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Abstract

We present a method for complex frequency estimation in several variables, extending the classical
one-dimensional ESPRIT-algorithm, and consider how to work with data sampled on non-standard
domains, i.e going beyond multi-rectangles.
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1. Introduction

Given equidistant measurements of a signal f and a model order K we seek to approximate f
by an exponential sum

f(x) ≈
K∑
k=1

cke
ζkx, ck, ζk ∈ C. (1.1)

The complex parameters ζk play the role of frequencies in the case when they lie on the imaginary
axis, and the problem is therefore often referred to as frequency estimation. Once the parameters ζk
are found, the subsequent retrieval of the coefficients ck is a linear problem which can be solved by
the least squares method. In this paper, we are interested in multivariate version of this problem.

The frequency estimation problem goes far back in time. Already in 1795, it was discussed
by Prony [12]. In the noise free case, i.e. when f already is of the form given by the right hand
side of (1.1), it is possible to exactly recover both the complex frequencies and the corresponding
coefficients. The approximation problem is of great importance, and several different approaches
and methods have been devoted to solving it. Classical methods include ESPRIT [27], MUSIC [31],
Pisarenkos method [22], and the matrix pencil method, see e.g. [16] which also provides a good
account on the history of the method and precursors, as well as the recent contribution [25] which
finds a unifying framework for these methods. From the perspective of functional analysis, a lot of
theoretic results were obtained by Adamjan, Arov and Krein (AAK) [1]. These connections were
further exploited in [7] for the construction of optimal quadrature nodes. The connection between
approximation theory and the results by Adamjan, Arov and Krein is discussed in more detail in
[6].
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(a) Real part of f . (b) The corresponding block-Hankel matrix

(c) True 2d frequencies in blue dots and estimated fre-
quencies in red circles

(d) Error between estimated and true frequencies

Figure 1: Two dimensional example where a function f of two variables is a linear combination of 300 exponential
functions, which is sampled on a 61 × 61-lattice (i.e. N = 31).

There have been several suggestions on how to extend the one-dimensional results to several
variables, c.f. [5, 10, 11, 13, 14, 17, 18, 21, 26, 28, 30, 35, 36]. See [15] for an account of earlier
attempts. The multidimensional case poses several difficulties; Let us assume that f is of the form

f(x) =

K∑
k=1

cke
ζk·x, ck ∈ C, ζk ∈ Cd, (1.2)

(possibly distorted by noise) and that we wish to retrieve the frequencies ζk = (ζk,1, . . . , ζk,d),
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where ζk · x =
∑d
j=1 ζk,jxj . We suppose for the moment that f has been sampled on an integer

multi-cube {1, . . . , 2N − 1}d. A common engineering approach is to use some reformulation of the
two dimensional problem to one-dimensional problems and from there recover the two dimensional
components, see e.g. the recent articles [34, 24]. This causes a pairing problem that can lead to
difficulties in practice, depending on the particular application at hand. An advantage with these
type of methods is that they can be fast since they only sample data along lines.

To be more precise, one may average over all dimensions but one, say the p:th one, (or extract a
“fiber” in dimension p from the data) and then use a 1-d technique for estimating ζ1,p, . . . , ζK,p, and
repeat this for the remaining dimensions. However, first of all this limits the amount of frequencies
we are theoretically able to retrieve to N − 1 (in the noise free case, using e.g. ESPRIT, MUSIC
or Prony’s method), and secondly it is not clear how to pair the Kd frequencies ζk,p into K multi-
frequencies ζk = (ζk,1, . . . , ζk,d). Note that there are Kd possible combinations, whereas only K are
sought. Also, these methods do not use the full data set and hence as an estimator they are likely
to be more sensitive to noise, than a method which employs the full data set in the estimation. A
related algorithm, which brings the idea of only using samples along certain lines to its extreme, is
considered in [23] where it is shown that one can (theoretically) get away with 3K − 1 samples in
total, in order to retrieve K multi-frequencies (for d = 2).

The focus in this article is different, we suppose that f has been measured on a cube or more
generally some irregular domain in Rd, and propose a method which uses the full data set to
retrieve the multi-frequencies and which avoids the pairing problem. This method is an extension
of the ESPRIT-method. It was first introduced in [26] in the 2d square case, and has recently been
extended to several variables independently by [29] and [33]. These articles also contain analysis of
noise sensitivity and the former proposes accelerated versions. We review this method in its basic
form in Sections 2 (one variable) and 3 (several variables).

The main contribution of the present work is to extend this method to work with data sampled
on non-standard domains. This problem is also discussed in the 2d-setting in [13, 32]. We also
show how to realize block Hankel operators as multivariable summing operators, thereby providing
a connection with theoretical results connecting the rank of these operators with functions of the
form (1.2), provided in [4] and [2].

We now discuss a few examples to illustrate the pros and cons of the method suggested here.
Suppose first that f is sampled on a 193 data-tensor, i.e. N = 10 and d = 3. As it turns out, we
are able to estimate (N − 1) · Nd−1 distinct multi-frequencies, avoiding degenerate cases. With
the method considered here we may then retrieve 900 (randomly distributed) complex frequencies
(assuming no noise), as opposed to 9 using reduction to one-dimensional techniques. By “degenerate
cases” we for example rule out situations where many datapoints align parallel with one of the
coordinate axes. For applications where this is the case the method considered here may not work.
This is further discussed in Section 3, without making any rigorous attempt at formalizing what is
meant by degenerate cases.

We now consider the example shown in Figure 1, still in the multi-cube setting. The underlying
function f is in this case constructed as a linear combination of 300 purely oscillatory exponential
functions with frequencies distributed along a spiral as depicted in panel c). The coefficients are
chosen randomly, and f is sampled on a 61 by 61 square grid (so N = 31 and d = 2). The real
part of f is shown in panel a). The block-Hankel matrix that is generated from f is shown in panel
b). We have followed Algorithm 2 to recover the underlying frequencies and they are recovered at
machine precision error as shown in panel d).

Using reduction to one-dimensional techniques as discussed earlier, the maximum amount of
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(a) Real part of a 2d general domain data set constructed
as a linear combination of 100 exponential functions.

(b) True 2d frequencies in blue dots and estimated fre-
quencies in red circles.

(c) Error between estimated and true frequencies.

Figure 2: Two dimensional general domain example.

frequencies that could have been retrieved from this data set is 30. With the present method it is
30∗31 = 930 (see (3.3)) compared to the total amount of measurements 612 = 3721. Or viewed from
a different angle, to recover the 300 frequencies with reduction to one-dimensional techniques, we
would theoretically need to have at least 601 measurements in each direction, and then it is not an
easy problem to stably recover the 300 components in each dimension. Even if this is overcome, one
then has 300 · 300 = 90000 possible multi-frequencies to pick from, and 89700 has to be discarded,
which may take some time. We refer again to [34, 24] for two recent approaches on how to do this,
while underlining that these methods may well be superior (and faster) in situations when fewer
frequencies are sought and dense sampling along certain lines is not an obstacle in practice.
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We now turn our focus to an example using the general domain Hankel structure, introduced
in Section 5, which allows us to work with samples of f on domains with different shapes. In this
case, we have used 100 exponential functions to generate the function f . This function is then
sampled on a semi circular-like domain Ω shown in Figure 2 a). Figure 2 b) shows the distribution
of the underlying frequencies, and Figure 2 c) shows the reconstruction error in determining these
frequencies. Again, the error is down at machine precision.

More examples are given in the numerical section, where we also test how the method performs
with noise present, but we wish to underline that the main contribution of this paper is the deduction
of an algorithm that is capable of exact retrieval in the noise-free case on general domains. Its
performance as an estimator will be investigated elsewhere.

The paper is organized as follows, in Section 2 we go over the essentials of the classical ESPRIT
algorithm in one variable, in Section 3 we extend this to the multi-cube case, using block Hankel
matrices, and show how to solve the pairing problem. We then consider how to make this work
for data sampled on non-cubical domains. This relies on so called general domain Hankel matrices,
which are introduced in Section 4 and 5. The subsequent extension of the ESPRIT-type algorithm
from Section 3 is given in Section 6. Numerical examples are given in Section 7.

2. One-dimensional ESPRIT

This section is intended as a quick review of ESPRIT in the simplest possible setting, to provide
intuition for the more advanced versions introduced in later sections. For example we only work
with square Hankel matrices (which we have found works best in practice), although non-square
Hankel matrices will be considered in Section 5 and 6 in the multivariable case. The study of
ESPRIT and related algorithms in 1 dimension is of course a field in itself, and we refer e.g. to [25]
for a recent contribution with more flexibility.

Let us start by assuming that f is a given one-dimensional function which is sampled at integer
points, and that

f(x) =

K∑
k=1

cke
ζkx,

for distinct values of ζk, k = 1, . . .K. A Hankel matrix is a matrix H which has constant values on
its anti-diagonals. It is easy to see that each Hankel matrix can be generated from a function h by
setting H(m,n) = h(m+ n). Let us now consider the case where a (square N ×N) Hankel matrix
H is generated by the function f above, where N > K.

Let Λ denote the Vandermonde matrix generated by the numbers eζk , i.e., let

Λ(j, k) = eζkj , 1 ≤ j ≤ N, 1 ≤ k ≤ K

and let Λk denote the columns of Λ. For the elements of the Hankel matrix H it thus holds that

H(m,n) = f(m+ n) =

K∑
k=1

cke
ζk(m+n) =

K∑
k=1

cke
ζkmeζkn,

implying that H can be written as

H =

K∑
k=1

ckΛkΛTk = Λdiag(c)ΛT ,
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Figure 3: Illustration of the notation Λ+ and Λ−. For Λ+ the first row is deleted, and for Λ− the last row is deleted.
The elements marked in blue are to be deleted.

where c = (c1, . . . , cK). From this observation it is clear that the rank of H is K.
Now, by the singular value decomposition it follows that we can write H = UΣV T where U and

V are N ×K matrices and Σ a K ×K diagonal matrix containing the non-zero singular values of
H. It then holds that the corresponding singular vectors U (or V ) are linear combinations of the
columns of Λ, i.e.,

U = ΛB,

where B is an invertible K ×K matrix.
LetD = diag(eζ1 , . . . , eζK ). Let us also introduce the notation Λ+ for the matrix that is obtained

by deleting the first row from the matrix Λ, and similarly, let Λ− denote the matrix that is obtained
by deleting the last row from Λ. There is a simple relationship between Λ+ and Λ−, namely

Λ+ = Λ−D.

Moreover, it holds that

U+ = Λ+B = Λ−DB

U− = Λ−B

Since U∗U = I and N > K, it typically holds that U− is injective. In particular it then has a left
inverse U†− given by

U†− = (U∗−U−)−1U∗− = (B∗Λ∗−Λ−B)−1B∗Λ∗− = B−1(Λ∗−Λ−)−1Λ∗−.

Let us now consider

A = U†−U+ = B−1(Λ∗−Λ−)−1Λ∗−Λ−DB = B−1DB.
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It follows that the columns of B−1 are eigenvectors of the matrix A with eζk being the corresponding
eigenvalues. This implies that the exponentials eζk can be recovered from H by diagonalizing the
matrix A, and this is the essence of the famous ESPRIT-method.

Algorithm 1 One-dimensional ESPRIT

1: Form Hankel matrix H(m,n) = f(m+ n) from samples of f .
2: Compute singular value decomposition H = UΣV T , retaining only non-zero singular values and

corresponding vectors.
3: Form U+ and U− by deleting the first and last rows from U , respectively.
4: Form A = (U∗−U−)−1U∗−U+.
5: Diagonalize A = B−1diag(λ1, . . . , λK)B by making an eigenvalue decomposition of A.
6: Recover ζk = log(λk)

We end by making a remark about the connection between Hankel matrices with low-rank and
functions that are sums of exponential functions. For every function f being a sum of K (distinct)
exponential functions the rank of the corresponding Hankel matrix is K (given sufficiently many
samples). The reverse state will typically be true, but there are exceptions. These exceptions are
of degenerate character, and therefore this problem is often discarded in practice. For a longer
discussion of these issues, see Section 2 and 11 in [4].

3. Multi-dimensional ESPRIT for block-Hankel matrices

We now consider the case where f is a given d-dimensional function which is sampled at integer
points, and that

f(x) =

K∑
k=1

cke
ζk·x,

where ζk = (ζk,1, . . . , ζk,d) and x = (x1, . . . , xd). A d-dimensional Hankel operator can be viewed as
a linear operator on the tensor product CN ⊗ . . .⊗CN whose entry corresponding to multi-indices
m = (m1, . . . ,md) and n = (n1, . . . , nd) equals f(m + n). This in particular entails that samples
of f needs to be available on a (2N − 1)d-dimensional grid. The restriction that we use the same
amount of sample points in each direction is made for simplicity, the rectangular case is a special
case of the more general setup in Section 6.

If we identify CN⊗ . . .⊗CN with CNd

using the reverse lexicographical order, i.e. by identifying
entry m in the former with

m1 +m2N +m3N
2 + . . .mdN

d−1 (0 ≤ mj < N) (3.1)

in the latter, the corresponding operator can be realized as a block-Hankel matrix, which we denote
by H. Analogously, given multi-index m we will write m for the number (3.1), and if u is an
element in CN ⊗ . . .⊗ CN we write u for its vectorized version in CNd

.
Just as for the one-dimensional case it can be shown that if Λ is the Vandermonde matrix

generated by the vectors ζk, i.e.,
Λ(m, k) = eζk·m,
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then

H =

K∑
k=1

ckΛkΛ
T
k = Λdiag(c)ΛT ,

and in particular H and Λ typically have rank K. If, due to insufficient sampling or a particular
alignment of the ζk’s, this affirmation is false, then the method described below will not apply, at
least without further refinements. For example, maximal rank (i.e. K) can be achieved by rotation
of the grid and/or by increasing N , which is further discussed in Section 6. Other tricks to deal with
this issue is found in Section III of [26]. Below we assume that problems related to rank deficiency
or higher multiplicity of eigenvalues are absent, and discuss how to treat such issues towards the
end of the section.

We thus assume that H and Λ has rank K and write H = UΣV T for the singular value
decomposition where we omit singular values that are zero and corresponding singular vectors, so
in particular Σ is a diagonal K ×K-matrix. As in the one-dimensional case it then holds that the
singular vectors in U (or V ) are linear combinations of the columns of Λ, i.e.,

U = ΛB, (3.2)

where B is an invertible K ×K matrix like before.
We now generalize the previous operation of deleting the first and last row respectively to several

dimensions. By Λp+ we denote the matrix that is obtained by deleting all entries of Λ with indices
m corresponding to multi-indices m of the form (m1, . . . 1, . . .md), i.e., all the first elements with
respect to dimension p. Similarly, we denote by Λp− the matrix that is obtained by deleting from Λ
all the elements related to multi-indices (m1, . . . Np, . . .md), i.e., all the last elements with respect
to dimension p. Let

Dp = diag(eζ1,p , . . . eζK,p)

and note that it in each dimension p we have

Λp+ = Λp−Dp.

Moreover, it holds that

Up+ = Λp+B = Λp−DpB

Up− = Λp−B

Let us now again consider

Ap = U †p−Up+ = (U∗p−Up−)−1U∗p−Up+

= (B∗Λ∗p−Λp−B)−1B∗Λ∗p−Λp−DpB

= B−1(Λ∗p−Λp−)−1(B∗)−1B∗Λ∗p−Λp−DpB

= B−1DpB.

The remarkable observation here is that B−1 simultaneously diagonalizes all the matrices Ap, and
that the eigenvalues to Ap are (eζ1,p , . . . eζK,p) in the correct order independent of p. This implies
that all the exponentials eζk,1 , k = 1, . . . ,K, can be recovered from Hf by diagonalization of A1,
and then we may use the same eigenvectors for diagonalization of the remaining Ap’s, and in this
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Figure 4: Illustration of the notation Λp+ and Λp+. For Λp+ the first elements in dimension p are deleted, while
for Λ− the last elements in dimension p are deleted. The elements marked in blue are to be deleted. The left panel
shows a two-dimensional case, and in the right panel a three-dimensional case is shown.

way obtain the multi-frequencies ζk = (ζk,1, . . . , ζk,d) for k = 1, . . . ,K directly without any need
for a pairing procedure. This phenomenon was first observed in [26] in the two-dimensional case,
although it is not very clear to see. A more accessible account, which extends [26] to the higher
dimensional case, is given in [29] and independently in [33]. To summarize, the algorithm in its
most simple form reads as follows:

Algorithm 2 d-dimensional ESPRIT

1: Form the d-block Hankel matrix H(m,n) = f(m+ n) from samples of f .
2: Compute the singular value decomposition H = UΣV T .
3: for p = 1, . . . , d do
4: Form Up+ and Up− by deleting first and last elements in dimension p, respectively.
5: Form Ap = (U∗p−Up−)−1U∗p−Up+.
6: end for
7: Diagonalize A1 = B−1D1B by making an eigenvalue decomposition of A1.
8: for p = 1, . . . , d do
9: Compute the diagonal matrices Dp = diag(λ1,p, . . . , λK,p) = BApB

−1.
10: Recover ζk,p = log(λk,p) (which are automatically correctly paired).
11: end for

We now discuss problems that may arise in the above approach. The algorithm works as stated
as long as (Λp−)∗Λp− is invertible for all p, and moreover we need that no eigenvalue in D1 has
multiplicity higher than 1 in order for the eigenvectors in B to be correctly determined. The first
limitation leads to the restriction

K ≤ Nd−1(N − 1), (3.3)

since Λp− needs to have fever columns than rows. This restriction was mentioned already in the
introduction and also appears in Lemma 2 of [29], where it is noted that this condition holds
generically if the frequencies are sampled at random. In the same article, a linear combination step
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Figure 5: Samples of a triangular domain with corresponding ordering. If the vertical axis is considered to be the
first coordinate, then this ordering is the reverse lexicographical ordering.

is also applied to avoid problems with multiplicity. Indeed, suppose for simplicity that d = 2 and
that D1 does not have distinct eigenvalues. Then

αA1 + βA2 = B−1(αD1 + βD2)B (3.4)

has distinct eigenvalues for most choices of α and β, so the problem can be circumvented by
randomly choosing α, β and compute B from the above linear combination. This trick is also
employed in [24], albeit for a different algorithm.

A final remark on Algorithm 2 concerning time-complexity. In [29] it is noted that Algorithm
2 can be slow since performing an SVD on a large matrix is time consuming. It is suggested to
circumvent this problem by using “truncated SVD” which computes the K first singular vectors
based on a variant of Lanczos algorithm. We note that similar improvements can be applied to the
Algorithm 3 presented below, but we do not follow these threads here.

This completes the multidimensional version of ESPRIT in the case when data f is sampled
on a regular multi-cube. Next we address the more general setting of data measured on regular
grids with various shapes, which is the main contribution of this paper, presented in Algorithm 3.
For this we need to introduce so called general domain Hankel matrices, by viewing block Hankel
matrices as multi-dimensional summing operators.

4. The summation operator formalism in one variable

Given a subset Υ ⊂ N, let `2(Υ) be the “sequences” indexed by Υ and equipped with the
standard `2−norm. If Υ = {1, 2, . . . , N}, then `2(Υ) reduces to the standard CN . Note that we
may define a classical Hankel matrix H given by the sequence f = (f2, f3, . . . , f2N ) as the operator
with domain and codomain equal to `2({1, . . . , N}), given by the summation formula

(Hf (a))n =
∑

m∈{1,...,N}

fm+nam, n ∈ {1, . . . , N} (4.1)
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Figure 6: a) Function defined on Ω = Ξ + Υ with Ξ = Υ as in Figure 5. b) The corresponding general domain
Hankel matrix, using the ordering from Figure 5.

where a represents any element in `2({1, . . . , N}). This suggests the following generalization; Let
M,N ∈ N such thatM+N = 2P be given, and consider Hf,M,N : `2({1, . . . ,M})→ `2({1, . . . , N})
given by

(Hf,M,N (a))n =
∑

m∈{1,...,M}

fm+nam, n ∈ {1, . . . , N}. (4.2)

We remark that
{1, . . . ,M}+ {1, . . . , N} = {2, . . . , 2P}, (4.3)

where the latter is the grid on which f is sampled. A moments thought reveals that Hf,M,N equals
the N ×M Hankel matrix given by f . For example, if f = (1, 2, 3, 4, 5), then P = 3 and we can
pick e.g. M = 4 and N = 2. We then have

Hf,4,2 =

(
1 2 3 4
2 3 4 5

)
. (4.4)

As long as M and N are larger than K, it is possible to perform ESPRIT on these rectangular
Hankel matrices as well, although square ones seems to be preferred.

5. General domain Hankel operators

General domain Hankel integral operators were introduced in [2] (albeit under the name trun-
cated correlation operators) and their discretizations were studied in [4] where the term general
domain Hankel matrix was coined. The discrete versions have been studied earlier in e.g. [20]
under the name quasi-Hankel matrices. We briefly revisit their construction, which is explained in
greater detail in Section 4 of [4].

Let Ξ,Υ be any bounded subsets of Zd, and in analogy with (4.3) set

Υ + Ξ = Ω, (5.1)
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(a) General domain setup with Υ on top, Ξ in the
middle and Ω in the bottom. The Ξ set is a 11 × 11
grid

(b) The corresponding general domain Hankel matrix

Figure 7: Two dimensional general domain example.

as in Figure 5 and 7 a). Suppose we are interested in a function f on some domain in Rd, and that
Υ and Ξ are chosen such that {j1∆x1, . . . jd∆xd) : j ∈ Ω} cover the domain where f is defined, for
some choice of sampling length ∆x1, . . . ,∆xd. The function f thus gives rise to a multidimensional
sequence

fj = f(j1∆x1, . . . , jd∆xd), j ∈ Ω, (5.2)

or more formally a function in `2(Ω), see Figure 6 a). We will refer to such functions as md-
sequences, to distinguish them from ordinary sequences, (i.e. vectors in CN ). In analogy with (4.2),
the md-sequence f gives rise to a corresponding general domain Hankel operator

(Hf,Υ,Ξ(g))n =
∑
m∈Υ

fm+ngm, n ∈ Ξ, (5.3)

where g is an arbitrary md-sequence on Υ. When Υ,Ξ are clear from the context or irrelevant, we
drop them from the notation.
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We may of course represent g as a vector by ordering the entries (as in Figure 5 for a triangle).
More precisely, by picking any bijection

oy : {1, . . . , |Υ|} → Υ (5.4)

(where |Υ| denotes the amount of elements in the set Υ), we can identify g with the vector g given
by

(gj)
|Υ|
j=1 = g(oy(j)).

Letting ox be an analogous bijection for Ξ, it is clear that Hf,Υ,Ξ can be represented as a |Ξ| × |Υ|-
matrix, where the (n,m)’th element is f(ox(n) + oy(m)), see Figure 6 b) and 7 b). Such matrices
will be called general domain Hankel matrices and denoted Hf,Υ,Ξ, letting the bijections ox and oy
be implicit in the notation (usually we will use the reverse lexicographical order as in Section 3).
In particular, if we set

Υ = Ξ = {1, . . . , N}d,

we retrieve in this way the block Hankel matrices discussed in Section 3. Note that in the one
dimensional case, Hf,Υ,Ξ and Hf,Υ,Ξ are virtually the same thing, whereas this is not the case
in several variables. The former is an operator acting on md-sequences in `2(Υ) to md-sequences
in `2(Ξ), the latter is a matrix representation of the former that can be used e.g. for computer
implementations.

An example where Ξ = Υ (and hence also Ω) are triangles is shown in Figures 5 and 6. The
domains Ξ = Υ are shown in Figures 5 with a particular ordering. Ω is then a triangle of side-length
9, and a function f on Ω is shown in Figure 6 a). The corresponding general domain Hankel matrix,
given the ordering from Figure 5, is shown in b). Note especially how columns 3, 4 and 5 are visible
and show up as rectangular Hankel matrices of different sizes. Columns 3 and 5 both give rise to a
(blue) square Hankel matrix on the “block-structure diagonal”, which also show up as rectangular
Hankel matrices off the “block-diagonal”. Column 4 generates the (yellow) Hankel matrices that are
never on the diagonal, corresponding to the fact that every second number in a 1d Hankel matrix
does not show up on the diagonal.

Figure 7 a) shows how a semi-circular domain Ω is constructed from the two domains Υ and Ξ.
Note that the set Ξ is a rather small domain - a grid of size 11×11. The size of Ξ will determine how
many frequencies that can recovered, in this case 11*10=110, (which follows by the same argument
that led to formula (3.3)). The general domain Hankel matrix that is constructed from f is shown
in Figure 7 b).

6. Frequency retrieval; general domain ESPRIT

As earlier, we assume that we have samples of a function f of the form

f(x) =

K∑
k=1

cke
ζk·x, (6.1)

where the axes have been scaled so that we sample at integer points. However, we now assume
that samples are available only on Ω which is a domain of the form Ξ + Υ for some domains Ξ
and Υ, where we only require that Ξ is convex (in the sense that it arise as the discretization of a
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convex domain). Given λ ∈ Cd we let ΛΩ(λ) denote the md-sequence λj for j ∈ Ω, where we use
multi-index notation λj = λj11 λ

j2
2 . . . λjdd . Rephrased, we suppose that f can be written

f =

K∑
k=1

ckΛΩ(λk), λk = (eζk,1 , . . . , eζk,d). (6.2)

It is then easy to see that

Hf (g) =

K∑
k=1

ckHΛΩ(λk)(g) =

K∑
k=1

ckΛΞ(λk)〈g,ΛΥ(λk)〉, (6.3)

which in particular shows that Hf is a rank K operator, assuming of course that the ck’s are
non-zero, the λk’s are distinct and that {ΛΞ(λk)}Kk=1 and {ΛΥ(λk)}Kk=1 form linearly independent
sets.

A formal investigation of when this condition holds becomes very involved, but is possible
given certain assumptions on Ξ and Υ, we refer to the work of B. Mourrain et al. [20, 8]. Another
viewpoint is to consider general domain Hankel operators as discretizations of corresponding integral
operators, whose rank structure is easier to characterize, we refer to the articles [2, 4] (by the
authors) as well as the recent contribution [19] by B. Mourrain. In particular, it is well known that
any set of exponential functions with different exponents always is linearly independent, as functions
on whatever fixed open set in Rn. The condition that {ΛΥ(λk)}Kk=1 be linearly independent will
thus always be satisfied given that the sampling is dense enough. We refer to Section 6 of [4] for
more information on passing between discrete (summing) and continuous (integral) general domain
Hankel operators. In particular, technical conditions (see (6.3)) on the boundary of the domains
in Rd which correspond to Υ and Ξ are given so that the sampled md-vectors converge, in a sense
made precise, to the corresponding exponential functions (see the proof of Theorem 6.4 in [4]). In
the remainder of this paper, we assume that the linear independence condition is fulfilled.

Letting ox be the reverse lexicographical ordering on Ξ, we identify md-sequences u in `2(Ξ)
with sequences (vectors) u in `2(|Ξ|), as explained in Section 5. The SVD of Hf thus gives rise to
singular vectors uk, vk, whose md-sequence counterparts satisfy

Hf (vk) = σkuk, H∗f (uk) = σkvk.

Since {uk}Kk=1 span the range of Hf , i.e. the span of {ΛΞ(λk)}Kk=1 by (6.3), it follows that we can
write

uj =

K∑
k=1

bj,kΛΞ(λk) (6.4)

where the numbers bj,k form a square K ×K invertible matrix. Let U be the matrix with columns
u1, . . . ,uK and let Λ be the matrix with the columns ΛΞ(λ1), . . . ,ΛΞ(λK). The relation (6.4) can
then be expressed

U = ΛB (6.5)

(compare with (3.2)).
By a “fiber” in Ξ we refer to a subset obtained by freezing all variables but one. Since we have

assumed that the grid Ξ is the discretization of a convex domain, we have that each fiber in the
first dimension is of the form {M1, . . . ,M2} × {m2} × . . .× {md}, where M1 ≤ M2 depend on the
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“frozen” variables m2, . . . ,md. We denote the grid that arises by removing the first (respectively
last) element of each such fiber by Ξ+,1 (respectively Ξ−,1), where we assume that the sampling
has been done so that no fiber consists of a singleton. Analogous definitions/assumptions apply to
the other variables, yielding grids Ξ±,2, . . . ,Ξ±,d.

Now, given a fixed dimension p and a md-sequence w in `2(Ξ), we let w±,p be the md-sequence
restricted to the grid Ξ±,p. Moreover, given a matrix like U, whose columns are given by the
vectorizations of the md-sequences uk in `2(Ξ), we denote by U+,p, (resp. U−,p) the matrix formed
by the vectorized md-sequences uk,+,p ∈ `2(Ξ+,p) (resp. uk,−,p ∈ `2(Ξ−,p)). Equation (6.5) then
implies that

U±,p = Λ±,pB. (6.6)

Setting Dp = diag(eζ1,p , . . . eζK,p), we also have Λ+,p = Λ−,pDp which combined implies that

U+,p = Λ−,pDpB. (6.7)

In analogy with the computations in Section 3 we have

Ap := (U∗−,pU−,p)
−1U∗−,pU+,p = (B∗Λ∗−,pΛ−,pB)−1B∗Λ∗−,pΛ−,pDpB = B−1DpB

so we can retrieve the desired frequencies λk,p = eζk,p by computing Ap and diagonalize it. Since
all matrices Ap are diagonalized by the same matrix B, the issue with grouping of the complex
frequencies is easily solved just as in the previous case. The algorithm, which we call general
domain ESPRIT, is summarized in Algorithm 3.

Algorithm 3 General domain ESPRIT
1: Order the elements in Ξ and Υ.
2: Form the general domain Hankel matrix H(m,n) = f(m + n) from samples of f , where e.g.

m is the order of the multi-index m in Ξ.
3: Compute the singular value decomposition H = UΣV ∗.
4: for p = 1, . . . , d do
5: Form Up+ and Up− by deleting first and last elements in each fiber in the p:th coordinate,

respectively.
6: Form Ap = (U∗p−Up−)−1U∗p−Up+.
7: end for
8: Diagonalize A1 = B−1D1B by making an eigenvalue decomposition of A1.
9: for p = 1, . . . , d do

10: Compute the diagonal matrices Dp = diag(λ1,p, . . . , λK,p) = BApB
−1.

11: Recover ζk,p = log(λk,p) (which are automatically correctly paired).
12: end for

7. Numerical examples

To illustrate the methods discussed we will perform a number of numerical simulations. We
have already shown Figure 1 and 2, in which 300 and 100 frequencies in 2d were retrieved up to
machine precision, using Algorithm 2 (in the first case) and Algorithm 3 (in the second case). We
continue here with a 3d example in the absence of noise, and then end by briefly discussing what
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(a) Real part of a 3d data set sampled 21 × 21 × 21
lattice (N = 11).

(b) The corresponding block-Hankel matrix

(c) True 3d frequencies in blue dots and estimated fre-
quencies in red circles

(d) Error between estimated and true frequencies

Figure 8: Three dimensional example with data being a linear combination of 900 exponential functions.

happens in the presence of noise. Note that due to the non-linearity of the problem, this can behave
quite differently in different situations.

The layout of Figure 8 is similar to that of Figure 1. In this case 900 purely oscillatory exponen-
tial functions were used to generate a function f sampled on a grid of size 21× 21× 21. In contrast
to Figure 1, the frequencies are now randomly distributed. The real part of f is shown in panel a),
the (real part of the) corresponding block-Hankel matrix is shown in panel b), the distribution of
the exponentials in panel c) and the frequency reconstruction error is shown in panel d). According
to (3.3), the maximal amount of frequencies we may retrieve in this situation is 112 ∗ 10 = 1210, to
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Figure 9: Illustration of error in the estimation of frequencies. The size of the discs illustrate the estimation error
at each frequency for the corresponding noise level in log10-scale.

be compared with the total available data points (21)3 = 9261.
Finally, we briefly illustrate the impact of noise on the proposed algorithms. However, we

underline that the purpose of the present article is to provide an algorithm that correctly retrieves
complex frequencies for functions of the form (6.1) in the absence of noise. If noise is present it
is no longer true that the different Ap’s share eigenvectors, and hence choosing the eigenvectors of
A1 (step 8 in Algorithm 3) to diagonalize the rest becomes ad hoc. One way around this is to use
some method to find the best simultaneous diagonalization of {Ap}dp=1 (see e.g. [9]), another is to
use tools from optimization to preprocess the function f so that it does become of the form (6.1)
(see e.g. [3]).

The scatter plot in Figure 9 shows the distribution of 40 frequencies in a case of purely oscillatory
exponential functions. These are used to generate a function f that is then sampled on a 41 × 41
grid. In addition, different levels of normally distributed noise is added to the original data. Six
noise levels are chosen so that the ratio between the `2 norm of the noise and the noise-free data is
100, 10−.5, 10−1, 10−2, 10−3, and 10−4, respectively. Each noise level is portrayed with a particular
color, according to the list in 10. The impact that the noise have on the singular values of the
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Figure 10: The impact on the singular values for different noise levels.

corresponding block-Hankel matrix is also shown in Figure 10. Recall that the noise free block
Hankel matrix has rank 40, i.e. 40 non-zero singular values. When low noise is present this shows
up as a jump in the magnitude of the singular values, clearly visible in plot 10. The first 40 singular
values for e.g. yellow and orange are covered by the brown ones, therefore not visible. We can see
that for the four lower levels, the impact of noise does not affect the original distribution on the
singular values much, whereas for the highest noise level it affects essentially all singular values,
and for the second highest level, it is just starting to have an impact. From this, we would expect
to see a high error for the highest noise level, and a relatively small error for the four smallest noise
levels. To illustrate the effect on the individual frequency nodes, each of the nodes in Figure 9 have
6 circles around it. The color of each one of these circles show the error level in logarithmic scale
according to the colorbar. Here we can see that the impact is pretty much as could be expected,
with a low error for the lower noise levels and increasing for higher noise levels.
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8. Conclusions

We have shown how to extract the underlying multi-dimensional frequencies from data that
is constructed as linear combinations of (oscillating) exponential functions both for rectangular
domains and more general domains. The approach does not require a pairing of one-dimensional
frequencies components.
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