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Abstract

We show how a graph algorithm for finding matching labeled paths in pairs of labeled directed 

graphs can be used to perform model invalidation for a class of dynamical systems including 

regulatory network models of relevance to systems biology. In particular, given a partial order of 

events describing local minima and local maxima of observed quantities from experimental time 

series data, we produce a labeled directed graph we call the pattern graph for which every path 

from root to leaf corresponds to a plausible sequence of events. We then consider the regulatory 

network model, which can itself be rendered into a labeled directed graph we call the search graph 
via techniques previously developed in computational dynamics. Labels on the pattern graph 

correspond to experimentally observed events, while labels on the search graph correspond to 

mathematical facts about the model. We give a theoretical guarantee that failing to find a match 

invalidates the model. As an application we consider gene regulatory models for the yeast S. 
cerevisiae.
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1. Introduction.

One of the fundamental challenges, as we move toward an era of data driven science, is how 

to make use of imprecise data to select or reject models and parameters that cannot be 

derived from first principles. Motivated by problems from systems biology we address this 

challenge in the context of oscillatory data under the assumption that reasonable models 

prescribe appropriate local behavior of trajectories. We adopt the following strategy. From 

experimental time series data we extract a partial order of events describing minima and 

maxima of observed quantities. On the modeling side, as a function of parameters, we 

construct a directed graph to catalogue the possible dynamics. The main result of this paper 

is an efficient algorithm to identify if the model dynamics is capable of exhibiting sequences 
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of minima and maxima that are consistent with the experimental data. Failure can then be 

used for model rejection or parameter reduction.

To provide more detail we consider a particular example. High throughput experimental 

technology is making the collection of time series of gene expression a routine process. 

However, this data is noisy, often contains significant measurement error, is typically 

collected at a coarse time scale, and generally is collected over a relatively short time span. 

In an attempt to extract robust information from such data we focus on the ordering of 

extremal events. This paper does not address the difficulty of detecting and eliminating 

spurious pairs of extrema in data—a challenging problem in its own right. Instead, we 

assume that a statistically valid procedure is used to identify or impose time intervals during 

which a local maximum or minimum has occurred. This renders the time series into a set of 

extremal events where the error bounds determine the time intervals associated with the 

individual maxima and minima. If two intervals do not overlap, then we can distinguish the 

relative timing between the associated events, but if they do overlap, we cannot. Therefore, 

we represent relative timing as a partially ordered set (poset) that we call the poset of 
extrema (see Definition 3.1). We assume, however, that there is a linear temporal ordering 

along which the extrema occur and our lack of knowledge is due to experimental constraints. 

Consequently, we adopt the hypothesis that one of the linear extensions of the poset of 

extrema represents the correct sequence of events.

Because gene expression data is noisy and often collected at a coarse time scale, in practice 

there are many nodes in the poset of extrema that are incomparable (i.e., the time ordering 

cannot be resolved from the data). Roughly speaking, each such ambiguity leads to an 

additional multiplicative factor in the number of possible linear extensions. Therefore, in 

general we expect that the set of all linear extensions will be large—in fact, exponential in 

the number of genes and exponential in the length of the time series. To overcome this 

ostensibly intractable situation we construct a labeled directed acyclic graph that we call the 

pattern graph (see Definition 3.2), which gives a compressed representation of the set of all 

linear extensions. This directed graph is given by the transitive reduction of the lattice of 

down sets of the poset of extrema, with labels on nodes and edges identifying which 

variables are increasing or decreasing or have reached extrema. As explained in section 

2.3.1, for a fixed number of genes the time to compute the pattern graph is only polynomial 

in the length of the time series, and the resulting labeled directed acyclic graph may be 

stored in linear space. This gives rise to efficient (i.e., polynomial time) algorithms for 

pattern matching among the exponential number of linear extensions.

The poset of extrema and the pattern graph represents the codification of the experimental 

data. Viewed abstractly this is just a means of formally capturing potential temporal ordering 

of experimentally observable phenomena and therefore these ideas are potentially applicable 

to a wide variety of problems within and outside of the life sciences.

Returning to the example of gene regulation, we observe that this is an extremely complex 

multiscale process and thus it is not reasonable to postulate a precise nonlinear model that 

describes its behavior. However, as indicated above, we assume that we can make 
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assumptions concerning the local qualitative behavior of the dynamics. With this in mind we 

introduce the following notion.

Definition 1.1.

A system of trajectories 𝒮𝒯 on a space X is a collection of continuous functions from closed 
intervals to X, i.e., x: [a, b] → X for some a, b ∈ R, called trajectories, such that

1. the restriction of any trajectory to a smaller closed interval is again a trajectory;

2. a concatenation of trajectories is again a trajectory (more precisely, if x: [a, b] → 
X and y: [c, d] → X are trajectories such that x(b) = y(c), then there exists a 
trajectory z: [0, (b – a) + (d – c)] → X and any time translation of z, that agrees 
with x on [0, b − a] and y on [b − a, (b − a) + (d − c)]);

3. the time translation, i.e., x(t −Δt), of any trajectory is again a trajectory; and

4. every map x:{0} → X is a trajectory.

Notice that the set of solutions to a smooth system of ordinary differential equations can be 

written as a system of trajectories.

A heuristic description of how we employ this concept (see section 3.2 for formal 

definitions) is as follows. The phase space X is decomposed into a finite number of 

rectangular domains 𝒳. Restricted to each of these rectangular domains each individual 

trajectory is monotone in every variable (note that even within a domain we are not 

assuming the same directions of monotonicity for each trajectory). The boundaries of the 

domains are called walls. On the walls the trajectories are allowed to achieve a local 

extremum with respect to at most one variable, which we call an extremal event. A system of 

trajectories that satisfies these conditions is called extrema-pattern-matchable with respect to 

𝒳. The dynamics is then recorded as a labeled directed graph, called the search graph (see 

Definition 3.6), where vertices correspond to domains and edges are determined by wall 

trajectories. The labeling acts on nodes and edges and is used to codify our knowledge as to 

which variables are increasing or decreasing or have reached extrema. Thus, the search 

graph formalizes the structure of the dynamics that can be expressed by a model that 

generates the system of trajectories.

The content of this paper is the development of an efficient means of comparing the model 

dynamics against the experimentally observed dynamics. The fundamental result is Theorem 

2.5, which provides a polynomial time algorithm for matching maximal paths in the pattern 

graph, i.e., a specific ordering of extrema events that is compatible with the experimental 

data, to paths in the search graph, i.e., trajectories that are realizable by the model for the 

dynamics, where the matching preserves the labeling. A simplistic description of the 

applicability of this result is as follows: if the algorithm fails to produce a matching, then 

this provides a guarantee that the dynamics incorporated in the system of trajectories is 

incapable of reproducing the sequences of extrema that are compatible with the data. As a 

consequence we can reject the associated model of dynamics.
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Of course, to apply these ideas to realistic problems is much more challenging. While we do 

not know a particular model that describes the observed dynamics we assume that the 

dynamics can be modeled by an unknown nonlinear system. One of the fundamental lessons 

of the theory of dynamical systems is that structure of invariant sets of nonlinear systems can 

change dramatically as a function of parameters. Thus, to achieve the claims of the title of 

this paper, we need both a systematic method for generating parameterized models and their 

associated search graphs, and a robust finite characterization of dynamics that can be 

computed over all parameter values. For this we make use of the recently developed 

Dynamics Signatures Generated by Regulatory Network (DSGRN) framework and software 

[4, 15].

The starting point for DSGRN is a regulatory network RN (see Definition 4.1). In the 

context of gene regulation this is an annotated directed graph in which the nodes represent 

genes, edges indicate the interaction between the genes, and the annotation indicates if the 

interaction involves activation or repression. It is also assumed that a logic, dictating how 

information received at each node is processed, is given. Given a regulatory network with N 
nodes and |E| edges DSGRN represents dynamics occurring on the phase space X = (0, ∞)N 

where the dynamics is parameterized by an N + 3 · |E| dimensional set Z ⊂ (0, ∞)N+3·|E|. In 

particular, DSGRN computes a finite decomposition of Z where the individual regions are 

given by explicit semialgebraic sets. DSGRN represents parameter space via an undirected 

graph PG, called the parameter graph, where the nodes correspond to the above mentioned 

regions of Z and edges provide adjacency information. The dynamics is represented by a 

directed graph, called a state transition graph, derived from a parameter dependent 

rectangular decomposition of X. A fundamental fact is that as a function of parameters the 

state transition graph is constant over nodes of PG, i.e., it does not change on the individual 

regions of the decomposition of parameter space. The state transition graph can be large, and 

therefore DSGRN condenses the information into a directed acyclic graph MG, called a 

Morse graph. The nodes of the Morse graph correspond to maximal recurrent subgraphs of 

the state transition graph and the edges indicate reachability, via the state transition graph, 

from one Morse node to another. The output of DSGRN is called the DSGRN database, 

which is organized around the parameter graph PG. In particular, for each node in PG the 

database provides the explicit semialgebraic set in parameter space and the associated Morse 

graph MG.

Observe that, as desired, DSGRN provides us with a finite description of global dynamics 

over parameter space. However, the dynamics is described in combinatorial terms and we 

would like to argue that we are comparing the ordering extrema of continuous trajectories 

against experimental data. To make this comparison as transparent as possible we use the 

information encoded in the state transition graph to construct a particularly simple system of 

trajectories 𝒮𝒯sw based on classical switching system models [5, 6, 7, 8, 11, 12, 13, 14].

However, we claim that the results for the switching systems immediately extend to a 

broader class of models. In particular, as is made explicit in the proof of Theorem 4.8, the 

qualitative properties of the trajectories of 𝒮𝒯sw alone are sufficient to obtain an extreme-
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pattern-matchable system of trajectories. Thus, our results apply any model that produces 

trajectories with the same monotonicity properties as that of the switching system.

This paper is organized as follows. In section 2 we begin by recalling ideas from and 

establishing notation associated with graphs and posets. We present the algorithms that 

underlie our approach to matching model dynamics with experimental data and provide 

worst case complexity bounds for these algorithms.

In section 3 we provide combinatorial formalizations of the experimental data, the dynamics 

of the models, and the relation that allows us to compare them. To be more specific, in 

section 3.1 we show how experimental data can furnish a poset of extrema P. Interest in the 

set of all linear extensions leads us (by Theorem 2.10) to construct the down set graph of the 

poset of extrema. We label each down set according to whether a function that has 

experienced the events in the down set but not the events not included in the down set is 

increasing or decreasing in each variable. We label the edges in the down set graph (which 

are of the form A → A ∪ {p}) according to the extremal event associated with p ∈ P. We 

also introduce self-edges that are labeled as not experiencing any extremal events. We call 

the resulting labeled directed graph the pattern graph.

In section 3.2, we describe a class of dynamical models for which we can characterize 

possible trajectories in a combinatorial manner via a domain graph. A domain graph 

discretizes a dynamical system by giving a finite set of domains separated by codimension-1 

walls. Vertices in the domain graph correspond to domains, and edges correspond to flow 

from one domain to another via a wall. We label the vertices of the domain graph according 

to whether the coordinate functions xi(t) are increasing, decreasing, or possibly both, in the 

associated domains. We label the edges of the graph according to which local minima or 

local maxima could occur on the associated walls. We call the resulting labeled directed 

graph a search graph.

In section 3.3, we present a matching relation between the pattern graph and the search 

graph. We prove (Theorem 3.8) that if there does not exist a match between a path from root 

to leaf of the pattern graph and a path in the search graph, then the dynamical model 

underlying the search graph is incompatible with the experimental observations leading to 

the pattern graph. Theorem 2.5 shows that we can decide whether such a match exists in 

polynomial time.

Finally, in section 4 we show how these ideas can be applied. We begin in section 4.1 with a 

brief review of the mathematical structure underlying DSGRN. In section 4.2 we provide a 

simple example of how one can pass from experimental time series data to a labeled pattern 

graph. Finally, in section 4.3 we apply these techniques to a simple wavepool model [19] for 

the metabolic cycle in S. cerevisiae. Courtesy of the Haase lab [18] we have experimental 

time series data for mRNA sequences associated with the genes SWI4, HCM1, NDD1, and 

YOX1 collected at time intervals of 5 minutes (see Figure 4). We take a biologically 

implausible model and show that our proposed techniques reject it and we take a model that 

is biologically acceptable and use our techniques to greatly constrain relations between 

parameters.
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2. Graph theory and algorithms.

2.1. Matching paths in labeled graphs.

Definition 2.1.—Given a finite set Σ, we denote by Σn the set of n-tuples consisting of 
elements of Σ. We denote by Σ* the set of all finite tuples of elements of Σ, i.e., 

∑* = ⋃n = 0
∞ ∑n.

For the purpose of this paper a directed graph G = (V, E) consists of a finite set of vertices V 
and edges E ⊂ V × V. A path in G from s ∈ V to t ∈ V is a finite sequence of vertices (s = 

v1, v2, …, vn = t) such that vi ∈ V and (vi, vi+1) ∈ E. We denote the set of all such paths by 

G[s ⇝ t].

Definition 2.2.—A labeled directed graph G is a quadruple (V, E, Σ, ℓ) where V and E 
denote the vertices and edges of G, Σ is a finite set called labels, and ℓ : V ∪ E → Σ is 
called a labeling function. Given a path p = (v1, …, vn) in G, the associated labeling is 
defined to be

L(p) : = 𝓁 v1 , 𝓁 v1, v2 , 𝓁 v2 , …, 𝓁 vn − 1, vn , 𝓁 vn ∈ ∑* .

Definition 2.3.—A matching relation between two labeled directed graphs G = (V, E, Σ, ℓ) 
and G′ = (V′, E′, Σ′, ℓ′) is a choice of a relation between the label sets Σ and Σ′. To 
indicate that the labels a ∈ Σ and b ∈ Σ′ match, i.e., are related, we write a ⌣ b. We extend 
the matching relation ⌣ onto the tuples of labels Σ* and Σ′* via

a1, a2, …, an ⌣ b1, b2, …, bm  i f f  n = m and  f or 1 ≤ i ≤ n, ai ⌣ bi .

Given a matching relation, a path p = (v1, …, vn) in G[s ⇝ t], and a path p′ = v1′ , …, vm′  in 

G′[s′ ⇝ t′], we say that p matches p′ and write p ⌣ p′ whenever L(p) ⇝ L(p′). Note 
that we are using the same symbol ⌣ to refer to three matching relations: between Σ and Σ
′, between Σ* and Σ′*, and between paths in G[s ⇝ t] and paths in G′[s′ ⇝ t′].

Definition 2.4.—Let ⌣ be a matching relation between two labeled directed graphs G = 

(V, E, Σ, ℓ) and G′ = (V′,E′, Σ′,ℓ′). Suppose s, t ∈ V and s′, t′ ∈ V′. The alignment 
problem Alignment(G, G′, ⌣, (s, t), (s′,t′)) is the decision problem of determining if there 
is a pair of paths p ∈ G[s ⇝ t] and p′ ∈ G′[s′ ⇝ t′] such that p ⌣ p′.

Theorem 2.5.—There exist polynomial time algorithms for the following decision 
problems:

1. Let s, t ∈ V, s′, t′ ∈ V′. Decide Alignment(G, G′, ⌣, (s, t), (s′,t′)).

2. Let s, t ∈ V. Decide ∃s′, t′ ∈ V′ Alignment(G, G′, ⌣, (s, t), (s′, t′)).

3. Let s, t ∈ V. Decide ∃s′ ∈ V′ Alignment(G, G′, ⌣, (s, t), (s′, s′)).

We postpone the proof of Theorem 2.5 to section 2.3, where we give explicit algorithms.
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2.2. Down set graph of a poset.

Definition 2.6.—A poset (P, ≤) is a set P equipped with a transitive, reflexive, 
antisymmetric relation ≤ called a partial order. A linear extension of ≤ is a total order ≤′ 
which extends ≤, i.e., for all p0,p1 ∈ P, p0 ≤ p1 implies p0 ≤′ p1. We will use the notation (P, 

<) to denote a strict partial order.

Definition 2.7.—Let (P, ≤) be a poset. A down set of P is a subset A ⊂ P such that for all 
p, q ∈ P, p ≤ q and q ∈ A implies p ∈ A. The collection of down sets of P is denoted by 
O(P).

Definition 2.8.—Let (P, ≤) be a finite poset. The down set graph of (P, ≤), denoted PD, is 
the directed graph (O(P), F) with vertices O(P) and edges A → A′ iff A ⊊ A′ and there 
does not exist A″ ∈ O(P) such that A ⊊ A″ ⊊ A′.

Remark 2.9.—If A, A′ ∈ O(P) and there exists an edge A → A′ in PD, then A′ = A ∪ 
{p} where p ∈ A and q ≤ p implies that q ∈ A.

For completeness, we include an algorithm for constructing the down set graph of a poset in 

section 2.3.2.

Theorem 2.10.—Given a finite poset (P, ≤), the associated down set graph PD = (O(P),F) 

is a directed acyclic graph with a unique root ∅ and a unique leaf P. Moreover, there is a 
bijection between the paths in PD from the root ∅ to the leaf P and the linear extensions of 
≤.

Proof.: The directed acyclic property is inherited from the definition via proper set 

inclusion. ∅ and P are the unique root and leaf since ∅ and P are the unique maximal and 

minimal elements in O(P), respectively. Now we show the moreover part. Let ≤′ be a linear 

extension of ≤. Suppose P = {p1, p2, …, pn}, where the indexing has been chosen so that p1 

≤′ p2 ≤′ ⋯ ≤′ pn. Define Pk := {p1, p2, …,pk}. Then ∅ → P1 → P2 → ⋯ → Pn−1 → Pn 

= P gives a path in PD from root to leaf unique to ≤′. Now the converse. Suppose ∅ → P1 

→ P2 → ⋯· → Pn−1 → Pn = P is a path from root to leaf in PD. We claim that Pk \ Pk−1 

must be a singleton for each k. Suppose otherwise. Then let a, b ∈ Pk \ Pk−1 such that a ≠ b. 

Without loss, assume either a ≤ b or a and b are incomparable. Then Pk−1 ∪ {a} is a down 

set and Pk−1 ⊊ Pk−1 ∪ {a} ⊊ Pk which by Definition 2.8 contradicts Pk−1 → Pk. 

Accordingly, let pk = Pk \ Pk−1 for k = 1, …, n, and see that this sequence of elements 

completely characterizes the path from root to leaf in PD. Define the total order ≤′ via p1 ≤′ 
p2 ≤′ ⋯ ≤′ pn; since pk ≤ pk+1 holds for all k, ≤′ is a linear extension of ≤. Thus a path 

from root to leaf in PD uniquely determines a linear extension ≤′ of ≤. ■

2.3. Algorithms.

2.3.1. Alignment problem.

Definition 2.11.: Let ⌣ be a matching relation between two labeled directed graphs G = (V, 
E, Σ, ℓ) and G′ = (V′,E′, Σ′, ℓ′). The alignment graph AlignmentGraph(G, G′, ⌣) is defined 
to be the directed graph (V″,E″) given by
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V″ = v, v′ ∈ V × V′ : 𝓁(v) ⌣ 𝓁′ v′ ,

E″ = e, e′ ∈ E × E′ : 𝓁(e) ⌣ 𝓁′ e′ .

The alignment graph AlignmentGraph(G, G′, ⌣) is a subset of the product graph G × G′, 

and hence it has at most |V||V′| vertices, |E||E′| edges.

The following proposition follows immediately from the construction of the alignment graph 

and the definition of matching paths.

Proposition 2.12.—Paths in AlignmentGraph(G, G′, ⌣) are in one-to-one 
correspondence with pairs of matching paths in G and G′. In particular, 
p″ = v1, v1′ , v2, v2′ , …, vn, vn′  is a path in the alignment graph iff p = (v1, v2, …, vn) and 

p′ = v1′ , v2′ , …, vn′  are a pair of matching paths in G and G′, respectively.

It immediately follows that the alignment problem is equivalent to a reachability query in the 

alignment graph.

Proposition 2.13.—The following are equivalent:

1. Alignment(G, G′, ⌣, (s, t), (s′, t′)),

2. AlignmentGraph(G, G′, ⌣) [(s, s′) ⇝ (t, t′)] = ∅.

Proposition 2.14.—If the cost of checking whether labels match is constant, then

AlignmentGraph G, G′, ⌣

can be constructed in O(|V||V′| + |E||E′|) time.

Proof.: The vertices of the alignment graph may be determined by checking for each 

element of (v, v′) ∈ V × V′ whether ℓ(v) = ℓ(v′). The edges of the alignment graph may be 

determined by checking for each (e, e′) ∈ E × E′ whether ℓ(e) = ℓ(e′). The result follows. ■

Proposition 2.15.—Let G = (V, E) be a directed graph and let s ∈ G. Then, the set 
Reachable(G, s) := {t ∈ V : G[s ⇝ t] = ∅} can be computed in O(|V| + |E|) time.

Proof.: Depth- or breadth-first search of G beginning at s will find all vertices reachable 

from s in time linear in the number of vertices and edges of G [3]. For completeness we 

provide a standard depth-first-search algorithm as Reachable(G, s) in Algorithm 1. ■

Proof of Theorem 2.5.: We show that the procedures Match, PathMatch, and CycleMatch of 

Algorithm 1 are polynomial time algorithms which decide the decision problems (1), (2), 

and (3), respectively. Let G″ = AlignmentGraph(G, G′, ⌣). By Proposition 2.13, we may 

rewrite (1), (2), (3) as follows:
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1. Let s, t ∈ V, s′, t′ ∈ V′. Decide if (t, t′) ∈ Reachable(G″, (s, s′)).

2. Let s, t ∈ V. Decide ∃s′, t′ ∈ V′ (t, t′) ∈ Reachable(G″, (s, s′)).

3. Let s, t ∈ V. Decide ∃s′ ∈ V′ (t, s′) ∈ Reachable(G′′, (s, s′)).

The correctness of Match for deciding (1) is now immediate. For (2) and (3), we recognize 

we can handle the outermost ∃s′ ∈ V′ algorithmically via a for loop over s′ ∈ V′. The 

algorithms PathMatch and CycleMatch result. This gives correctness.

To see that the algorithms are polynomial time, we refer to Propositions 2.14 and 2.15. In 

particular, given these it is straightforward to verify (defining |G| = |V| + |E|) that Reachable 

executes in worst-case O(|G|) time, Match executes in worst-case O(|G||G′|) time, and 

PathMatch and CycleMatch execute in worst-case O(|G||G′||V′|) time. ■

See Figure 8 for an example of a PathMatch along with the corresponding path giving 

reachability in the alignment graph.

2.3.2. Construction of down set graph.—Recall that given a poset P a subset I ⊂ P 
is independent if no two elements of I are comparable.

Proposition 2.16.—Algorithm 2 computes the down set graph of a poset P.

Proof.: We first note there is a one-to-one correspondence between down sets of a poset and 

the independent sets of a poset. In particular given a down set D we can associate an 

independent set I = Maxima|E|ementsOf(D), and given an independent set I we can associate 

a down set D = Downset(I) := {p ∈ P : p ≤ q for some q ∈ I}. It is straightforward to see that 

this is one to one. Now consider the following recursively defined function:

f (D) : = (D, D\ v ) :  for v ∈  MaximalElementsOf (D) ∪ ⋃
v ∈ MaximalElementsOf(D)

f D\ v .

See first that the recursion terminates since each recursive function call operates on a smaller 

set. Notice that if the function operates on a down set, then removing the maximal vertices 

again results in down sets—in fact, precisely the adjacent down sets in the down set graph. 

Hence E = f (P) is the set of edges in the down set graph. Writing this recursion in terms of 

independent sets, we have

g(I) : = (I,  MaximalElementsOf(Downset(I)\ v )) :  for v ∈ I ∪ ⋃
v ∈ I

g(MaximalElementsOf(Downset(I)\ v )) .

Now from

MaximalElementsOf Downset I \ v =  MaximalElementsOf((I ∪  Predecessors(v))\ v )

the correctness of Algorithm 2 follows: it is just an implementation of this recursion which 

prevents some redundant recursion paths to save time (by storing them in V). ■
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Algorithm 1.

Alignment problem.

procedure REACHABLE(G, s) procedure PATHMATCH(G, G′, (s, t))

 Push s onto stack S.  G″ ← AlignmentGraph(G, G′, ⌣)

 while S is not empty do  for s′ ∊ V′ do

  Pop u from stack S.   R ← Reachable(G″, (s, s′))

  R ← R ∪ {u}   for (v, v′) ∊ R do

  A ← {v : (u, v) ∊ E}    if v = t then

   for v ∊ A do     return True

    if v ∉ R then    end if

     Push v into stack S   end for

    end if  end for

   end for   return False

 end while end procedure

 return R

end procedure procedure CYCLEMATCH(G, G′, (s, t))

 G″ ← AlignmentGraph(G, G′, ⌣)

procedure MATCH(G, G′, (s, t), (s, t′))  for s′ ∊ V′ do

 G″ ← AlignmentGraph(G, G′, ⌣)   R ← Reachable(G″, (s, s′))

 R ← Reachable(G″, (s, s′))   for (v, v′) ∊ R do

 if (t, t′) ∊ R then    if v = t and v′ = s′ then

  return True     return True

 else    end if

  return False   end for

 end if  end for

end procedure  return False

end procedure

Algorithm 2 does not run in polynomial time in general, yet it does for the special case of 

interest for the application of this paper. In particular, as we will describe in the next section, 

we will consider posets for which each element is associated to one of a small number of 

variables x1, x2, …, xd, and all elements in the poset associated to the same variable are 

comparable. Moreover, as we discuss in section 4, associated to poset elements are time 

intervals determining the partial order such that one time interval (a, b) compares less than 

another time interval (c, d) iff b ≤ c. Under these assumptions, the incomparability graph of 
the poset P (i.e., the graph with vertices P and edges u ↔ v whenever u and v are 

incomparable) is an interval graph [9], which is a special kind of chordal graph. A chordal 

graph with n vertices has at most n maximal cliques [20, 10]. From these considerations we 

get the following bound.

Proposition 2.17.—Assume that P is a finite poset. Let d be the cardinality of the 
maximum independent set in P. Assume that the incomparability graph of P is chordal. Then 
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the down set graph DP has at most 2dn vertices, and for fixed d, Algorithm 2 executes in 
polynomial time.

Algorithm 2.

Down set graph.

procedure POSETTODOWNSETGRAPH(P)

 Let S be an empty stack

 V ← ∅

 E ← ∅

 Push MaximalElementsOf(P) onto S

 while S is not empty do

  Pop I from S

  V ← V ∪ {I}

  for v ∈ I do

   I′ ← MaximalElementsOf((I ∪ Predecessors(v)) \ {v})

   if I′ ∉ V then

    Push I′ onto S

   end if

   E ← E ∪ {(I′, I)}

  end for

 end while

 return (V, E)

end procedure

3. Matching posets of extrema against computational dynamics models.

3.1. Labeled directed graphs from posets of extrema.

Assume that we can measure N variables over a time interval [0, T] for the system that we 

are interested in modeling. If the quantities of these variables change continuously, then 

there exists a continuous function x : [0, T] ℝN that represents the dynamics. We will 

assume that over this time interval each variable attains finitely many local extrema. As 

discussed in the introduction, in applications we can only sample the system at finite time 

intervals and the measurements will be subject to noise. We use the following structure to 

codify the possible orderings of maxima and minima of the coordinates xi of x.

Definition 3.1.—A poset of extrema (P, <τ; μ) is a finite poset (P, <τ) equipped with a sur-
jective function μ : P → {−, m, M}N that satisfies the following conditions. For n = 1, …, N, 

define Pn = {p : μ(p),n ∈ {m, M}}.

1. P = ⋃n = 1
N Pi.

2. If n ≠ j, then Pn ∩ Pj =∅.

3. For each n, Pn ⊂ P is totally ordered by <τ.
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4. Let u, v ∈ Pn. If u <τ v and μ(u) = μ(v), then there exists w ∈ Pn such that u <τ w 
<τ v and μ(u) ≠ μ(w).

It is worth commenting on the rationale behind Definition 3.1. The poset of extrema is 

designed to capture orderings with respect to time of minima and maxima of d variables. 

The symbols −, m, and M stand for not an extremum, local minimum, and local maximum, 

respectively, and in applications the ordering <τ respects the direction of time. Condition1 

implies that every vertex of P is associated with an extremal event, where we define an 

extremal event to be a local extremum in exactly one coordinate projection. Condition 2 

implies that each vertex is associated to an extremal event of precisely one variable, i.e., 

μ(p)n = − for all but precisely one n ∈ {1,2, …,N}. The assumption that each Pn is totally 

ordered with respect to <τ implies that for each variable the ordering (with respect to time) 

of the minima and maxima is known; any ambiguity arises from comparing across variables. 

The final condition prevents a variable experiencing two local maxima or two local minima 

consecutively. Note that this is an assumption about the sampling frequency of the 

experiment.

Returning to the unknown function x that represents the dynamics, one expects, generically, 

that the maxima and minima of the coordinates xn occur at different times. In the context of 

the poset of extrema (P, <τ) we interpret this to mean that the true dynamics corresponds to 

linear extension of <τ. Since, given the data, the linear extension is unknown we consider 

any linear extension to be a plausible sequence of events. Our goal is to use the machinery of 

section 2.1 in order to search for linear extensions of P and thus we construct, following 

Theorem 2.10, the down set graph PD of P, which exhibits a one-to-one correspondence 

between paths from root to leaf and linear extensions of P.

In order to produce a labeled directed graph suitable for pattern matching algorithms, we 

require labels on the vertices and edges of PD. We make use of a particular set of labels

Σext : = I, D, * , − , m, M

called the extrema labels which are intended to carry the following information:

• I: increasing;

• D: decreasing;

• m: minimum;

• M: maximum;

• −: transitioning;

• *: lack of knowledge.

Definition 3.2.—Let (P, <τ; μ) be a poset of extrema with down set graph PD = (O(P), E). 

The pattern graph P induced by the poset of extrema P is the labeled directed graph (O(P), 

E∪ {(A, A) : A ∈ O(P)}, Σext
N , 𝓁), where the labeling of the vertices is given by
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𝓁(A)n =

I i f  𝓁 max Pn ∩ A
n

= m or 𝓁 min Pn\A
n

= M,

D i f  𝓁 max Pn ∩ A
n

= M or 𝓁 min Pn\A
n

= m,

*  otherwise,

and the labeling of the edges is defined by

𝓁(A A) : = ( − , − , …, − )

and (see Remark 2.9)

𝓁(A A ∪ p ) : = μ(p), p ∈ P .

Although the pattern graph is (trivially) cyclic due to the presence of self-edges, we will 

continue to refer to the root and leaf nodes of 𝒫 as ∅ and P, respectively.

We give an example of a poset of extrema and the associated pattern graph using two 

variables x1 and x2, i.e., N = 2. Later on, we shall relate this example to a yeast dataset [18] 

that is discussed in section 4.2. For now, assume that x1 and x2 first attain minima, then later 

attain maxima, but that the timing of the minima cannot be distinguished, and neither can the 

maxima. This leads to the poset in Figure 1 (left). The associated pattern graph is in Figure 1 

(right). The down sets of the poset of extrema are mapped to integers via

0 ∅ ; 1 x1 min ; 2 x2 min ; 3 x1 min, x2 min ;

4 x1 min, x2 min, x2 max ; 5 x1 min, x2 min, x1 max ;

6 x1 min, x2 min, x1 max, x2 max .

3.2. Labeled directed graphs from computational dynamics.

In this section we develop the notion of a search graph, a labeled directed graph suitable for 

pattern matching sequence of extrema for models arising in computational dynamics.

Definition 3.3.—Let X = (0, ∞)N. Suppose for each n ∈ {1, …, N} we have a finite set

Θn : = θ1 < θ2 < ⋯ < θJn
⊂ (0, ∞)

that we call thresholds. The rectangular decomposition 𝒳 of X induced by (Θ1, Θ2, …, ΘN) 

is the partition of X into cells 𝒳 such that each σ ∈ 𝒳 is a product of intervals
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σ = ∏n = 1
N In,

where for each n,

In ∈ 0, θ1 , θ j, θ j + 1 , θJn
, ∞ , θ j, θ j j = 1, …, Jn .

Accordingly, each cell is homeomorphic to an open ball of some dimension, which we call 
the dimension of the cell. We denote k-dimensional cells 𝒳k. We call the cells in 𝒳N

domains and we call the cells in 𝒳N − 1 walls. Two domains are said to be adjacent if the 

intersection of their closures contains a wall. We denote by Xk the union of all k-
dimensional cells, i.e., Xk : = ⋃σ ∈ 𝒳k

σ.

Definition 3.4.—Consider X = (0, ∞)N with rectangular decomposition 𝒳 and a system of 
trajectories 𝒮𝒯 on X. A trajectory x : [t0,t1] → X is a domain trajectory if x([t0, t1]) ⊂ ξ for 
some domain ξ ∈ 𝒳N. A trajectory x : [t0,t1] → X is a wall trajectory from a domain ξ to a 

domain ξ′ if there exists a wall σ ∈ 𝒳N − 1 such that x([t0, t1]) ⊂ ξ ∪ σ ∪ ξ′, and x−1(ξ) < 

x−1(σ) < x−1(ξ′) (in the sense of comparing sets, i.e., A < B iff for all a ∈ A, b ∈ B, a < b). 

The domain graph generated by 𝒮𝒯 on 𝒳 is the directed graph where the vertices are 
domains and there is an edge ξ → ξ′ iff there exists a wall trajectory from ξ to ξ′.

Definition 3.4 indicates how a domain graph is generated from a system of trajectories. For 

the applications discussed in this paper we are interested in particular trajectories that can be 

defined in terms of the domain graph.

Definition 3.5.—Let D = (V, E) be the domain graph generated by 𝒮𝒯 on 𝒳. A trajectory 
which is the finite concatenation of wall trajectories is said to be a domain-wall trajectory. 

The associated domain graph path of a domain-wall trajectory x is the path of the domain 
graph edges corresponding to the wall trajectories which comprise x.

Definition 3.6.—Let 𝒮𝒯 be a system of trajectories on X = (0, ∞)N with rectangular 
decomposition 𝒳. If every domain trajectory is monotone with respect to every variable and 
every wall trajectory undergoes at most one extremal event, we say 𝒮𝒯 is extrema-pattern-

matchable with respect to 𝒳. In this case, the labeled directed graph 𝒮 = V , E, Σext
N , 𝓁  is 

said to be a search graph if (V, E) is the domain graph and ℓ reflects, as follows, our level of 
knowledge of the behaviors of trajectories:

𝓁 ξ′ n =

I i f  we know xn(t) is increasing  f or every tra jectory x(t) in domain ξ′, else

D i f  we know xn(t) is decreasing  f or every tra jectory x(t) in domain ξ′,  else

*  otherwise, 
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𝓁 ξ ξ′ n =

− i f we′ve ruled out local extrema f or xn on the wall between ξ and ξ′,  else

mi f we′ve ruled out localmaxima f or xn on the wall between ξ and ξ′,  else

M i f we′ve ruled out localminima f or xn on the wall between ξ and ξ′,  else

*  otherwise.

Observe that * indicates a lack of knowledge. If a system of trajectories is extrema-pattern-

matchable, we can always make its domain graph into a search graph by choosing all labels 

to be *. This would lead to a higher rate of false positives in matching; it is better to assign 

the strongest labels one can prove.

As an example, consider a system of trajectories over a rectangular decomposition of ℝ2, 

with trajectories qualitatively depicted in Figure 2 (left). The walls are shown as dotted lines. 

The domains are labeled 1–4, and within each domain the trajectories are monotonic in each 

variable, satisfying the requirements to be extrema-pattern-matchable. Within domain 1, x2 

trajectories are decreasing, while x1 trajectories either decrease or increase. The associated 

search graph is shown in Figure 2 (right); node 1 corresponding to domain 1 is labeled *D 

and likewise for the other nodes. The edges between nodes in the search graph correspond to 

concatenation of domain trajectories. Clearly, there cannot be a maximum in x1 as we pass 

from domain 1 to domain 2, but there could be a minimum, whereas x2 is constantly 

decreasing and cannot have either a minimum or maximum on that wall. The edge (1 → 2) 

in the search graph is therefore labeled m-, and similar arguments hold for the other edges.

3.3. Matching pattern graphs against search graphs.

As indicated in the introduction we are interested in identifying whether our model for 

dynamics is capable of producing sequences of maxima and minima that do not contradict 

the experimental data. The capability is equivalent to the existence of a matching between a 

pattern graph and the search graph. To do this we impose a particular matching relation.

Definition 3.7.—The extremal event matching relation ⌣ext on Σext is given by

1. (vertices) (I ⌣ext *), (I ⌣ext I), (D ⌣ext *), (D ⌣ext D), (*⌣ext *),

2. (edges) (−⌣ext −), (−⌣ext m), (−⌣ext M), (−⌣ext *), (m ⌣ext m), (m ⌣ext *), (M 
⌣ext M), (M ⌣ext *).

Given a pattern graph 𝒫 and a search graph 𝒮, we extend this relation to Σext*  by defining a 

⌣ext b whenever for all 1 ≤ i ≤ N, ai ⌣ext bi.

Theorem 3.8.—Let 𝒫 be a pattern graph for a poset of extrema (P, <, μ) and let 𝒮 be a 
search graph for a system of trajectories 𝒮𝒯 which is extrema-pattern-matchable with 
respect to a rectangular decomposition 𝒳 of X = (0, ∞)N. If 𝒮𝒯 admits a domain-wall 
trajectory with a sequence of extremal events corresponding to a linear extension of P, then 
there exists a path p ∈ 𝒫 from root to leaf and a path s in 𝒮 such that p ⌣ext s.
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Proof.: Let <‘ be a linear extension of P and name the elements of P as e1 <‘e2 <‘·⋯ <‘en. 

Suppose that ϕ : [t0, t1] → X is a domain-wall trajectory with the sequence of extremal 

events e1, e2, …, en. We show there exists a path p from root to leaf in 𝒫 and a path s in 𝒮
such that p ⌣ s.

Step 1. We construct a path p from root to leaf in 𝒫 and a path s in 𝒮. By Definition 3.5, 

since ϕ is a domain-wall trajectory, it can be written as a concatenation of wall trajectories 

ϕi : [ti, ti+1] for i = 1, 2, …,m. Because 𝒮 is a search graph, Definition 3.6 implies that 

extremal events for ϕ(t) can only occur on walls (i.e., during times when ϕ(t) ∊ Xd−1) and at 

most one kind of extremal event can occur on a given wall. Since it is impossible for the 

same extremal event to occur twice in a row (e.g., between any two local minima there must 

be an intervening local maximum), and wall trajectories intersect precisely one wall, it 

follows that each wall trajectory experiences at most one extremal event. If we denote the set 

of extremal events which occur on the wall trajectory ϕi as Ei, then card Ei ≤ 1. Therefore, Ei 

= ∅ or {ej} for some j. Since ϕ experiences the events e1,e2, …, en in order, and ϕ is the 

concatenation of the trajectories ϕi, it follows that there exists an increasing function μ : {1, 

…, n} → {1, …, m} such that for i ∊ {1, …, n}, ei ∊ Eμ(i). Define p1 := ∅, and for i ∊ {1, 

…, m} define pi + 1 : = ⋃ j = 1
i E j.

We show p1 → p2 → ⋯ → pm+1 is a path in 𝒫 from root to leaf. To this end it suffices to 

show that: (1) for each i ∊ {1, …, m + 1}, pi is a down set of P, (2) for each i ∊ {1, …, m} 

there is an edge pi → pi+1 in 𝒫, (3) p1 = ∅, and (4) pm+1 = P.

Let i ∊ {1, …, m + 1}. Define k = max μ−1({1, …, i}). Since μ is increasing it follows that 

pi + 1 = ⋃ j = 1
i E j = e1, e2, …, ek .

Since e1 <‘ e2 <‘ ⋯ <‘ en and <‘ is a linear extension of P, it follows that pi is a down set of 

P. This demonstrates (1). Now let i ∊ {1, …,m}. We show pi → pi+1 is an edge in 𝒫. There 

are two cases: either (a) Ei = ∅ and pi = pi+1, or else (b) or else Ei = {ek} for some k and 

pi+1 = pi ∪ {ek}. For case (a), pi → pi+1 is an edge in 𝒫 since the pattern graph admits all 

self-edges. For case (b), pi → pi+1 an edge in 𝒫 since 𝒫 contains the edges present in the 

down set graph of P. This demonstrates (2). That p1 = ∅ is by definition. This demonstrates 

(3). Finally, pm + 1 = ⋃i = 1
m Ei = P. This demonstrates (4). Since (1), (2), (3), and (4) hold 

we have that p = p1 → p2 → ⋯ → pm+1 is a path from root to leaf in 𝒫. Let s be the path 

in 𝒮 corresponding to the sequence of wall trajectories ϕi (i.e., the path associated with the 

domain-wall trajectory ϕ). Denote the vertices of the path i in order as s1 → s2 → ⋯ → 
sm+1. Note that the wall trajectories ϕi correspond to the edges si → si+1 in s. We have 

constructed a path p from root to leaf in 𝒫 and a path s in 𝒮, completing Step 1.

Step 2. We show that for p and s so constructed, p ⌣ s holds. By Definitions 2.3 and 3.7, it 

suffices to show that for each i ∊ {1, …, N}, for each j ∊ {1, …, m + 1}, ℓ(pj)i ⌣′’ ℓ(sj)i (i.e., 

vertex labels match) and for each i ∊ {1, …, N} for each j ∊ {1, …, m}, ℓ(pj → pj+1)i ⌣′’ ℓ
(sj → sj+1)i (i.e., edge labels match).

Proof that edge labels match. Let i ∊ {1, …, N} and j ∊ {1, …, m}. We show
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𝓁 p j p j + 1 i
⌣′ 𝓁 s j s j + 1 i

. (3.1)

There are two cases: either (1) Ej = ∅ or (2) Ej = {ek} for some k. For case (1), Ej = ∅ 
implies pj = pj+1 and hence ℓ(pj → pj+1)i = −. Meanwhile ℓ(sj → sj+1)i ∊ {−,m,M, *}. By 

Definition 3.7 it follows that (3.1) holds for case (1). For case (2), Ej = {ek} for some k, we 

distinguish three subcases: (a) ek is local minimum for variable i, (b) ek is a local maximum 

for variable i, or (c) ek is not a local extremum for variable i. For subcase (a), ℓ(pj → pj+1)i = 

m. Since the wall trajectory ϕj experienced a local minimum for variable i, it follows that we 

could not have ruled out a local minimum on the wall corresponding to the edge sj → sj+1. 

This eliminates the possibility that ℓ(sj → sj+1)i is either − or M, i.e., ℓ(sj → sj+1)i ∊ {m, *}. 

Since m ⌣′ m and m ⌣′ *, (3.1) holds for subcase (a). Subcase (b) is similar. For subcase 

(c), ℓ(pj → pj+1)i = −, and the argument of case (1) again applies. Hence (3.1) holds in all 

cases.

Proof that vertex labels match.: Let i ∊{1, …, N} and j ∊ {1, …, m + 1}. We show ℓ(pj)i ⌣
′ ℓ(sj)i.

Let Pi = {p ∊ P : ℓ(p)i ∊ {I, D}}. We consider two cases: (1) Pi = ∅ and (2) Pi = ∅. For case 

(1), by Definition 3.2, Pi = ∅ implies ℓ(pj)i = *. By Definition 3.6, ℓ(sj)i ∊ {I, D, *}, and by 

Definition 3.7 * ⌣′ I, * ⌣′ D, and * ⌣′ *. It follows that ℓ(pj)i ⌣′ ℓ(sj)i for case (1). For 

case (2), we assume Pi = ∅. Then ℓ(pj)i ∊ {I, D}. There are four subcases depending on 

whether (a) ℓ(pj)i = I or ℓ(pj)i = D and (b) whether pj ∩ Pi = ∅. As they are all similar, we 

only consider the subcase when ℓ(pj)i = I and and pj ∩ Pi = ∅. Let ϕ’ : [t1, tj] → X be the 

domain-wall trajectory ϕ’ obtained by concatenating ϕ1, ϕ2, ⋯·, ϕj−1. By construction, pj is 

the set of events in P which occur on ϕ’. Let e be the maximal element of pj ∩ Pi. By 

Definition 3.2, ℓ(pj)i = I implies that e is a local minimum. It follows that ϕ’ is increasing in 

variable i after event e occurs. This implies that for sufficiently small ∊ > 0, ϕ j − 1|
t j − ϵ, t j

 is 

an increasing trajectory with image contained in the domain sj. By Definition 3.6, it follows 

that ℓ(sj)i ∊ {I, *}. By Definition 3.7, I ⌣′ I and I ⌣′ *, and ℓ(pj)i ⌣′ ℓ(sj)i follows. Similar 

arguments for the other three subcases show ℓ(pj)i ⌣′ ℓ(sj)i for case (2). We have shown p ⌣ 
s, which completes Step 2.

Since in Step 1 we constructed a path p in 𝒫 from root to leaf and a path s in 𝒮 and in Step 2 

we showed p ⌣ s, the proof is complete. ■

To continue our example, we take the pattern graph 𝒫 from Figure 1 (right) and the search 

graph 𝒮 from Figure 2 (right) and seek matching paths p ∈ 𝒫, s ∈ 𝒮. To do this, we form 

the alignment graph as in Definition 2.11 using the matching relation ⌣ext given in 

Definition 3.7. We then apply Proposition 2.13 that states that finding paths in the alignment 

graph is equivalent to finding pairs of matching paths in the pattern and search graphs. In 

particular, we seek a match to a path p ∈ 𝒫 that is a linear extension of the poset of extrema 

in Figure 1 (left), to verify that the system of trajectories 𝒮𝒯 in Figure 2 (left) can support 

the constraints on the order of extrema summarized by the poset.
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The alignment graph is given in Figure 3, where each node is labeled by a pair (a, b), where 

a is a node identifier for the search graph (integers 1–4) and b is a node identifier for the 

pattern graph (integers 0–6). The red path denotes a match between path p = (0,1,3, 5,6) in 

the pattern graph in Figure 1 (right) and cyclic path s = (1, 2, 3, 4,1) in the search graph in 

Figure 2 (right). We notice that p = (0,1, 3, 5, 6) corresponds to a linear extension of the 

poset of extrema in Figure 1 (left), since it is a path from root to leaf of the pattern graph 

(Theorem 2.10). Therefore 𝒮𝒯 has at least one trajectory with a sequence of extrema 

respecting the constraints of the poset of extrema.

4. Application to regulatory networks.

As indicated in the introduction, to provide a demonstration of how to apply the 

combinatorial tools described in the previous sections we make use of DSGRN. A complete 

description of the mathematical framework can be found in [4]; however, for the benefit of 

the reader we begin this section with a short review. We then present an application to a 

simple system associated with the cell cycle of S. cerevisiae using experimental time series 

data (provided courtesy of the Haase lab; see [18] for data collection methods) for mRNA 

sequences associated with SWI4, HCM1, NDD1, and YOX1 collected at time intervals of 5 

minutes.

4.1. DSGRN model for regulatory networks.

We provide a mathematical definition of a regulatory network, its associated parameter 

space, and an explicit decomposition of parameter space into a finite set of regions. For the 

sake of clarity we begin with a discussion of switching systems and demonstrate that they 

provide a system of trajectories. We then observe that based on the monotonicity assumption 

of systems of trajectories, the results for switching systems are applicable to a much larger 

class of dynamical systems. We conclude by relating the system of trajectories to the output 

of DSGRN, which provides us with a means of analyzing specific data sets.

Definition 4.1.—A regulatory network RN = (V, E) consists of vertices V = {1, …,N} 

called network nodes, annotated directed edges E ⊂ V × V × {→, ⊣} called interactions, 

and for each n ∊ V, polynomial monotone increasing functions Mn : ℝ
Sn ℝ called node 

logics, where Sn := {(i, n) ∊ E} is called the nth source set.

An → annotated edge is referred to as an activation and an ⊣ annotated edge is called a 
repression. We indicate that either i → j or i ⊣ j without specifying which by writing (i, j) ∊ 
E. We allow self-edges. From one node to another we admit at most one type of annotated 
edge, e.g., we cannot have both i → j and i ⊣ j simultaneously. The nth target set is given by 
Tn := {(n, j) ∊ E}.

A parameterized family of dynamics is generated from the regulatory network.

Definition 4.2.—A parameter for a regulatory network RN = (V, E) is a tuple z ∊ Z ⊂ (0, 

∞)(N+3·|E|). The coordinates of a parameter z are associated with the nodes and edges of RN 
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and are given by the values of four functions γ : V → (0, ∞), and l, u, Θ : E → (0, ∞) 

with the constraint that l(e) ≤ u(e) for each e ∊ E.

The functions γ, l, u, and Θ are used to decompose phase space and generate dynamics as 

follows. Define

Θn : = Θ((n, j)) : (n, j) ∈ Tn for n ∈ 1, …, N .

and assume that for all n = 1, …, N,

if Θ((n, j)), Θ((n, k)) ∈ Θn,  then Θ((n, j)) ≠ Θ((n, k)) . (4.1)

Then, (Θ1, Θ2, …, ΘN) defines a rectangular decomposition 𝒳 (see Definition 3.3) on X := 

(0, ∞)N.

Define Γ to be the diagonal N × N matrix with diagonal entries γ(n) for n ∊ {1, …, N}. 

Define W : E × X → (0, ∞) via

W((i,   j), x) =

l((i, j)) if xi < Θ((i, j)) and xi x j,

l((i, j)) if xi > Θ((i, j)) and xi ⊣ x j,

u((i, j)) if xi > Θ((i, j)) and xi x j,

u((i, j)) if xi < Θ((i, j)) and xi ⊣ x j,

0 otherwise.

Finally, define Λ : X ℝN componentwise by

Λn(x) : = Mn ∘ W Sn × X .

The construction up to the point allows us to recall the classical switching system [12, 5, 

14],

ẋ = − Γx + Λ(x), (4.2)

where Γ is a diagonal matrix with diagonal entries given by γ, and the parameters l, u, and Θ 
specify Λ. Thus, (4.2) is implicitly associated with a given parameter value z ∊ Z. A nice 

feature of the switching system is that the structure of the dynamics over the rectangular 

domains 𝒳N is easily understood. Observe that if ξ ∈ 𝒳N, then Λ is constant on ξ and hence 

it makes sense to write Λ(ξ).

Definition 4.3.—A parameter value z ∊ Z is regular if (4.1) holds, l(e) < u(e) for all e ∊ E, 
and

−γ(n)Θ((n, k)) + Λn (ξ) ≠ 0 (4.3)
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if an N − 1 dimensional face of ξ ∈ 𝒳N lies in the hyperplane defined by xn = Θ(n, k). The 

set of regular parameter values is denoted by ZR.

From now on we restrict our attention to switching systems for which the parameter value is 

regular.

Definition 4.4.—An RN switching system domain trajectory is a function x: [t0, t1] → 
cl(ξ), where ξ ∈ 𝒳N, that solves the differential equation

ẋ = − Γx + Λ(ξ) . (4.4)

For z ∊ ZR, the associated RN switching system of trajectories at z is denoted by 
𝒮𝒯sw(RN, z) and is defined to be the smallest system of trajectories (see Definition 1.1) 

which contains every RN switching system domain trajectory.

Remark 4.5.: It is straightforward to verify that under Definition 1.1, the intersection of two 

systems of trajectories is again a system of trajectories. Thus the notion of the smallest 

system of trajectories containing some set of trajectories is well-defined.

Observe that (4.4) is a linear differential equation and for each ξ can be extended to all of 

ℝN. In this case,

Pξ : = Γ−1Λ(ξ) ∈ ℝN

is a globally attracting fixed point.

Let πn : ℝN ℝ be the canonical projection map onto the nth coordinate.

Proposition 4.6.—Let RN be a regulatory network and z ∊ ZR. Consider the switching 
system of trajectories 𝒮𝒯sw(RN, z). Let ξ, ξ′ ∈ 𝒳N be separated by the hyperplane xn = 

Θ((n, j)) for some (n, j) ∊ E such that πn(ξ) < πn(ξ’). Then,

i. there exists a wall trajectory from ξ to ξ’ iff max Pn
ξ, Pn

ξ′ > Θ((n, j)),

ii. there exists a wall trajectory from ξ’ to ξ iff min Pn
ξ, Pn

ξ′ < Θ((n, j)).

Proof.: We show (i) and leave (ii) to the reader. Suppose there exists a wall trajectory x : [0, 

T] → (0, ∞)N from ξ to ξ’. By Definition 1.1, the restrictions x|A and x|B onto A = x−1(ξ)
and B = x−1 ξ′  are again trajectories. By Definition 4.4, x|A and x|B are solutions to (4.4). 

Such solutions are monotonic, so it follows that x|A and x|B are increasing. This requires 

πn(Pξ) > Θ((n, j)) and πn(Pξ’) > Θ((n, j)) (with strictness since we reach or leave the wall in 

finite time), yielding max Pn
ξ, Pn

ξ′ > Θ((n, j)) as desired.
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To prove the converse suppose max Pn
ξ, Pn

ξ′ > Θ((n, j)). Let x ∈ σ, where σ ∈ 𝒳N − 1 is the 

cell between ξ and ξ’. Solve the initial value problem (4.4) with initial value x in forward 

time in ξ’ and in backward time in ξ to obtain solutions x: [t0,t1] → cl(ξ) and y: [t1, t2] → 
cl(ξ’) such that x t1 = y t1 = x. By Definition 4.4, x and y are trajectories in 𝒮𝒯sw(RN, z). 

By Definition 1.1 the concatenation of x and y is again a trajectory. This yields a wall 

trajectory from ξ to ξ’. ■

Proposition 4.7.—Let RN be a regulatory network, z ∊ ZR, and ξ ∈ 𝒳N be a domain. 

Then the switching system of trajectories 𝒮𝒯sw(RN, z) has the following properties:

i. Every trajectory x(t) in ξ is monotonic in each variable.

ii. If Pn
ξ > πn(ξ), then for every trajectory x(t) in ξ, xn(t) is an increasing function.

iii. If Pn
ξ < πn(ξ), then for every trajectory x(t) in ξ, xn(t) is a decreasing function.

iv. If Pn
ξ ∊ πn(ξ), there exist trajectories x(t) in ξ where xn(t) may be either an 

increasing, decreasing, or constant function.

v. Let w be a wall associated with the hyperplane xn = Θ((n, j)) arising from the 
regulatory network interaction xn → xj. Then, the only type of extremum a wall 
trajectory can undergo as it passes through w is a local minimum in the variable 
xj.

vi. Let w be a wall associated with the hyperplane xn = Θ((n, j)) arising from the 
regulatory network interaction xn ⊣ x,. Then, the only type of extremum a wall 
trajectory can undergo as it passes through w is a local maximum in the variable 
xj.

Proof.: Properties (i)-(iv) follow immediately from (4.4).

We show (v) and leave (vi) to the reader. Let w be a wall associated with the hyperplane xn = 

Θ((n,j)) arising from the regulatory network interaction xn → xj. Let ξ, ξ’ be the adjacent 

domains that w separates, such that πn(ξ) < πn(ξ’). Let x : [t0,t1] → X be a wall trajectory 

from ξ to ξ’. We show that x cannot undergo any kind of extremum except possibly a local 

minimum in the variable xj.

Since z ∊ ZR, Θ((n, j)) ≠ Θ((n, k)) for j ≠ k. This implies that Pk
ξ = Pk

ξ′ for all k ≠ j. Define x|

A and x|B, where A = x−1(ξ) and B = x−1 ξ′ . Since x|A and x|B each obey (4.4) on their 

respective domains, it follows that xk obeys ẋk = − γk xk − Pk
u  everywhere. Thus xk(t) is 

monotonic and hence experiences no extremal event. Now we show x cannot undergo a local 

maximum event in variable xj. Since l((i, j)) < u((i, j)) it follows from the definitions that we 

must have P j
ξ < P j

ξ′. If x|A is constant or decreasing in the jth coordinate, then there cannot 

be a local maximum as we pass the wall. So we consider only the case where x|A is 

increasing in the jth coordinate. This case requires that x j(A) < P j
u. Hence, 
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x j(min B) < P j
ξ < P j

ξ′. Since x|B is a solution of the initial value problem corresponding to 

(4.4) with an initial condition for xj less than P j
ξ′, it follows that xj is everywhere increasing. 

Therefore, xj does not experience a local maximum. ■

While the action of the switching system on top dimensional domains is easy to understand, 

the matching results only make use of the qualitative properties of the system of trajectories 

described in the conclusions of Propositions 4.6 and 4.7. With this in mind let 𝒮𝒯(RN, z)
denote any system of trajectories that satisfies Proposition 4.6(i)–(ii) and Proposition 4.7(i) – 

(vi).

Theorem 4.8.—Let (RN, z) be a parameterized regulatory network with z ∊ ZR and let 
𝒮𝒯(RN, z) be an associated system of trajectories. Let 𝒮 = (V , E, Σ, 𝓁) be the labeled 
directed graph given by the following:

i. V = 𝒳N.

ii. E = ξ, ξ′ ∈ 𝒳N
2 : ξand ξ′are ad jacent, and  f or all n ∈ V , either

πn(ξ) < πn ξ′ ∧ min Pn
ξ, Pn

ξ′ > πn(ξ) or

πn(ξ) > πn ξ′ ∧ max Pn
ξ, Pn

ξ′ < πn(ξ)

.

iii. For all n ∈ V, 𝓁(ξ)n = D whenever Pn
ξ < πn(ξ).

iv. For all n ∈ V, ℓ(ξ)n = * whenever Pn
ξ ∈ πn(ξ).

v. For all n, j, k ∈ V,

ℓ(ξ → ξ′)n = − whenever xj → xk, n = k, and xj = Θ((j, k)) separates ξ and ξ′.

vi. For all n, j ∈ V,

ℓ(ξ → ξ′)n = m whenever xj → xn and xj = Θ((j, n)) separates ξ and ξ′.

vii. For all n, j ∈ V,

ℓ(ξ → ξ′)n = M whenever xj ⊣ xn and xj = Θ((j, n)) separatesξ and ξ′.

Then, 𝒮 is a search graph for 𝒮𝒯(RN, z) with the rectangular decomposition 𝒳.

Proof.: By Proposition 4.6, it follows that 𝒮 is the domain graph for 𝒮𝒯sw(RN, z) with the 

rectangular decomposition 𝒳. By Proposition 4.7, it follows that the vertex and edge labels 

satisfy the requirements of Definition 3.6. ■

Theorem 4.8 guarantees that given a regulatory network and regular parameter value there 

exists a search graph. The next proposition indicates that parameter space admits a finite 

decomposition, where within each open component of the decomposition the parameters 

exhibit isomorphic search graphs.

Proposition 4.9.—For a fixed regulatory network the following hold:
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i. The regular parameter values ZR form an open and dense subset of all parameter 
values Z.

ii. ZR has finitely many connected components.

iii. The connected components of ZR are semialgebraic sets which can be written as 
systems of strict inequalities involving polynomials of the parameters.

iv. If z1, z2 ∈ZR are in the same connected component of ZR, then the search graph 
for 𝒮𝒯(RN, z1) is isomorphic to the search graph associated with 𝒮𝒯(RN, z2).

We do not provide a proof of Proposition 4.9 as it is a partial summary of results in [4] that 

describes the mathematical foundations for the DSGRN software [15]. Given a regulatory 

network for which |Sn| ≤ 3 and |Tn| ≤ 3 the key computational result of [4] is that DSGRN 

provides an efficient computational scheme for constructing an undirected graph PG, called 

the parameter graph, where each node represents one of the connected components 

described in Proposition 4.9(iii) and the edges correspond to a notion of adjacency of the 

parameter regions. In addition, for each node in the parameter graph DSGRN can be used to 

compute the associated domain graph, i.e., identify the set of vertices and the set of edges of 

S as described in Theorem 4.8(i) and (ii).

From the domain graph, it is possible to extract summary data, called a Morse graph, that 

provides information about the global dynamics. The association of a Morse graph to each 

node in the parameter graph PG gives rise to the notion of a database of dynamical 

information; the interested reader is referred to [1, 2, 4] for further details about Morse 

graphs and dynamical databases. For the purposes of this paper, the notion of the domain 

graph, and the search graph which arises from it, suffices.

We remark that the system of trajectories 𝒮𝒯sw(RN, z) qualitatively depicted in Figure 2 

(left) arises from the regulatory network RN({x1,x2}, {x1 → x2,x2 ⊣ x1}) for any regular 

parameter z satisfying

l((1, 2)) < θ((1, 2)) < u((1, 2)),

l((2, 1)) < θ((2, 1)) < u((2, 1)) .

4.2. Labeled pattern graph from experimental data.

We now turn to the task of generating a labeled pattern graph from experimental data. The 

graph in Figure 4 (left) provides normalized expression level data for mRNA sequences 

associated with SWI4, HCM1, NDD1, and YOX1 from S. cerevisiae taken at time intervals 

of 5 minutes. Since we are only concerned with the orderings of the extrema, the 

normalization of the data makes it easier to identify these extrema.

As indicated in the introduction identifying extrema in data is a serious statistical endeavor 

that we do not address in this paper. While our techniques require a set of potential 

sequences of extrema, they are agnostic with respect to how the potential sequences are 
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derived; therefore we are content for the purpose of this paper to use simple heuristics. In 

particular, the table in Figure 4 (right) provides intervals of time within which we declare a 

maximum or minimum value of expression has occurred. For example, to allow for noise in 

the data the tightest time bound we are willing to assume on the maxima for SWI4 and 

YOX1 is (15, 30). Similarly, we ignore the potential for a local minimum and maximum of 

NDD1 at time points 70 and 80 and instead assume that a minimum occurs somewhere 

within the time interval (70,85).

Because we are using intervals to quantify the occurrence in time of extrema we cannot 

expect to obtain a linear ordering. Instead we define a partial order <τ by

(a, b) < τ(c, d) whenever b ≤ c . (4.5)

Note that the poset of extrema in Figure 1 (left) arises from using <τ on rows 1, 4, 5, and 6 in 

the table; i.e., we form the poset consisting of the first minimum and first maximum of each 

of x1 = SWI4 and x2 = YOX1.

Using all of the rows in the table in Figure 4 results in the poset indicated in Figure 5. Note 

that the linear extensions of <τ correspond to ordered sequences of extrema events.

Observe that we have constructed a poset of extrema (P, <τ; μ) (see Definition 3.1) where P 
consists of the entries of the time interval column in the table in Figure 4 (right), <τ is as 

defined by (4.5), and the values of μ: P → { −, m, M}4 are obtained from the event column 

of the table in Figure 4 (right). For example, if the first coordinate of μ corresponds to SWI4, 

then P1 = {(−∞, 10), (15, 30), (50, 60), (75, ∞)}. Following Definition 3.2 the associated 

pattern graph 𝒫 is shown in Figure 6. We remark that Proposition 2.17 applies in this 

situation, i.e., Algorithm 2 can quickly compute the pattern graph 𝒫.

4.3. Results for wavepool models.

The regulatory network RNW shown in Figure 7 is perhaps the simplest representative of the 

family of wavepool models proposed by the Haase lab [19] for the metabolic cycle in S. 
cerevisiae. Our goal is to identify if, for a particular identification of the nodes {1, 2, 3,4} 

with the genes {SWI4, HCM1, NDD1, YOX1}, a DSGRN model of this form is consistent 

with the time series data shown in Figure 4 (left) and, if so, under what ranges of parameter 

values.

Applying the DSGRN database code to RNw produces a parameter graph PG with 1080 

nodes. As explained in section 4.1, the phase space of this network is (0, ∞)4 and the 

parameter space is a subset of (0, ∞)19. The nodes correspond to 1080 distinct regions of 

parameter space, which in turn give rise to 1080 distinct classes of state transition graphs 

which may arise from the regulatory network of Figure 7. For each node we may present the 

associated nonempty connected region of parameter space as the solution set of a system of 

polynomial inequalities. For each point z in this set, the 𝒮𝒯sw RNW, z  system of trajectories 

gives rise to the same associated search graph.
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4.3.1. Invalidating a model.—As a simple test we begin by considering a model that 

can be ruled out based on known biological interactions. Consider the regulatory network 

RNW where 1 ↔ NDD1, 2 ↔ HCM1, 3 ↔ SWI4, and 4 ↔ YOX1. The evidence table in 

the supplementary material of [17, Table S2] shows no known regulation of HCM1 by 

NDD1, despite numerous experiments of different types, so we would expect to see no 

pattern matches with this model. Applying our pattern matching methodology to the search 

graphs which arise for each of the 1080 parameter nodes corresponding to this instantiation 

of the regulatory network RNW and the pattern graph of Figure 6 we obtain no matches. 

This indicates that no matter how parameters are chosen, the dynamical model cannot give 

rise to a solution trajectory exhibiting a behavior qualitatively similar to the collected 

experimental data of Figure 4. Accordingly, we reject the proposed regulatory network 

model.

4.3.2. Parameter learning.—We now turn to an accepted version of the wavepool 

regulatory network model RNW where 1 ↔ SWI4, 2 ↔ HCM1, 3 ↔ NDD1, and 4 o 

YOX1. For this network we expect to find matches (in fact, failure to find any matches 

would probably suggest that the DSGRN model was inappropriate).

Applying the pattern matching methodology to the search graphs which arise for each of the 

1080 parameter nodes corresponding to this revised instantiation of the regulatory network 

RNW and the pattern graph of Figure 6 results in matches for 22 parameter nodes. By 

Theorem 3.8, for any parameter z belonging to any of the other 1058 parameter nodes, the 

𝒮𝒯sw RNW, z  system of trajectories does not contain any trajectory passing only through 

domains and walls which exhibits a sequence of extrema matching a plausible total order of 

the experimentally observed extrema in the data. Hence, our analysis has dramatically 

reduced uncertainty about relationships between the underlying parameters.

Furthermore, we can explicitly describe the regions of parameter space that correspond to 

these 22 matching parameter nodes. For example, for one such parameter node the 

associated parameter region in (0, ∞)19 is given by the inequalities

0 < l1l2 < γ1θ3 < u1l2 < γ1θ5 < l1u2 < u1u2,

0 < l3 < γ2θ4 < u3,
0 < l4 < γ3θ1 < u4,
0 < l5 < γ4θ2 < u5,

(4.6)

where

l1 := l((NDD1; SWI4)) u1 := u((NDD1; SWI4)) θ1 := Θ((NDD1; SWI4))

l2 := l((YOX1; SWI4)) u2 := u((YOX1; SWI4)) θ2 := Θ((YOX1; SWI4))

l3 := l((SWI4; HCM1)) u3 := u((SWI4; HCM1)) θ3 := Θ((SWI4; HCM1))

l4 := l((HCM1; NDD1)) u4 := u((HCM1; NDD1)) θ4 := Θ((HCM1; NDD1))
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l5 := l((SWI4; YOX1)) u5 := u((SWI4; YOX1)) θ5 := Θ((SWI4; YOX1))

γ1 :=γ(SWI4) γ2 :=γ(HCM1)

γ3 :=γ(NDD1) γ4 :=γ(YOX1)

A complete listing of such regions is available in supplementary material [16].

A pair of matching paths between the pattern graph and the search graph corresponding to 

this parameter region is shown in Figure 8.

5. Concluding remarks.

We presented a general method capable of rejecting models that cannot match coarse data 

generated by an experimentally measured time series. Our assumptions are very general; we 

expect that the time series is subject to substantial experimental error and therefore we only 

assume partial knowledge of the order of extrema of the components of the time series. This 

information is encoded in a poset of extrema, which we represent as a labeled directed 

acyclic graph called a pattern graph.

Coming from the modeling side, we start with a concept of system of trajectories. Such a 

system can be produced by decomposition of the phase space into disjoint domains in which 

all trajectories are monotone, and on each boundary between domains, at most one 

component can attain an extremum. Existence of such a decomposition allows extraction of 

the extremal behavior and its encoding into a search graph. On this level of generality we 

show that the problem of matching labeled paths between pattern graph and search graph 
can be solved in polynomial time.

We discuss the applicability of our approach in two directions. First, we provide an example 

of a class of models which can be used to construct search graphs. Second, we apply our 

method to expression time series data from cell cycle in yeast. We show how our method can 

be used to learn parameter regimes consistent with the experimental measurement by 

rejecting parameter regimes where the dynamics does not align with the data.

In order to ensure our results may be reproduced we adhere to the following recipe: (1) we 

release our code under an open-source license, (2) we host our code on a publicly available 

site using version control (i.e., history tracking), (3) we give the version numbers of the code 

used to produce the result, (4) we provide instructions for installing and running the code, 

and (5) we produce digital object identifiers (DOIs) of the versioned code for use in 

bibliographical entries.

The computer codes used to reproduce the results in this paper are stored in two code 

repositories. The first repository is the DSGRN project [15]. This is an open-source project 

which, as of writing, is hosted on the code-sharing website GitHub at https://github.com/

shaunharker/DSGRN. The version utilized for this paper is 1.0.0. The second repository is 

the supplement to this paper [16] and houses the code (which relies on DSGRN) which is 

used to reproduce the above results. This again is open-source and is hosted at https://
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github.com/shaunharker/2017-DSGRN-ModelRejection. The version utilized for this paper 

is 1.0.0. The DOIs for these can be found in the references.
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Figure 1. 
Left: Example poset of extrema with four extrema. Right: Associated pattern graph.
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Figure 2. 
Left: An example system of trajectories that is extrema-pattern-matchable over a rectangular 

decomposition of four components. Right: The associated search graph.
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Figure 3. 
Alignment graph for the pattern graph in Figure 1 (right) and the search graph in Figure 2 

(right). The red path indicates a match between paths in the graphs.
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Figure 4. 
Left: Time series of RNA-seq data normalized to range from zero to one. Right: Table of 

time intervals associated to the extrema in the plot on the left.
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Figure 5. 
The pattern (poset) arising from the choice of time intervals of extrema based on the table in 

Figure 4. Arrows indicate direction of time.
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Figure 6. 
Pattern graph associated to the pattern in Figure 5.

Cummins et al. Page 34

SIAM J Appl Dyn Syst. Author manuscript; available in PMC 2019 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
The wavepool regulatory network RNW where M1 is multiplication.
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Figure 8. 
Left and middle: Matching paths in search graph and pattern graph by Algorithm 1. Right: 

The corresponding path the algorithm found in the alignment graph.

Cummins et al. Page 36

SIAM J Appl Dyn Syst. Author manuscript; available in PMC 2019 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction.
	Definition 1.1.

	Graph theory and algorithms.
	Matching paths in labeled graphs.
	Definition 2.1.
	Definition 2.2.
	Definition 2.3.
	Definition 2.4.
	Theorem 2.5.

	Down set graph of a poset.
	Definition 2.6.
	Definition 2.7.
	Definition 2.8.
	Remark 2.9.
	Theorem 2.10.
	Proof.


	Algorithms.
	Alignment problem.
	Definition 2.11.

	Proposition 2.12.
	Proposition 2.13.
	Proposition 2.14.
	Proof.

	Proposition 2.15.
	Proof.
	Proof of Theorem 2.5.

	Construction of down set graph.
	Proposition 2.16.
	Proof.



	Algorithm 1.
	Algorithm 2.
	Matching posets of extrema against computational dynamics models.
	Labeled directed graphs from posets of extrema.
	Definition 3.1.
	Definition 3.2.

	Labeled directed graphs from computational dynamics.
	Definition 3.3.
	Definition 3.4.
	Definition 3.5.
	Definition 3.6.

	Matching pattern graphs against search graphs.
	Definition 3.7.
	Theorem 3.8.
	Proof.
	Proof that vertex labels match.



	Application to regulatory networks.
	DSGRN model for regulatory networks.
	Definition 4.1.
	Definition 4.2.
	Definition 4.3.
	Definition 4.4.
	Remark 4.5.

	Proposition 4.6.
	Proof.

	Proposition 4.7.
	Proof.

	Theorem 4.8.
	Proof.

	Proposition 4.9.

	Labeled pattern graph from experimental data.
	Results for wavepool models.
	Invalidating a model.
	Parameter learning.


	Concluding remarks.
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.

