our simulations below. Also note that the medium and fast speed coupling parameters
(Table 2, second and third rows) are far from balanced.

Figure 25 shows solutions of the 24 ODEs for the following initial conditions:

v1 = −40, v2 = 10, v3 = −10, v4 = 30, v5 = 15, v6 = −30, (52)

and for i = 1, · · · , 6, the mi’s, wi’s, and si’s take their steady state values as in Equation (11). In
Figure 25 (left), Iext = 35.95 and the coupling strengths ci are as in Table 2, first row. In Figure 25
(middle), Iext = 36.85 and the coupling strengths ci are as in Table 2, second row. In Figure 25
(right), Iext = 37.65 and the coupling strengths ci are as in Table 2, third row. As we expect, these
respectively depict tetrapod, transition, and tripod gaits. We computed the solutions up to time
t = 5000 ms but only show the time windows [4800, 5000], after transients have died out.

Figure 26 shows the nullclines (first row) and the corresponding phase planes (second row) of
Equation (24) for the three different values of Iext. As Figure 26 (left) depicts, when the speed
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Figure 25: (Left to right) A solution of 24 ODEs for Iext = 35.95 and ci’s as in the first row of
Table 2; Iext = 36.85 and ci’s as in the second row of Table 2; and for Iext = 37.65 and ci’s as in
the third row of Table 2.

parameter is small, there exist 6 fixed points: 2 sinks which correspond to the forward and backward
tetrapod gaits, a source, and 3 saddle points. As Figure 26 (middle) depicts, when the speed
parameter increases, there exist 4 fixed points: a sink which corresponds to the transition gait, a
source, and 2 saddle points. As Figure 26 (right) depicts, when the speed parameter is large, there
exist only 2 fixed points: a sink corresponding to the tripod gait and a saddle point.

Figure 26: (First row: left to right) Nullclines of Equations (24) for Iext = 35.95 and ci’s as in the
first row of Table 2; Iext = 36.85 and ci’s as in the second row of Table 2; and for Iext = 37.65
and ci’s as in the third row of Table 2. (Second row: left to right) Corresponding phase planes.
Note that the green dot indicates a sink and the orange star indicates a saddle point. See text for
further explanation.

7.2 Dataset 2

In this section, we show a gait transition from tetrapod to tripod, as δ increases. Table 3 shows
the coupling strengths ci which were estimated for medium (represented by coupled frequency
ω̂ = 12.23) and fast (ω̂ = 15.65) wild-type fruit flies. These fits are obtained using linearized
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ω̂ c1 c2 c3 c4 c5 c6 c7

medium 12.23 0.2635 1.2860 2.9480 1.3185 1.3885 2.5025 1.2265

fast 15.65 2.9145 2.5610 2.6160 2.9135 5.1800 5.4770 2.6165

Table 3: Values of estimated frequency and coupling strengths for medium, and fast free-walking
wild-type fruit flies.

ODEs similar to Section 7.1. However, to obtain these fits, touchdown sequences for different flies
are concatenated to obtain a single large sequence and a Kalman filter is used to compute the
distribution and the log-likelihood of leg touchdown times. The MLEs for coupling strengths are
obtained by maximizing the aggregate likelihood for the concatenated touchdown sequence.

We choose 2 different values of δ, δ = 0.014 for medium (represented by uncoupled frequency
ω = 3.57), and δ = 0.03 for fast (ω = 6.91) speeds [22]. As noted earlier in Section 2.1.1, as δ
varies in the bursting neuron model, the range of frequency does not match the range of frequency
estimated from data. In spite of this, we show that the estimated coupling strengths in the low
speed range (small δ) give a tetrapod gait and in the high speed range (large δ) give a tripod gait.

Figure 27 shows solutions of the 24 ODEs for the following initial conditions.

v1 = −10, v2 = −40, v3 = −30, v4 = −40, v5 = 5, v6 = 20, (53)

and for i = 1, · · · , 6, mi’s, wi’s, and si’s take their steady state values as in Equation (11). In
Figure 27 (left), δ = 0.014 and the coupling strengths ci are as in Table 3, first row. In Figure 27
(right), δ = 0.03 and the coupling strengths ci are as in Table 3, second row. As we expect,
Figure 27 (left to right) depicts transition (still very close to a tetrapod gait) and tripod gaits,
respectively. We computed the solutions up to time t = 5000 ms but only show the time window
[4000, 5000], after transients have died out.

Figure 27: (Left to right) A solution of 24 ODEs for δ = 0.014 and ci’s as in the first row of Table 3
and for δ = 0.03 and ci’s as in the second row of Table 3. Note the approximate tetrapod and
almost perfect tripod gaits.

Figures 28 (left to right) show the nullclines and corresponding phase planes of Equations (24) for
the two different values of δ. As Figure 28 (left) depicts, when the speed parameter is relatively
small, there exist 4 fixed points: a sink which corresponds to a transition gait, a source and 2 saddle
points. Figure 28 (right) shows that these fixed points persist as the speed parameter increases,
but the sink now corresponds to a tripod gait. No bifurcation of fixed points occurs, although the
topology of the nullclines changes.

Note that the estimated coupling strengths in only the second row of Table 3 approximately satisfy
the balance equation (26) and also c1 ≈ c2 ≈ c3. Hence, as our analysis predicts, the system has
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Figure 28: (Left to right) Nullclines and phase planes of Equations (24) for δ = 0.014 and ci’s
as in the first row of Table 3 (left pair); δ = 0.03 and ci’s as in the second row of Table 3 (right
pair). Note the close approximation to reflection symmetry at right due to almost perfect balance,
c1 ≈ c2 ≈ c3 and α = 0.5269 ≈ 1/2.

4 fixed points: a sink corresponding to a tripod gait, a source and 2 saddle points. Although the
other estimated coupling strengths do not satisfy the balance equation (26), we still observe the
existence of one sink which corresponds to a tetrapod gait (slow speed), a transition gait (medium
speed), or a tripod gait (high speed). As discussed earlier, the balance equation is a necessary
condition for the existence of tetrapod and tripod gaits but it is not sufficient. The estimated
coupling strengths in Tables 2 and 3 (first row), provide counterexamples.

Remark 5. The coupling strengths ci in Tables 2 and 3 are at most O(1), the largest being ≈ 5.48
in Table 3. From Figures 8 and 9 (second rows), the maxima of |H| are 0.19 (as Iext varies)
and 0.4 (as δ varies). Thus |ciH| takes maximum values of 0.19 × 1.15 ≈ 0.219 in Table 2 and
0.4× 5.48 ≈ 2.19 in Table 3. For both sets of data, we observe transition from a stable (forward)
tetrapod gait to a stable tripod gait as the speed parameter ξ increases. However, the coupled
frequency ω̂ should be less than the uncoupled frequency ω, which does not hold in some cases.

8 Discussion

In this paper we developed an ion-channel bursting-neuron model for an insect central pattern
generator based on that of [8]. We used this to investigate tetrapod to tripod gait transitions, at
first numerically for a system of 24 ODEs describing cell voltages, ionic gates and synapses, and then
for a reduced system of six coupled phase oscillators. This still presents a challenging problem, but
by fixing contralateral phase differences, we further reduced to three ipsilaterally-coupled oscillators
and thence to a set of ODEs defined on the 2-torus that describes phase differences between front
and middle and hind and middle legs. This allowed us to study different sets of inter-leg coupling
strengths as stepping frequency increases, and to find constraints on them that yield systems whose
phase spaces are amenable to analysis.

Recent studies of different 3-cell ion-channel bursting CPG networks [25, 26, 27] share some common
features with the current paper. Without explicitly addressing insect locomotion, or using phase
reduction theory, the authors numerically extract Poincaré maps defined on 2-dimensional tori
which have multiple stable fixed points corresponding to orbits with specific phase differences. In
[27] they discuss transient control inputs that can move solutions from one stable state to another.
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A more abstract study of coupled cell systems with an emphasis on heteroclinic cycles that lie in
“synchronous subspaces” appears in [28].

In addition to Propositions 1, 2, 3, 4 and Corollary 1, which characterize particular tetrapod and
tripod solutions of the phase and phase-difference equations, our main results in Sections 4 and 7
illustrate the existence of these solutions and their stability types. Figures 10 and 14-16 display
nullclines and phase portraits for systems with balanced coupling strengths, showing how a set of
fixed points arrayed around a square astride the main diagonal θ1 = θ2 on the 2-torus collapses
to a single fixed point, corresponding to a stable tripod gait, as speed increases. Figures 23 and
24 illustrate nullclines and bifurcation diagrams for a Fourier series approximation of the coupling
function. Finally, Figures 25-28 show gaits, nullclines and phase portraits for several cases in which
coupling strengths were fitted to data from free running animals.

While details vary depending upon the coupling strengths, the results of Section 4 reveal a robust
phenomenon in which a group of fixed points that include stable forward and backward tetrapod
gaits converge upon and stabilize a tripod gait. This occurs even for coupling strengths that are
far from balanced. For the coupling strengths derived from data in Section 7 (Figures 25-28), as
stepping frequency increases and coupling strengths change there is still a shift from an approximate
forward tetrapod to an approximate tripod gait, in which the tetrapod gaits disappear in saddle
node bifurcations. In the final example (Figures 27 and 28 (right panels)) the tripod gait is almost
ideal.

In Definition 1 we introduced 4 tetrapod gaits, two of which feature a wave traveling from front
to hind legs. Such backward waves are not normally seen in insects and we excluded them from
the gaits illustrated thus far. They do, however, appear as fixed points in the region (θ1, θ2) =
(T/3 + η, 2T/3 − η) on the torus, which as shown in Proposition 8, are stable for some values of
coupling strengths. We note that this backward wave in leg touchdowns does not imply backward
walking, the study of which demands a more detailed model with motoneurons and muscles, to
characterize different legs and leg joint angle sequences, as in e.g. [18].

For completeness, see Figure 29 for a backward tetrapod gait of the interconnected bursting neuron
model, when δ = 0.01. The initial conditions are as follows:

v1(0) = −40, v2(0) = −40, v3(0) = −30, v4(0) = 10, v5(0) = 5, v6(0) = −20, (54)

and for i = 1, . . . , 6, mi, wi, and si are as in Equation (11). The coupling strengths ci are as in
Equation (8).

Figure 29: Interconnected bursting neuron model: backward tetrapod gait for δ = 0.01.

Recall from Section 5 (Figures 16 and 17), when α = 0.95 ≈ 1, a stable backward tetrapod gait
exists, but a stable forward tetrapod exists for α = 0.032 � 1. Since α = c4

c4+c7
, and c5 ≈ c6 if
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c1 ≈ c2 ≈ c3, this suggests that when couplings from front to hind legs are strong (c4, c6 � c7),
we expect to see backward tetrapod gaits, but when couplings from hind to front legs are strong
(c5, c7 � c4), forward tetrapod gaits would be observed. Similarly, in [29], a lamprey model
suggested that the tail-to-head neural connections along the spinal cord would be stronger than
those running from head to tail, despite the fact that the wave associated with swimming travels
from head to tail. That prediction was later confirmed experimentally in [30]. See Figure 26
(left) for examples of coexisting stable backward and forward tetrapod gaits in a phase plane plot
obtained from fitted fruit fly data. Backward tetrapod gaits have been observed in backward-
walking flies, but have not been seen in forward-walking flies [31, Supplementary Materials, Figure
S1].

In the introduction we mentioned related work of Yeldesbay et. al. [11, 12] in which a non-bursting
half center oscillator model for the CPG contained in three ipsilateral segments is reduced to a set
of ipsilateral phase oscillators with unidirectional coupling running from front to middle to hind
and returning to front leg units. Tetrapod, tripod and transition gaits were also found in their
work, although the cyclic architecture is strikingly different from our nearest neighbor coupling and
it involves excitatory and inhibitory proprioceptive feedback. It is therefore interesting to see that
similar gaits appear in both reduced models, although the bifurcations exhibited in [11, 12] appear
quite different from those illustrated here in Figures (23) and (24). Moreover, gait transitions occur
in response to changes in feedback as well as to changes in stepping frequency.

In summary, we have shown that multiple tetrapod gaits exist and can be stable, and described the
transitions in which they approach tripod gaits as speed increases. In studying the phase reduced
system on the 2-torus, we move from the special cases of Section 4, in which coupling strengths
are balanced and other constraints apply, to the experimentally estimated data sets of Section 7
in which the detailed dynamics differ but tetrapod to tripod transitions still occur.

Acknowledgements

This work was jointly supported by NSF-CRCNS grant DMS-1430077 and the National Institute of
Neurological Disorders and Stroke of the National Institutes of Health under Award U01-NS090514-
01. The content is solely the responsibility of the authors and does not necessarily represent the
official views of the National Institutes of Health. We thank Michael Schwemmer for sharing his
Matlab code for adjoint iPRC computations, Cesar Mendes and Richard Mann for providing fruit
fly locomotion data and Einat Couzin for sharing her values of coupling strengths fitted to that
data. We also thank the anonymous reviewers for their insightful comments and suggestions.

9 Appendix

Here, we review the theory of weakly coupled oscillators which can reduce the dynamics of each
neuron to a single first order ODE describing the phase of the neuron. In Section 3, we applied
this method to the coupled bursting neuron models to reduce the 24 ODEs to 6 phase oscillator
equations.

Let the ODE
Ẋ = f(X), X ∈ Rn, (55)
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describe the dynamics of a single neuron. In our model, X = (v,m,w, s)T and f(X) is as the right
hand side of Equations (1). Assume that Equation (55) has an attracting hyperbolic limit cycle
Γ = Γ(t), with period T and frequency ω = 2π/T .

The phase of a neuron is the time that has elapsed as its state moves around Γ, starting from an
arbitrary reference point in the cycle. We define the phase of the periodically firing neuron at time
t to be

φ(t) = ωt+ φ̄ mod T. (56)

The constant φ̄, which is called the relative phase, is determined by the state of the neuron on Γ
at time t = 0. Note that by the definition of phase, Equation (55) for a single neuron is reduced
to the scalar equation

dφ

dt
= ω, (57)

while the dynamics of its relative phase are described by

dφ̄

dt
= 0. (58)

Now consider the system of weakly coupled identical neurons

Ẋ1 = f(X1) + εg(X1, X2),

Ẋ2 = f(X2) + εg(X2, X1),
(59)

where 0 < ε � 1 is the coupling strength and g is the coupling function. For future reference,
recall that neurons are coupled only via their voltage variables; see Equation (7). When a neuron
is perturbed by synaptic currents from other neurons or by other external stimuli, its dynamics
no longer remain on the limit cycle Γ, and the relative phase φ̄ is not constant. However, when
perturbations are sufficiently weak, the intrinsic dynamics dominate, ensuring that the perturbed
system remains close to Γ with frequency close to ω. Therefore, we can approximate the solution
of neuron j by

Xj(t) = Γ(ωt+ φ̄j(t)), (60)

where the relative phase φ̄j(t) is now a function of time t. Over each cycle of the oscillations, the
weak perturbations to the neurons produce only small changes in φ̄j(t). These changes are negligible
over a single cycle, but they can slowly accumulate over many cycles and produce substantial effects
on the relative firing times. The goal now is to understand how the relative phases φ̄j(t) of the
coupled neurons evolve.

To do this, we first review the concept of an infinitesimal phase response curve (iPRC), Z(φ), and
then we show how to derive the phase equation given in Equation (14) from Equation (13). For
details see [8, 32]; specifically, we borrow some material from [32].

Intuitively, an iPRC [33] of an oscillating neuron measures the phase shifts in response to small
brief perturbations (Dirac δ function) delivered at different times in its limit cycle and acts like a
Green’s function for the oscillating neurons. Below, we will give a precise mathematical definition
of the iPRC and explain how we compute it in our model.

Suppose that a small brief rectangular current pulse of amplitude εI and duration ∆t is applied to
a neuron at phase φ, i.e., the total charge applied to the cell by the stimulus is equal to εI∆t. Then
the membrane potential v changes by ∆v = εI∆t/C. Depending on the amplitude and duration of
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the stimulus and the phase in the oscillation at which it is applied, the cell may fire sooner (phase
advance) or later (phase delay) than it would have fired without the perturbation. For sufficiently
small and brief stimuli, the neuron will respond in an approximately linear fashion, and the iPRC
in the direction of v, denoted by Zv, scales linearly with the magnitude of the current stimulus in
the limit ∆v → 0:

Zv(φ) := lim
∆v→0

∆φ(φ)

∆v
. (61)

Note that Zv only captures the response to perturbations in the direction of the membrane potential
v. However, such responses can be computed for perturbations in any direction in state space.

There is a one to one correspondence between phase φ and each point x on the limit cycle Γ. The
phase map Φ on Γ is defined as follows.

Φ(x(t)) := φ(t) = ωt+ φ̄ mod T, (62)

which implies that
∇xΦ · Ẋ = ∇xΦ · f = ω. (63)

The phase map is well defined for all points on Γ. For any asymptotically stable limit cycle, we can
extend the domain of the phase map to points in the domain of attraction of the limit cycle. If x is
a point on Γ and y is a point in a neighborhood of Γ, then we say that y has the same asymptotic
phase as x if

‖X(t, x)−X(t, y)‖ → 0 as t→∞,

where X(·, x) is the unique solution of Equation (55) with initial condition x. Note that with
x ∈ Γ, X(t, x) = Γ(ωt+ φ̄), for some φ̄. This means that the solution starting at the initial point
y in a sufficiently small neighborhood of Γ converges to the solution starting at the point x ∈ Γ as
t → ∞, so that Φ(x) = Φ(y). The set of all points in the neighborhood of Γ that have the same
asymptotic phase as the point x ∈ Γ is called the isochron for phase φ = Φ(x) [33, 34].

isochrons

x(t)

φ

Γ(t)

φ
1

2

εU

x(t)+εU

Figure 30: Isochrons and asymptotic phase.

Given the concepts of isochron and asymptotic phase, we show that the gradient of the phase
map Φ is the vector iPRC, i.e., its components are the iPRCs for every variable in Equation (55).
Suppose that, at time t, the neuron is in state x(t) ∈ Γ(t) with corresponding phase φ1(t):

Φ(x(t)) = φ1(t) = ωt+ φ̄1(t).

At this time, it receives a small abrupt external perturbation εU with magnitude ε, where U is the
unit vector in the direction of the perturbation in state space. Immediately after the perturbation,
the neuron is in the state x(t) + εU and its new “asymptotic phase” is

Φ(x(t) + εU) = φ2(t) = ωt+ φ̄2(t).
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See Figure 30 for an illustration. Using Taylor series,

φ2(t)− φ1(t) = Φ(x(t) + εU)− Φ(x(t)) = ∇xΦ(x(t)) · εU +O
(
ε2
)
, (64)

and dividing by ε, we obtain

φ2(t)− φ1(t)

ε
= ∇xΦ(x(t)) · U +O (ε) , (65)

and therefore, by the definition of iPRC, as ε→ 0, the left hand side of Equation (65) is the iPRC
at φ1(t) in the direction of U :

Z(φ1(t)) · U = ∇xΦ(x(t)) · U. (66)

Hence, for any point on the limit cycle Γ, Z = ∇xΦ.

The iPRCs can also be computed from an adjoint formulation [32, 35], which is the method adopted
here. Specifically, the iPRC Z is a T -periodic solution of the adjoint equation of Equation (55),
i.e.,

dZ

dt
= −[Jf (Γ)]T Z, (67)

subject to the constraint that makes Z(φ1(t)) normal to the limit cycle Γ(t) at t = 0:

Z(0) · Γ′(0) = 0. (68)

In Equation (67), Jf (Γ) = Df (Γ) is the linearization of Equation (55) around the limit cycle Γ
and Γ′(0) denotes the vector tangent to the limit cycle at time t = 0: Γ′(0) = f(x(0)) |x∈Γ. Note
that the adjoint system (67) has the opposite stability of the original system (55), which has an
asymptotically stable solution Γ. Thus, to obtain the unstable periodic solution of Equation (67),
we integrate backwards in time from an arbitrary initial condition. To obtain the iPRC, we
normalize the periodic solution using Equation (68).

There is a direct way to relate the gradient of the phase map to the solution of the adjoint equa-
tion (67). In fact, ∇xΦ(Γ(t)) satisfies the adjoint equation (67) and the normalization condition
Equation (68), [36]. Figure 8 and 9 (first rows) show Zv, the first component of the vector iPRC Z
computed by the adjoint method, of the bursting neuron model for different values of δ, and Iext,
respectively.

Now consider the system of weakly coupled identical neurons introduced in Equation (59). As we
discussed earlier, our goal is to understand how the relative phase φ̄j(t) of the coupled neurons
evolves slowly in time. For i = 1, 2, let Xi(t) be solutions of Equation (59) with corresponding
phases

φi(t) := Φ(Xi(t)) = ωt+ φ̄i(t).

Then by taking the derivative of φi and using Equations (59), (60), (63), and (66), we obtain:

dφi
dt

(t) = ∇xΦ(Xi(t)) · Ẋi (69a)

= ∇xΦ(Xi(t)) · [f(Xi(t)) + εg(Xi, Xj)] (69b)

≈ ∇xΦ(Γ(ωt+ φ̄i(t))) ·
[
f(Γ(ωt+ φ̄i(t))) + εg(Γ(ωt+ φ̄i(t)),Γ(ωt+ φ̄j(t)))

]
(69c)

= ω + εZ(Γ(ωt+ φ̄i(t))) · g(Γ(ωt+ φ̄i(t)),Γ(ωt+ φ̄j(t))). (69d)
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Using the change of variables φi(t) = ωt+ φ̄i(t), we get the following dynamics for dφ̄i/dt

dφ̄i
dt

(t) = εZ(Γ(ωt+ φ̄i(t))) · g(Γ(ωt+ φ̄i(t)),Γ(ωt+ φ̄j(t))). (70)

Now letting t̃ := ωt+ φ̄i(t) and taking the average of the right hand side of Equation (70) over one
unperturbed period and using the Averaging Theorem [21, Section 4.1], we obtain the following
equation for the relative phase φ̄i.

dφ̄i
dt

=
ε

T

∫ T

0
Z(Γ(t̃)) · g(Γ(t̃),Γ(t̃+ φ̄j(t)− φ̄i(t))) dt̃ =: εH(φ̄j(t)− φ̄i(t)), (71)

where

H = H(θ) =
1

T

∫ T

0
Z(Γ(t̃)) · g(Γ(t̃),Γ(t̃+ θ)) dt̃,

is the coupling function: the convolution of the synaptic current input to the neuron via coupling
g and the neuron’s iPRC Z. Using φi(t) = ωt + φ̄i(t) and Equation (71), we can write the phase
equation of each neuron instead of relative phase equations,

dφi
dt

(t) = ω + εH(φj(t)− φi(t)), (72)

where ε denotes the coupling strength (cf. Equation (71)).
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