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Abstract. Recent technical advances lead to the coupling of PET and MRI scanners, enabling to
acquire functional and anatomical data simultaneously. In this paper, we propose a tight frame based
PET-MRI joint reconstruction model via the joint sparsity of tight frame coefficients. In addition, a
non-convex balanced approach is adopted to take the different regularities of PET and MRI images
into account. To solve the nonconvex and nonsmooth model, a proximal alternating minimization
algorithm is proposed, and the global convergence is present based on Kurdyka- Lojasiewicz property.
Finally, the numerical experiments show that the our proposed models achieve better performance
over the existing PET-MRI joint reconstruction models.
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1. Introduction. Medical imaging is the technique and process of visualizing
the anatomy of a body for clinical analysis and medical intervention, as well as the
function of some organs and tissues. For many decades, single medical imaging modal-
ity has been available and widely used to image either function or anatomy. For
example, positron emission tomography (PET) and single positron emission com-
puted tomography (SPECT) provide information on the distribution of radioisotopes
and tracers in living tissue. These distributions allow clinicians to determine certain
functions of tissue [33, 35]. On the other hand, magnetic resonance imaging (MRI)
and X-ray computed tomography (CT) can provide the information on anatomical
structure.

Recent technical advances have allowed for the coupling of PET and MRI, leading
to significant advantages over traditional PET-CT and standalone MRI [16]. The
resulting PET-MRI modalities are able to acquire functional data and anatomical data
simultaneously, while PET-CT modalities acquire data sequentially [16, 18, 26, 52].
Since both PET and MRI data stem from the same underlying object, it would be
more desirable to explore the relation between two modality images and develop a
joint reconstruction model, rather than restore images independently. Typically, the
major drawback of PET is low signal-to-noise ratio and low spatial resolution in the
visualized image [35]. On the other hand, MRI provides an anatomical image with
superior spatial resolution, whereas the so-called k-space data acquisition process is
so time consuming that there has been increasing demand for methods reducing the
amount of acquired data without degrading the image quality [43]. However, when
the k-space data is undersampled, the Nyquist sampling criterion is violated, and
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this inevitably leads to the aliasing in the reconstructed image [43]. Nevertheless,
through the joint reconstruction process, the complementary information in MRI and
PET images can be borrowed to improve restoration quality, especially in the case of
degraded and/or incomplete data. In this paper, we only consider the two dimensional
PET-MRI joint reconstruction, as the same modeling can be easily applied to the three
dimensional cases, and even to other joint reconstruction problems such as SPECT-
CT.

Let u1 and u2 denote the two dimensional PET and MRI images, and let A and Fp
denote the acquisition process operator of PET and MRI respectively. The acquired
PET data is assumed to be an instance of Poisson distributed vector with expectation
Au1 + c where c denotes the mean number of background counts [9, 26]. Meanwhile,
the noise in MRI can be modeled as a complex white Gaussian noise [26]. Then,
by the maximum likelihood principle, the PET-MRI joint reconstruction problem is
formulated as the following minimization problem:

min
u1∈C1,u2∈C2

〈1, Au1 + c〉 − 〈f, ln(Au1 + c)〉+
κ

2
‖Fpu2 − g‖22 +R(u1, u2),(1)

where C1, C2 are feasible sets, κ is a positive constant related to the noise level of MRI
data, and R(u1, u2) is a nonseparable regularization term for u1 and u2.

In relation to the joint reconstruction, the above model (1) naturally arises the
question of what is the proper choice of R(u1, u2). As the function cannot be indepen-
dent from structure [26, 45], it is reasonable to assume that the images to be recon-
structed have structural correlation [26]. In the literature, the structure of an image is
mathematically modeled as a singularity such as edge and ridge, and the idea of struc-
tural correlation based joint reconstruction was first explored in the color image pro-
cessing as the color channels in general share the singularities [8, 25, 29, 36, 47, 50, 53].
The successful examples include the vectorial total variation [8, 29] and the parallel
level set (PLS) [25]. Motivated by the works on the color image processing, the au-
thors in [26] recently applied joint total variation (JTV) [26, 31] and PLS priors to the
PET-MRI joint reconstruction. Their analysis shows that the Gâteaux derivatives of
both JTV and PLS lead to the nonlinear, inhomogeneous diffusion, which promotes
the edge-enhancing effect. However, even though both JTV and PLS methods showed
significant improvements over the individual reconstruction methods, the regulariza-
tion term R(u1, u2) has to be further improved as the artifacts appear from the other
modality image when the images have complex structures.

Wavelet frames are known to be effective in capturing image singularities from
degraded images. This is due to the multiscale structure of the wavelet frame systems,
short supports of the framelet functions with varied vanishing moments, and the pres-
ence of both low pass and high pass filters in the wavelet frame filter banks, which are
desirable in sparsely approximating images [24]. In addition, due to the redundancy
of systems, wavelet frames are more robust to errors than the (bi)orthogonal wavelet
bases in [44]. Finally, the special structure of filter banks enables the construction of
a so-called data driven tight frame to provide a better sparse approximation of a given
input image adaptively [14, 54, 56, 57], with the computational efficiency over the K-
SVD method in [1]. The successful applications in the medical image reconstruction
can be found in the sparse angle X-ray CT reconstruction (wavelet frames in [21], and
data driven tight frames in [56]), the limited view CT reconstruction [19], the sparse
MRI reconstruction [40], and the data driven tight frame based CT reconstruction in
[57], etc.

In this paper, we propose a new tight frame (wavelet frame and data driven
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tight frame) based PET-MRI joint reconstruction model. Our proposed model is also
based on the observation that two modality images have a strong correlation in the
image singularities. As the singularities are sparsely captured by the (data driven)
wavelet tight frame, our model enforces the joint sparsity [28] of frame coefficients
to exploit such a structural correlation. Related examples can be found in the pre-
vious work in [54], where the authors use the vector `0 norm of frame coefficients to
construct a multi channel data driven tight frame enforcing the structural correlation
between image channels. Indeed, their applications to color image denoising and joint
color-depth image reconstruction show the improvements over the independent recon-
struction. Motivated by their success in color image processing, we further explore
the application in the PET-MRI joint reconstruction. More precisely, using the vec-
tor `0 norm of frame coefficients, we propose a balanced approach [10, 12, 17] for the
joint reconstruction from the data with Poisson noise (PET) and the undersampled
k-space data (MRI). Finally, as it can be observed that the two modality images have
different regularity, we expect the use of balanced approach will help suppress the
artifacts which the existing models in [26] may introduce.

The rest of this paper is organized as follows. In section 2, we review the basic
concepts of wavelet frame and data driven tight frame. In section 3, we introduce
our tight frame based PET-MRI joint reconstruction model, followed by the proximal
alternating minimization algorithm, and the convergence analysis is given at the end
of this section. In section 4, we present some experimental results, and the concluding
remarks are given in section 5.

2. Preliminaries and Related Works.

2.1. Wavelet Tight Frames. In this subsection, we briefly introduce the con-
cept of tight frames and wavelet tight frames. Interested readers may consult [11, 22,
23, 46, 48] for details. Let H be a Hilbert space equipped with the inner product 〈·, ·〉
and the norm ‖ · ‖. A sequence {ϕn : n ∈ Z} ⊆ H is called a tight frame on H if

‖u‖2 =
∑
n∈Z
|〈u, ϕn〉|2 for all u ∈ H.(2)

Given {ϕn : n ∈ Z} ⊆ H, the analysis operator W : H→ `2(Z) is defined as

u ∈ H 7→Wu = {〈u, ϕn〉 : n ∈ Z} ∈ `2(Z),

and the synthesis operator WT : `2(Z)→ H is defined as

v ∈ `2(Z) 7→WT v =
∑
n∈Z

v[n]ϕn ∈ H.

Thus, {ϕn : n ∈ Z} is a tight frame on H if and only if WTW = I with I : H → H

being the identity. This means that for a given tight frame {ϕn : n ∈ Z}, we have the
following canonical expression:

u =
∑
n∈Z
〈u, ϕn〉ϕn,

where Wu = {〈u, ϕn〉 : n ∈ Z} is called the canonical tight frame coefficients. Hence,
the tight frames are generalizations of orthonormal bases to the redundant systems.
In fact, a tight frame is an orthonormal basis if and only if ‖ϕn‖ = 1 for all n ∈ Z.
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One of the most widely used class of tight frames is discrete wavelet frame gen-
erated by a set of finitely supported filters {q1, · · · , qm}. In this paper, we only
discuss the undecimated wavelet frames, which is also known as the translation in-
variant wavelet frame transform. Given q ∈ `1(Z), define a convolution operator
Sq : `2(Z)→ `2(Z) by

(Squ)[n] = (q ∗ u)[n] =
∑
k∈Z

q[n− k]u[k] for u ∈ `2(Z).

Given a set of finitely supported filters {q1, · · · , qm}, define the analysis operator W
and the synthesis operator WT respectively by

W =
[
STq1[−·],S

T
q2[−·], · · · ,S

T
qm[−·]

]T
(3)

WT = [Sq1 ,Sq2 , · · · ,Sqm ] .(4)

Then, the rows of W form a tight frame on `2(Z) if and only if WTW = I, i.e.
the filters {q1, · · · , qm} satisfy one of the so-called unitary extension principle (UEP)
condition [32]:

m∑
l=1

∑
k∈Z

ql[n+ k]ql[k] = δn =

{
1 if n = 0,

0 if n 6= 0.
(5)

Once the one dimensional filters generate a wavelet tight frame on `2(Z), the higher
dimensional wavelet tight frame could be obtained via the tensor product of the one
dimensional filters.

2.2. Data Driven Tight Frames. Even though tensor product wavelet frame
based approach is simple to implement and able to achieve sparse representation of a
piecewise smooth image, the major disadvantage is that these framelets mostly focus
on singularities along the horizontal and vertical directions [14, 39]. For example,
when an image has complex geometries such as directional textures, the tensor product
wavelet frame coefficients may not be sparse enough [14].

In order to explore the adaptive sparse approximation of images, various data
driven methods have been proposed (e.g. [1, 14]). Among these methods, one promis-
ing transformation is the so-called data driven tight frame [14]. It aims to construct a
tight frame which sparsely approximates a given image u adaptively. The tight frame
W = W (q1, · · · , qr2) is generated by finitely supported real valued filters {q1, · · · , qr2}
satisfying (5). More concretely, given an image u, the data driven tight frame is ob-
tained via solving the following minimization:

min
v,W

‖v −Wu‖22 + λ2‖v‖0 subject to WTW = I,(6)

where the `0 norm ‖v‖0 encodes the number of nonzero entries in the coefficient vector
v. To solve (6), we first reformulate it in the following way. Reshape all r× r patches

of u into G ∈ Rr2×p where p denotes the number of total patches. Let D ∈ Rr2×r2

be the matrix generated by concatenating filters {q1, · · · , qr2} into column vectors

{~q1, · · · , ~qr2}. Denote V ∈ Rr2×p as the frame coefficients. Hence, we have

u⇔ G = (~g1, · · · ~gp) ∈ Rr
2×p

W ⇔ D = (~q1, · · · , ~qr2) ∈ Rr
2×r2

v ⇔ V = (~v1, · · · , ~vp) ∈ Rr
2×p.
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Under this setting, (6) is equivalent to

min
V,D

‖V −DTG‖2F + λ2‖V ‖0 subject to DDT = I(7)

where ‖ · ‖F denotes the Frobenius norm of a matrix. For solving (7), the alternating
minimization with closed form solutions is presented in [14], and the proximal alter-
nating minimization (PAM) scheme with global convergence property is proposed in
[4].

Recently, such a patch-based adaptive construction of tight frame filters has been
extended to the following data driven tight frame for multi channel image in [54]:

min
v,{Wi}ci=1

c∑
i=1

wi‖Wiui − vi‖22 + λ‖v‖2,0

subject to WT
i Wi = I, i = 1, · · · , c.

(8)

Here, Wi, ui, and vi for i = 1, 2, . . . , c respectively denote the tight frame filters, ith
channel image and frame coefficients, and ‖v‖2,0 =

∣∣{j : |v1[j]|2 + · · ·+ |vc[j]|2 6= 0}
∣∣

with v = (v1, · · · , vc) is the vector `0 norm to promote the joint sparsity. This vector
`0 norm ‖ · ‖2,0 encodes the structural correlation among the channel images, which
demonstrates the advantages in multi channel image restoration [54].

3. Model and Algorithm.

3.1. PET-MRI Joint Reconstruction Model. Let u1 and u2 respectively
denote the PET and MRI images to be reconstructed. In the literature, the observed
PET data f ∈ RM+ is corrupted by the Poisson noise while the MRI data (or k-space
data) g ∈ CL is corrupted by white complex Gaussian noise. Assuming that the noise
is independent for each pixel, we have

P (f |u1) =

M∏
j=1

(Au1 + c)[j]f [j]e−(Au1+c)[j]

f [j]!

where the PET forward operator A : RN → RM is in general modelled as the discrete
attenuated Radon transform [5, 9], and c denotes the mean number of background
counts. Meanwhile, for MRI, we have

P (g|u2) ∝
L∏
j=1

exp

{
−|(Fpu2)[j]− g[j]|2

2σ2

}

where the MRI forward operator Fp : RN → CL is modelled as the unitary discrete
Fourier transform followed by a projection onto the measured frequencies, and σ is
the standard deviation of noise in k-space data. Given that f and g are conditionally
independent on u1 and u2, we have

P (f, g|u1, u2) = P (f |u1, u2)P (g|u1, u2) = P (f |u1)P (g|u2).(9)

Then, together with P (u1, u2) ∝ exp(−R(u1, u2)) and the Bayes’ rule, the maximum
a posteriori is equivalent to the minimization problem (1).

Let v1 and v2 denote the wavelet frame coefficients of u1 and u2 under a given
wavelet frame transform W respectively. As the singularities of u1 and u2 are mostly
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correlated, we assume that the sparsity of v1 and v2 is correlated. Exploiting the idea
of joint sparsity in [54], we propose our joint sparsity tight frame (JSTF) PET-MRI
joint reconstruction model as follows:

min
u1∈C1,u2∈C2,v

Φ1(u1) + Φ2(u2) +
µ1

2
‖Wu1 − v1‖22 +

µ2

2
‖Wu2 − v2‖22 + λ‖v‖2,0(10)

where

Φ1(u1) = 〈1, Au1 + c〉 − 〈f, ln(Au1 + c)〉

Φ2(u2) =
κ

2
‖Fpu2 − g‖22,

and κ = 1/σ2. Here, C1 = [0, a1]N and C2 = [0, a2]N respectively denote feasible sets
which reflect the physical properties of PET and MRI images.

As each modality image may contain information on the different features despite
the structural correlation, we may have to actively learn the joint sparse approxima-
tion of u1 and u2 [54]. Hence, we also propose the following joint sparsity based data
driven tight frame (JSDDTF) joint reconstruction model

min
u1∈C1,u2∈C2,
W1,W2,v

Φ1(u1) + Φ2(u2) +
µ1

2
‖W1u1 − v1‖22 +

µ2

2
‖W2u2 − v2‖22 + λ‖v‖2,0

subject to WT
i Wi = I, i = 1, 2,

(11)

where the tight frames W1 and W2 are learned from the two modality images u1 and
u2 respectively.

In the literature, the joint sparsity of tight frame coefficients can also be achieved
via the following joint analysis (JAnal) based approach

min
u1∈C1,u2∈C2

Φ1(u1) + Φ2(u2) + λ‖Wu‖2,1(12)

with

‖Wu‖2,1 =
∥∥∥(‖Wu1‖22 + ‖Wu2‖22

)1/2∥∥∥
1
, u = (u1, u2).

Indeed, under properly chosen parameters, the above JAnal model (12) can be viewed
as a discretization of a variational model including the following JTV model:

min
u1∈C1,u2∈C2

Φ1(u1) + Φ2(u2) + λ
∥∥∥(‖∇u1‖22 + ‖∇u2‖22

)1/2∥∥∥
1
,(13)

while achieving the restoration results superior to the standard finite difference dis-
cretization of JTV (See e.g. [13] for the related details). Meanwhile, our model takes
the balanced approach (e.g. [10, 12, 17]) as a special case; by fixing u1 = WT v1 and
u2 = WT v2, the JSTF model (10) reduces to

min
v,WT v1∈C1,WT v2∈C2

Φ1(WT v1) + Φ2(WT v2)

+
µ1

2
‖(I −WWT )v1‖22 +

µ2

2
‖(I −WWT )v2‖22 + λ‖v‖2,0,

and the similar reasoning can be applied to the JSDDTF model (11) as well, by fixing
ui = WT

i vi for i = 1, 2.
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When µ1, µ2 = ∞, the JSTF model (10) can be rewritten as the following non-
convex variant of JAnal model:

min
u1∈C1,u2∈C2

Φ1(u1) + Φ2(u2) + λ‖Wu‖2,0(14)

as vi = Wui for i = 1, 2. Hence, the main difference between (10) and the JAnal model
(12) lies in the contribution of ‖Wui − vi‖22, which measures the distance between vi
(frame coefficients) and Wui (canonical coefficients of ui). Since the canonical coef-
ficients in general may not be sparse enough due to the complex geometry of human
body, we use the term ‖Wui − vi‖22 to provide the flexibility in sparse approximation
of two modality images. Most importantly, under some mild conditions on the tight
frame W , the canonical coefficients not only provide the information on the image
singularities, but their magnitude also reflects the regularity of an image (See [7] for
details). This means that, when the JAnal model (12) is used, we implicitly assume
that the two modality images should have the same regularity, as well as the exact
coincidence of singularities. However, even though the singularities of two modality
images have a strong correlation, they may not exactly coincide with each other as
different modality images reflect different physical properties of a human body. In
addition, when two images have different regularity, the JAnal model can cause the
singularities in one modality image to affect the smooth region in the other even if
their singularities coincide. As a consequence, the JAnal model may introduce the
artifacts in the reconstructed images. In contrast, µ1 and µ2 in our proposed model
play a role of balancing the structural correlation of two modality images and their
different regularity. As we can observe that MRI images are less noisy compared to
PET image, in our proposed model, µ2 is chosen to be larger than µ1, and we ex-
pect that this different choice of µi will help to suppress such artifacts. Finally, the
same arguments are applied to the JSDDTF model (11) as it has the same modeling
philosophy as the JSTF model (10) except that we learn two tight frames adaptively
from u1 and u2.

3.2. Alternating Minimization Algorithm. We propose the proximal alter-
nating minimization (PAM) algorithms [2] to solve both (10) and (11). As the two
schemes are similar except that W1 and W2 are additionally updated in (11), we
only consider the algorithm for solving (11). Given initializations u0

1 and u0
2, the

initializations of v, W1, and W2 are obtained via

min
v,W1,W2

µ1‖W1u
0
1 − v1‖22 + µ2‖W2u

0
2 − v2‖22 + λ̃‖v‖2,0

subject to WT
i Wi = I, i = 1, 2,

(15)

using the algorithm in [14]. After the initializations, we optimize {u1, u2, v,W1,W2}
by solving the model (11) alternatively. The full details are described in Algorithm 1.
Note that we consider the subproblems separately whenever they are separable.

It is easy to see that each problem in (16) is strongly convex and smooth, and
there are numerous algorithms to solve it. In our algorithm, uk+1

1 is updated using
the projected scaled gradient method [34] which is a special case of preconditioned
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Algorithm 1 Proximal Alternating Minimization Algorithm for (11)

Initialization: u0
1, u0

2, v0, W 0
1 , W 0

2

for k = 0, 1, 2, · · · do
(1) Optimize u1 and u2:

uk+1
1 = argmin

u1∈C1
Φ1(u1) +

µ1

2
‖W k

1 u1 − vk1‖22 +
αk1
2
‖u1 − uk1‖22

uk+1
2 = argmin

u2∈C2
Φ2(u2) +

µ2

2
‖W k

2 u2 − vk2‖22 +
αk2
2
‖u2 − uk2‖22.

(16)

(2) Optimize W1 and W2:

W k+1
1 = argmin

WT
1 W1=I

µ1

2
‖W1u

k+1
1 − vk1‖22 +

βk1
2
‖W1 −W k

1 ‖22

W k+1
2 = argmin

WT
2 W2=I

µ2

2
‖W2u

k+1
2 − vk2‖22 +

βk2
2
‖W2 −W k

2 ‖22.
(17)

(3) Optimize v = (v1, v2):

vk+1 = argmin
v

λ‖v‖2,0 +
µ1

2
‖v1 −W k+1

1 uk+1
1 ‖22

+
µ2

2
‖v2 −W k+1

2 uk+1
2 ‖22 +

γk

2
‖v − vk‖22.

(18)

end for

alternating projection algorithm [37]; Let uk,01 = uk1 . For j = 0, 1, 2, · · ·

M j = diag(uj/AT 1)

u
j+1/2
1 = uj1 − ρ

j
1M

j

[
AT

(
1− f

Auj1 + c

)
+ µ1

(
uj1 − (W k

1 )T vk1

)
+ αk1

(
uj1 − uk1

)]
uj+1

1 = min
{

max(u
j+1/2
1 , 0), a1

}
.

Similarly, uk+1
2 is updated using the projected gradient method [42]; Let uk,02 = uk2 .

For j = 0, 1, 2, · · ·

u
j+1/2
2 = uj2 − ρ

j
2

[
κF∗p(Fpu

j
2 − g) + µ2

(
uj2 − (W k

2 )T vk2

)
+ αk2

(
uj2 − uk2

)]
uj+1

2 = min
{

max(u
j+1/2
2 , 0), a2

}
,

where F∗p is the conjugate transpose of Fp. In any case, we omit the outer iteration
k on M , u1, and u2. Since the constraints C1 and C2 are convex, the above iterations
converge to the global minimizers for appropriately chosen ρj1 and ρj2 [34, 42].

To solve (17) and (18), we introduce

{u1,W1, v1} ⇔ {G1, D1, V1}
{u2,W2, v2} ⇔ {G2, D2, V2}
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using r×r patches of u1 and u2. Under the above reformulation, (17) and (18) become

Dk+1
1 = argmin

D1DT
1 =I

µ1

2
‖DT

1 G
k+1
1 − V k1 ‖2F +

βk1
2
‖D1 −Dk

1‖2F

Dk+1
2 = argmin

D2DT
2 =I

µ2

2
‖DT

2 G
k+1
2 − V k2 ‖2F +

βk2
2
‖D2 −Dk

2‖2F ,
(19)

and

V k+1 = argmin
V

λ‖V ‖2,0 +
µ1

2
‖V1 − (Dk+1

1 )TGk+1
1 ‖2F

+
µ2

2
‖V2 − (Dk+1

2 )TGk+1
2 ‖2F +

γk

2
‖V − V k‖2F

(20)

where V = (V1, V2). Hence, to solve (19), we use the following closed form formulae:

Dk+1
1 = X1Y

T
1 where X1,Σ1, Y1 is the SVD of Gk+1

1 (V k1 )T +
βk1
µ1
Dk

1

Dk+1
2 = X2Y

T
2 where X2,Σ2, Y2 is the SVD of Gk+1

2 (V k2 )T +
βk2
µ2
Dk

2 .

(21)

The closed form solution to (20) is given by

V k+1 = T2λ,µ+γk

[(
µ1(Dk+1

1 )TGk+1
1 + γkV k1

µ1 + γk
,
µ2(Dk+1

2 )TGk+1
2 + γkV k2

µ2 + γk

)]
(22)

where Tλ,µ with µ = (µ1, µ2) is the generalized hard thresholding formula [54] defined
as

(Tλ,w[(U1, U2)])j =

{
(U1,j , U2,j) if

∑2
i=1 wi|Ui,j |2 ≥ λ,

0 otherwise.
(23)

Here, (Tλ,w[(U1, U2)])j and Ui,j denote the jth row vector of Tλ,w[(U1, U2)] and Ui
respectively.

3.3. Convergence Analysis. This section is devoted to the convergence anal-
ysis of our alternating minimization algorithm. Due to the same reason to the PAM
algorithm, we focus on the convergence analysis of sequence {(uk1 , uk2 ,W k

1 ,W
k
2 , v

k) :
k ∈ N} in (11) generated by Algorithm 1. To do this, we assume the followings:

A1. f > 0 and A satisfies

A[i, j] ≥ 0, A1 > 0, & AT 1 > 0.

where A[i, j] denotes the (i, j)th entry of A.
A2. c > 0 is a constant vector.
A3. There exist 0 < L < U such that L ≤ αk1 , αk2 , βk1 , βk2 , γk ≤ U for all k ∈ N.
We first introduce some basic notation and definitions.
Definition 3.1. Let f : Rn → R ∪ {∞} be a proper and lower semicontinuous

(lsc) function.
1. The domain of f , denoted as dom(f) is defined as

dom(f) = {x ∈ Rn : f(x) <∞}.
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2. For each x ∈ dom(f), the Fréchet subdifferential of f at x is defined as

∂F f(x) =

{
s ∈ Rn : lim inf

y→x

f(y)− f(x)− 〈s, y − x〉
‖y − x‖

≥ 0

}
.

If x /∈ dom(f), then we set ∂F f(x) = ∅.
3. The (limiting-) subdifferential of f at x is defined as

∂f(x) = {s ∈ Rn : ∃xn s.t. f(xn)→ f(x) & sn ∈ ∂F f(xn)→ s} .

The domain of ∂f is defined as dom(∂f) = {x ∈ Rn : ∂f(x) 6= ∅
}

.
4. x ∈ dom(f) is a critical point of f if 0 ∈ ∂f(x).

In the literature, the global convergence of the alternating schemes are established
on the framework of the Kurdyka-Lojasiewicz (KL) property in [38, 41]. Even though
it is challenging to verify whether a given function f satisfies the KL property, there
are some functions of special cases which have proven to satisfy the KL property, such
as analytic functions and semi-algebraic functions (e.g. [2, 3, 6, 55] ).

To apply the framework of KL property to our model, we let

x = (x1, x2, x3, x4, x5) = (u1, u2,W1,W2, v)

for notational simplicity. Recall C1 = [0, a1]N and C2 = [0, a2]N , and let D = {W ∈
Rr2N×N : WTW = Ir2×r2}. Then we define

P (x) = Φ1(u1) + Φ2(u2) +
µ1

2
‖W1u1 − v1‖22 +

µ2

2
‖W2u2 − v2‖22

ri(xi) = ıCi(xi) i = 1, 2

ri(xi) = ıD(xi) i = 3, 4

r5(x5) = λ‖x5‖2,0

where ıA is the indicator function of a set A: ıA(x) = 0 if x ∈ A, ıA(x) =∞ otherwise.
Using the above notation, we reformulate the model (11) as

min
x

H(x) := P (x) +

5∑
i=1

ri(xi).(24)

Note that it is not hard to verify that Φ1(u1) and the indicator functions are analytic,
and r5(x5) is a semi-algebraic function. Together with that the remaining terms are
all polynomials, we can see that the functional H defined as in (24) satisfies the KL
property.

Under this reformulation, we can present the following result on the global con-
vergence.

Theorem 3.2. Assume that A1-A3 hold. Let H(x) be the objective function de-
fined as in (24). Then the sequence {xk : k ∈ N} generated by Algorithm 1 converges
to a critical point of H. Moreover, {xk}k∈N has the following finite length property:

∞∑
k=0

‖xk+1 − xk‖2 <∞.(25)

The proof of Theorem 3.2 is similar to the framework given in [3, Theorem 3.7.].
In fact, H(x) defined as in (24) satisfies KL property, and noting that Φ1(x1) is
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analytic, proper, lsc, strictly convex and coercive [27], it is not hard to see that H(x)
satisfies the first condition in [3, Theorem 3.7.]. (See [3] for the details). Hence, the
proof is completed provided that we show that the sequence {xk : k ∈ N} generated
by Algorithm 1 is bounded. In fact, since the constraints C1, C2 and D are compact
sets, it suffices to show that vk is bounded.

Lemma 3.3. Assume that A1-A3 hold. Let H(x) be the objective function defined
as in (24). For {xk : k ∈ N} generated by Algorithm 1, there exist R1, R2 > 0 such
that ‖vk1‖2 ≤ R1 and ‖vk2‖2 ≤ R2 for all k ≥ 0.

Proof. Note that the constraint on u1 and u2 leads to

‖uk1‖2 ≤ a1

√
N and ‖uk2‖2 ≤ a2

√
N

for all k ≥ 0. If we choose R1 = a1

√
N and R2 = a2

√
N , then the proof is completed

by mathematical induction. For k = 0, (23) implies

‖v0
1‖2 ≤ ‖W 0

1 u
0
1‖2 = ‖u0

1‖2 ≤ R1

‖v0
2‖2 ≤ ‖W 0

2 u
0
2‖2 = ‖u0

2‖2 ≤ R2

where the equality comes from the fact that W 0
1 and W 0

2 are tight frames.
For the mathematical induction, we assume that ‖vk1‖2 ≤ R and ‖vk2‖2 ≤ R for

k ≥ 0. Again, by (23), we have

‖vk+1
1 ‖2 ≤

∥∥∥∥∥µ1W
k+1
1 uk+1

1 + γkvk1
µ1 + γk

∥∥∥∥∥
2

≤ µ1

µ1 + γk
‖W k+1

1 uk+1
1 ‖2 +

γk

µ1 + γk
‖vk1‖2 ≤ R1

‖vk+1
2 ‖2 ≤

∥∥∥∥∥µ2W
k+1
2 uk+1

2 + γkvk2
µ2 + γk

∥∥∥∥∥
2

≤ µ2

µ2 + γk
‖W k+1

2 uk+1
2 ‖2 +

γk

µ2 + γk
‖vk2‖2 ≤ R2

from the fact that W k
1 , W k

2 ∈ D for all k ∈ N. This completes the proof.

4. Numerical Results. In this section, we present some experimental results
to compare our JSTF model (10) and JSDDFT model (11) with the several existing
methods. We choose to compare with the the following analysis based individual
reconstruction models:

min
u1∈C1

Φ1(u1) + λ1‖Wu1‖1,(26)

min
u2∈C2

Φ2(u2) + λ2‖Wu2‖1,(27)

both of which are solved by the split Bregman method [15], the data driven tight
frame (DDTF) individual reconstruction models:

min
u1∈C1,v1,W1

Φ1(u1) +
µ1

2
‖W1u1 − v1‖22 + λ1‖v1‖0 subject to WT

1 W1 = I,(28)

min
u2∈C2,v2,W2

Φ2(u2) +
µ2

2
‖W2u2 − v2‖22 + λ2‖v2‖0 subject to WT

2 W2 = I,(29)

solved by the PAM algorithm, and the quadratic parallel level set (QPLS) method
in [26]. We also compare with the JAnal model (12) solved by the split Bregman
method, as a replacement of the JTV model (13).

The experiments are conducted with 256×256 PET and MRI images taking values
in [0, 1], which are available at Harvard Whole Brain Atlas webpage1. Throughout

1http://www.med.harvard.edu/AANLIB/home.html
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this paper, we set both C1 and C2 are [0, 1]N . Note that MRI images are classified
into the positron density (PD) weighted image, the T1 weighted image, and the T2
weighted image according to the pulse sequence design [30] (See Figure 1). In this
sequel, we perform experiments using different MRI images for different u2, which we
shall refer to PET-PD, PET-T1, and PET-T2 respectively. To measure the quality
of restored images, we compute the relative error, the PSNR, and the correlation
between the reconstructed image ũi and the true image ui respectively defined as

RelErr(ui, ũi) =
‖ui − ũi‖2
‖ui‖2

,

PSNR(ui, ũi) = −10 log10

‖ui − ũi‖22
N

,

Corr(ui, ũi) =
〈ui − ui, ũi − ũi〉
‖ui − ui‖2‖ũi − ũi‖2

where ui and ũi denote the mean of ui and ũi respectively.

PET Image PD Image T1 Image T2 Image

Fig. 1: True PET image (first column) and true MRI images (second to last columns).
We use different MRI images for u2.

To synthesize the data, we generate the forward PET operator A as described in
[5], and we set c = 1 in all cases. To generate 256 × 256 PET data f with Poisson
noise, we use the MATLAB built-in function “imnoise(·,‘poisson’)”by scaling Au1 + c
with a suitable factor before applying “imnoise”, and then scaling it back with the
same factor. More precisely,

f = factor ∗ imnoise((Au1 + c)/factor, ‘poisson’)

and we set factor to be 2 ∗ 108 in all cases. Note that the larger “factor” is, the larger
noise level is. To generate g, we first generate Fp = RΛF, where RΛ is the projection
on the known frequency region Λ, and F is the unitary discrete Fourier transform.
Here, we choose RΛ to be the sampling along the 30 radial lines and the 10% random
sampling described in [20]. The gaussian noise with standard deviation 0.05 is also
added to both real and imaginary part of Fpu2.

In all experiments, we choose the same initializations for the fair comparison; u0
1 is

obtained by the Expectation-Maximization algorithm [49], and u0
2 is obtained by the

inverse discrete Fourier transform with zero filling (See Figure 2). For the individual
reconstruction models (26) and (27), the JAnal Model (12) as well as our JSTF
model (10), we use one level piecewise cubic B-spline wavelet frame transformation.
For JSDDTF model (11) as well as DDTF individual reconstruction models (28) and
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(29), we use 8×8 undecimated discrete cosine transform filters [51] for the initial guess
of (15). In all cases, we set κ = 1. In (10), (11), (28), and (29), we set µ1 = 0.05,
µ2 = 1, αk1 = αk2 = 0.001, βk1 = βk2 = γk = 0.00005, and ρj1 = ρj2 = 0.5 in all cases.
All parameters related to the (joint) sparsity are manually chosen so that we obtain
the optimal restoration results, especially the optimal results in PET image for the
joint reconstruction models. In addition, as the wavelet frame systems consist of low
pass filter and high pass filters and the low pass filter coefficients are not sparse in
general [13], we follow the convention that we do not penalize the frame coefficients
corresponding to the low pass filter.

Fig. 2: Synthesized data and initializations. The first row describes the synthesized
PET data f (left) and u0

1 (right). The second row depicts the radial sampling projec-
tion RΛ, followed by u0

2 for PET-PD, PET-T1 and PET-T2 respectively. The third
row shows the random sampling projection RΛ, followed by the initializations of u0

2

for PET-PD, PET-T1 and PET-T2 respectively.

Table 1 summarizes relative errors, PSNR values, and correlations of the afore-
mentioned five restoration models, and Figure 3-Figure 8 present visual comparisons
of the results. We can see that both JSTF (10) and JSDDTF model (11) consis-
tently outperforms both the individual reconstruction models and the existing joint
reconstruction models in [26]. This verifies that there exists a correlation on image
singularities between the two modality images, and exploiting this correlation results
in the better reconstruction results. In addition, compared to the existing joint re-
construction models, we can see that our proposed models introduce less artifacts
in both modality images, leading to the visual improvements over the existing joint
reconstruction methods which are consistent with the improvements in indices. It
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Radial Sampling

Images Indices Initial Analysis DDTF QPLS JAnal JSTF JSDDTF

PET-PD

PET
RelErr 0.3156 0.1112 0.0939 0.1040 0.0945 0.0937 0.0905
PSNR 18.8555 27.9170 29.3820 28.5011 29.3297 29.4054 29.7059
Corr 0.9384 0.9918 0.9942 0.9928 0.9942 0.9943 0.9946

MRI
RelErr 0.3448 0.2148 0.2129 0.2878 0.2732 0.2022 0.1929
PSNR 24.0252 28.1347 28.2127 25.5958 26.0482 28.6616 29.0692
Corr 0.9018 0.9633 0.9648 0.9350 0.9410 0.9678 0.9707

PET-T1

PET
RelErr 0.3156 0.1112 0.0939 0.1034 0.0952 0.0934 0.0893
PSNR 18.8555 27.9170 29.3820 28.5453 29.2649 29.4358 29.8250
Corr 0.9384 0.9918 0.9942 0.9929 0.9941 0.9943 0.9948

MRI
RelErr 0.3571 0.1992 0.1809 0.2266 0.2146 0.1753 0.1663
PSNR 19.9312 25.0007 25.8395 23.8804 24.3556 26.1104 26.5667
Corr 0.8967 0.9695 0.9752 0.9601 0.9641 0.9764 0.9787

PET-T2

PET
RelErr 0.3156 0.1112 0.0939 0.1069 0.0964 0.0923 0.0881
PSNR 18.8555 27.9170 29.3820 28.2628 29.1616 29.5351 29.9369
Corr 0.9384 0.9918 0.9942 0.9924 0.9940 0.9944 0.9949

MRI
RelErr 0.3907 0.2415 0.2285 0.2678 0.2497 0.2108 0.2023
PSNR 19.9442 24.1204 24.6029 23.2245 23.8311 25.3016 25.6593
Corr 0.9005 0.9635 0.9676 0.9551 0.9608 0.9723 0.9745

Random Sampling

Images Indices Initial Analysis DDTF QPLS JAnal JSTF JSDDTF

PET-PD

PET
RelErr 0.3156 0.1112 0.0939 0.1027 0.0943 0.0933 0.0906
PSNR 18.8555 27.9170 29.3820 28.6088 29.3456 29.4376 29.6987
Corr 0.9384 0.9918 0.9942 0.9930 0.9942 0.9943 0.9946

MRI
RelErr 0.3366 0.2081 0.2082 0.2729 0.2618 0.2003 0.1919
PSNR 24.2355 28.4134 28.4054 26.0581 26.4169 28.7440 29.1145
Corr 0.9064 0.9657 0.9663 0.9408 0.9452 0.9683 0.9709

PET-T1

PET
RelErr 0.3156 0.1112 0.0939 0.1036 0.0950 0.0929 0.0889
PSNR 18.8555 27.9170 29.3820 28.5293 29.2815 29.4772 29.8588
Corr 0.9384 0.9918 0.9942 0.9929 0.9941 0.9943 0.9948

MRI
RelErr 0.3712 0.1952 0.1785 0.2180 0.2093 0.1707 0.1627
PSNR 19.5948 25.1765 25.9556 24.2185 24.5722 26.3422 26.7584
Corr 0.8878 0.9709 0.9759 0.9629 0.9658 0.9777 0.9797

PET-T2

PET
RelErr 0.3156 0.1112 0.0939 0.1072 0.0964 0.0928 0.0882
PSNR 18.8555 27.9170 29.3820 28.2321 29.1553 29.4865 29.9256
Corr 0.9384 0.9918 0.9942 0.9924 0.9939 0.9943 0.9949

MRI
RelErr 0.4052 0.2357 0.2270 0.2551 0.2397 0.2089 0.2016
PSNR 19.6260 24.3331 24.6594 23.6451 24.1873 25.3805 25.6890
Corr 0.8925 0.9654 0.9680 0.9591 0.9638 0.9728 0.9746

Table 1: Comparison of relative errors, PSNR, and correlations.

is worth noting that our proposed model can improve the restoration qualities even
using a static wavelet tight frame. This demonstrates that the improvements mainly
come from simultaneously considering the different regularity of the different modality
images and the joint sparsity. Meanwhile, we can see that the QPLS model and the
JAnal model (12), which only take the structural correlation into account, show the
degradations in MRI restoration results compared to the independent reconstruction
methods due to the artifacts. Finally, we list some zoom-in views in Figure 9 to
illustrate that our models (10) and (11) restore structures better than the existing
methods.

5. Conclusions. In this paper, we proposed a joint sparsity based tight frame
regularization PET-MRI joint reconstruction model, together with a proximal alter-
nating minimization algorithm. The numerical experiments show that our models
(10) and (11) both outperform the existing models in [26]. This performance gain of
our proposed models mainly comes from taking the different regularity of the different
modality images into the consideration, as well as the structural correlation. Finally,
our convergence analysis demonstrates that the sequence generated by our algorithm
globally converges to a critical point of the proposed model.

Acknowledgments. We would like to thank the anonymous reviewers for their
constructive suggestions and comments that helped tremendously with improving the
presentations of this paper.
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