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ABSTRACT. Recent developments of imaging techniques enable researchers to visualize materials at the atomic
resolution to better understand the microscopic structures of materials. This paper aims at automatic and quantitative
characterization of potentially complicated microscopic crystal images, providing feedback to tweak theories and
improve synthesis in materials science. As such, an efficient phase-space sketching method is proposed to encode
microscopic crystal images in a translation, rotation, illumination, and scale invariant representation, which is also
stable with respect to small deformations. Based on the phase-space sketching, we generalize our previous analysis
framework for crystal images with simple structures to those with complicated geometry.

1. INTRODUCTION

Crystal image analysis at the atomic resolution has become an important research direction in materials
science recently [1, 26, 3, 36, 14]. The advancement of image acquisition techniques enable researchers to
visualize materials at atomic resolution, with images of clearly visible individual atoms and their types (see
Figure 1 (a)) and defects such as dislocations and grain boundaries (see Figure 1 (f)). These high-resolution
images provide unprecedented opportunities to characterize and study the structure of materials at the micro-
scopic level, which is crucial for designing new materials with functional properties.

The recognition of important quantities and active mechanisms (e.g., dislocations, grain boundaries, grain
orientation, deformation, cracks) in a material requires the use of automatic and quantitative analysis by com-
puters. Due to the extraordinarily large volume of measurements and simulations in daily research activities
(see Figure 1), in particular, in the case of analyzing a time series of crystal images during the dynamic evolu-
tion of crystallization [22], crystal melting [19, 21], solid-solid phase transition [20], and self-assembly [6] etc.,
it is impractical to analyze these images manually. In the case of crystal images with complicated geometry
(see Figure 1 (b) for an example), it becomes difficult to recognize and parametrize the image patterns by visual
inspection. Moreover, it is also difficult, if not impossible, to measure crystal deformation directly from crystal
images by hand. Therefore, there is a dire need for efficient tools to classify and analyze atomic resolution
crystal images automatically and quantitatively, with minimal human intervention.

There have been several types of methods for atomic resolution crystal image analysis, assuming simple
crystal patterns are known a priori, typically a hexagonal or a square reference lattice in two dimensions (see
Figure 2). One class of methods tries to estimate atom positions first (or assume knowledge of the atom
positions), and then compute the local lattice orientation and deformation as well as defects via identifying the
nearest neighbors of each atom [27]. Other methods are based on a local, direction sensitive frequency analysis,
e.g. wavelets [24] to segment the crystal image into several crystal grains and identify their orientations.
Another more advanced class of methods formulates the crystal analysis problem (such as segmentation) as an
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(a) (b) (c)
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FIGURE 1. (a) A colorized sub-Angstrom scanning transmission electron microscope image
clearly shows individual atomic columns of strontium (green), titanium (blue), and oxygen
(red) [25]. Courtesy of Greg Stone of Pennsylvania State University. (b) Potential energy
surface for silver depositing on an aluminium-palladium-manganese (Al-Pd-Mn) quasicrys-
tal surface. Similar to Figure 6 in [28]. (c) Colloidal crystal with a crack in self-assembly
[6]. Courtesy of Aizenberg et al. at Harvard University. (d) An optical microscopy image
of electric field mediated colloidal crystallization in fluid [8]. Courtesy of Edwards et al..
(e) Melting behaviors of thin crystalline films [21]. Courtesy of Yilong Han of Hong Kong
University of Science and Technology, and Arjun Yodh of Pennsylvania State University. (f)
A microscopic image showing the simulation of nucleation mechanism in solid-solid phase
transitions [20]. Courtesy of Yilong Han of Hong Kong University of Science and Technol-
ogy, and Arjun Yodh of Pennsylvania State University. Examples of dislocations are pointed
out by red arrows and grain boundaries are indicated in blue.

optimization problem with fidelity term specially designed for the local periodic structure of the crystal image
[1, 26, 3, 17].
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FIGURE 2. Five fundamental 2D Bravais lattices: 1 oblique, 2 rectangular, 3 centered rect-
angular (rhombic), 4 hexagonal, and 5 square. Black arrows represent lattice vectors in the
Bravais lattices. Courtesy of Wikipedia.

Existing methods however often fall short for crystal image analysis with a variety of crystal patterns, fine
features, and complicated geometry (see Figure 1 for examples). For instance, when the out-of-focus problem
occurs, usually in optical microscopies and bright-field microscopies, the image intensity at the centers of
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FIGURE 3. Left: An example of crystal images with the out-of-focus problem, in which an
atom might be a black or a white dot in the crystal image. It is difficult to determine the
position of atoms in this case. Courtesy of Yilong Han of Hong Kong University of Science
and Technology. Right: The relation of windowed Fourier transform, wavelet transform,
curvelet/shearlet transform, ridgelet transform, wave atom transform, and the wave packet
transform in [37, 38].

atoms might vary a lot over the imaging domain, making it difficult to determine the reference configuration
for atoms (see Figure 3 (left) for an example).

In this paper, we propose a two step procedure for crystal image analysis in these challenging scenarios. In
the first step, an efficient phase-space sketching method is used to classify complicated crystal configurations
and determine reference crystal patterns. In the second step, once the reference crystal patterns are learned from
the first step, a recently developed crystal image analysis method based on two-dimensional synchrosqueezed
transforms [36, 14] is applied to identify dislocations, cracks, grain boundaries, crystal orientation, deforma-
tion, and possibly other useful information.

A major difficulty of crystal pattern classification comes from the considerable variability within object
classes and the inability of existing distances to measure image similarities. Part of this variability is due to
grain orientation, crystal deformation, and defects; another part results from the imaging variation, e.g., the
difference of image illumination, light reflection, and out-of-focus issues. An ideal transformation for classi-
fication should provide a representation invariant to such uninformative variability. Note that a representation
that is completely invariant with respect to deformation would not distinguish different Bravais lattices (see
Figure 2), since the lattices are equivalent up to affine transforms. The crystal image representation must there-
fore be capable of distinguishing different lattices, while being invariant to small elastic deformation due to
external forces on grains.

Texture classification has been extensively studied in the literature. Translation and rotation invariant rep-
resentations have been standard tools: these representations can be constructed with autoregression methods
[9], hidden Markov models [30], local binary patterns [4], Gabor or wavelet transform modulus with rotation
invariant features [5]. Scale and affine invariance has been also studied recently using affine adaption [12],
fractal analysis [32], advanced learning [29], and combination of filters [39]. More recently, deep convolution
networks [15] together with advanced learning techniques [2] have been applied to design deformation invari-
ant representations [23]. Combined with advanced learning techniques, the convolution neural network (CNN)
and the scattering transform can provide deformation invariance and could be used for the problem discussed
in this paper. To achieve transformation invariance using deep learning, most current methods usually make
use of dataset augmentation; but this requires larger number of model parameters and training data, because the
learned model needs to capture enough features for all the possible transformations of the input. Hence, meth-
ods in this direction is very expensive. A recent work [11] combines the pooling idea and deep CNN to achieve
transformation invariance while keeping the computational expense relatively low. However, all crystal lattices
are equivalent up to an affine transformation (see Figure 2 for examples) and we only need the invariance to
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crystal elastic deformation that is relatively much smaller than the affine transformation. How to tune the ex-
tend of deformation invariance via the method in [11] to match the demand in crystal image analysis is still
worth to explore. On the other hand, since our problem is more specific than general image classification, we
aim to design a more efficient and specific method, taking advantage of the periodic structure of crystal images.
The proposed phase-space sketching is a nonlinear operator that rescales, shifts, and coarsens (i.e., pooling) the
synchrosqueezed (SS) energy distribution. Since the SS energy distribution has already been computed for the
analysis of crystal orientation, defects, and deformation, the computational cost of which scales nearly linearly
in terms of the image size (see [36]), the additional computational cost for the phase-space sketch is almost
negligible, since we just need to sum up the synchrosqueezed representation using a coarser grid, which scales
linearly in the size of the phase-space representation by the synchrosqueezed transform.

The phase-space sketching proposed in this paper is an alternative method for the invariant texture classifi-
cation based on the two-dimensional synchrosqueezed transform [37, 38]. The phase-space sketching encodes
microscopic crystal images in a translation, rotation, illumination, and scale invariant representation. This new
representation is stable to deformation and invariant to a class of elastic deformation in materials. The extent
of the elastic deformation invariance is specified by user-defined parameters. As we shall see later, the re-
sults of the two-dimensional synchrosqueezed transforms can be applied to identify dislocations, cracks, grain
boundaries, crystal orientation and deformation following the algorithms in [36, 14]. The proposed phase-space
sketching only adds minimal computational cost to our existing methodologies for atomic resolution crystal im-
age analysis. We remark that it is also possible to extend existing approaches of texture segmentation methods
combined with classification procedure to achieve our goal of crystal image analysis of complex geometry in
this paper, the advantage of the proposed method is to put all these image analysis steps in a single framework
based on synchrosqueezed transforms, which have been shown to be suitable for crystal image analysis.

The rest of this paper is organized as follows. We start by introducing the mathematical model of atomic
resolution crystal images and our previous analysis framework on crystal image analysis in Section 2. In
Section 3, we propose the phase space sketching based on the two-dimensional synchrosqueezed transform to
identify reference crystal patterns. With the reference crystal patterns ready, a complete algorithm for invariant
texture classification and segmentation is introduced. We apply the whole algorithm to several real examples in
materials science in Section 4. Finally, we present a brief summary of the proposed methodology in Section 5.

2. CRYSTAL IMAGE MODELING AND SYNCHROSQUEEZED TRANSFORM (SST)

2.1. Mathematical models for atomic resolution crystal image. Consider an atomic resolution 2D image
(experimentally, this is often done for a thin slice of a 3D polycrystalline material) that may consist of multiple
grains with the same Braivas lattice. Denote the reference Bravais lattice as

L = {av1 + bv2 : a, b integers} ,

where v1, v2 ∈ R2 represent two fixed linearly independent lattice vectors (see Figure 2 for examples). Let
s(2πx) be the shape function describing a single perfect unit cell in the image, extended periodically in x with
respect to the reference crystal lattice. We denote by an open set Ωk, k = 1, . . . ,M , the grains the system
consists of, and by Ω = ∪Ωk the domain occupied by all grains. We only consider disjoint sets {Ωk}k in
this paper. In more complicated cases when there are overlapping grains, it would be interesting to extend the
mode decomposition techniques for one-dimensional oscillatory signals in [31, 33] to two-dimensional so as
to decompose overlapping grains. Hence, not considering grain boundaries, the polycrystal image f : Ω → R
can be modeled as

(1) f(x) =

M∑
k=1

χΩk(x)(αk(x)s(2πNφk(x)) + ck(x)),
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where N is the reciprocal lattice parameter (or rather the relative reciprocal lattice parameter since the dimen-
sion of the image is normalized in our analysis). The crystal image model above works for both simple lattices
(Braivais lattices listed in Figure 2) and complex lattices (such that the unit cell consists more than one atoms);
extensions to more complicated images will be considered below. Here χΩk is the indicator function of each
grain Ωk; φk : Ωk → R2 maps the atoms of grain Ωk back to the configuration of a perfect crystal, i.e., it can
be understood as the inverse of the elastic deformation. The local inverse deformation gradient is then given
by ∇φk in each Ωk. The smooth amplitude envelope αk(x) and the smooth trend function ck(x) in (1) model
possible variation of intensity, illumination, etc. during the imaging process. By the 2D Fourier series ŝ of s,
we can rewrite (1) as

(2) f(x) =

M∑
k=1

χΩk(x)

(∑
ξ∈L∗

αk(x)ŝ(ξ)e2πiNξ·φk(x) + ck(x)

)
,

where L∗ is the reciprocal lattice of L (recall that the shape function s is periodic with respect to the lattice L).
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FIGURE 4. Left: Partition of unity in the Fourier domain for an image of size 512 × 512.
Each point represents the center of the support of a bump function. The bump function
centered at the origin is supported on a disk and is not indicated in this picture. Right: An
example of a fan-shaped bump function centered at a point with radius a. The shape of bump
functions is controled by two scaling parameters (t, s).

2.2. Synchrosqueezed transform (SST). As shown in [36, 14], the 2D SST is an efficient tool to estimate the
defect region and also the local inverse deformation gradient G0(x) =

∑
k χΩk(x)N∇φk(x) in the interior of

each grain Ωk. The main observation is that, in each grain Ωk, the image is a superposition of planewave1-like
components αk(x)ŝ(ξ)e2πiNξ·φk(x) with local wave vectors N∇(ξ · φk(x)). It has been shown in [37, 38] that
the SST is able to estimate the local wave vectors accurately. Based on the local wave vector estimation, we
can compute the inverse deformation gradient G0 via a least square method, see §2.3 below.

The starting point of 2D SST is a wave packet waθx, which is, roughly speaking, constructed by translating,
rotating, and rescaling or modulating a mother wave packet w : R2 → C according to the spatial center
parameter x ∈ R2, the angular parameter θ ∈ [0, 2π) in the frequency domain, and the radial parameter a ∈ R
in the frequency domain [37, 38, 36, 14]. To introduce the definition of wave packets, let us define the following
notations:

1Planewave is a wave with constant frequency or wave vector.
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FIGURE 5. (a) An example of a crystal image. (b) Windowed Fourier transform at a local
patch indicated by a rectangle. (c) The SS energy distribution in polar coordinates at a point
outside the defect region. (d) The SS energy distribution at a point in the defect region. (e)
The defect indicator mass(x). (f) Identified defect region by thresholding mass(x).
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FIGURE 6. Top panel: Estimated inverse deformation gradient G0 ∈ R2×2 of the atomic
resolution crystal image in Figure 5 (a). Bottom panel: The crystal orientation, the difference
in principal stretches, and the volume distortion of G0. The grey mask in these figures is the
defect region identified in Figure 5 (f).

(1) The scaling matrix

Aa =

(
at 0

0 as

)
,

where a is the distance from the center of one wave packet to the origin in the Fourier domain.
(2) A unit vector eθ = (cos θ, sin θ)T with a rotation angle θ.
(3) θα represents the argument of a given vector α.
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(4) w(x) of x ∈ R2 denotes a mother wave packet, which is in the Schwartz class and has a non-negative,
radial, real-valued, smooth Fourier transform ŵ(ξ) with a support equal to a ball Bd(0) centered at
the origin with a radius d ≤ 1 in the Fourier domain. The mother wave packet is required to obey the
admissibility condition: ∃0 < c1(t, s) < c2(t, s) <∞ such that

c1(t, s) ≤
∫ 2π

0

∫ ∞
1

a−(t+s)|ŵ(A−1
a R−1

θ (ξ − a · eθ))|2adadθ ≤ c2(t, s)

for any |ξ| ≥ 1.

Definition 1. For 1
2 < s ≤ t < 1, define ŵaθb(ξ) = ŵ(A−1

a R−1
θ (ξ − a · eθ))e−2πib·ξa−

t+s
2 as a wave packet

in the Fourier domain. Equivalently, in the space domain, the corresponding wave packet is

waθb(x) = a
t+s
2 e2πia(x−b)·eθw(AaR

−1
θ (x− b)).

In such a way, a family of wave packets {waθb(x), a ∈ [1,∞), θ ∈ [0, 2π), b ∈ R2} is constructed.

Definition 2. The wave packet transform2 of a function f(x) is a function

Wf (a, θ, b) =

∫
R2

waθb(x)f(x) dx

for a ∈ [1,∞), θ ∈ [0, 2π), b ∈ R2. For convenience, we also set Wf (a, θ, b) = 0 for a ∈ [0, 1).

More specifically, the discrete wave packets are constructed via the partition of unity in the frequency domain
(see Figure 4) so that they have compact supports in the frequency domain. The Fourier transform of a wave
packet is essentially the product of a bump function and a plane wave. Figure 4 (left) illustrates the positions
of the centers of bump functions and Figure 4 (right) shows an example of a bump function when its center has
a radius O(a). The reader is refered to Section 3 of [38] for detailed implementation of the discret wave packet
transform. As shown in Figure 4 (right), there are two scaling parameters (t, s) to control the geometry of the
supports of wave packets. If (t, s) = (1, 1), the wave packet transform is essentially the wavelet transform;
if (t, s) = (1, 1/2), the wave packet transform becomes the curvelet transform (see Figure 3 (right) for an
illustration). The wave packet transform is a generalization of curvelet and wavelet transforms with better
flexibility in frequency scaling and consequently is better suited to analyze crystal images with complicated
geometry. As a convolution with smooth wave packets, Wf is well-defined and smooth even under very low
regularity requirements for f , e. g. f ∈ L∞(R2).

In contrast to the windowed Fourier transform of a given crystal image, whose spectrum spreads out in the
phase space as illustrated in Figure 5(b), the 2D synchrosqueezed transform (SST) based on wave packets aims
at a sharpened phase-space representation. In the SST, for each (a, θ, x), we define the corresponding local
wave vector estimation

(3) vf (a, θ, x) = Re
∇xWf (a, θ, x)

2πiWf (a, θ, x)

for |Wf (a, θ, x)| > γ, where γ is a threshold parameter to ensure stability of the estimation. Here, ∇xWf

denotes the gradient of Wf with respect to its third argument x.
If f(x) is a plane wave with a wave vector (v1, v2) ∈ R2, then simple algebraic calculation shows that the

local wave vector estimation vf (a, θ, x) is exactly (v1, v2) whenever Wf (a, θ, x) is not zero. When f(x) is

2Throughout this paper all the numerical implementation of integration follows the rectangle rule. For the purpose of simplicity,
we don’t specify the discretization of all variables in this paper. In a general setting, we assume the given image of size N0 × N0

is defined on [0, 1]2 with grid points {( i
N0
, j
N0

)} for 0 ≤ i, j ≤ N0 − 1; the frequency domain in a Cartesian coordinate is dis-

cretized with grid points {(i, j)} for −N0
2
≤ i, j ≤ N0

2
− 1; unless specified, the frequency domain in a polar coordinate is re-

stricted in the range [0,
√
2N0
2

] or [1,
√
2N0
2

] for radius and [0, π] for angle, and they are discretized uniformly with step size 1 in radius
and π/90 in angle. The code for phase-space sketching and the test data are available online in the SynCrystal package for reference
(https://github.com/SynCrystal/SynCrystal).
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a superposition of planewaves with well-separated local wave vectors {(v(k)
1 , v

(k)
2 )}k, by the stationary phase

approximation, vf (a, θ, x) ≈ (v
(k)
1 , v

(k)
2 ) when (a cos θ, a sin θ) is close to some local wave vector (v

(k)
1 , v

(k)
2 ).

In the case of crystal images, locally f(x) is a superposition of deformed planewaves. By applying Taylor
expansion to make approximations, one can also show that the local wave vector estimation vf (a, θ, x) can still
approximate the local wave vectors of f(x). Even in the presence of heavy noise, this approximation is still
reasonably good by applying the SST based on highly redundant wave packet frames [34, 35]. More precisely,
let us revisit the theory developed in [36] to support the argument just above.

Definition 3 (2D general shape function). The 2D general shape function class SM consists of periodic func-
tions s(x) with a periodicity (2π, 2π), a unit L2([−π, π]2)-norm, and an L∞-norm bounded by M satisfying
the following conditions:

(1) The 2D Fourier series of s(x) is uniformly convergent;
(2)

∑
n∈Z2 |ŝ(n)| ≤M and ŝ(0, 0) = 0;

(3) Let Λ be the set of integers {|n1| ∈ N : ŝ(n1, n2) 6= 0 or ŝ(n2, n1) 6= 0 for some n2 ∈ Z}. The
greatest common divisor of all the elements in Λ is 1.

Definition 4 (2D general intrinsic mode type function (GIMT)). A function f(x) = α(x)s(2πNφ(x)) is a 2D

GIMT of type (M,N), if s(x) ∈ SM , α(x) and φ(x) satisfy the conditions below.

α(x) ∈ C∞, |∇α| ≤M, 1/M ≤ α ≤M,

φ(x) ∈ C∞, 1/M ≤
∣∣∇(nTφ)/|nT|

∣∣ ≤M, and∣∣∇2(nTφ)/|nT|
∣∣ ≤M, ∀n ∈ Z2 s.t. ŝ(n) 6= 0.

The theorem below shows that the local wave vector estimation precisely estimates the local wave vectors
of the crystal image at the points away from boundaries (see [36] for the proof).

Theorem 5. For a 2D GIMT f(x) of type (M,N) with any ε > 0 and any r > 1, we let γ =
√
ε and define

Rε = {(a, θ, b) : |Wf (a, θ, b)| ≥ γ, a ≤ 2MNr}

and
Zn =

{
(a, θ, b) :

∣∣A−1
a R−1

θ

(
a · eθ −N∇(nTφ(b))

)∣∣ ≤ d, a ≤ 2MNr
}

For fixed M , r, s, t, d, and ε, there exists N0(M, r, s, t, d, ε) > 0 such that for any N > N0(M, r, s, t, d, ε)

and a 2D GIMT f(x) of type (M,N), the following statements hold.

(1)
{
Zn : Ŝ(n) 6= 0

}
are disjoint and Rε ⊂

⋃
Ŝ(n)6=0 Zn;

(2) For any (a, θ, b) ∈ Rε ∩ Zn,∣∣vf (a, θ, b)−N∇(nTφ(b))
∣∣

|N∇(nTφ(b))|
.
√
ε.

For simplicity, the notations O(·), . and & are used when the implicit constants may only depend on M , s,
t, and d.

Motivated by the property of the local wave vector estimation vf , the synchrosqueezed (SS) energy distri-
bution of f is constructed as

(4) Tf (v, x)=

∫∫
(a,θ)∈D(x,γ)

|Wf (a, θ, x)|2δ(vf (a, θ, x)− v) adadθ ,

where
D(x, γ) := {(a, θ) ∈ (0,∞)× (0, 2π) : |Wf (a, θ, x)| > γ}

and δ in (4) denotes the Dirac measure. In the numerical implementation of Tf (v, x) in (4), a normalized
Gaussian function with a sufficiently small support (of the same order as the discretization step size of its do-
main) is applied to approximate the Dirac delta function. The discretization of a and θ is given by the partition
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of unity of the discrete wave packet transform. The variable x is discretized uniformly in the Cartesian coordi-
nate, while the variable v is discretized in the polar coordinate. The SST squeezes the wave packet spectrum
|Wf (a, θ, x)|2 according to vf (a, θ, x) to obtain a sharpened and concentrated representation of the image in
the phase space. Hence, in the interior of a grain, the SS energy distribution Tf has a support concentrating
around local wave vectors N∇(ξ ·φk(x)), ξ ∈ L∗, and is given approximately by (see e.g., Figure 5(c) in polar
coordinate)

(5) Tf (v, x) ≈
∑
ξ∈L∗

αk(x)2|ŝ(ξ)|2δ
(
v −N∇(ξ · φk(x))

)
,

understood in the distributional sense. Therefore, by locating the energy peaks of Tf , we can obtain estimates
of local wave vectors N∇(ξ · φk(x)) and also their associated spectral energy. In practice, we choose high
energy peaks corresponding to ξ close to the origin in the reciprocal lattice to estimate the inverse deformation
gradient G0 and grain boundaries to guarantee numerical stability.

2.3. SST based crystal image analysis. In the case of a crystal image that consists of only one kind of lattice
in the image, it has been shown in [36, 14] that the SST can be applied to estimate the inverse deformation
gradient G0, grain boundaries, and defects. For simplicity, let us focus on the case of hexagonal lattices in this
section. It is straightforward to generalize to other Bravais lattices.

In the case of hexagonal lattices, we have six dominant reciprocal lattice vectors ξ ∈ L∗ such that |ŝ(ξ)| is
significant, which can be further reduced to three due to the symmetry ξ ↔ −ξ. We will henceforth denote
these as ξn, n = 1, 2, 3, and denote by vest

n (x) the estimate of N∇(ξn · φk(x)) = N(∇φk(x))ξn. The
inverse deformation gradient G0(x) = ∇φk(x) is determined by a least squares fitting to identify a linear
transformation that maps the reference reciprocal lattice vectors Nξn to the estimated local wave vectors vest

n :

G0(x) = argmin
G

3∑
n=1

|vest
n (x)−NGξn|2.

In practice, for each physical point x we represent Tf (·, x) in polar coordinates (r, ϑ) ∈ [0,∞) × [0, π) (the
information in ϑ ∈ [π, 2π) is redundant due to symmetry). To identify the peak locations {vest

n }, we choose the
grid point with highest amplitude in each π/3-degree sector of ϑ.

Since the local wave vector estimation is no longer valid around the crystal defects, the SS energy dis-
tribution Tf does not have dominant energy peaks around local wave vectors. Hence, we may characterize
the defect region by quantifying how concentrated the energy distribution is. One possible way is to use an
indicator function as follows. For each n ∈ {1, 2, 3} (corresponding to one of the sectors), we define

wn(x) =

∫
Bδ(vest

n )

Tf (v, x) dv∫
arg v∈[(n−1)π/3,nπ/3)

Tf (v, b) dv

,

where Bδ(vest
n ) denotes a small ball around the estimated local wave vector vest

n , and arg v means the argument
of v. Hence, mass(x) :=

∑
n wn(x) will be close to 3 in the interior of a grain due to (5), while its value will

be much smaller than 3 near the defects. This is illustrated in Figure 5(e), where we show mass(x) for the
crystal image in Figure 5(a). The estimate of defect regions can be obtained by a thresholding mass(x) at some
value η ∈ (0, 3) according to

Ωd = {x ∈ Ω : mass(x) < η} ,
an illustration of which is shown in Figure 5(f). Figure 6 shows the estimate of G0 by the SST. When showing
the result, we have used a more transparent way to represent the inverse deformation gradient G0 via the polar
decomposition G0(x) = U0(x)P0(x) for each point x ∈ Ω, where U0(x) is a rotation matrix and P0(x) is
a positive-semidefinite symmetric matrix. At each position x, the crystal orientation can be estimated via the
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FIGURE 7. Left: an example of atomic resolution crystal images f(x) = α(x)s(2πNφ(x)).
Middle: the phase-space sketch S̃(T ρf , h, u)(r, ϑ, x) by the polar windowed Fourier trans-
form for a fixed x (by a similar strategy of sketching applying on energy distribution of the
polar windowed Fourier transform). Right: the phase-space sketch S̃(T ρf , h, u)(r, ϑ, x) by
the SST at the same point x. The sketch by the SST is cleaner and provides multi points in
the reciprocal lattice L∗ of the Bravais lattice L of the shape function s(x).

rotation angle of U0(x); the volume distortion of G0(x) can be visualized by det(G0(x)) − 1; the quantity
|λ1(x)− λ2(x)| characterizes the difference in the principal stretches of G0(x) as a measure of shear strength,
where λ1(x) and λ2(x) are the eigenvalues of P0(x). The bottom panel of Figure 6 shows these quantities
corresponding to the estimate of G0 in the top panel. In later numerical examples, we will always present the
estimated inverse deformation gradient in the same fashion.

3. PHASE SPACE SKETCHING

To extend the crystal image analysis to more complicated scenario, in this section, we propose the phase-
space sketching, which is a sparse invariant representation of the phase-space information obtained by syn-
chrosqueezed transforms. The phase-space sketching will enable classification of different crystal types pre-
sented in the same image or across images.

3.1. Invariant representation. As compared to the crystal image model with a unique Bravais lattice in the
previous section, the mathematical model of a crystal image that consists of multiple types of lattices can be
written as in (1) and (2).

The image classification and segmentation problem is to identify each domain Ωk and classify its corre-
sponding shape function sk. The main difficulty is due to the considerable variability within object classes
(e.g., grain orientation, crystal deformation, defects, and difference of image illumination). Our goal is to
design a representation of the crystal image that is invariant to most of these variability.

It has been shown in [13, 2] that, deep convolution networks have the ability to build large-scale invari-
ants stable to deformations. Combined with advanced learning techniques, the convolution network like the
scattering transform can provide deformation invariance [23] and could be used for the problem discussed in
this paper. On the other hand, since our problem is more specific than general image classification, we aim to
design a more efficient and specific method. Taking advantage of the periodic structure of crystal images, we
introduce the phase-space sketching instead of applying the convolution network for the purpose of computa-
tional efficiency. The phase-space sketching is a nonlinear operator rescaling, shifting, and coarsening the SS
energy distribution.

Let us recall the definition of the SS energy distribution in Equation (4), written in polar coordinate as

(6) Tf (r, ϑ, x) =

∫∫
(a,θ)∈D(x,γ)

|Wf (a, θ, x)|2δ(vf (a, θ, x) − (r cosϑ, r sinϑ)) a dadθ ,

for (r, ϑ) ∈ [0,∞) × [0, π). Note that the SS energy distribution is translation invariant because the modulus
of the wave packet coefficient |Wf (a, θ, x)| is invariant to the translation of the image f(x). A simple idea to
achieve the rotation invariance might be shifting Tf (r, ϑ, x) in the variable ϑ such that Tf (r, ϑ, x) always takes
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its maximum value at a specific location. However, this shifting procedure is usually sensitive to the crystal
deformation. This motivates the following shifting and coarsening process to reduce the influence of rotation
and deformation simultaneously. For a step size h ∈ (0, π) in the angle coordinate ϑ and a step size u > 0 in
the radial coordinate r, we define the phase-space sketch via a coarsening procedure as follows.

Let
(r0(x), θ0(x)) ∈ arg max

r∈[0,∞),θ∈[0,π)
Tf (r, ϑ, x),

we defined the shifted and rescaled SS energy distribution with a scaling parameter ρ as

(7) T ρf (r, ϑ, x) = Tf

( r0(x)r

ρ+ u/2
, ϑ+ θ0(x)− h

2
mod π, x

)
.

In the maximization above, we approximate [0,∞) × [0, π) with a finite set of points, numerically evaluate
the objective at all these points, and identify the maximizer by simply traversing all the points. To reduce the
computational cost for traversing, we will project the matrix in θ and r into 1D vectors in θ and look for the
peaks in θ first. Once the peaks in θ have been identified, it is only necessary to search for peaks in r for θ
around the peaks in θ. This can reduce the computational complexity to a linear scaling one in terms of the
number of grid points in r and θ. Typical choices are 30 or 45 grid points in both angle and radius domains for
all numerical examples in this paper. Hence, the total computational cost for all x is in the order of 10 times
the number of pixels. The step size h is usually chosen to be π

9 or π
12 , and the step size u is usually chosen to

be 1
4 or 1

2 of the lowest frequency of wave-like components in the crystal image, i.e., N in our mathematical
model in Equation (2), which can be estimated by the SST by Theorem 5. The same parameters will be used
to discretize the angle and radius domain, and to do the sketching for other formulas in this paper since the
proposed method is not sensitive to them. For a fixed x, there might be multiple maximizer but one can simply
choose one of them. T ρf (r, ϑ, x) is not sensitive to the choice of (r0(x), θ0(x)) due to the concentration of the
phase space representation and the largest spectrum energy of crystal images is assocated with the energy bump
with the lowest wave number. Then the phase-space sketch of the new SS energy distribution T ρf (r, ϑ, x) is
defined as a local average of the shifted and rescaled SS energy distribution

(8) S̃(T ρf , h, u)(r, ϑ, x)=

∫ bϑhch+h

bϑhch

∫ b rucu+u

b rucu
T ρf (r̃, ϑ̃, x) r̃ dr̃ dϑ̃

for (r, ϑ) ∈ [0,∞)× [0, π), where b·c means the floor operator.
This operation can be understood as a binning (or pooling) operator that collects varying local wave vectors

into fixed bins in the phase space, and hence reduces the influence of the deformation. Overall, the phase-
space sketching is a nonlinear transform (with respect to the image f ) that squeezes the phase-space energy
distribution via synchrosqueezing and coarsening into the sketch S̃(Tf , h, u), resulting in a representation
invariant to small deformation.

The extend of the deformation invariance of S̃(T ρf , h, u) is determined by the step sizes h and u. Note
that a fully deformation invariant representation would not be able to distinguish different Bravais lattices (see
Figure 2), since these lattices are the same in the quotient group of affine transforms. Hence, we should choose
appropriate step sizes h and u such that: 1) they are sufficiently large, making S̃(T ρf , h, u) invariant to small

elastic deformation due to external forces on the material; 2) they are small enough such that S̃(T ρf , h, u) is
capable of distinguishing different lattices.

The sketch S̃(T ρf , h, u) is also invariant to rotation and scaling. After shifting and rescaling, for a fixed
x, the new SS energy distribution T ρf (r, ϑ, x) reaches its maximum value at (ρ + u

2 ,
h
2 ). Hence, the sketch

S̃(T ρf , h, u)(r, ϑ, x) has the maximum value in [ρ, ρ+ u)× [0, h) for each fixed x.

It is worth pointing out that the sketch S̃(T ρf , h, u)(r, ϑ, x) is separably invariant with respect to rotation and
translation. Therefore, the sketch cannot discriminate a class of similar texture patterns, e.g. see Figure 8 for an
example of two images sharing similar absolute values of the wave packet coefficients. Fortunately, this is not
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FIGURE 8. A separable invariant along rotations and translations cannot distinguish the left
and right texture patterns, but a joint rotation-translation invariant can [23]. Courtesy of Sifre
et al..

a problem in atomic resolution crystal image analysis, since all crystal patterns behave similarly to the pattern
in Figure 8 (left).

Finally, to remove the influence of the amplitude function α(x), i.e., obtaining the illumination invariance,
we normalize the magnitude of the phase-space sketch S̃(T ρf , h, u)(r, ϑ, x) and define

(9) S(T ρf , h, u)(r, ϑ, x) =
S̃(T ρf , h, u)(r, ϑ, x)

max
r∈[0,∞),θ∈[0,π)

S̃(T ρf , h, u)(r, ϑ, x)
.

One may also consider sketching other more standard phase-space representations, e.g., the polar windowed
Fourier transform or wavelet transform. However, it is more advantageous to combine sketching with the
synchrosqueezed transforms. As we have shown in Figure 5, the SS energy distribution has concentrated
support around the local wave vectors of the crystal image, while the results of windowed Fourier transform
or wavelet transform are more spread-out. Hence, the sketch of the windowed Fourier or wavelet transform
is not as clean as that of the SS energy distribution (see the comparison in Figure 7). Moreover, the SS
energy distribution provides useful information for crystal image analysis and computing its sketching only
adds minimal computational overhead.

Finally, we close the introduction of phase space sketching with the following theorem.

Theorem 6. Suppose f1(x) = s(2πN1x) and f2(x) = α(x)s(2πN2φ(x)) for x ∈ [0, 1]2 are two 2D GIMT’s
of type (M,N1) and (M,N2), respectively, such that s(x) is a shape function describing one crystal configura-
tion (square or hexegonal lattice). ∀ε > 0 and n0 ∈ N+, let γ >

√
ε, compute the local wave vector estimations

as in (3) and the SS energy distribution Tfj (r, ϑ, x) as in (6) in the domain [0, n0Nj ]× [0, π)× [0, 1]2 for j = 1

and 2. ∃N0(M, r, s, t, d, ε) given by Theorem 5 such that ∀N1 > N0, ∀N2 > N0, and ∀γ > γ0, if positive
numbers ρ, h, and u satisfy the following conditions:

u > 4RM,εnγ(ρ+
u

2
), h > 2 arcsin (2RM,ε) ,

ρ

u
∈ N+,

π

6h
∈ N+,

where RM,ε := max{M − 1, 1− 1
M }+M

√
ε, nγ := min{n ∈ N+ : |Wfj (a, θ, b)| ≤ γ,∀a > nNj and ∀j},

then the phase space sketch of f1(x) and f2(x) satisfy

S(T ρf1 , h, u)(r, ϑ, x) = S(T ρf2 , h, u)(r, ϑ, x) +O(
√
ε)

for all (r, ϑ, x) ∈ [0, n0ρ]× [0, π)× [0, 1]2.

Proof. The proof of Theorem 6 is straightforwad and only need elementary algebraic calculation. The intuition
is that when γ is sufficiently large, we have thresholded less important features in the shape function s(x) and
only a few important local wave vectors of crystal images are left for pooling, which allows the choices of ρ, u,
and h such that the phase space sketch only contains a few nonzero energy bins indicating the type of crystal
configuration. We will focus on the case of square lattice and use Figure 9 to sketch out the proof. Let’s assume
N1 = N2 = N without the loss of generality since we can rescale the SS energy distribution according to (7).
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FIGURE 9. Illustration of the proof of Theorem 6 in the case of square lattice in the asymp-
totic sense, i.e., the equalities and inequalitys hold up to a constant independent of N . (a)
Supports of the SS energy of f1 (in orange) and f2 (in green) in polar coordinate. Blue areas
indicate the possible locations of the supports of the SS energy of f2 when φ varies. (b) A
zoomed-in example of the supports in (a) with detailed locations in Cartesian coordinate for
an n such that |n| ≤ n0. (c) T ρf1(r, ϑ, x). (d) T ρf2(r, ϑ, x).

Orange areas in Figure 9 (a) and (b) denote the supports of the SS energy distribution Tf1(r, ϑ, x) for some
vector n and for a fixed x; the green areas denote the supports of Tf2(r, ϑ, x) for the same n and x; the blue
areas cover the possible supports of Tf2(r, ϑ, x) for all x with the fixed n. By Theorem 5, we can estimate the
size of these colored areas up to a constant prefactor independent of N (see quantitative estimations in Figure
9 (b)). Hence, after shifting and rescaling, we obtain T ρf1(r, ϑ, x) in Figure 9 (c) and T ρf2(r, ϑ, x) in Figure 9
(d). Finally, as long as u and h are large enough such that the blue areas in Figure 9 (c) and (d) are covered in
a box given by the grids, then we see that the phase space sketches of f1 and f2 are the same up to

√
ε in the

range [0, n0ρ] × [0, π) × [0, 1]2. The conditions ρ
u ∈ N

+, and π
6h ∈ N

+ make sure that a single bin in the
phase space sketches can cover one blue area in Figure 9 (c) and (d). �

Theorem 6 shows that for crystal images with the same type of configuration (either square or hexagonal
lattice), their phase space sketches are invariant to image translation, rotation, illumina- tion, and scale dif-
ference. This new representation is also stable to deformation and invariant to a class of elastic deformation
characterized by the phase function φ(x) in 2D GIMTs. When the parameter M in a GIMT is O(1), it is easy
to find parameters ρ > 0, h > 0, and u > 0 to construct the phase space sketch. However, if M is large, there
is no good parameter to obtain invariant representations via phase space sketching.
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FIGURE 10. Left: a toy example of atomic resolution crystal images with different crystal
patterns. Right: classification results of the sketch by the SST. The crystal image is of size
512×512. We sub-sample the crystal image to save computation (one sample every 4 pixels)
and generate local patches of size 65 × 65 pixels centered at the sub-sampled points. Each
patch is associated with a phase-space sketch. These patches are classified based on the
compressed feature vector of the sketch using spectral clustering. The centers of outlier
patches are indexed with zeros.

3.2. Classification. We may apply the phase-space sketch to classify crystal textures in a complicated crystal
image. Although advanced classifiers such as SVM are useful tools for classification, here we present some
simple and efficient classification methods.

As we have seen in Figure 7, the phase-space sketch S(T ρf , h, u) at a point x in the interior of a grain has
well-separated supports indicating the reciprocal latticeL∗ of the Bravais latticeL of the crystal pattern. Hence,
the locations and the magnitudes of the supports are important features for crystal pattern classification. In the
case of a complicated crystal image, if two grains share the same crystal pattern, they should have the same
phase-space sketch S(T ρf , h, u) at the locations x sufficiently far away from grain boundaries. Therefore, we
only need to identify major groups of the sketch S(T ρf , h, u) at different x’s and choose a representative sketch
from each major group. Other sketch outliers are due to the influence of grain boundaries on the phase-space
representation; each sketch outlier contains the information of at least two crystal patterns and looks like a
superposition of more than one sketches.

A simple idea for classification is to define an appropriate distance to measure the similarity of different
phase-space sketches and apply the spectral clustering [18] to identify the major groups of the sketches. Since
the types of crystal textures are limited, it is not necessary to use the whole sketch for discrimination. To
ensure that the method is as efficient as possible, features contained in the sketch invariant to uninformative
variability in crystal images are more important. Observe that the phase-space sketch is able to sketch out the
multi-scale reciprocal lattice L∗ (see Figure 7 (right)), and the numbers of supports at different scales largely
determine the crystal pattern. It is sufficient to use these numbers as a compressed feature vector to represent
the sketch. For example, the feature vector of the sketch in Figure 7 (right) is (2, 2, 2), where each 2 means that
there are 2 leading supports above a certain threshold at each scale (each row in the phase space sketch matrix).
For some other examples for the feature vectors, please see Figure 11. Note that the number of supports are
invariant to translation, rotation, illumination, and small deformation. Hence, the feature vector by the number
of supports in sketches is a compressed invariant representation of crystal patterns. The standard Euclidean
distance of vectors is a natural choice to measure the similarity of these compressed invariant representations.
Using the number of supports only might be too ambitious in some cases. A better way is to take advantage
of the magnitudes of the peaks in these supports, once two crystal patterns have sketches sharing the same
numbers of supports. For example, a simple idea is to set up a threshold parameter and only count the number
of supports above this threshold. In practice, this simple idea is sufficient to discriminate most crystal patterns
in real applications.

Finally, we provide several synthetic examples to demonstrate the efficiency of the proposed compressed
feature vector for classification. The first example in Figure 10 (left) contains three different crystal patterns
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FIGURE 11. From left to right, the phase-space sketch S(T ρf , h, u)(r, ϑ, x) of the SST cor-
responding to the type of reference configuration identified in Figure 10. Red dots in Figure
10 (right) indicate the position x’s of the sketches in this figure. After thresholding these
phase space sketches with a threshold 0.05, the feature vectors, i.e., vectors describing the
number of leading isolated supports, of these sketches are (2, 2, 2), (4, 4, 4, 4), (3, 3, 3), and
an empty vector (from left to right).
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FIGURE 12. Left: a toy example of atomic resolution crystal images with different crystal
patterns. Right: classification results by the sketch of the SST. Numerical results were obtain
using the same setting as in Figure 10.
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FIGURE 13. From left to right, the phase-space sketch S(T ρf , h, u)(r, ϑ, x) of the SST cor-
responding to the type of reference configuration identified in Figure 12. Red dots in Figure
12 (right) indicate the position x’s of the sketches in this figure.

and one vacancy area, and each pattern has two grains with different orientations and scales. The SST is
applied to generate the phase-space sketch and the corresponding compressed feature vectors at each pixel of
the crystal image. The spectral clustering algorithm is able to identify four major groups of compressed feature
vectors. According to the clustering results of the feature vectors, we group the corresponding pixels together
and visualize the results in Figure 11 (right).

The third example in Figure 12 (left) is similar to the first example but the crystal image has been smoothly
deformed. As shown in Figure 12 (right) and Figure 13, the proposed method succeeds to detect all crystal
patterns and their sketches.
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FIGURE 14. Left: a toy example of atomic resolution crystal images with different crystal
patterns. Right: classification results by the sketch of the SST. Numerical results were obtain
using the same setting as in Figure 10.
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FIGURE 15. From left to right, the phase-space sketch S(T ρf , h, u)(r, ϑ, x) of the SST cor-
responding to the type of reference configuration identified in Figure 14. Red dots in Figure
14 (right) indicate the position x’s of the sketches in this figure.

In the last example in Figure 14 (left), there are four different crystal patterns (two kinds of square lattices
and two kinds of hexagonal lattices) with different levels of illumination. As shown in Figure 14 (right) and
Figure 15, the proposed method is able to detect all crystal patterns and their sketches. This is a very challenging
example. As we can see in the sketches in Figure 15, Type 1 and 2 sketches almost share the same support
(and so do Type 3 and 4). Hence, as discussed previously, only the number of supports with peaks over an
appropriate threshold is used in constructing the compressed feature vector.

To demonstrate the efficiency of the phace-space sketching method, we quantitatively compare it with the
state-of-the-art algorithms3, e.g. the scattering transform in [23], using the examples in Figure 12 and 14.
Each example contains four different kinds of crystal texture; correspondingly, 36 training images of size
64 by 64 with different orientation, translation, image intensity, deformation were generated for each texture
class. Crystal images on the left of Figure 12 and 14 were partitioned into 322 overlapping patches of size
64×64 uniformly distributed in the image domain and these patches are used as validation data. The scattering
transform was used to train and classify these data. Table 1 and 2 summarize the performance of the propose
method and the scattering transform. Numerical results show that the phase space method is highly efficient
in running time and the success rate is higher than the scattering transform. The code and the data set for this
comparison are available in the SynCrystal package. The numerical tests were performed on a MacBook Pro
(processor 3.1 GHz Intel Core i5, memory 8 GB 2133 MHz LPDDR3).

3.3. Segmentation. In the previous section, we have applied the phase-space sketching to identify reference
sketches for different crystal patterns in a complicated crystal image. As shown in Figure 10 to 14, a crystal
image can be roughly partitioned into several pieces and each piece contains grains sharing the same crystal
pattern. However, we are not able to determine an accurate partition due to sketch outliers at grain boundaries.

3In our numerical tests, CNN [15] doesn’t perform well because crystal image data are limited and it is difficult to regularize the CNN
with sufficiently good data augmentation. Hence, we only compare our algorithm with the scattering transform. Default parameters were
used in the scatterign transform.
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Example Algorithm Tsct(sec) Tcls(sec) Success Rate

Figure 12 non-log 8.65e+02 2.60e-02 84.6
Figure 12 log 8.80e+02 3.02e-02 88.3

Figure 14 non-log 8.78e+02 2.60e-02 82.0
Figure 14 log 8.95e+02 2.60e-02 82.8

TABLE 1. Performance of the scattering transform for crystal image classification. “non-log"
means the scattering transform without log scattering, while “log" means with log scattering.
Tsct is the time for computing the scattering representation of all the training and validation
data. Tcls is the time for classifying the validation data.

Example Tsst(sec) Tskt(sec) Tcls(sec) Success Rate

Figure 12 2.46e+01 2.54e+01 1.80e+00 94.2

Figure 14 1.78e+01 2.16e+01 1.91e+00 90.7
TABLE 2. Performance of the phace-space sketching algorithm for crystal image classifica-
tion. Tsst is the time for the synchrosqueezed transform; Tskt is the time for phase-space
sketching; Tcls is the time for classification. The success rate has been visualized on the right
of Figure 12 and Figure 14.

FIGURE 16. Left: The atomic simulation at zero temperature to examine dislocation emis-
sion from a crack tip. Right: grain boundary by thresholding the defect indicator function of
the left figure with a black mask for the vacancy area given by the classification using phase
space sketching.

Since we already have the reference sketches by the algorithm in the previous section, we can simply match
the sketch outliers with the reference sketches and identify the most possible type of crystal pattern. However,
we do not expect the outlier treatment to give meaningful results at grain boundaries, because the results will
hesitate between two types and in real data it is even difficult to distinguish types by manual inspection. Once
we have completed the image segmentation for different crystal patterns, the atomic resolution crystal image
analysis in Section 2 is applied within each type of crystal patterns to estimate defects and crystal deformations.
This completes the complicated crystal image analysis.

4. QUANTITATIVE ANALYSIS IN REAL APPLICATIONS

This section presents several real examples in materials science to demonstrate the efficiency of the proposed
method in this paper. These atomic crystal examples include crack propagation, phase transition, and self-
assembly.
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FIGURE 17. Numerical results of the example in Figure 16. Left: crystal orientation. Mid-
dle: the volume distortion of the elastic deformation. Right: the difference in principle
stretches of the elastic deformation.

4.1. Crack propagation. Accurate and quantitative estimation of the elastic deformation in the presence of
plastic deformation and defects (cracks and dislocations) is crucial for predicting a critical loading state that
results in crack growth and dislocation motion, understanding the dislocation nucleation/emission from an
originally pristine crack tip, quantifying the effect that pre-existing dislocations surrounding a crack tip can
have on its driving force, and exploring how the crack-tip shape impacts the dislocation emission process [40],
just to name a few.

Figure 16 (left) is an example of the atomic simulation at zero temperature to examine dislocation emission
from a crack tip. We apply the proposed algorithms in this paper to identify the crystal pattern, the crack region,
and estimate the elastic deformation of this example. As shown in Figure 16 (right), the crack estimation is ac-
curate up to an error less than one atom. Hence, the proposed method is able to distinguish crystal configuration
and vacancy area as in the toy examples in Section 3. Figure 17 shows the estimation of the crystal orientation,
the volume distortion and the difference in principle stretches of the elastic deformation. These results quan-
titatively show the interaction between the crack and the perfect crystal region through elastic deformation,
especially around the crack-tip and in the direction of the crack propagation.

4.2. Phase transition. With the development of digital video microscopy [19, 21, 20], researchers are able to
observe the phase transition (between solid, liquid and gaseous states of matter) with single particle resolution.
The behavior of important quantities at the atomic scale (e.g., defects, deformation, phase interfaces) presents
interesting new questions and challenges for both theory and experiment in materials science. Research in this
direction is limited by the difficulty of imaging and analyzing atomic crystals. In the aspect of data analysis, the
challenge comes from the fact that it is difficult to track the atoms in the evolution process of phase transition,
especially in the case of irregular patterns (e.g. liquid or gas states). The proposed algorithm in this paper is
free of tracking atoms, offering a new means to examine fundamental questions in phase transition.

4.2.1. Solid-liquid phase transition. Crystal melting (solid-liquid phase transition) is of considerable impor-
tance, but our understanding of the melting process in the atomic scale is far from complete. In particular, the
kinetics of this phase transition have proved difficult to predict [10]. Scientists have been trying to verify old
conjectures and establish new theories in describing the crystal melting process at the atomic scale [19, 21].

Figure 18 shows an example of thin crystalline films during the melting process [21]. We apply the proposed
algorithms in this paper to identify the solid and liquid regions, and estimate the elastic deformation of this
example. As shown in Figure 18 (right), the estimation of the interfaces between solid and liquid states are
in line with the image in Figure 18 (left) by visual inspection. This result also matches the fact that capillary
waves roughen the solid-liquid surface, but locally the intrinsic interface is sharply defined [7]. Figure 19
shows the estimation of the crystal orientation, the volume distortion and the difference in principle stretches
of the elastic deformation (only the results in the solid part are informative). These results quantitatively show
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FIGURE 18. Left: melting behavior of thin crystalline films [21]. Courtesy of Yilong Han
of Hong Kong University of Science and Technology, and Arjun Yodh of Pennsylvania State
University [19]. Right: defect and liquid regions are indicated in black, while solid crystal
regions and grain islands are in white.

-0.3

-0.2

-0.1

0

0.1

0.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FIGURE 19. Deformation analysis of the example in Figure 18 (left). Left: the volume
distortion of the elastic deformation. Right: the difference in principle stretches of the elastic
deformation.

FIGURE 20. Left: a microscopic image showing the simulation of nucleation mechanism
in solid-solid phase transitions [20]. Courtesy of Yilong Han of Hong Kong University of
Science and Technology, and Arjun Yodh of Pennsylvania State University. Middle: defects
and interfaces are visualized in black. Right: identified hexagonal lattice in yellow and square
lattice in green.

the interaction between the solid and liquid parts. The elastic deformation of the solid crystal structure near the
solid-liquid interfaces has a larger strain.

4.2.2. Solid-solid phase transition. It is well known that different geometric arrangements of the same atom
or crystal phase can produce materials with different properties. Solid-solid phase transitions can significantly
change the physical properties of crystalline solids. A spectacular example of this effect is coal and diamond.
Scientists have been trying to identify the right circumstances under which the phase transition occurs, to
understand the mechanisms that facilitate phase transitions, and to control the transition process [20].
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FIGURE 21. Top-left: an example of the crystallization dynamics of sedimenting hard
spheres in large systems [16]. Courtesy of Marjolein Dijkstra at Utrecht University. Top-
right: different colors encode different crystal orientations. Bottom-left: identified defects in
black. Bottom-right: identified square crystal lattice in green and hexagonal crystal lattice in
yellow.

Figure 20 (top-left) shows the simulation of nucleation mechanism in solid-solid phase transitions [20]. In
this example, we focus on identifying different crystal patterns for the sake of shortening the manuscript. We
apply the proposed algorithms in this paper to identify two solid crystal patterns, and defects. As shown in
Figure 20 (right two figures), the estimation of the interface between two different solid crystal patterns agrees
with the image in Figure 20 (top-left) by visual inspection.

4.3. Self-assembly. A disordered system of pre-existing components can form an organized structure or pat-
tern through local interactions among the components themselves without external direction. This evolution
process is called self-assembly. Self-assembly is an attractive approach for fabricating complex synthetic struc-
tures with specific functions [6]. The most common approach to design a self-assembly strategy is by trial and
error, where various synthesis methods are studied. To discover new self-assembly strategies to make artificial
materials with desired mechanical and biological properties, it is crucial to understand the detailed dynamics
of formation in self-assembly.

Figure 21 shows the final configuration of the crystallization dynamics of sedimenting hard spheres [16].
The crystallization process is a purely entropy-driven phase transition from a disordered fluid phase to face-
centered-cubic crystal structures and hexagonal-close-packed structures. We apply the proposed method in this
paper to analyze the crystal image in Figure 21 (top-left). Numerical results of crystal orientations, defects,
and types of crystal patterns are visualized in Figure 21 top-right, bottom-left, and bottom right, respectively.
Although the proposed method would misclassify thin grains with diameter less than four atoms, due to the
limitation by Heisenberg uncertainty principle since the proposed method is based on phase space analysis,
crystal types of larger grains can still be correctly identified.
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FIGURE 22. Left: an example of atomic resolution crystal images with the out-of-focus
problem. Courtesy of Yilong Han of Hong Kong University of Science and Technology.
Middle: identified defects. Right: crystal orientation estimation.

4.4. Out-of-focus issue. In the last numerical example, we test the proposed crystal analysis method on an
image with the out-of-focus problem, where it is difficult to determine the positions of atoms and even gain
boundaries by visual inspection (see Figure 22 (left) for examples). Some structured noise in form of dark
disks also increases the difficulty of image analysis. We apply the proposed method in this paper to analyze
the example in Figure 22 (left), show the defect estimation in the middle of Figure 22, and visualize the crystal
orientation estimation in right panel of Figure 22. Numerical results show that the proposed method is stable
to the out-of-focus problem and the structured noise. For example, there is a dark disk in the middle of the
crystal image but the crystal configuration in terms of atom positionsl smoothly changes; correspondingly, the
proposed identifies no grain boundary in this area and shows that the orientation changes smoothly. The crystal
configuration starting from the dark disk and going towards the top-left corner changes from white atoms to
black atoms, and finally white atoms again. The proposed method identifies no grain boundary and visualizes
the smooth change of crystal orientation. In the middle-left part, though the crystal configuration is not clear,
the proposed method is still able to identify a small piece of grain and shows its boundary.

5. CONCLUSION

We propose a tool set for automatic and quantitative characterization of complex microscopic crystal images
based on the phase-space sketching and synchrosqueezed transforms. This method encodes microscopic crys-
tal images into a translation, rotation, illumination, scale, and small deformation invariant representation. We
have applied this method to analyze various atomic resolution crystal images in materials science, e.g., crack
propagation images, phase transition images, self-assembly images. Let us mention two possible future direc-
tions: 1) it is worth exploring other advanced image segmentation algorithms to improve the performance of
the proposed method at grain boundaries; 2) it is useful to extend the current framework for three-dimensional
atomic resolution crystal image analysis.
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