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This study is concerned with the dynamical behaviors of epidemic spreading over a two-layered
interconnected network. Three models in different levels are proposed to describe cooperative spread-
ing processes over the interconnected network, wherein the disease in one network can spread to the
other. Theoretical analysis is provided for each model to reveal that the global epidemic threshold
in the interconnected network is not larger than the epidemic thresholds for the two isolated layered
networks. In particular, in an interconnected homogenous network, detailed theoretical analysis is
presented, which allows quick and accurate calculations of the global epidemic threshold. Moreover,
in an interconnected heterogeneous network with inter-layer correlation between node degrees, it is
found that the inter-layer correlation coefficient has little impact on the epidemic threshold, but has
significant impact on the total prevalence. Simulations further verify the analytical results, showing
that cooperative epidemic processes promote the spreading of diseases.

I. INTRODUCTION

Epidemic spreading, as an important dynamic process
taking place on complex networks, has stimulated wide
interest in the past two decades. Many spreading pro-
cesses have been studied on isolated networks [1–6]. How-
ever, in the real-world, an epidemic process may spread
across different networks. For example, Avian influenza,
such as 2009 H1N1 and 2013 H7N9, can spread from
poultry to humans. A natural extension of the study is
to use an interacting network model to analyze real-world
epidemic processes, where a disease is able to spread
from one network to another. Recent studies have shown
that comprising interconnected networks can more accu-
rately simulate real-world situations [7–13]. The classical
SIS and SIR models were studied on interconnected net-
works. In [7], a heterogeneous mean-field approach was
developed to calculate conditions for the emergence of
an endemic state, which revealed that the global epi-
demic threshold of interconnected networks is smaller
than the threshold of each individual network. In [8],
the SIR model was studied on interconnected networks,
which showed that for strongly interconnected networks,
the endemic state occurs or dies out simultaneously in
each component network. Using generating function and
bond percolation theory, multiple routes transmitted epi-
demic process was modeled following the SIR model in
multiplex networks [11], which revealed that an endemic
state can emerge in multiplex networks even if the layers
are well below their respective epidemic thresholds. In
[14], perturbation theory was used to analyze epidemic
thresholds of networks, which revealed that the spectral
radius of the whole network matrix is never smaller than
that of each submatrix. Thus, the epidemic threshold of
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the whole network is always not larger than the thresh-
olds of the isolated networks. It was found that the epi-
demic threshold of a multiplex network is governed by
the layer that contains the largest eigenvalue of the con-
tact matrix[14, 15]. In [16], a framework was proposed to
describe the spreading dynamics of two diseases, it was
found there are regions of the parameter space, in which
a diseases outbreak is conditioned to the prevalence of
the other disease.

The interplay between awareness and disease spread
processes is a key issue in studying epidemics. With the
interaction of two processes, such as the spreading of a
disease and the spreading of the information awareness
to prevent infection, epidemic spreading promotes wider
information awareness which can further protract infec-
tion. A conclusion is that information awareness can sup-
press epidemic spreading [17, 18]. Therefore, epidemic
spreading processes on multiplex networks exhibit rich
phase diagrams of intertwined effects. While the study
of uncorrelated complex networks is a fundamental step
for investigating many complex systems, in a realistic
interconnected network, inter-layer degree correlation is
expected to exist. For example, in a social network, a
person with a large number of links in one network layer
is likely to have many links in other types of network lay-
ers that reflect different kinds of social relations, such as
being a friendly person[19].

Recent works have shown that correlated multiplex-
ity is ubiquitous in the world trade system [20], as well
as in transportation network systems[21, 22]. Due to
their impact on network robustness [21, 23] and perco-
lation properties [19, 24], multiplex networks has been
extensively studied. In [25], the impact of inter-layer
correlations on epidemic processes was studied regard-
ing awareness in disease networks. With a degree corre-
lation between double-layer random awareness networks
and disease spreading, there is a strong evidence that an
epidemic can be suppressed through large-degree nodes
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[25], thus it is possible to effectively mitigate an epidemic
disease by information diffusion via hub nodes with high
degree centrality.

The structure of a complex network can be character-
ized by its degree property, which represents the type of
interaction between components (nodes). In terms of de-
gree distribution, complex networks can be classified into
homogeneous and heterogeneous networks[1, 26]. Ho-
mogeneous networks, such as random graphs and small-
world models, possess the Poisson type of degree dis-
tributions, with most nodes basically bearing the mean
degree. Heterogeneous networks, such as scale-free net-
works, exhibit a power-law degree distribution. This kind
of distribution implies that a small portion of nodes have
very large degrees compared to the average degree of the
network. However, degree distribution gives information
about the connectivity probability at the level of a group
of nodes but not individual nodes. Thus, to obtain more
detailed description for individual nodes, it is necessary
to propose a model describing spreading dynamics at the
individual level.

The aforementioned works focus on multiplex net-
works, in which the nodes in each layer are the same, and
each node in one layer is only connected to its counter-
parts in the other layer. However, many complex systems
contain layers with different kinds of nodes, such as ho-
mosexual and heterosexual networks of sexual contacts,
transportation networks which depend on different layers
such as air routes, railways and roads. Furthermore, in
these complex systems, a node in one layer can connect
with various nodes in the other layer. Thus, the study of
epidemic spreading on interconnected networks, in which
different layers have different numbers or types of nodes,
is of more practical significance.

The present study focuses on how the structures of
complex networks and the inter-layer connections deter-
mine the epidemic thresholds of a two-layered (extend-
able to more) interconnected network. Three dynamical
models are proposed to describe cooperative spreading
processes on an interconnected homogenous or heteroge-
neous network. The first one is the spreading dynamics
on the whole network of two homogeneous layered net-
works. The second is the spreading dynamics in groups
of nodes with identical degrees on a two-layered heteroge-
neous network with inter-layer correlations. The last one
is the spreading dynamical model at the individual level
on a two-layered heterogeneous network without inter-
layer correlations. This last model assumes that proba-
bilities of nodes being infected are independent random
variables. Theoretical analysis and numerical simulations
are used to investigate the cooperative spreading pro-
cesses.

The rest of the paper is organized as follows. Three
models and theoretical analysis are presented in Sec. II.
Numerical simulations are presented to illustrate the be-
haviors of cooperative spreading processes in Sec. III.
Finally, conclusions are given in Sec. IV with some dis-
cussions.

II. NETWORK MODELING AND
PRELIMINARIES

Consider a two-layered interconnected network, net-
work layer A of size N and B of size M , which have
different connectivities. Use network AB (BA), both of
size M +N , to denote inter-layer connectivity from layer
A (B) to B (A). The inter-layer connectivity randomly
correlates between the two layers. An example of two
interconnected networks is shown in Fig.1.

The classical susceptible-infected-susceptible (SIS)
model [1] is used to describe the spreading dynamics on
the interconnected network. In the network, each node
is either in the susceptible (S) or infected (I) state, and
the links represent the connections between nodes along
which the infection can propagate. At each time step,
susceptible (S) nodes may be infected by infected nodes
within the same layer with a certain probability or in
other layers with a certain probability simultaneously.
On the other hand, infected nodes are recovered spon-
taneously with a certain probability on each layer. Let
λa (λb) be the internal infection rate in layer A (B), and
λba (λab) be the inter-layer infection rate from nodes in
B (A) to nodes in A (B). Infected nodes are recovered
with rate µa (µb) in A (B).

A. A two-layered randomly-correlated
homogeneous network

Let network layers A and B be two homogeneous net-
works that are connected without relying on degree cor-
relations. Nodes in layer A (B) are characterized by av-
erage degree 〈ka〉 (〈kb〉), and 〈kba〉 represents the aver-
age inter-layer connections of nodes in A and 〈kab〉 in B.
The fractions of infected nodes in A and B are denoted
by ρA(t) and ρB(t), respectively. Thus, the evolution
processes can be written as

dρA(t)

dt
= −µaρA(t) + λa〈ka〉ρA(t)(1− ρA(t))

+ λba〈kba〉ρB(t)(1− ρA(t)),

dρB(t)

dt
= −µbρB(t) + λb〈kb〉ρB(t)(1− ρB(t))

+ λab〈kab〉ρA(t)(1− ρB(t)). (1)

In the first equation of Eq. (1), the first term on the
right-hand side stands for the probability that nodes in-
fected at time t are recovered; the second term is the
probability that susceptible nodes are infected by their
infected neighbors, which is proportional to the infection
rate λa and the average degree 〈ka〉; the last term repre-
sents the probability that susceptible nodes in one layer
are infected by the infected neighbors from the other con-
nected layer. The second equation in Eq. (1) has similar
meanings as the first one.

Without loss of generality, set µa = 1 and µb = 1.
After some transient time, the dynamical system (1) will
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FIG. 1. The interconnected two-layer network is different
from layer to layer, and inter-layer connectivity randomly cor-
relates between the two layers. Solid and dashed lines repre-
sent internal and inter-layer connections, respectively.
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FIG. 2. The movement directions of ρA(t) and ρB(t) from
the boundaries.

evolve into a stationary state. To obtain the nontrivial
stationary solution of Eq. (1), one calculates

0 = −ρA + λa〈ka〉ρA(1− ρA) + λba〈kba〉ρB(1− ρA),

0 = −ρB + λb〈kb〉ρB(1− ρB) + λab〈kab〉ρA(1− ρB).
(2)

It can be seen that a global epidemic activity will arise
in the two connected layers if an epidemic disease spreads
in any layer. The reason is that the states ρA 6= 0 and
ρB = 0 (or ρA = 0 and ρB 6= 0) are not equilibrium of Eq.
(2). Furthermore, since ρA(t) ∈ [0, 1] and ρB(t) ∈ [0, 1],
when ρA(t) or ρB(t) touches the boundaries (except for
the origin point), it will goes to some internal point in
the region, as illustrated by Fig.2. Particularly, when

ρA(t) = 0 and ρB(t) > 0, one gets dρA(t)
dt > 0 from the

first equation of Eq. (1). Thus, the trajectory of ρA(t)
will go upwards, as shown by the upward arrow in the fig-

ure. When ρA(t) = 1, one obtains dρA(t)
dt < 0, thus ρA(t)

will go downwards. Analogously, ρB(t) will go inwards if

it touches the boundaries.
The critical point (global epidemic threshold) separat-

ing the healthy (ρA = 0 and ρB = 0) and endemic (ρA 6=
0 and ρB 6= 0) phases can be obtained by studying the
stability of the absorbing solution of Eq. (1). Suppose
that the global epidemic threshold is λc for the two con-
nected layers. Then if λa < λc and λb < λc, the system
will go to the equilibrium ρA = 0 and ρB = 0; otherwise,
epidemic propagation through the inter-layer connectiv-
ity between layers makes the whole system evolve into
an endemic state (ρA 6= 0 and ρB 6= 0). When λa or
λb approaches λc, the prevalence of infected nodes will
appear: ρA � 1 and ρB � 1. Thus, around an endemic
state, one can neglect the second-order terms in Eq. (2),
so as to obtain[

λa〈ka〉 − 1 λba〈kba〉
λab〈kab〉 λb〈kb〉 − 1

] [
ρA

ρB

]
= 0. (3)

One can write Eq. (3) as

dρ

dt
= −ρ+ Cρ, (4)

where ρ = (ρA, ρB)> and

C =

[
λa〈ka〉 λba〈kba〉
λab〈kab〉 λb〈kb〉

]
. (5)

It is obvious that the global endemic state will not arise
whenever the maximum eigenvalue of matrix C satisfies
Λmax(C) < 1, but if Λmax(C) > 1, a global endemic
state will arise in the interconnected network. Thus,
the critical epidemic point (threshold) is determined by
Λmax(C) = 1.

When 1 is the eigenvalue of C, it means λa or λb ap-
proaches λc. By replacing λa and λb with the threshold
λc, one can calculate the threshold from the following
equation:

(λc)2〈ka〉〈kb〉 − λc(〈ka〉+ 〈kb〉)
+ 1− λabλba〈kab〉〈kba〉 = 0. (6)

Eq. (6) has two solutions. By using the smaller one as
the global epidemic threshold[17], one obtains

λc =
〈ka〉+ 〈kb〉 −

√
(〈ka〉+ 〈kb〉)2 − f

2〈ka〉〈kb〉
, (7)

where f = 4〈ka〉〈kb〉(1− λabλba〈kab〉〈kba〉) > 0.
In addition, for the isolated layer A, the epidemic pro-

cess is described by

dρA(t)

dt
= −ρA(t) + λa〈ka〉ρA(t)(1− ρA(t)). (8)

Similarly, by neglecting second-order terms, one obtains

0 = (1− λa〈ka〉)ρA. (9)

Thus, one obtains the epidemic threshold of isolated layer
A as λca = 1

〈ka〉 . Similarly, one can obtain the threshold
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λcb = 1
〈kb〉 for the isolated layer B. Analogously, one can

obtain the epidemic threshold λcab = 1
〈kab〉 for inter-layer

connections from layer A to B, and λcba = 1
〈kba〉 from

layer B to A.
In order to compare the global epidemic threshold of

the interconnected network with those of the correspond-
ing isolated networks, assume that neither the inter-layer
network AB nor network BA is already in an endemic
state, which means that λab < λcab and λba < λcba, thus,
λab〈kab〉 < 1 and λba〈kba〉 < 1.

When 〈ka〉 > 〈kb〉, meaning λca < λcb, one obtains

λc <
〈ka〉+ 〈kb〉 − (〈ka〉 − 〈kb〉)

2〈ka〉〈kb〉
=

1

〈ka〉
= λca < λcb.(10)

When 〈kb〉 > 〈ka〉, which means λcb < λca, one obtains

λc <
〈ka〉+ 〈kb〉 − (〈kb〉 − 〈ka〉)

2〈ka〉〈kb〉
=

1

〈kb〉
= λcb < λca.(11)

When 〈kb〉 = 〈ka〉, meaning λcb = λca, one still obtains

λc <
〈ka〉+ 〈kb〉
2〈ka〉〈kb〉

=
1

〈ka〉
= λca = λcb. (12)

Therefore, the conclusion is that the global epidemic
threshold of the interconnected network is smaller than
the epidemic thresholds of the isolated layers. This im-
plies that cooperative spreading promotes epidemic pro-
cesses. Furthermore, Eq. (7) presents an analytical for-
mula for the global epidemic threshold in the intercon-
nected network based on macroscopic information within
each layer and across layers, such as the average degrees
and inter-layer infection rates.

The preceding conclusion reveals that there are some
situations where neither isolated layers A and B nor net-
works AB and BA are in endemic state yet the intercon-
nected network evolves into an endemic state. This inter-
esting case is investigated to find under what condition
an endemic state exists in the interconnected network.

From Eq.(5), by denoting

C =

[
λa〈ka〉 λba〈kba〉
λab〈kab〉 λb〈kb〉

]
=

[
δa δba
δab δb

]
, (13)

one obtains

Λmax =
δa + δb +

√
(δa − δb)2 + 4δabδba

2
. (14)

Note that in this case, each element of matrix C is in the
range (0, 1). In the simulation section, phase diagrams
for Λmax will be numerically display (i.e., the maximum
eigenvalue of matrix C) in Figs. 5, 6 and 7 with respect
to parameters δa and δab for three specific cases.

Further, in some specific scenarios, one can easily de-
rive the global epidemic threshold from the epidemic
thresholds of isolated layer networks.

(1) When the inter-layer infection rates are much
smaller than the intra-layer infection rates (e.g., λab �
λa) and the inter-layer average degrees are smaller than

the intra-layer ones (i.e., 〈kab〉 < 〈ka〉 and 〈kba〉 < 〈kb〉),
it follows from Eq. (6) that

(λc〈ka〉 − 1)(λc〈kb〉 − 1) ≈ 0. (15)

Therefore, the epidemic threshold λc = 1
kmax

, where kmax
is the larger value between 〈ka〉 and 〈kb〉. This means
that when there is weak inter-layer infection between
layers, the layer with a smaller epidemic threshold domi-
nates the global epidemic threshold of the interconnected
network.

(2) When the inter-layer infection rates are equal to the
intra-layer ones, and the inter-layer average degrees are
equal to the intra-layer ones, i.e., λab ≈ λa and λba ≈ λa,
and 〈kab〉 ≈ 〈ka〉, 〈kba〉 ≈ 〈kb〉), one has λaλb〈ka〉〈kb〉 ≈
λabλba〈kab〉〈kba〉. Therefore, from Eq. (6), one obtains

1− λc〈ka〉 − λc〈kb〉 ≈ 0. (16)

Thus, λc = 1
ka+kb

.

(3) When the inter-layer infection rates are much larger
than the intra-layer ones, and the inter-layer average de-
grees are larger than the intra-layer ones, i.e., λab � λa
and λba � λa, 〈kab〉 > 〈ka〉 and 〈kba〉 > 〈kb〉, the inter-
layer infection rates will be dominant in determining the
epidemic process. Therefore, from Eq. (6), after using
λc to substitute λab and λba, one obtains

1− λc〈kba〉λc〈kab〉 ≈ 0. (17)

Thus, λc = 1√
〈kab〉〈kba〉

.

Summarizing, the epidemic threshold of the intercon-
nected network mainly depends on the average inter-layer
or intra-layer degrees, whichever is larger. When a dis-
ease begins to spread, it is easy to lead to an earlier
endemic activity in a more densely populated region be-
cause it has a lower epidemic threshold, and then the
disease will spread to other connected regions, which will
eventually result in a global endemic state in the whole
population. Therefore, to inhibit the spreading of a dis-
ease, an effective measure is to decrease the population
density, as is intuitively clear.

B. A two-layered correlated heterogeneous network

Consider epidemic processes over a two-layered hetero-
geneous network. Assume that all nodes of the same de-
gree behave equally. Define the partial prevalence ρAka(t)

(ρBkb(t)) as the fraction of infected nodes with a given de-
gree ka (kb) in layer A (B). The goal is to understand
the impact of the correlation of inter-layer connectivity
structures on the epidemic processes, such as epidemic
thresholds and prevalence. In the interconnected hetero-
geneous network, let P (k) denote the probability that a

node has degree k within a network layer, and P (k
′ |k)

be the conditional probability that a node of degree k
in one layer is connected to a node of degree k

′
in the

other layer. The normalization conditions
∑
k P (k) = 1
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and
∑
k P (k

′ |k) = 1 hold. Thus, the average number
of links connecting a node of degree k to some nodes of
degree k

′
is kP (k

′ |k). For simplicity, only consider the
degree correlation of inter-layer connectivity but not that
of internal layers.

By Eq. (1), the evolution processes can be written as

dρAka(t)

dt
= −ρAka(t) + λaka(1− ρAka(t))ΘA

ka(t)

+ λbakba(1− ρAka(t))ΘBA
kb

(t),

dρBkb(t)

dt
= −ρBkb(t) + λbkb(1− ρBkb(t))ΘB

kb
(t)

+ λabkab(1− ρBkb(t))ΘAB
ka (t), (18)

where
ΘA
k (t) = 1

〈ka〉
∑
k′a
k

′

aP (k
′

a)ρA
k′a

(t),

ΘB
k (t) = 1

〈kb〉
∑
k
′
b
k

′

bP (k
′

b)ρ
B
k
′
b

(t),

ΘBA
k (t) =

∑
k
′
b
P (k

′

b|ka)ρB
k
′
b

(t),

ΘAB
k (t) =

∑
k′a
P (k

′

a|kb)ρAk′a(t).

In the first equation of Eq. (18), the first term on the
right-hand side means that infected nodes of degree ka
in layer A can be recovered. The second term means
that susceptible nodes of degree ka are infected by their
infected neighbors within the same layer, where 1−ρAka(t)
represents the fraction of susceptible nodes of degree ka,
ΘA
ka

(t) is the probability that a link emanating from the
nodes of degree ka points to an infected node within layer
A. The last term appears due to the coupling of layer A
with layer B, and stands for a similar function as that
of the second term, except that the variable ΘBA

k (t) is
the probability that a link emanating from the nodes of
degree ka points to an inter-layer infected node. The
second equation is analogous.

Lemma 1[27] (Cauchy interlacing theorem) Let
A be a symmetric n× n matrix and let B be a principal
submatrix of A of order n − 1. If β1 ≥ β2 ≥ · · · ≥ βn
and γ1 ≥ γ2 ≥ . . . ≥ γn−1 are the eigenvalues of A and
B respectively, then

β1 ≥ γ1 ≥ β2 ≥ · · ·βn−1 ≥ γn−1 ≥ βn. (19)

To calculate the stationary solution of Eq. (18), let

0 = −ρAka + λaka
1

〈ka〉
∑
k′a

k
′

aP (k
′

a)ρA
k′a

+ λbakba
∑
k
′
b

P (k
′

b|ka)ρB
k
′
b

,

0 = −ρBkb + λbkb
1

〈kb〉
∑
k
′
b

k
′

bP (k
′

b)ρ
B
k
′
b

+ λabkab
∑
k′a

P (k
′

a|kb)ρAk′a . (20)

For the two-layered interconnected network, similarly
to the analysis in Subsec.II A, there exists a critical point
separating a healthy phase with ρAka = ρBkb = 0 and an

endemic phase with ρAka 6= 0 and ρBkb 6= 0. Analogously,
by neglecting the second-order terms in Eq. (20) around
ρAka = ρBkb = 0 and replacing λa and λb with the epidemic
threshold λc, one obtains[

CA CBA

CAB CB

]
∗
[
ρA

ρB

]
− 1

λc
I

[
ρA

ρB

]
= 0, (21)

where ρA = [ρAk1 , ρ
A
k2
, ..., ρAkl1

]>, l1 represents the dis-

tinct node degrees of nodes in layer A, and ρB =
[ρBk1 , ρ

B
k2
, ..., ρBkl2

]>, l2 stands for the distinct node degrees

in layer B, I is the identity matrix, and
CA(ka, k

′

a) = kak
′

aP (k
′

a)/〈ka〉,
CBA(ka, k

′

b) = λbakbaP (k
′

b|ka),

CAB(kb, k
′

a) = λabkabP (k
′

a|kb),
CB(kb, k

′

b) = kbk
′

bP (k
′

b)/〈kb〉,
ka = k1, k2, ..., kl1 , k

′

a = k1, k2, ..., kl1 ,

kb = k1, k2, ..., kl2 , k
′

b = k1, k2, ..., kl2 .
Denote

L =

[
CA CBA

CAB CB

]
, (22)

which is named the supra-connectivity matrix. For an
isolated layer A without interconnection with external
networks, the epidemic dynamics is

dρAka(t)

dt
= λaka(1− ρAka(t))

1

〈ka〉
∑
k′a

k
′

aP (k
′

a)ρA
k′a

(t)

− ρAka(t). (23)

Similarly, by calculating the epidemic threshold of the
isolated layer from Eq. (23), one obtains[

CA − 1

λa
I

]
ρA = 0, (24)

which has a nonzero solution (ρA > 0) if and only if 1/λa
is an eigenvalue of matrix CA. Similarly, for isolated
layer B, one has [

CB − 1

λb
I

]
ρB = 0, (25)

which has a nonzero solution (ρB > 0) if and only if
1/λb is an eigenvalue of matrix CB . Thus, the epidemic
thresholds for isolated layer A and B are determined by
the maximum eigenvalues of CA and CB , respectively.
While for the two interconnected layers A and B, the
epidemic threshold is determined by the maximum eigen-
value of L. According to Lemma 1, since CA and CB are
both sub-matrices of L, one has Λmax(L) ≥ Λmax(CA)
and Λmax(L) ≥ Λmax(CB), where Λmax(R) represents
the maximum eigenvalue of matrix R.



6

Therefore, λc = 1
Λmax(L) ≤

1
Λmax(CA)

= λA and

λc = 1
Λmax(L) ≤

1
Λmax(CB)

= λb. That is, the global

epidemic threshold of the interconnected network is not
larger than the epidemic thresholds of the corresponding
isolated networks.

In numerical simulations below, the impact of inter-
layer correlation of nodes with different degrees on the
global epidemic threshold and total prevalence will be
analyzed, which is defined as

ρ =
1

l1

l1∑
j=1

ρAkl1
+

1

l2

l2∑
j=1

ρBkl2
. (26)

C. An uncorrelated two-layered heterogeneous
network

In this subsection, the epidemic processes over two in-
terconnected heterogeneous networks A and B will be
investigated at the level of individual nodes. For sim-
plicity, denote the adjacency matrix of network A as
A = (aij)N×N , that for network B be B = (bij)M×M ,
that for the external network AB from network A to B be
AB = C = (cij)N×M , and that for the external network
BA from B to A be BA = D = (dij)M×N . Specifically,
if there is a link from node j to node i (j 6= i) in layer A,
then aij = 1; otherwise, aij = 0. Similarly for B,C and
D.

Let ρAi (t) (ρBi (t)) stand for the probability that an in-
dividual node i is infected at time t in layer A (B). Then,
the evolution of the probability of infection of any node
i reads

ρAi (t+ 1) = (1− µa)ρAi (t) + (1− ρAi (t))(1− qAi (t))

+ (1− ρAi (t))(1− qBAi (t)), i = 1, 2, ..., N,

ρBi (t+ 1) = (1− µb)ρBi (t) + (1− ρBi (t))(1− qBi (t))

+ (1− ρBi (t))(1− qABi (t)), i = 1, 2, ...,M,
(27)

where µa (µb) is the the recovery rate of the infected
nodes in layer A (B), qAi (t) (qBi (t)) is the probability
of node i not being infected by any internal neighbor in
layer A (B), and qABi (t) (qBAi (t)) is the probability of
node i in layer A (B) not being infected by any inter-
layer neighbor in B (A). In detail,

qAi (t) =
∏N
j=1(1− λaaijρAj (t)),

qBi (t) =
∏M
j=1(1− λbbijρBj (t)),

qABi (t) =
∏M
j=1(1− λbacijρAj (t)),

qBAi (t) =
∏N
j=1(1− λabdijρBj (t)). (28)

In the first equation in Eq. (27), the first term on
the right-hand stands for the probability that node i is
infected at time t but is not recovered, the second term
is the probability that susceptible node i is infected by

at least one internal neighbor, and the last term is a
similar function as the second term except that the node
is infected by at least one inter-layer infected neighbor.
The second equation in Eq. (27) has the same meaning
as the first one.

Similarly to the analysis in Subsection II A, there ex-
ists a global epidemic threshold λc for the two-layered
interconnected heterogeneous network. When λa or λb
approaches λc, the probabilities satisfy 0 < ρAi � 1 and
0 < ρBi � 1. Thus, by neglecting the second-order terms
in Eq. (28), one obtains

qAi (t) ≈ 1− λa
N∑
j=1

aijρ
A
j (t),

qBi (t) ≈ 1− λb
M∑
j=1

bijρ
B
j (t),

qBAi (t) ≈ 1− λba
N∑
j=1

cijρ
B
j (t),

qABi (t) ≈ 1− λab
M∑
j=1

dijρ
A
j (t). (29)

By substituting Eq. (29) into Eq. (27), one obtains

ρAi (t+ 1) = (1− µa)ρAi (t) + λa(1− ρAi (t))

N∑
j=1

aijρ
A
j (t)

+ λba(1− ρAi (t))

M∑
j=1

cijρ
B
j (t), i = 1, 2, ..., N,

ρBi (t+ 1) = (1− µb)ρBi (t) + λb(1− ρBi (t))

M∑
j=1

bijρ
B
j (t)

+ (1− ρBi (t))

N∑
j=1

dijρ
A
j (t), i = 1, 2, ...,M.

(30)

By neglecting second-order terms, one can easily calcu-
late the nontrivial stationary solution of Eq. (30) by the
fixed point iteration method as follows:

ρAi = (1− µa)ρAi + λa

N∑
j=1

aijρ
A
j + λba

M∑
j=1

cijρ
B
j ,

ρBi = (1− µb)ρBi + λb

M∑
j=1

bijρ
B
j + λab

N∑
j=1

dijρ
A
j .(31)

After substituting λa and λb with the global epidemic
threshold λc, one obtains

AρA − µa
λc
INρ

A +
λba
λc

CρB = 0,

Bρb − µb
λc
IMρ

B +
λab
λc

DρA = 0, (32)
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where ρA = [ρA1 , ρ
A
2 , ..., ρ

A
N ]> and ρB = [ρB1 , ρ

B
2 , ..., ρ

B
M ]>,

and the total prevalence for the interconnected networks
is defined as

ρ =
1

N

N∑
j=1

ρAj +
1

M

M∑
j=1

ρBj . (33)

From Eq. (32), one has[
A λba

λc C
λab

λc D B

]
∗
[
ρA

ρB

]
(34)

−
[

µa

λc IN 0
0 µb

λc IM

]
∗
[
ρA

ρB

]
= 0. (35)

Denote

L =

[
A λba

λc C
λab

λc D B

]
, (36)

and call it the supra-adjacency matrix.
For comparison, consider two isolated layers A and B,

with probabilities of infection being denoted by ρAi (t) and
ρBi (t) for node i:

ρAi (t+ 1) = (1− µa)ρAi (t) + (1− ρAi (t))(1− qAi (t)),

ρBi (t+ 1) = (1− µb)ρBi (t) + (1− ρBi (t))(1− qBi (t)).(37)

By substituting Eq. (28) into Eq. (37) and neglecting
the second-order terms, one can calculate the nontrivial
stationary solution for isolated layers as follows,(

A− µa
λa
I

)
ρA∗ = 0,(

B − µb
λb
I

)
ρB∗ = 0, (38)

where ρA = [ρA∗1 , ρA∗2 , ..., ρA∗N ]>, ρB =
[ρB∗1 , ρB∗2 , ..., ρB∗M ]>. The total prevalence for the
two isolated layers A and B is defined as

ρ∗ =
1

N

N∑
j=1

ρA∗j +
1

M

M∑
j=1

ρB∗j . (39)

Eq. (38) has a nontrivial solution if and only if µa

λa
and

µb

λb
are eigenvalues of matrix A and B, respectively, that

is,

λ∗a =
µa

Λmax(A)
,

λ∗b =
µb

Λmax(B)
. (40)

One can compare the global epidemic threshold of the
interconnected network with those of the corresponding
isolated layers for the following two scenarios:
(1) The case of µa = µb
Eq. (34) has nontrivial solutions if and only if µa

λc is
an eigenvalue of L. According to Lemma 1, since A

and B are both sub-matrices of L, one has Λmax(L) ≥
Λmax(A) and Λmax(L) ≥ Λmax(B), where Λmax(R)
represents the maximum eigenvalue of matrix R.

Thus, λc = µa

Λmax(L) ≤
µa

Λmax(A) = λ∗a. For the same

reason, one has λc ≤ λ∗b , regardless of the values of the
inter-layer infection rates λab and λba.

(2) The case of µa 6= µb. One obtains the following
equations from Eq. (32):

λcAρA − µaINρA + λbaCρ
B = 0,

λcBρB − µbIMρB + λabDρ
A = 0. (41)

Usually, the inter-layer infection rate is much smaller
than the internal infection rate [14], since the inter-layer
infection rate describes spreading from one specie to an-
other [28], which is always slower than spreading within
one species. Thus, one can make two assumptions as
follows:

λba � λa, λab � λb. (42)

Therefore, in order to compare the global epidemic
thresholds λc of the interconnected network with λ∗a and
λ∗b of the corresponding isolated layers, assume that λ∗a
is close to λ∗b , and then use the perturbation method to
analyze the thresholds of isolate layers. The perturbed
solutions to thresholds λ∗a and λ∗b and infection rates ρA∗

and ρB∗ of the isolated layers can be written as

λc = λ∗a + ε1λ
∗
a +O(ε21),

λc = λ∗b + ε2λ
∗
b +O(ε22),

ρA = ρA∗ + ε3ρ
A∗ +O(ε23),

ρB = ρB∗ + ε4ρ
B∗ +O(ε24). (43)

Inserting Eq. (43) into Eq. (41), using Eq. (38) and
neglecting second-order terms, one obtains:

ε1λ
∗
aAρ

A∗ + λba(1 + ε4)CρB∗ = 0,

ε2λ
∗
bBρ

B∗ + λab(1 + ε3)DρA∗ = 0. (44)

Since |ε3| � 1 and |ε4| � 1, and the elements in A, B,
C and D are zero or positive numbers, it reveals that
ε1 < 0 and ε2 < 0, so that λc < λ∗a and λc < λ∗b . One can
thus conclude that the global epidemic threshold of the
interconnected network is smaller than the thresholds of
the corresponding isolated layers.

III. NUMERICAL SIMULATIONS

In simulations, network layer A consisting of 1000
nodes and B consisting of 800 nodes are respectively gen-
erated.

A. For the randomly-correlated homogeneous
network

The WS algorithm [29] is used to generate a small-
world model for each layer. Specifically, for layer A,
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start with a ring of N = 1000 nodes, each connecting
to its ka nearest neighbors via undirected links. For the
network B, start with a ring of N = 800 nodes, each con-
necting to its kb nearest neighbors via undirected links.
The rewiring probability for links is 0.2 within each layer.
Then, randomly connect a pair of nodes from the two lay-
ers, until the inter-layer average degree becomes about
ka/2. Monte Carlo simulations on Eq. (1) with different
internal average degrees are carried out to obtain the epi-
demic thresholds. The initial fraction of infected nodes is
set to 0.02, and the values of recovering rate are µ1 = 1
and µ2 = 1. The inter-layer infection rates are λab = 0.1
and λba = 0.1.

Let the internal average degree of A be ka =
(6, 8, ..., 34), and that of B be kb = (4, 6, ..., 32). The
comparison of the global epidemic threshold from the-
oretical analysis described in Eq. (7) with that from
numerical simulations is displayed in Fig. 3. It shows
that the theoretical analysis agrees well with numerical
simulations with some minor deviation.

The comparison of the global epidemic thresholds for
the cooperative interconnected network with the thresh-
olds of the corresponding isolated layers for different av-
erage degrees is displayed in Fig. 4. It shows that the
global epidemic thresholds are always lower than those
of the corresponding isolated layers, as indicated by the
inequalities (10), (11), and (12). This observation veri-
fies that cooperative epidemic spreading on an intercon-
nected network promotes propagation.

Figures. 5, 6 and 7 show the phase diagrams for Λmax
(the maximum eigenvalue of matrix C) with respect to
the parameters δa and δab, for three specific cases. Figure
5 displays Λmax for the case of δa = δb and δab = δba,
where the network evolves into an endemic phase when
Λmax > 1, and it evolves into a healthy phase when
Λmax < 1. It is obvious that in the upper right trian-
gular region regarding parameters (δa, δab), an endemic
state arises, while in the other half part, the epidemic
dies out.

Figure 6 shows the phase diagram for the case of
δa = δb and δab = 1 − δba, where the endemic state
arises in the right four regions, and the healthy state
arises in the rest regions. Figure 7 shows the phase di-
agram for the case of δa = 1 − δb and δab = 1 − δba,
where the endemic state arises in the regions colored
in green, yellow, orange, and red. Furthermore, since
δa = λa〈ka〉, δab = λab〈kab〉, when the average intra- and
inter-layer degrees are fixed, whether the network is in
an endemic phase or in a healthy phase is determined by
the intra- and inter-layer infection rates.

Figures 8-10 verify Eqs. (15)-(17) for the three specific
scenarios. In detail, Fig. 8 shows the result for the case of
λab � λa, 〈kab〉 < 〈ka〉 and 〈kba〉 < 〈kb〉). It can be seen
that the theoretical global epidemic threshold λc = 1

kmax

agrees well with numerical simulations.

Figure 9 shows the result for the scenario with λab ≈
λa, λba ≈ λa, and 〈kab〉 ≈ 〈ka〉, 〈kba〉 ≈ 〈kb〉. It can
be seen that the theoretical global epidemic threshold

4 8 1 2 1 6 2 0 2 4 2 8 3 2 3 6
0 . 0

0 . 1

0 . 2

0 . 3

Ep
ide

mi
c t

hre
sh

old
s

<k a >

 T h e o r y
 S i m u l a t i o n

FIG. 3. (Color online). Numerical simulation (red square)
and theoretical (solid black line) results of epidemic thresholds
for the interconnected network versus varying average degree
〈ka〉.

4 8 1 2 1 6 2 0 2 4 2 8 3 2 3 6
0 . 0

0 . 1

0 . 2

0 . 3
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ide
mi

c t
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sh
old
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 I s o l a t e d  l a y e r  A
 I s o l a t e d  l a y e r  B
 I n t e r c o n n e c t e d  n e t w o r k

FIG. 4. (Color online). Numerical epidemic thresholds as
a function of 〈ka〉 for the interconnected network and the
corresponding isolated layers A and B.

λc = 1
ka+kb

agrees well with numerical results. Figure 10
displays the result for the scenario with λab � λa, λba �
λa, 〈kab〉 > 〈ka〉 and 〈kba〉 > 〈kb〉, which again shows
that the theoretical result λc = 1√

〈kab〉〈kba〉
agrees well

with numerical simulations. In the three figures, one can
see that the epidemic threshold decreases sharply with
increasing 〈ka〉 when 〈ka〉 is relatively small, then the
threshold keeps declining but at a much smaller rate.
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0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9

δa

δ ab

0
0 . 2 5 0
0 . 5 0 0
0 . 7 5 0
1 . 0 0
1 . 2 5
1 . 5 0
1 . 7 5
2 . 0 0

FIG. 5. (Color online). Phase diagram of Λmax showing the
healthy phase (Λmax < 1) and the endemic phase (Λmax >
1) of the interconnected network for the case of δa = δb and
δab = δba.

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9

δa

δ ab

0 . 2 0 0
0 . 3 6 3
0 . 5 2 5
0 . 6 8 8
0 . 8 5 0
1 . 0 1
1 . 1 8
1 . 3 4
1 . 5 0

FIG. 6. (Color online). Phase diagram showing the healthy
phase (Λmax < 1) and the endemic phase (Λmax > 1) of
the interconnected network for the case of δa = δb and δab =
1− δba.

B. For the two-layered correlated heterogeneous
network

In this sub-section, spreading processes on intercon-
nected BA scale-free networks [30] with inter-layer de-
gree correlation are investigated. The BA algorithm [30]
is employed to generate networks for the two layers with
identical model parameters but different sizes (i.e., 1000
for layer A and 800 for layer B ). Specifically, start with a
fully-connected network of m0 = 20 nodes. At each time
step, add a new node, which is connected to m (m is
varying) existing nodes with a probability proportional
to the number of links that the existing nodes already
have.

0 . 5 0 . 6 0 . 7 0 . 8 0 . 9
0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

δa

δ ab

0 . 7 0 0
0 . 7 6 3
0 . 8 2 5
0 . 8 8 8
0 . 9 5 0
1 . 0 1
1 . 0 8
1 . 1 4
1 . 2 0

FIG. 7. (Color online). Phase diagram of Λmax showing the
healthy phase (Λmax < 1) and the endemic phase (Λmax >
1) of the interconnected network for the case of δa = 1 − δb
and δab = 1− δba.
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0 . 0 5
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0 . 2 5

 T h e o r y
 S i m u l a t i o n
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old

<k a >

FIG. 8. (Color online). Epidemic threshold of the inter-
connected network (red circum), along with the theoretical
prediction (solid black line) based on different average de-
grees 〈ka〉.

First, consider the case where the correlation coeffi-
cient r for nodes in the two layers is 0, which means that
the two layers are uncorrelated.

In numerical simulations, let m = (6, 7, 8, · · · , 15) for
both layers A and B. The comparison of the global epi-
demic threshold for cooperative interconnected network
with the thresholds of the corresponding isolated layers
for different scale-free networks are displayed in Fig. 11.
It shows that the global epidemic threshold is always
lower than those of the corresponding isolated layers,
which again verifies that cooperative epidemic spreading
on an interconnected network promotes the propagation.
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FIG. 9. (Color online). Epidemic threshold of the inter-
connected network (red circum), along with the theoretical
prediction (solid black line) based on different average de-
grees 〈ka〉.
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FIG. 10. (Color online). Epidemic threshold of the inter-
connected network (red circum), along with the theoretical
prediction (solid black line) based on different average de-
grees 〈ka〉.

Next, the problem of how the degree correlation be-
tween two layers affects the disease spreading dynamics is
investigated. For the two scale-free networks, add a fixed
number of inter-layer connections (here, the number L is
half of the connections in layer A) but with adjustable
values of correlation. Specifically, first, connect the two
scale-free networks with a random correlation, that is,
r = 0. Then, rewire bLδc inter-layer links in such a way
that the beginning end is kept and the other end is pref-
erentially reconnected to another node bearing identical
or nearly identical degrees so as to yield a larger degree
correlation coefficient, where δ is the rewiring probabil-

4 6 8 1 0 1 2 1 4 1 6
0 . 0

0 . 1

0 . 2

0 . 3
 I s o l a t e d  l a y e r  A
 I s o l a t e d  l a y e r  B
 I n t e r c o n n e c t e d  n e t w o r k
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m
FIG. 11. (Color online). Numerical epidemic thresholds
as a function of m for two interconnected scale-free networks
and the corresponding isolated layers A and B wherein.
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r
FIG. 12. (Color online). The epidemic threshold versus the
inter-layer degree correlation coefficient r for two intercon-
nected scale-free networks.

ity. Analogously, rewire bLδc inter-layer links in such a
way that the beginning end is kept and the other end
is preferentially reconnected to another node bearing the
most different degree to the beginning end so as to yield
a smaller degree correlation coefficient. Obviously, dif-
ferent δ leads to different correlation coefficients.

For two interconnected BA scale-free networks both
with m = 8, the impact of inter-layer correlation r on the
epidemic threshold is shown in Fig. 12. It can be seen
that r has little impact on the thresholds. Further, in
Fig. 13 the total prevalence ρ as defined in Eq. (26) with
varying r is shown for the two scale-free networks, both
with m = 8. It is obvious that the prevalence decreases
with increasing r, which reveals that when the number
of inter-layer connections is half of that in layer A, a
positive inter-layer node correlation will lead to a drop
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- 0 . 4 - 0 . 2 0 . 0 0 . 2 0 . 4 0 . 6

0 . 8 6

0 . 8 8

0 . 9 0
ρ

r
FIG. 13. (Color online). Total prevalence ρ versus the inter-
layer degree correlation coefficient r for two interconnected
scale-free networks.

of total prevalence.

C. For the uncorrelated two-layered heterogeneous
network

Finally, to compare the epidemic spreading over iso-
lated and interconnected networks, consider two BA
scale-free networks, where m0 = 10,m = 10 for layer
A and m0 = 8,m = 8 for layer B. Figure 14 shows the
total prevalence ρ∗ defined in Eq. (39) for the two iso-
lated layers A and B, with respect to varying parameters
λa and λb. Figure 15 shows the total prevalence ρ de-
fined in Eq. (33) of the interconnected network. The
blue regions (ρ∗ = 0 or ρ = 0) in the lower left part
in both figures show that the epidemic is eventually dy-
ing out, while other regions (ρ∗ > 0 or ρ > 0) indicate
that the epidemic is eventually persistent in the popula-
tion. The blue region in Fig. 15 for the interconnected
network is much smaller than that in Fig. 14 for the iso-
lated layers, which again reveals that epidemic threshold
is decreased for cooperative epidemic spreading over the
interconnected network. Simultaneously, it can be seen
from the different colors that for the same infection rates
λa and λb, the prevalence for the interconnected network
is always larger than that for isolated layers.

IV. CONCLUSION

Three models have been formulated to investigate co-
operative spreading processes on an interconnected net-
work with or without inter-layer degree correlations. In
particular, for an interconnected homogeneous network,
the dynamics has been theoretically analyzed at the level
of each layer, obtaining global epidemic thresholds from

information within each layer and across layers. For

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

λa

λ b

0
0 . 0 8 7 5
0 . 1 7 5
0 . 2 6 3
0 . 3 5 0
0 . 4 3 8
0 . 5 2 5
0 . 6 1 3
0 . 7 0 0

FIG. 14. (Color online). Total prevalence ρ∗ versus infection
rates λa and λb for the two isolated layers.
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0 . 2 6 3
0 . 3 5 0
0 . 4 3 8
0 . 5 2 5
0 . 6 1 3
0 . 7 0 0

FIG. 15. (Color online). Total prevalence ρ versus infection
rates λa and λb for the interconnected network.

an interconnected heterogeneous network with inter-layer
correlations, it reveals that inter-layer degree correlation
has little impact on the epidemic thresholds, but a larger
inter-layer degree correlation coefficient leads to a smaller
total prevalence. The global epidemic threshold is deter-
mined by the maximum eigenvalues of supra-connectivity
matrix and supra-adjacency marix for correlated and un-
correlated networks, respectively. It was found that, the
epidemic thresholds of spreading processes are decreased
for interconnected networks, implying that cooperative
spreading processes promote the spread of diseases. The
results may provide references to public health monitor-
ing for disease control and prevention.
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and J. Buldú, Physical Review Letters 112, 248701
(2014).

[55] M. De Domenico, A. Solé, S. Gómez, and A. Arenas,
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