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Abstract. The point spread function (PSF) of a translation invariant imaging system is its
impulse response, which cannot always be measured directly. This is the case in high energy X-ray
radiography, and it must be estimated from images of calibration objects indirectly related to the
impulse response. When the PSF is assumed to have radial symmetry, it can be estimated from
an image of an opaque straight edge. We use a non-parametric Bayesian approach, where the prior
probability density for the PSF is modeled as a Gaussian Markov random field and radial symmetry
is incorporated in a novel way. Markov Chain Monte Carlo posterior estimation is carried out by
adapting a recently developed improvement to the Gibbs sampling algorithm, referred to as partially
collapsed Gibbs sampling. Moreover, the algorithm we present is proven to satisfy invariance with
respect to the target density. Finally, we demonstrate the efficacy of these methods on radiographic
data obtained from a high-energy X-ray diagnostic system at the U.S. Department of Energy’s Nevada
National Security Site.
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1. Introduction. Image enhancement and reconstruction is often framed within
the model

(1) b = Ax+ ε

where A is a model operator that maps a quantity of interest, x, to measured data, b,
which is subject to additive measurement noise given by ε. A ubiquitous example is
image deconvolution; where x is an ideal un-blurred image; b is the blurred data which
has been corrupted by additive measurement error ε; and A is a convolution operator
whose point response is referred to as the point spread function (PSF). In situations
where the PSF is unknown, the same model may be used to solve the dual problem:
estimate the PSF with a known image derived from some kind of calibration. The
estimation of the PSF has its own intrinsic importance beyond its use in deconvolution,
since an accurate estimate of the PSF with meaningful quantification of uncertainty
serves as a useful diagnostic of the imaging system. For instance, a drastic increase
in the width of the PSF might indicate a malfunction in the system.

To be more specific, the inverse problem is to estimate the PSF of A, say p, from
a known calibration image x which we think of as operating on p. Expressing the
convolution in (1) in terms of p,

(2) b = x ∗ p+ ε,

where ‘∗’ denotes the convolution operation and Ax
def
= x ∗ p. A direct estimate

of p would be available if x were to represent an impulse response or point source,
but in many cases, this is not feasible. This is acutely the case in high-energy X-
ray radiography, where due to physical limitations, an impulse response cannot be
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obtained from calibration imagery. Instead, we use a vertical aperture to produce an
opaque profile of an edge to estimate p from the resulting integral equation. Several
established methods use exactly this type of PSF estimation, but with parametric
forms of p derived from modeling the physics of the system [13]. These methods
are often non-linear (exacerbating difficulties in the estimation and quantification of
uncertainty), and parametric forms that can be solved are often not adequate to
capture an accurate representation of blur that is the result of many components that
act in aggregate.

This work takes a Bayesian approach to estimation by modeling p as a stochastic
quantity where our a priori uncertainty is modeled with a Gauss-Markov random
field. We incorporate measured data using a posteriori analysis, where we’ve modeled
the measurement error with an additive likelihood model as in (2). Additionally, the
prior modeling for p and the parameters defining it and the measurement error are
done in a hierarchical fashion, as in [4], so that a Gibbs sampling scheme is readily
applicable. It has been shown that this hierarchy in certain circumstances can result in
highly correlated Markov chains when discretization levels limit toward the continuum
[3]. We present methods that alleviate this correlation and show that this provides
effectively uncorrelated samples at an equivalent computational effort. Moreover, our
model for the PSF provides a new method for encapsulating radial symmetry in a
Gauss-Markov random field, by developing a one-dimensional precision operator that
acts on the radial profile of the PSF. We also provide an analysis of the algorithm’s
convergence and computational efficiency on real and synthetic data that indicates
significant efficiencies over standard Gibbs sampling as well as improvements to other
newly developed methods.

In Section 2, we introduce a novel mathematical model for an isotropic point
spread function reconstruction. This results in a linear integral equation, for which
the PSF can be estimated non-parametrically by discretizing the integral operator.
In this section, we describe the hierarchical model for estimating p, and using Bayes’
Theorem, give an explicit formulation for the posterior density of the quantities of
interest. Section 3 outlines three MCMC approaches to analyzing the posterior. We
first outline the standard Gibbs sampling approach, then present a recently studied
approach called marginal then conditional (MTC) sampling [8], and show it’s rela-
tionship to Gibbs sampling. Then, we present the partial collapsed Gibbs sampler as
it applies to hierarchical models, and show how it is related to the Gibbs and MTC
samplers. Finally, Section 4 compares each algorithm numerically on synthetic data
and on actual measured PSF data a from high-energy X-ray imaging system at the
U.S. Department of Energy’s Nevada National Security Site..

2. Modeling Image Blur. When image blur is translation invariant, it can
be modeled as convolution with a PSF that represents the impulse response of the
system [12]. A direct estimate is available by taking a calibration image representing
the impulse response [18, 24]; for example, in astronomical imaging, it is often esti-
mated by imaging single stars which approximate point sources [8, 18, 24]. In our
applications, imaging a point source is not feasible, so instead, we model the system
response from an image of an aperture that retains the extent information of the ac-
tion of blurring. The measurement is inherently indirect, and requires the solution of
an inverse problem. If the action of the blur is isotropic, then the PSF will be radially
symmetric, and it can be estimated as a one-dimensional function of distance. More
specifically, let s = (s1, s2) ∈ R2 denote a position in space indexing the intensity of
the response of the blurring operator (denote similarly s′ for the domain of the PSF).
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If k(s′) is the value of the PSF, then it is given by a function in one variable through
the composistion

(3) k(s′) = p(‖s′‖R2)

where ‖s′‖R2 denotes the Euclidean distance in R2. In this case, we use a beveled
vertical aperture which produces a uniformly opaque vertical edge at a known fixed
location in the imaging plane. See Figure 1.

Opaque Edge

Image System Response

b(s) =

∫∫
E

p(‖s− s′‖R2) ds′

Blurred Profile Recorded Data

Measurement error

+ε ∼ N(0, λ−1I)

Fig. 1: A schematic of the measurement model for an X-Ray image of an edge. An
opaque block whose profile is indicated by E blocks light on the half plane to produce
a blurred edge.

To model this mathematically, let E denote the half plane, and note the charac-
teristic function, χE(s′1, s

′
2), depends only on the horizontal coordinate of s′1, so the

convolution in (2) can be written as

(4) b(s) =

∫∫
p(‖s′‖R2)χ(0,∞)(s1 − s′1)ds′ + ε,

where b represents the noisy and blurred measured edge, and p is the radial profile of
the PSF. Since (4) does not depend on s2 (the edge has vertical translation symmetry),
the output of the integral operator in (4) is only a function of s1. Thus, we may
represent b(s1, s2) = b(s1), and for the sake of clarity, we denote b(s1) = b(s). Further,
denote r = ‖s′‖R2 . In this way, the inverse problem has been reduced to estimating
functions on subsets of R – that is, estimate the radial profile of the PSF, p(r), from
a horizontal cross-section of an image of a blurred edge, b(s). Using the change of
variables s′1 = r cos v, s′2 = r sin v in (4) and integrating out the v variable results in
the integral operator on the radial profile

(5) b(s) =

∫ ∞
0

p(r)g(s, r)rdr,
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where

(6) g(s, r) =

 0 s < −r
2(π − cos−1(s/r)) |s| ≤ r
2π s > r.

This situation is illustrated in Figures 1 and 2.
Observe that g(s, r) is continuous, but not differentiable (it has a discontinuity in

its directional derivatives across the line r = s). Again, since the operator is compact,
its discretization results in a matrix with singular values that cluster near zero [14],
as evidenced by Figure 3. Hence, discrete estimation in the presence of measurement
error will be unstable [14]. For such ill-posed problems, prior knowledge about the
solution must be incorporated to make the problem well-posed. By representing the
PSF as a radial profile p(r), the space and geometry for the domain of the model
operator must reflect this representation, and prior notions of smoothness of the
PSF must be expressed appropriately in this space. That is, since p depends on the
distance r = ‖s′‖R2 , integration-based regularization operators (the viewpoint in [30]),
and precision operators in Gaussian based probabilistic frameworks (the viewpoint in
[27]) will involve a change of variables. Both of these methods typically result in
solving the penalized least square problem

(7) pλ,δ = arg min
p

{
λ‖Gp− b‖2L2 + δF (p)

}
,

where F is the corresponding regularizing norm. A discrete version of (7) is derived
in a probabalistic framework in the next section.

For our application, imposing Laplacian based smoothness on the PSF is an ap-
propriate prior assumption. Hence, if one denotes the 2D Laplacian by ∆, then
r =
√
s12 + s22 implies

∆(p ◦ r) = r−1 ·
(
d

dr

(
r · dp

dr

))
.(8)

Note that this is the radial component of the Laplacian in two-dimensional polar
coordinates. Denote the differential operator

(9) Rp
def
=

d

dr

(
r · dp

dr

)
.

Defining F in terms of the L2 inner product, induces a similar change of variables;
i.e.

Fα(p)
def
= α 〈p ◦ r,∆n(p ◦ r)〉L2 = 2πα

∫ ∞
0

p(r) · (Rnp(r)) · r1−ndr.(10)

So, Laplacian regularization of order n smoothness on the PSF induces a regular-
ization operator on its radial representation of the form r1−nRnp. A more rigorous
development of these notions is carried out in [19].

For boundary conditions, we assume regularity of the PSF at the origin so that

(11)
d

dr

∣∣∣∣
0+
p(r) = 0.

We also assume that the PSF decays away from the origin such that for any k

(12) lim
r→∞

rkp(r) = 0,
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which, when discretized, we assume the imaging field of view is such that the radial
profile is sufficiently small in magnitude to assume a zero right boundary condition
on the domain of the solution.

In the probabilistic framework, the solution to (7) is equivalent to a maximum a
posteriori (MAP) estimate when the PSF is assumed to be a Gaussian, and taking
n = 2 guarantees that the corresponding prior covariance operator is trace class [27].
Since data and estimates are inherently discrete quantities, we proceed by discretizing
(5) and (10).

Synthetically Blurred Edge with Measurement Noise
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Fig. 2: A synthetically blurred edge with simulated measurement error and a line-out
(horizontal cross-section) from the data.
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Fig. 3: Plots of the singular values and a selection of the right singular vectors of the
discretization of the forward edge blur operator G.

2.1. Numerical discretization. The data are intensity values of image pixels
from a fixed horizontal cross-section of the edge, sampled at M = 2N + 1 points
si ∈ [−1, 1] with si = i/N and −N ≤ i ≤ N such that s0. Denote the grid spacing as

h
def
= 1/N and the vector of data as b ∈ R2N+1 with entries bi

def
= b(si).

Since g, the integral kernel in (5), is supported on {(r, s) : r ≥ −s, r ≥ 0}, the
bounds of integration depend on si. Hence, a midpoint quadrature rule for b(si)
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places rj on the midpoints, i.e., rj = h(j − 1/2) for 1 ≤ j ≤ N , Gij
def
= g(si, rj), and

pj = p(rj) gives

(13)

∫ ∞
si

p(r)g(si, r)dr ≈ h
N∑
j=1

Gijpj

Note that due to the symmetry of the integration kernel g, imposing the same sampling
resolution on p as b results in G being a (2N + 1)×N matrix.

The differential operator R in (9) is discretized using centered differencing [22].
Explicitly, for rj±1/2 = rj ± h/2, the matrix stencil for R is
(14)

1

h2

 −(rj−3/2 + rj−1/2) rj−1/2 0
rj−1/2 −(rj−1/2 + rj+1/2) rj+1/2

0 rj+1/2 −(rj+1/2 + rj+3/2)

 pj−1
pj
pj+1

 .
The left boundary condition given in (11) and radial symmetry implies that the

discretization of R has a reflective left boundary condition, hence

(15) [Rp]1 = 2r1/2p1.

We assume that the imaging field of view is sufficiently large so that the right boundary
condition in (12) is satisfied to numerical precision; i.e.,

(16) [Rp]M = rN+1/2pN .

Finally, the discrete precision matrix for the prior is given by L
def
= r−1 �R2 (since

n = 2), the coordinate-wise multiplication of reciprocals of the grid points rj composed
with R2.

2.2. Bayesian inference with hierarchical modeling. Our approach is to
form a probabilistic model to estimate the unknown discrete representation of the PSF
as well as the parameters involved in defining each of the distributions. That is, in
addition to modeling uncertainty in p with a random field, it has become common to
develop hierarchical models to let the data inform the level of regularization [4, 6, 15–
17, 20]. This analyisis will be conducted on the the discrete model

b = Gp+ ε,(17)

where ε models the discrete measurement error.
Assuming that the discrete measurement error is independent Gaussian noise

ε ∼ N (0, λ−1I), the likelihood is a probability density satisfying

(18) π(b|p, λ) ∝ λM/2 exp

(
−λ

2
‖Gp− b‖2

)
.

When the quantity of interest is assumed to have a discrete Gauss-Markov random
field prior with precision δL, then p ∼ N (0, (δL)−1), in which case the prior density
satisfies

(19) π(p|δ) ∝ δN/2 exp

(
−δ

2
pTLp

)
,
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where the inverse covariance δL is the previously derived radially symmetric squared-
Laplacian scaled by δ. Applying Bayes’ theorem, the probability density function for
p|b, λ, δ is given

π(p|b, λ, δ) ∝ π(b|p, λ)π(p|δ)

= λM/2δN/2 exp

(
−λ

2
‖Gp− b‖2 − δ

2
pTLp

)
.(20)

The maximum a posteriori (MAP) estimator is the maximizer of (20), which is also
the minimizer − ln π(p|b, λ, δ). By expanding the inner products and centering the
quadratic form in terms of p, the density in (20) can be shown to be the Gaussian

(21) p|λ, δ,b ∼ N
(
(λGTG + δL)−1λGTb, (λGTG + δL)−1

)
.

Following the Bayesian paradigm, the unknown parameters λ and δ are also mod-
eled as random quantities. A common hyper-prior model for these parameters is a
Gamma distribution because of the mutual conjugacy it shares with the Gaussian,
making their conditional distributions with respect to the data easy to simulate [10].
Moreover, the flexibility of the Gamma distribution allows for a relatively unobtru-
sive hyper-prior probability density when little a priori information about λ and δ is
available. Thus,

π(λ) ∝ λαλ−1 exp(−βλλ),(22)

π(δ) ∝ δαδ−1 exp(−βδδ).(23)

We choose the hyper-prior parameters to be αλ = αδ = 1 and βλ = βδ = 10−6 so
that the prior distributions of λ and δ cover a broad range of values that have been
estimated for similar problems [4, 15, 16]. Hence, the full posterior probability density
function for (p, λ, δ|b) is

π(p, λ, δ|b) ∝ π(b|p, λ)π(p|δ)π(λ)π(δ)

= λM/2+αλ−1δN/2+αδ−1 exp

(
−λ

2
‖Gp− b‖2 − δ

2
pTLp− βλλ− βδδ

)
.(24)

3. MCMC algorithms for posterior inference. The primary goal of this
work is to draw statistical inference on the joint variable p, λ, δ|b by characterizing
the joint-posterior density in (24). Due to the hierarchical modeling of λ and δ, the
density in (24) does not have a common distributional form, so explicit characteri-
zation is not readily available. Monte Carlo methods that utilize the invariance of a
Markov process, so called Markov Chain Monte Carlo (MCMC), have become stan-
dard because of their computational efficiency and broad applicability. Gibbs sam-
pling, in particular, has found great utility [4, 7, 15, 16] due to its direct application
to hierarchical modeling with conjugate random variables and ease of implementa-
tion with relatively little tuning. Moreover, investigating the Gibbs sampler and its
convergence properties have been explored in [3, 5, 8, 28, 29]. This work builds upon
this literature, by providing an algorithm that is shown to empirically improve the
convergence of Gibbs sampling.

The application of partial collapse to a general Gibbs sampling scheme was studied
in [29], and they show that partial collapse must be done with care, since the resulting
Markov chain may no longer be invariant. The loss of invariance is case dependent,
and this work provides a proof of the invariance of the Markov chain and directly
addresses the potential pitfalls alluded to in [29].

7



3.1. Gibbs sampling. In a Gibb’s sampling framework, the full conditionals of
each component of the posterior density are used to compute samples of the posterior
density. We have already characterized π(p|λ, δ) in (21) in establishing the MAP
estimator for fixed λ and δ. The full conditionals for λ and δ are computed by
removing proportional terms from (24), and observing that the remaining conditional
densities satisfy

π(λ|p, δ,b) ∝ λM/2+αλ−1 exp

([
−1

2
‖Gp− b‖2 − βλ

]
λ

)
,(25)

π(δ|p, λ,b) ∝ δN/2+αδ−1 exp

([
−1

2
pTLp− βδ

]
δ

)
.(26)

These are scalings and shifts of the corresponding hyper-priors, and are thus Γ-
distributed.

With each of the full conditional distributions characterized in (21), (25), and
(26), the requisite simulations required to establish the hierarchical Gibbs sampler
are known, and steps for the Gibbs sampler are given in Algorithm 1. This algorithm
has been used successfully for other inverse problems applications in computational
imaging, and its efficacy has been demonstrated in [4, 7, 17].

Algorithm 1: Hierarchical Gibbs Sampler for PSF reconstruction

Given λk, δk and pk, simulate
1. λk+1 ∼ Γ

(
M/2 + αλ,

1
2‖Gp

k − b‖2 + βλ
)
;

2. δk+1 ∼ Γ
(
N/2 + αδ,

1
2 (pk)TLpk + βδ

)
;

3. pk+1 ∼ N
(
(λk+1G

TG + δk+1L)−1λk+1G
Tb, (λk+1G

TG + δk+1L)−1
)
.

In steps 1 and 2, several well-established algorithms exist for simulating draws
from Γ distributions, and are readily available in most statistical software packages
[21]. The simulation in step 3 can be achieved by solving the system

(27) pk+1 =
(
λkG

TG + δkL
)−1

(λkG
Tb + η), η ∼ N (0, λkG

TG + δkL).

In a generic Gibbs sampling framework, any permutation of the steps is still
a proper algorithm in the sense that they all produce chains that are invariant with
respect to the joint random variable. However, in the hierarchical framework, there is a
natural ordering that separates the hierarchical variables and the quantity of interest,
which we show in the next section. Moreover, when partial collapse is applied, a
permutation actually leads to an algorithm where invariance is lost.

3.2. Blocking and MTC Sampling. Observe that the conditional densities in
steps 1 and 2 of Algorithm 1 are conditionally independent. That is, the normalizing
constant in (25) is an integral that does not depend on δ and vice versa for λ in (26);
hence,

(28) π(λ, δ|p, b) = π(λ|p, b)π(δ|p, b).

This has the effect that the hierarchical Gibbs sampler in Algorithm 1 naturally
blocks δ and λ. Explicitly, if we denote θ = (λ, δ), then Algorithm 1 is equivalent to
Algorithm 2:
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Algorithm 2: Two-stage Gibbs Sampler for PSF reconstruction

Given θk = (λk, δk) and pk, simulate
1. θk+1 ∼ π(λ, δ|pk, b) by (28)
2. pk+1 ∼ π(p|λk+1, δk+1, b) by (21)

Note that any non-trivial permutation with step 3 of Algorithm 1 makes it im-
possible to block λ and δ, and the methods are no longer equivalent.

When Gibbs sampling happens in two stages, the two separate components θk

and pk are themselves Markov chains whose stationary distribution is given by the
corresponding marginalized density [23, Chapter 9]. Moreover, the transition kernel
associated with {θk} is

(29)

∫
Rn
π(p|λ, δ, b)π(λ′, δ′|p, b)dp.

This makes the analysis divide naturally into considering the quantity of interest, p,
and the hierarchical parameters, λ and δ.
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Fig. 4: The δk and λk components of the Markov chain resulting from the hierarchical
Gibbs sampler discretized at N = 512 points are plotted on the left, and the estimated
autocorrelation of each sub-chain is plotted on the right.

In [2, 3], the Gibbs sampling approach was analyzed theoretically on a class of
hierarchical models that converge to an infinite dimensional limit. It was shown that
the Markov chain degrades as the discretization of the forward operator converges
to the continuous limit. In particular, when λ is fixed, the {δk} component of the
chain makes smaller and smaller expected moves as the discretization converges, ef-
fectively slowing the exploration of the δ component of the posterior and creating
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highly autocorrelated samples. A complementary relationship between λ and p was
shown, where the analogous sampler that fixes δ produces a Markov chain in {λk}
that centers immediately on the true noise precision that are less and less correlated.

We observed similar results empirically for PSF reconstruction using Gibbs sam-
pling; that is, as the discretization limits in (13) increase, the δk component of the
Markov chain moves more slowly and is more highly correlated, whereas the {λk}
component of converges rapidly and looks like nearly independent samples centered
on the true noise precision. See Figure 4.

The dependence between the hierarchical components and the quantity of interest,
specifically δk and pk, is what drives the slowing of the {δk} chain. A straight-forward
approach to addressing this dependence, would be to marginalize the dependence of
the blocked variable θ in p. That is, sample λ, δ|b rather than λ, δ|θk, b. It turns out
that the resulting sampling algorithm still provides a Markov chain that converges
to the desired posterior. A sampling scheme of this form has been studied by others
[1, 25], and its application to a hierarchically modeled linear inverse problem is the
subject of the recent work in [8]. An algorithm utilizing it for PSF reconstruction is
given below.

Algorithm 3: MTC Sampler for PSF reconstruction

Given θk = (λk, δk) and pk, simulate
1. θk+1 ∼ π(λ, δ|b)
2. pk+1 ∼ π(p|λk+1, δk+1, b)

The density π(λ, δ|b) is given by computing the marginal density of π(λ, δ,p|b) by
integrating (24) with respect to p. To see this explicitly, first write the full posterior
(24) as the Gaussian density defined in (21) times terms that only involve λ and δ.
Then, integrating with respect to p yields

π(λ, δ|b) ∝ λM/2π(λ)δN/2π(δ) exp

(
−1

2
a(δ, λ)− 1

2
b(δ, λ)

)
,(30)

where

a(λ, δ) = ln
(
det(λGTG + δL)

)
,(31)

b(λ, δ) = λ(bTb− bTG(λGTG + δL)−1GTb).(32)

The marginalization comes at a cost, however, as the density π(λ, δ|b) is no longer one
where an efficient algorithm is available, and rejection-based methods such Metropolis-
Hastings must be used to simulate samples. Hence, the convergence in the chain is
now driven by the efficiency of sampling the blocked variable θk. In [8], they explore
methods to accelerate this process in a deconvolution application, where because the
forward operator is a convolution, Fourier based factorizations can be utilized which
are not available in the application of PSF reconstruction.

The key difference between this method and the partially collapsed sampler, that
we present next, is that MTC removes the dependence between λk and pk which
negates the predicted efficiency in sampling the λ component when the dependence
remains [2], which results in a loss of efficiency in sampling λ. Partial collapse inte-
grates only the δ component with respect to p, leaving the dependence between λk
and pk, whereas MTC keeps the variables blocked. Our method requires Metropolis-
Hastings only in one dimension, {δk}, which requires less tuning and in the proposal.
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3.3. Partially collapsing the Gibbs sampler for PSF reconstruction.
Our sampling approach is similar to the MTC algorithm outlined in Algorithm 3,
only that we retain the dependence of λk and pk, and as predicted by the theoretical
work in [2], this dramatically improves autocorrelation of the {λk} component of the
Markov process. Moreover, because Metropolis-Hastings is now only on {δk}, gaining
efficiency in that component is more easily attained by tuning a one-dimensional
random walk proposal.

The algorithm falls into a category of samplers that are investigated in [28, 29],
where they show using spectral methods that partial collapse can improve chain con-
vergence. Additionally, they show that care must be taken when modifying steps in
the Gibbs sampler, since changes could result in a Markov chain whose stationary
distribution is no longer the target posterior. In particular, they show that a partially
collapsed Gibbs sampler may no longer have the same stationary distribution as the
original Gibbs sampler. We will explicitly show that partial collapse maintains the
posterior as the stationary distribution.

Algorithm 4: Partially Collapsed Gibbs for PSF reconstruction

Given λk, δk and pk, simulate
1. λk+1 ∼ π(λ|pk, b)
2. δk+1 ∼ π(δ|λk+1, b)
3. pk ∼ π(p|λk+1, δk+1, b)

First note that the coupling between components in Algorithm 4 is more compli-
cated than Algorithm 2 and Algorithm 3, and that the algorithm is stationary with
respect to π(p, λ, δ|b) is not obvious.

Theorem 3.1. Algorithm 4 is stationary with respect to π(p, λ, δ|b).

Proof. Denote πb(·) = π(·|b) for a conditional density depending on the data b.
The transition kernel associated with this algorithm is

(33) K(λ, δ,p;λ′, δ′,p′) = πb(p′|λ′, δ′)πb(δ′|λ′)πb(λ′|δ,p).

Using (28) to substitute πb(λ|δ,p) = πb(λ|p), the action of transition on the density
πb(λ, δ,p) is∫

RN

∫
R

∫
R

K(λ, δ,p;λ′, δ′,p′)πb(λ, δ,p) dλdδdp

= πb(p′|λ′, δ′)πb(δ′|λ′)
∫
RN

∫
R

πb(λ′|δ,p)

∫
R

πb(λ, δ,p) dλdδdp

= πb(p′|λ′, δ′)πb(δ′|λ′)
∫
RN

∫
R

πb(λ′, δ,p)

πb(δ,p)
πb(δ,p)dδdp

= πb(p′|λ′, δ′)πb(δ′|λ′)πb(λ′)

= πb(p′, λ′, δ′).(34)

The critical thing to note in this simple computation is that any permutation
of the steps of Algorithm 4 will result in a sampler that is no longer invariant with
respect to π(p, λ, δ|b). This is in contrast to the Gibbs sampler, in which the steps
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can be permuted in any order without changing the stationary distribution of the
Markov chain.

Both Algorithm 3 and Algorithm 4 have been stated in terms of sampling exactly
the densities π(λ, δ|b) and π(δ|λ, b), where we have mentioned that these are not
readily available, and we employ Metropolis-Hastings to sample them. The density
π(δ|λ, b) is obtained by removing the λ-proportional terms from (30).

A Metropolis-Hastings method for computing both densities requires repeated
evaluations of (30), and the computational cost is dominated by finding the determi-
nant in (31) and computing the matrix solve in (32). For the scales relevant to PSF
reconstruction, these can be accomplished by a Cholesky factorization. That is, we
utilize the computation of an upper-triangular Cholesky factor Rλ,δ which satisfies

(35) RT
λ,δRλ,δ = λGTG + δL,

and can be used to compute the quantities in (31) and (32) by

a(δ, λ) = bT (b−GR−1λ,δR
−T
λ,δG

Tλb)(36)

b(δ, λ) = 2

N∑
i=1

ln |ri,i(λ, δ)|.(37)

The matrix solves in (36) are accomplished via backwards- and forwards-substitution
(O(n2)), and ri,i(λ, δ) are diagonal elements of Rλ,δ. Hence, the computational cost
of evaluating π(δ|b, λ) is dominated by the Cholesky algorithm (O(n3)), and in order
to emphasize this dependence, we denote

(38) c(Rλ,δ)
def
= a(δ, λ) + b(δ, λ).

A random walk in log-normal space is used for the proposal of the Metropolis-
Hastings step in both the MTC and PC Gibbs algorithms. A full statement of each
algorithm using this notation is in Algorithm 5 and Algorithm 6.

Algorithm 5: Metropolis-Hastings MTC Sampler for PSF Reconstruction

Given λk, δk,p
k, and a random walk covariance C, simulate

1. Set λ = λk, δ = δk and compute Rλ,δ.
For j = 1 . . . nmh

(i) Simulate w ∼ N (0, I2×2) and set

[
λ′

δ′

]
= exp

(
C1/2w +

[
lnλ
ln δ

])
.

(ii) Compute Rλ′,δ′ .
(iii) Simulate u ∼ U(0, 1). If

log u < min {0, c(Rλ′,δ′)− c(Rλ,δ)} ,

then set λ = λ′, δ = δ′ and Rλ,δ = Rλ′,δ′ .
Set λk+1 = λ and δk+1 = δ.

2. Simulate pk+1 ∼ N
(
λk+1R

−T
λk+1,δk+1

R−1λk+1,δk+1
GTb, (RT

λk+1,δk+1
Rλk+1,δk+1

)−1
)

.

Observe that in Algorithm 5, the Cholesky computation used for the last accepted
proposal can be re-used in order to simulate pk+1. In fact, because θk does not depend
on pk+1, the two components can be computed in serial; i.e. θk can be computed (and
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potentially thinned) and then samples of pk+1 can be computed, as suggested in [8].
This is in contrast to Algorithm 6, where an additional Cholesky factor must be
computed in order to sample λk. We show in Section 4 that the added efficiency is
worth this additional computation.

Algorithm 6: Metropolis-Hastings PC Gibbs Sampler for PSF Reconstruction

Given λk, δk,p
k, and σ2, simulate

1. Simulate λk+1 ∼ Γ
(
M/2 + αλ,

1
2‖Gp

k − b‖2 + βλ
)
.

2. Set δ = δk and compute Rλk+1,δ.
For j = 1 . . . nmh

(i) Simulate w ∼ N (0, 1) and set δ′ = exp(σw + ln(δ)).
(ii) Compute Rλk+1,δ′ .
(iii) Simulate u ∼ U(0, 1). If

log u < min
{

0, c(Rλk+1,δ′)− c(Rλk+1,δ)
}
,

then set δ = δ′ and Rλk+1,δ = Rλk+1,δ′ .
Set δk+1 = δ.

3. Simulate pk+1 ∼ N
(
λk+1R

−T
λk+1,δk+1

R−1λk+1,δk+1
GTb, (RT

λk+1,δk+1
Rλk+1,δk+1

)−1
)

.

The theoretical justification for the use of Metropolis-Hastings as a sub-step in sam-
plers can be found in [9, 20, 23]. Note that each proposal step requires a compu-
tationally expensive Cholesky solve. The authors in [23, Chapter 10.3] suggest that
for Metropolis-within-Gibbs, additional proposals (nMN > 1) may not be worth the
computational cost, while others have suggested more sub-steps [9, 28, Section 6.4.2]
to improve convergence. The situation likely depends on the problem, and due to the
lack of objective criteria, we investigate empirical evidence that suggests that in the
case of PSF reconstruction, more than one step can improve convergence.

4. Results. In this section, each of the three methods described are used to
analyze synthetically generated and real data from a diagnostic radiographic imaging
systems in operation at the Nevada National Security Site. We first establish the
metrics by which we compare them in order to fairly compare the algorithms. In
particular, we briefly describe a statistical method for determining whether the chain
has reached stationarity and passed the so-called burn-in stage and how efficiently
the chains explore the invariant density by estimating the stationary autocorrelation.
Our measure of efficiency also takes into account computational effort, and we show
that PC Gibbs for hierarchical sampling performs significantly better than standard
Gibbs sampling and at least as well as the recently developed MTC sampler.

4.1. Statistical measures of convergence.. The stationarity of the partially
collapsed Gibbs sampler guarantees that Monte Carlo realizations of the Markov pro-
cess converge in distribution to realizations from π(p, λ, δ|b), but this asymptotic
result does not address the practical fact that only a finite number of simulations can
be computed. Two aspects of convergence are addressed in this section. First, the
initial samples must converge, or burn-in, to the desired stationary distribution of
the Markov chain, and second, since the process produces identically distributed but
dependent samples, how effectively uncorrelated the samples are determines how well
they characterize the stationary distribution. In this section, we give a brief overview
of two statistical estimators that address these two aspects. Both estimators inform
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how long to run the MCMC algorithm to effectively analyze the chain as a robust
sample from π(p, λ, δ|b).
The first issue is concerned with how close the Markov chain is to the target invariant
density. In practice, the Markov chain is initialized with simulations that are not from
the target density, π(p, λ, δ|b), and [11] provides statistically motivated approach that
uses a statistical test to evaluate the test hypothesis that the joint mean value of an
early section of the Markov chain is equal to that of a latter portion. Formally, for
a given univariate component of a stochastic process, {X1, . . . , XN}, let Nm denote
the mth percentile of N , µm to be the mean of {X1, . . . , XNm} and µm′ the mean
of {XNm′+1, . . . , XN}. Following [11], we choose the 10th and 50th percentiles to
establish the estimators for µ10 and µ50′ , which are

(39) X10 =
1

N10

N10∑
k=1

Xk, and X50′ =
1

N −N50′

N∑
k=N50+1

Xk.

For the test H0 : µ10 = µ50′ , [11] shows the corresponding convergence diagnostic test
statistic satisfies

(40) RGeweke
def
=

X10 −X50′√
Ŝ10(0)/N10 + Ŝ50′(0)/N50

d−→ N (0, 1), as N →∞,

where Ŝ10(0) and Ŝ50′(0) denote consistent spectral density estimates for the variances
of {X1, . . . , XN10} and {XN51 , . . . , XN}, respectively. These can be estimated via
a periodogram estimator, and in our results, we use a Danielle window of width
2π/(0.3p1/2) as recommended by [11]. The test provides a method for evaluating a
portion of the realizations of the Markov chain that are suitable for a rigorous analysis.
For the results in this paper, each algorithm was run for a fixed number of iterations,
and the last half of the simulations were tested. The process is then assumed to be in
stationarity if the test provides no statistical evidence for a difference in the quantile
means.
The second estimator we establish measures how efficiently the stationary Markov
chain characterizes the posterior density. That is, after identifying the burn-in por-
tion of the chain, successive simulations may be highly correlated and result in an
excessively slow exploration of the target density. Improving this aspect of conver-
gence is the primary motivation for partial collapse. Following [26], we use the notion
of integrated autocorrelation time to quantify how much the Monte Carlo samples
have explored the target density relative to a hypothetical independent sample. Sum-
marizing that work, suppose that {X1, X2, . . . } is an identically distributed correlated
stochastic process with individual variance σ2, then the Monte Carlo error for the es-
timator XN = 1

N

∑N
k=1X

i can be divided into a contribution from inherent variance
in Xj , and covariance between Xi and Xj for j 6= i; i.e.

Var(XN ) =
σ2

N

(
1 + 2

N−1∑
k=1

(
1− k

N

)
Cov(X1, X1+k)

σ2

)
.(41)

The autocorrelation function at lag k of the process is ρ(k)
def
= Cov(X1,X|k|)

σ2 , and so
for large N , the Monte Carlo error can be approximated with

(42) Var(XN ) ≈ σ2

N

∞∑
k=−∞

ρ(k)
def
=

σ2

N
τint.
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The approximation is based on the assumption that the autocorrelation lag of the
process dies off fast enough so that k/N does not contribute to (41).
Since σ2/N would be the variance of the Monte Carlo estimator had {X1, . . . , XN}
been uncorrelated, we think conceptually of the parameter τint as the equivalent num-
ber of Markov chain simulations required to obtain an effectively independent sample
from the target density (in terms of Monte Carlo error of sample mean estimation).
This analogy motivates what is sometimes called the essential sample size of the chain

(43) NESS
def
= N/τint.

To estimate these parameters, [26] gives the following unbiased estimator for the
normalized autocorrelation function,

(44) τ̂int =

N∑
k=−N

ρ̂(k),

where N < N − 1 is some window length, and ρ̂(k) is the empirical normalized
covariance estimator over that interval. That is,

ρ̂(k)
def
= Ĉ(k)/Ĉ(0), where Ĉ(k) =

1

N − k

N−k∑
i=1

(Xi −XN )(Xi+k −Xk).(45)

The choice we use suggested by [26] for the window size is the smallest integer such
that N ≥ 3τ̂int. Finally, our estimate the essential sample size, denoted ESS, is given
by substituting the estimator τ̂int for τint in (43).
The ESS estimate can be used in a couple of ways. A standard approach, when
samples are relatively cheap to compute, is to do as follows: (1) compute a very long
MCMC chain (we choose 104 below); (2) remove the first half of the chain as burn-in
and verify using Geweke’s test that the second half of the chain is in equilibrium; and
(3) estimate the number of effectively independent samples in the second half of the

chain using K̂ESS. In cases in which each sample is expensive to compute, however,
there is incentive to make the chain as short as possible. In such instances, both chain
convergence and autocorrelation can be monitored online, so that a minimal number
of samples are discarded in the burn-in stage, and also so that K̂ESS is not larger than
it needs to be in order to perform the desired uncertainty analysis.
The ESS is not the complete answer to the efficiency of the algorithm. Highly uncorre-
lated chains for δ can be achieved in the MTC and PC Gibbs algorithm by increasing
the number of inner Metropolis-Hastings steps nMH, however, the addition of each
step increases the number of expensive matrix factorizations by a factor of the chain
length. To take the extra computational effort into account, we use the number of
Cholesky factorizations as a metric for computational effort since this computation
dominates the computational time per MCMC iteration. That is, we use the number
of Cholesky solves divided by the ESS, which we interpret as the computational ef-
fort to obtain an equivalent uncorrelated sample. If we assume that a chain thinned
according to estimated integrated autocorrelation is equivalent to an uncorrelated
sample, this measure says how computationally costly it is to obtain each sample.

4.2. Synthetic examples of PSF reconstruction. We first establish the effi-
cacy of our approach on a simulated example where the true profile is explicitly known,
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and the data is artificially corrupted with simulated noise. To simulate synthetic data,
we reconstruct the radial profile of a two-dimensional Gaussian kernel

(46) x(r) = (2πσ2)−1e
−r2

2σ2 ,

where σ = 1
15 is chosen so that the effective width of the kernel is about 20% of the

image width when scaled to [−1, 1]. Observe that in the case of a two-dimensional
Gaussian, the action of the forward operator in (4) is the scaled error function

(47) b(s) =
1√
2πσ

∫ s

−∞
e−

s′2
2σ2 ds′,

which can be numerically calculated with very high precision. Gaussian measurement
error with noise strength that is 2% of the strength of the signal is synthetically
generated and added to b(s).
All three MCMC algorithms were run with a chain length of N = 104, and the last
5 × 103 simulations were tested with the Geweke statistic for stationarity. For each
algorithm, the resulting p-values were all greater than 0.9, hence we use the last 5×103

simulations as burned-in MCMC samples from the posterior density.
To estimate the PSF and the hierarchical parameters, we use the sample mean of the
burned-in samples. The true PSF falls well within the distribution of MCMC samples,
and the mean MCMC estimator for the PSF matches the truth quite well; see the
left panel of Figure 5. Note that the most uncertain region of the reconstruction
are the initial discretization points corresponding to the height of the PSF. Since the
simulated data has a known solution, if we interpret the problem variationally with the
Tikhonov regularization parameter δ/λ, we can characterize a “best” regularization by
minimizing the L2 norm of the residual with respect to the Tikhonov regularization
parameter. In right panel of Figure 5, a plot of the log L2 norm of the residuals
versus the Tikhonov regularization parameter are given with the MCMC estimate
δ̂/λ̂ indicated by an asterisk. Note that the MCMC estimator nearly falls on the
minimum of the curve.
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Fig. 5: (left) The true solution, the mean MCMC estimate, and 103 Monte Carlo
samples are plotted together; (right) the sum of squared residuals of the least square

solution verses the corresponding Tikhonov parameter with the MCMC estimate δ̂/λ̂.

In the left panel of Figure 6, note that increases in the Metropolis-Hastings sub-steps
of MTC generally decreases the efficiency of the sampler. This is because of the
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discussion in Section 3, where it was shown that the sampling of θk does not depend
on pk and only on the previous θk−1. Since the efficiency of sampling θk depends
only on the Metropolis-Hastings algorithm with no influence from pk, the difference is
merely how the number Cholesky factorizations are accounted for per iteration of the
algorithm. Said another way, increasing nMH of MTC is equivalent to simulating a
chain of θk of length M ·nMH, with pk simulated in a chain of length M . In the case of
the PC Gibbs sampler on the other hand (right panel of Figure 6), extra Metropolis-
Hastings steps appear to increase the efficiency of the sampler. This is because only
δ has been marginalized, and even though λk and δk can still be blocked into θk, it
depends on pk through λk. This means that the PC Gibbs transition kernel improves
with better samples of δk that increased Metropolis-Hastings steps provide.
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Fig. 6: The efficiency (#Chol/ESS) of the δk component verses the number of
Metropolis-Hastings substeps for the PC Gibbs algorithm on edge data with N = 797.

The efficiency statistics for each algorithm are given in Table 1. In order to give a
common basis for comparison, the proposal parameters for each Metropolis-Hastings
random walk in MTC and PC Gibbs were derived from the burned-in posterior sam-
ples of the hierarchical Gibbs sampler. Specifically, two times the empirical covariance
of the burned-in θk from a realization of the hierarchical Gibbs sampler was used as
the proposal covariance for MTC. Two times the variance of δk from the same re-
alization was used as the proposal variance for PC Gibbs. These choices result in
acceptance rates near 0.3 for MTC and 0.45 for PC Gibbs.
First observe that each sampler generally agrees in terms of the MCMC means gener-
ated. As predicted, the λk sub-chains are all sampled very efficiently in Gibbs and PC
Gibbs, while its efficiency is driven by Metropolis-Hastings in MTC. Moreover, the
efficiency of the PC Gibbs algorithm with nMH = 4 is estimated to be slightly more ef-
ficient than MTC. We remark that due to the variability in the proposal tuning, small
differences in efficiency are likely not definitive, but this result serves as evidence that
the efficiencies of PC Gibbs and MTC are roughly equivalent. The advantage of PC
Gibbs is that its Metropolis-Hastings proposal need only be tuned in one dimension.

4.3. PSF reconstruction with measured radiographic data. Next we re-
construct the point spread function of a high energy X-ray imaging system at the
U.S. Department of Energy’s Nevada National Security Site. The real edge data is
shown in Figure 8 (upper left) along with a horizontal cross-section across the edge
(upper right). The mean MCMC reconstruction is shown in Figure 8 (lower left), along
with the 10%, 25%, 50%, 70%, and 90% quantiles of the chain xk. We estimated the
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Table 1: Statistical diagnostics for the λ and δ chains associated with the synthetic
PSF reconstruction problem. The first two columns are the post-burn-in chain means
of λ and δ. The Metropolis-Hastings proposal acceptance rate is given in the third
column and the estimated efficiency of the λk and δk components are given in the
fourth and fifth columns.

Algorithm λ̂MCMC δ̂MCMC MCMC δ λ
(×104) (×10−7) Acc. Rate #Chol/ESS #Chol/ESS

Gibbs 1.162 1.125 1.0 58.181 1.1
MTC 1.160 0.977 0.301 16.251 17.5

nmh = 1
PC Gibbs 1.162 1.002 0.446 21.673 1.0

nmh = 1
PC Gibbs 1.160 1.006 0.475 14.228 1.1

nmh = 4

PSF at grid points using the chain-wise mean after burn-in, p̂ = 2
M

∑M
k=M/2+1 p

k.
Since the true PSF is unknown, we evaluate the accuracy of the estimation by its
discrepancy; i.e. we compared forward mapping of the estimate Gp̂ with the given
data b. This is shown in both linear and logarithmic scales in Figure 8 (lower right).
In both cases the discrepancy is quite low, except at very low intensities where the
data is dominated by the noise, which can be seen in the logarithmic scale. Observe
that the chain efficiency statistics in the third through fifth columns of Table 2 are
similar to those derived on the synthetic example.
Similar to the synthetic data, the PC Gibbs algorithm with nmh = 4 and MTC
perform with roughly equivalent overall efficiency, however, with λk being the least
efficient component of MTC.

Table 2: Statistical diagnostics for the λ and δ chains associated with the PSF re-
construction problem on real radiographic data. The first two columns are the post-
burn-in chain means of λ and δ. The Metropolis-Hastings proposal acceptance rate is
given in the third column and the estimated efficiency of the λk and δk components
are given in the fourth and fifth columns.

Algorithm λ̂MCMC δ̂MCMC MCMC δ λ
(×104) (×10−10) Acc. Rate #Chol/ESS #Chol/ESS

Gibbs 9.148 1.205 1.000 36.705 1.4
MTC 9.117 1.141 0.308 14.524 16.4

nmh = 1
PC Gibbs 9.148 1.152 0.442 21.092 1.3

nmh = 1
PC Gibbs 9.149 1.150 0.452 15.535 1.5

nmh = 5

5. Conclusions. PSF reconstruction provides an excellent medium scale inverse
problem to test state-of-the-art MCMC algorithms for posterior estimation. This work
shows how modifying the hierarchical Gibbs sampler first presented in [4] can result

18



5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Gibbs ACFs for  and 

: 
 int

( )=1.1097

: 
 int

( )=29.0964

x
1
: 

 int
(x

1
)=1.0364

5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PC Gibbs n
MH

 = 1 ACFs for  and 

: 
 int

( )=1.0327

: 
 int

( )=5.419

x
1
: 

 int
(x

1
)=0.9863

5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PC Gibbs n
MH

 = 5 ACFs for  and 

: 
 int

( )=0.98732

: 
 int

( )=1.3805

x
1
: 

 int
(x

1
)=0.97967

5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MTC n
MH

 = 1 ACFs for  and 

: 
 int

( )=8.7388

: 
 int

( )=8.1262

x
1
: 

 int
(x

1
)=0.87826

Fig. 7: Autocorrelation plots for PSF reconstruction for synthetic data of the sub-
chains for λ, δ and the central discretization point of p: in the upper-left are the ACF
for Markov chains of λ, δ and central pixel of the radial profile for the Gibbs sampler;
on the upper-right are the plots for the PC Gibbs sampler with 1 inner MH step; on
the lower-left are plots for the PC Gibbs sampler with 5 inner MH steps; and in the
lower-right are plots for the MTC sampler.

in the MTC algorithm which is equivalent to the one derived in [8] and the hierar-
chical PC Gibbs algorithm. Both methods have their advantages: MTC having θ
decoupled from p makes it possible to sample pk at the rate of the integrated au-
tocorrelation time and makes analysis of the algorithm easier; where PC Gibbs is
a straight-forward modification of the Hierarchical Gibbs algorithm with an easily
tuned one-dimensional Metropolis-Hastings step, which can easily be tuned to be
very efficient. We have provided statistical evidence that both algorithms are es-
sentially equivalent for PSF reconstruction in terms of an estimator that measures
computational effort per uncorrelated sample.
This work contributes two novel aspects to the relevant literature. First is in the
application of PSF reconstruction to X-ray imaging, which to our knowledge, has not
appeared elsewhere in the inverse problems literature. This involved a novel approach
to incorporating radial symmetry in prior modeling the PSF with a Gauss-Markov
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Fig. 8: PSF reconstructions for radiographic data: in the upper left corner are the
radiographic image data; in the upper right corner is a line-out taken from the image
data; in the lower left corner are the central 10%, 25%, 50%, 70%, and 90% quantiles
of the posterior reconstruction of x for each pixel; in the lower right corner are plots
of the forward mapped discrepancy of the post burn-in chain mean.

random field. The results illustrate the effectiveness of a sample-based approach on
real data for uncertainty quantification. The second contribution of this work is in
new advances of addressing the autocorrelated δ component of a hierarchical Gibbs
sampler in [4]. The work builds upon [2, 3] by collapsing only the δk component of
Gibbs and retaining the efficiency in sampling λk gained by its dependence on pk.
We showed that this fits into the framework of partial collapse presented in [29], and
heeding their warnings of creating an improper sampler, we prove that our algorithm
is still invariant with respect to the desired posterior density. Finally, MCMC methods
were verified using both a synthetic test case and real data.
The PC Gibbs sampler is readily adapted to other linear Bayesian inverse problems
modelled hierarchically and has potential applications to more general prior modeling
(i.e., non-conjugate priors). In general, this work provides evidence that in models
with a Gaussian noise likelihood, it is advantageous to employ an MCMC transition
that retains the dependence between the parameter defining the likelihood and the
data, rather than completely decoupling them.
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