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Abstract. A minimal requirement for simulating multi-scale systems is to reproduce the
statistical behavior of the slow variables. In particular, a good numerical method should
accurately aproximate the probability density function of the continuous-time slow vari-
ables. In this note we use results from homogenization and from backward error analysis
to quantify how errors of time integrators affect the mean behavior of trajectories. We
show that numerical simulations converge, not to the exact probability density function
(pdf) of the homogenized multi-scale system, but rather to that of the homogenized mod-
ified equations following from backward error analysis. Using homogenization theory we
find that the observed statistical bias is exacerbated for multi-scale systems driven by
fast chaotic dynamics that decorrelate insufficiently rapidly. This suggests that to resolve
the statistical behavior of trajectories in certain multi-scale systems solvers of sufficiently
high order are necessary. Alternatively, backward error analysis suggests the form of an
amended vector field that corrects the lowest order bias in Euler’s method. The resulting
scheme, a second order Taylor method, avoids any statistical drift bias. We corroborate
our analysis with a numerical example.

1. Introduction

When simulating complex multi-scale dynamics one is often interested in the accurate
description, not of the full system with all its degrees of freedom, but of only some distinct
relevant variables, for example the slow variables. Numerical weather forecasting provides
a good example, where we are interested in the dynamics of the large-scale high and low
pressure fields which evolve on time scales of days rather than in fast buoyancy oscillations
of the atmosphere’s stratification surfaces. Another example is decadal climate prediction
where we are not interested in the actual dynamics of the large-scale atmospheric weather
but rather in their effect on the slowly evolving oceanic patterns such as El-Niño. Whereas
in the example of numerical weather prediction we desire accurate time evolution of the slow
relevant variables, in climate science we are often more interested in statistical properties
such as mean global temperature or the frequency of extreme events. Reproducing such
mean statistical behavior of the slow variables is a minimal requirement for any simulation of
complex multi-scale systems. It has long been recognized that the numerical discretization
scheme employed to simulate a dynamical system profoundly affects the numerically ob-
served statistical behavior [2, 7, 8]. This note is concerned with the problem of numerically
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integrating multi-scale systems with the aim to reliably recover their statistical properties.

We consider here deterministic multi-scale systems of the form

ẋ =
1

ε
h(x)f0(y) + f(x, y), x(0) = ξ(1)

ẏ =
1

ε2
g(y), y(0) = η,(2)

with x ∈ R
d, y ∈ R

ℓ. The parameter ε ≪ 1 characterizes the degree of time scale sep-
aration. Here the slow dynamics evolves on a characteristic time of order 1 and the fast
dynamics on a characteristic time of ε2. We assume that the vector fields f0 : Rℓ → R

m,
h : Rd → L(Rd,Rm), f : Rd×R

ℓ → R
d and g : Rℓ → R

ℓ satisfy certain regularity conditions
and that the fast y-dynamics is sufficiently chaotic with compact chaotic attractor Λ ⊂ R

ℓ

and ergodic invariant probability measure µ. We consider the case when
∫

Λ
f0 dµ = 0,

i.e. when classical averaging would yield trivial constant-in-time dynamics. In this situa-
tion the slow dynamics exhibits stochastic dynamics on the slow time scale O(1) [12, 33].

Numerical simulation of the multi-scale system (1)–(2) is challenging: To capture the
slow dynamics of interest, for any fixed value of the time scale separation parameter ε, we
obtain convergence in the limit ∆t → 0, but for ε small, the time step ∆t used to propagate
the slow variables must be chosen of the order of ε2 to resolve the fast dynamics and meet
stability restrictions, making direct numerical simulations computationally impractical. A
minimal requirement for a numerical integrator is that it should reproduce the statistical
behavior of the slow variables of interest. Ideally we would like to employ ∆t ∼ O(1)1.
However, we will see that depending on the statistical behavior of the fast dynamics, in
particular on the decay of the correlation function of f0(y), a time step ∆t ∼ O(ε2) may
not be sufficient to recover even the statistical behavior of the slow dynamics and one will
need time steps such that κ = ∆t/ε2 → 0 as ε → 0. (Note that for κ > 0 solutions of
the fast integrator do not converge in the limit ε → 0 to the exact solution of (2).) In
other words, it is insufficient to simply resolve the fast motions as ε → 0, one must in fact
accurately approximate them in this limit, even when the goal is to determine the mean
behavior of the slow variables. This inability of numerical time steppers of order p to re-
produce the statistical behavior of the slow dynamics will be linked to the persistence of
O(∆tp)-terms in the backward error analysis; furthermore these error terms have a quan-
tifiable influence on the long-time statistics as they will be shown to correspond to drift
corrections in the homogenized diffusive limit equations of the numerical discrete time maps.

For multi-scale systems of the form (1)–(2) the statistical behavior of the slow dynamics,
in the limit of infinite time scale separation ε → 0, is described by a stochastic differen-
tial equation (SDE) which can be explicitly stated. The mathematical tool to describe
the long-time stochastic behavior of slow dynamics is known as homogenization [12, 33].
Homogenization describes the integrated effect of the fast (either stochastic or chaotic) dy-
namics on the slow variables as noise. Initially developed for stochastic multi-scale systems
[20, 21, 32], homogenization has been extended recently to deterministic multi-scale sys-
tems. In the deterministic case the theory is restricted to the skew-product case (1)–(2) in
which the slow dynamics does not couple back to the fast dynamics. The fully coupled case

1 Special multi-scale methods have been devised to do this (see, e.g. [9, 10, 11, 19]).
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poses the potential problem that the invariant measure of the fast dynamics may not vary
smoothly with the slow variable; in this instance the averaged vector fields may not even
be Lipshitz and uniqueness and existence of the homogenized equation may not be guar-
anteed. For the deterministic skew product case (1)–(2), it was shown rigorously that for
sufficiently chaotic fast dynamics the emergent stochastic long-time behavior of the slow dy-
namics is given by stochastic differential equations driven by Brownian motion [30, 15, 18].
The assumed mild conditions on the chaoticity of the fast y-dynamics are satisfied by a
large class of maps and flows. For maps, the convergence to Brownian motion holds when
the correlation function is summable. For flows, it suffices that there is a Poincaré map
with these properties (irrespective of the mixing properties of the flow). These include,
but go far beyond, Axiom A diffeomorphisms and flows, Hénon-like attractors and Lorenz
attractors. Precise statements about the validity can be found in [27, 28, 29]. We remark
that for weakly chaotic dynamics when the correlations are not summable, the noise is not
Brownian anymore but rather α-stable [15]2. Homogenization has been used as a frame-
work for stochastic parametrizations in the context of numerical weather forecasting and
climate science [24, 25, 23, 26, 31, 6, 13] and is at the core of the design of several efficient
numerical multi-scale integrators such as the heterogeneous multi-scale method [9, 10] and
equation-free projection [11, 19].

Depending on the underlying deterministic dynamical multi-scale system, the noise ap-
pearing in the limiting homogenized SDE can be either additive or multiplicative. It is
well known that the solution of an SDE is sensitive to the approximation of the Brown-
ian motion. This sensitivity gives rise to the different interpretations of the noise such as
Itô versus Stratonovich interpretations (see the insightful discussion in [17]). In [15] it was
shown that in the case when the slow dynamics is one-dimensional the stochastic differential
equation describing the diffusive behavior of the slow dynamics is to be interpreted in the
Stratonovich sense. The intuitive argument for this result is that the noisy SDE is a rough
approximation of a smooth dynamical system, hence in the limiting process of infinite time
scale separation classical calculus should prevail which necessitates the Stratonovich inter-
pretation3. The limiting SDE for deterministic discrete-time maps, however, was shown to
be neither of Stratonovich nor of Itô type. The noise is Itô only if the fast dynamics is
δ-correlated.

This immediately points to a problem when numerically simulating a continuous-time
multi-scale system: The long-term statistics of a dynamical multi-scale system, be it continuous-
time or discrete time, is described by its homogenized limiting SDE. However, the limit-
ing stochastic differential equation describing the long-time statistical behavior of the dis-
cretized slow dynamics, that is of the numerical integrator, might be different from that
of the continuous-time system it is designed to model. Using backward error analysis, we
show that the leading-order term responsible for the difference is the limiting second or-
der contribution of the modified equation corresponding to the numerical map. The main
contribution of our work is to show that the local errors of a time stepper generate a long-
time error of the mean behavior which is recovered by homogenization theory. These error

2We use the terminology strongly and weakly chaotic here in a manner different from the usual distinction
between exponential and algebraic decay of correlations; cf.[14].

3This does not hold for higher-dimensional slow sub-spaces where the noise is neither Stratonovich nor
Itô [18] and the conditions for the Wong-Zakai theorem are not satisfied.



4A NOTE ON STATISTICAL CONSISTENCY OF NUMERICAL INTEGRATORS FOR MULTI-SCALE DYNAMICS

terms are of the order O(∆tp) for a pth order integrator. This result allows us to draw an
important practical conclusion: In order for a numerical discretization scheme to reproduce
the long-time statistical behavior of the slow dynamics it may be necessary to employ a
sufficiently high order time-stepping method. In particular, the Euler scheme can lead to
massively different statistical behavior with strong bias. This is the case when, as we will
see, the fast chaotic dynamics does not decay sufficiently quickly and its statistical behavior
is far from being close to independent identically distributed (i.i.d.) random variables. In
contrast, first order schemes are sufficient to capture the long-time statistical behavior for
multi-scale systems with chaotic fast dynamics exhibiting rapid decay of correlation. As
we will see, discretization-induced biases can be expressed using homogenization theory.
This allows us to explicitly subtract the bias from the slow vector field of the deterministic
equation (1), resulting in a remarkably accurate explicit time stepper.

The paper is organized as follows. In Section 2 we introduce the diffusive limit of the
deterministic multi-scale system (1)–(2) and of its associated Euler scheme. The diffusive
limits of the original continuous-time deterministic multi-scale system and its Euler dis-
cretized version are shown to differ in the drift term. In Section 3 we present the backward
error analysis of Euler’s method and Heun’s method and the homogenized limit of the lowest
order modified equation for each, describing how its respective long-time statistics differs
from that of (1)–(2). Section 4 presents numerical simulations corroborating our analytical
results. We conclude with a summary and an outlook in Section 5.

2. The diffusive limit of the multi-scale system and its Euler scheme

Using fairly weak conditions on the chaoticity of the fast y dynamics, it was recently
proved in [30, 15, 18] that the long-term behavior of deterministic multi-scale systems (1)–
(2) is stochastic and is described on times of order O(1) by the following homogenized
stochastic differential equation

dX = F (X) dt + σh(X) ◦ dWt, X(0) = ξ.(3)

For simplicity of exposition and ease of computation, we choose in the following d = m = 1.
The drift term is given by F (X) =

∫

Λ
f(X, y) dµ, Wt is unit 1-dimensional Brownian motion

with the variance given by a Green-Kubo formula with

1

2
σ2 =

∫ ∞

0

C[f0(y)](t) dt ,(4)

where C[f0(y)](t) = E[f0(y)f0(ϕ
ty)] denotes the autocorrelation function of f0 with ϕt

denoting the flow of the vector field g(y) (in particular, ϕt is independent of ε), and the
expectation

E[A] =

∫

Λ

A(y)dµ

is taken with respect to the fast invariant measure µ. As discussed in the Introduction, the
noise is of Stratonovich type because the smooth dynamical system (1)–(2) is approximated
by a rough SDE (3), and hence classical calculus has to be valid throughout the limiting
procedure of homogenization. For the precise statements we refer the interested reader to
[15].
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When the multi-scale system (1) is discretized with time step ∆t by a numerical integra-
tion method, the slow dynamics is given by a map. For instance, the first order forward
Euler method gives

xn+1 = xn +∆t
1

ε
h(xn)f0(yn) + ∆t f(xn, yn), x0 = ξ,(5)

where yn ≈ y(n∆t) is also obtained via a map yn+1 = Φ(yn) that approximates ϕt on
time ∆t. In this paper, we compute Φ(y) using multiple time stepping, through the K-fold
application of the same numerical integrator as used for the slow dynamics4,

(6) yn,k+1 = yn,k + δt ε−2g(yn,k), k = 0, . . . ,K − 1,

with initial condition yn,0 = yn and time step δt = ∆t/K. We set yn+1 = yn,K to define
the map yn+1 = Φ(yn). In the limit ε → 0 we choose the scaling ∆t = κ ε2, where κ > 0
is a small but finite constant (i.e. we solve the slow equation on the fast time scale). This
implies that the effective stepsize of the fast motion in (6) is δt ε−2 = κ/K and the map Φ
is independent of ε. Consequently, the fast motion (6) does not converge in the limit ε → 0
to the exact solution of (2). Instead, the constant K is chosen such that the fast motion is
well-resolved for all ε. We also assume that the discrete dynamics (6) possesses a chaotic
attractor that satisfies the conditions needed for the existence of the SDE limit as discussed
below.

For the map (5) it was rigorously proven in [15] that the long-time statistics on times of
order O(1/ε2) is governed by the following SDE

dX =
(

κF (X) − 1

2
κ2h(X)h′(X)E[f2

0 ]
)

dt+ κ σ̂h(X) ◦ dWt , X(0) = ξ,(7)

where F (X) is the same as before for the continuous-time system, Wt is again unit 1-
dimensional Brownian motion and the variance is given by a Green-Kubo formula

σ̂2 = E[f2
0 ] +

∞
∑

n=1

E[f0(Φ
n y)f0(y)] +

∞
∑

n=1

E[f0(y)f0(Φ
n y)],(8)

where Φn denotes the n-fold application of the discrete map Φ. Evaluating the time integral
in (4) as a Riemann sum, comparison with (8) shows that σ̂2 κ → σ2 for κ → 0. We remark
that for non-zero κ the diffusion coefficient σ̂2 may differ from the diffusion coefficient σ2 of
the continuous system. Rescaling time to be measured in units of the discretization “time
step” κ, (7) can be rewritten as

dX =
(

F (X)− 1

2
κh(X)h′(X)E[f2

0 ]
)

dt+
√
κ σ̂h(X) ◦ dWt , X(0) = ξ,(9)

where Wt is unit 1-dimensional Brownian motion on the rescaled time.
Comparing the limiting SDE of the discretized map (9) and the limiting SDE for its

associated continuous-time system (3), we see that they differ by an extra drift term in (9)

E = −1

2
κh(X)h′(X)E[f2

0 ].(10)

Note that the additional drift term prohibits a Stratonovich interpretation of the noise and
hence for finite ∆t the statistics of the map is different from the statistics of the original
continuous-time system (1)–(2), which we identify with the diffusive limit system (3). A
discrepancy of this form was noted in [15] in the case of general maps where the time step

4An alternative strategy would be to use the method suggested in [34, 3].
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∆t (or rescaled time step κ) was implied. In the case where the fast dynamics of the discrete
Euler map (5) is i.i.d., i.e. σ̂2 = E[f2

0 ], the noise in the limiting SDE of the discretized map
(9) is of the Itô type. This can be heuristically understood by realizing that if the time step
κ ≫ τcorr where τcorr is the decorrelation time of the fast continuous-time y-dynamics, the
map is already as rough as the discrete approximation of the noise.

Although the additional drift term (10) is formally of order O(∆t), depending on the
dynamical system under consideration, the extra term E can be large and distort the sta-
tistical behavior leading to a marked difference between the numerically observed statistical
behavior of the slow variable X and the statistical behavior of the slow variable x of the
given continuous-time multi-scale system (1)–(2) to be modelled. In Section 4 we provide
such an example and show how an Euler discretization may produce erroneous statistical
information. In the next section we develop a relationship between the extra drift term (10)
obtained in homogenization and backward error analysis. In particular, we will show that
the extra drift term (10) generated by a first order numerical time-stepper is present in the
backward error analysis and would be absent if the dynamics had been integrated with a
higher order scheme instead (however, other terms are typically present in this case). This
will show how the first order errors of an Euler-method directly translate into errors of the
mean behavior.

3. Backward error analysis

In this section we provide a backward error analysis to explain the presence of the extra
term (10) in the homogenized discrete model (9) compared to the homogenized continuous-
time model (3). We will see that the extra term arises from the use of the forward Euler
scheme for constructing the discrete model (5). Although the extra term (10) is of order
O(∆t) and hence disappears in the small step size limit, we stress that in the context of
multi-scale problems one is often interested in step size regimes that are insensitive to fast
dynamics and O(1) with respect to the slow dynamics.

Backward error analysis [16, 22] has been successfully employed to understand finite
time step effects observed in numerical simulations. The truncation error of a numerical
discretization of an ordinary differential equation (ODE) can be expanded as an asymptotic
series in the step size ∆t with terms involving successively higher derivatives of the vector
field. In backward error analysis, the terms of the truncated series are interpreted as a
higher order approximation to another, perturbed vector field.

3.1. Lowest order modified equations. We consider a generic differential equation

(11) ż = v(z),

the solution of which is to be approximated using a numerical method.
To understand the qualitative behavior of the numerical solution for finite step size ∆t,

one constructs a modified vector field as an asymptotic expansion

(12) ż = ṽ(z) = v(z) + ∆t v1(z) + ∆t2 v2(z) + · · · ,
where the terms v1, v2, etc. are to be determined such that the solution to (12) matches
the expansion of a numerical method applied to (11) to a higher order of accuracy. The
continuous-time solutions to the truncated modified differential equation (12) approximate
to higher order the numerical output than do those of the original differential equation (11),
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allowing the modified equation to be used to interpret finite time step effects observed in
the numerical time series.

The solution to (12) is expanded in a Taylor series about z(t) to give

(13) z(t+∆t) = z(t) + ∆t ṽ +
∆t2

2
ṽ′ṽ +

∆t3

6

[

ṽ′′(ṽ, ṽ) + ṽ′ṽ′ṽ
]

+O(∆t4),

where all terms on the right are evaluated at z(t), and where ṽ′ denotes the Jacobian matrix
of ṽ, ṽ′′ denotes its (symmetric) three-tensor of second partial derivatives, and ṽ′′(·, ·) denotes
the contraction of this tensor with the two vector arguments. Substituting the expansion
(12) into the above and gathering terms of like order yields

(14) z(t+∆t) = z(t) + ∆t v +∆t2
[

v1 +
1

2
v′v

]

+

∆t3
[

v2 +
1

2
(v′v1 + v′1v) +

1

6
(v′′(v, v) + v′v′v)

]

+O(∆t4).

Next, one determines the functions v1, v2, etc. to match the expansion of a numerical
integrator to higher order.

Euler’s method is given by zn+1 = zn+∆t v(zn). This formula is consistent with (14) up
to terms of O(∆t2), and is consequently a first order approximation to (11). However by
choosing

v1 = −1

2
v′v

in (12), one finds that Euler’s method agrees with (14) up to terms of O(∆t3). Consequently,
while Euler’s method is a first order approximation of (11), it is a second order approximation

to the modified differential equation

ż = v − ∆t

2
v′v.(15)

This process may be repeated to derive higher order corrections (v2, v3, etc.) in the modified
equation. The asymptotic expansion generally does not converge for fixed ∆t, but may be
optimally truncated [16]. Although for general systems there is no guarantee that the
lowest order corrections will have the most significant impact on the observed statistics, in
our numerical experiments this does appear to be the case.

Next consider the second order Runge-Kutta method (i.e. Heun’s method)

zn+1 = zn +
∆t

2
[v(zn) + v(zn +∆tv(zn))] .(16)

Expanding the right-hand side about zn gives

zn+1 = zn +
∆t

2

[

2v(zn) + ∆tv′(zn)v(zn) +
∆t2

2
v′′(v, v)(zn) +O(∆t3)

]

.

By choosing

v1 = 0, v2 =
1

12
v′′(v, v) − 1

6
v′v′v

in (12) we make this formula agree with (14) up to terms of O(∆t4) so the modified equation
associated with the second order Runge-Kutta method (16) is (up to terms of O(∆t2))

ż = v(z) +
∆t2

12
(v′′(v, v) − 2v′v′v),(17)
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and the second order Runge-Kutta method (16) applied to the ODE (11) is a third order
approximation to (17).

Note that the modified equation (15) suggests a correction to Euler’s method to eliminate
the second order term in (14). Specifically, one can apply Euler’s method to the differential
equation with corrected vector field

ż = v(z) +
∆t

2
v′(z)v(z).

Doing so yields the second order Taylor method

(18) zn+1 = zn +∆t v(zn) +
∆t2

2
v′(zn)v(zn),

which can be efficiently implemented using a finite difference approximation in the last
term:

v′(zn)v(zn) ≈
1

τ
(v(zn + τv(zn))− v(zn)) , τ =

√
ǫm,

with machine precision ǫm. Matching (18) with (14) shows the Taylor method has modified
equation expansion (up to terms of O(∆t2))

(19) ż = v(z) − ∆t2

6
(v′′(v, v) + v′v′v),

and is hence is a second order scheme for the original ODE (11). This will turn out to be
advantageous for problems of the form considered here.

3.2. Homogenization of modified equations. In the limit ε → 0, the time step scales
as ∆t = κ ε2, where κ > 0 is fixed and small. As we will take this limit to homogenize the
modified equation, we use κ = ∆t/ε2 as our expansion parameter for the backward error
analysis.

The modified vector fields v1, v2, etc. each in turn can be expressed as expansions in ε.
Upon homogenization, the lowest order term of O(1/ε) contributes to the diffusion and the
O(1) term contributes to the drift. Terms of higher order in ε vanish in the homogenization
limit ε → 0.

Substituting the vector fields of the deterministic multi-scale system (1)–(2) into the
modified equation for a first order Euler discretization (15) with z = (x, y) we obtain

ẋ =
1

ε
h(x)f0(y) + f(x, y)(20)

− κ

2

(

1

ε
h(x)f ′

0(y) g̃(y) + h(x)h′(x)f2
0 (y) + ∂yf(x, y)g̃(y) +O(ε)

)

+O(κ2)

ẏ =
1

ε2
g̃(y), g̃ = g(y) +

κ

2K
g′(y)g(y) +O((κ/K)2).(21)

In the remainder of the Section we substitute the vector field g(y) for the vector field g̃(y) of
the fast modified equation, and similarly substitute ϕt for ϕ̃t, the flow of g̃, which is again
independent of ε since κ and K are fixed. This is admissible if the numerical scheme for the
fast dynamics is sufficiently accurate to resolve its statistical behaviour and in particular,
the autocorrelation function; given the relation δt = ∆t/K and the scaling ∆t = κ ε2, it is
clear that κ/K should be chosen small enough to accurately approximate autocorrelation
functions of the unscaled chaotic system with vector field g(y), to allow for the substitution
of ϕt for ϕ̃t.
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We now show that the associated stochastic limit system of the continuous-time modified
equation of the Euler method (15) is the same as that of the discrete Euler discretization
(5). The homogenized dynamics, approximating the dynamics of (20) on time scales of
order O(1), is given up to O(κ) by

dX = F (X) dt + σh(X) ◦ dWt, X(0) = ξ.(22)

where F (X) is the expectation with respect to y ∼ µ of the terms of O(1) in ε in (20).
Noting that g(y) = ε2ẏ, we observe that the terms f ′

0(y)g(y) and ∂yf(x, y)g(y) in the slow
modified equation (20) can be written as a total derivative (taking x constant up to terms
of O(ε) on the homogenization time scale). Consequently, these terms vanish in expectation
as in, for example,

(23) E [∂yf(X, y)g(y)] = E

[

d

dt
f(X, y(t))

∣

∣

Xfixed

]

= 0,

and we are left with the drift term

F (X) = E[f(X, y)]− κ

2
h(X)h′(X)E[f2

0 ]

= E[f(X, y)] + E.(24)

The diffusion coefficient is given by

(25)
1

2
σ2 =

∫ ∞

0

E
[

f0(y)f0(ϕ̃
ty)

]

dt

+
κ

2
h(X)

∫ ∞

0

(

E

[

f0(y) (
d

dt
f0)(ϕ̃

ty)

]

+ E

[

f0(ϕ̃
ty) (

d

dt
f0)(y)

])

dt .

Using ergodicity of the fast dynamics the spatial average in the second integral can be
expressed as a time-average; partial integration then can be used to show that the second
integral sums to zero. The Green-Kubo formula (8) in the limit of ε → 0 is recovered
provided we substitute ϕt for ϕ̃t in (25), which we argued above is admissible provided
κ/K ≪ 1. Hence in the limit ε → 0 we recover the homogenized equation (9) for the
forward Euler map (5), and the long term statistics of the Euler discretization captures well
the statistics of its associated continuous-time modified equation.

For a second order method, such as the Runge-Kutta method (16) or second order Taylor
method (18), the additional drift term E is absent from the modified equation. Nevertheless
there are terms of O(κ2) that could potentially influence the homogenized limit. When the
Runge-Kutta method (16) is applied to the deterministic multi-scale system (1)–(2), the
lowest order modified equation (17) yields, for the slow variable:

(26) ẋ =
1

ε
h(x)f0(y) + f(x, y)

+
κ2

12

(

1

ε

[

h(x)
(

f ′′
0 (y)g

2(y)− 2f ′
0(y)g

′(y)g(y)
)]

+
[

∂yyf(x, y)g
2(y)− 2∂yf(x, y)g

′(y)g(y)
]

+O(ε)

)

+O(κ3).

The homogenized drift term becomes

F (X) = E

[

f(X, y) +
κ2

12

(

∂yyf(X, y)g2(y)− 2∂yf(X, y)g′(y)g(y)
)

]

+O(κ3),
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which implies an O(κ2) bias in the drift of the slow variables in the limit ε → 0. The
homogenized diffusion parameter becomes

1

2
σ2 = h(X)

∫ ∞

0

C
[

f0(y) +
κ2

12

(

f ′′
0 (y)g

2(y)− 2f ′
0(y)g

′(y)g(y)
)

]

(t) dt+O(κ3).

Here, too, an O(κ2) bias occurs as ε → 0.
Finally, when the Taylor method (18) is applied to the deterministic multi-scale system

(1)–(2), the lowest order modified equation (19) yields, for the slow variable:

(27) ẋ =
1

ε
h(x)f0(y) + f(x, y) +

κ2

6

(

1

ε
vdiff1 (x, y) + vdrift1 (x, y) +O(ε)

)

+O(κ3),

where

vdiff1 (x, y) = h(x)f ′′
0 (y)g

2(y) + h(x)f ′
0(y)g

′(y)g(y),

and

vdrift1 (x, y) = 3h(x)′h(x)f ′
0(y)f0(y)g(y) + ∂yyf(x, y)g

2(y) + ∂yf(x, y)g
′(y)g(y).

Noting that g(y) = ε2ẏ, we observe that all terms in the drift perturbation can be written
as total derivatives with x fixed and vanish in expectation (cf. (23)):

E[vdrift1 (X, y)] = E

[

3h′(X)h(X)
d

dt

(

f2
0 (y)

2

)

+
d

dt
(∂yf(X, y)g(y))

Xfixed

]

= 0.

Consequently, the Taylor method has no bias in drift to O(∆t3), and we expect the drift
to be simply given by

(28) F (X) = E [f(X, y)] .

The diffusion term is also a total derivative:

vdiff1 (x, y) =
1

ε
h(X)

d

dt

(

f ′
0(y)g(y)

)

,

and the diffusion parameter σ is of the form

1

2
σ2 = h(X)

∫ ∞

0

(

C[f0](t)−
κ2

3
C
[

d

dt
f0

]

(t)

)

dt+O(κ3).

The term does not vanish; this is a correlation function, not just an expectation.
In summary, we note that the additional drift term E of order O(κ) in (24) is absent in

the modified equation of a numerical method which is at least second order, such as the
Runge-Kutta method (16) or the second order Taylor method (18). For a second order time-
stepping method the homogenized modified equation therefore agrees with the homogenized
equation of the full multi-scale system (3) up to O(κ2). However, a second order scheme
will generally also have additional corrections to the drift and diffusion which might be of
the same magnitude for finite κ as those corresponding to the continuous-time multi-scale
system under consideration. Remarkably, the second order Taylor method (18) does not
have bias of O(κ2) in the drift. This can be traced to the fact that the scheme exactly
agrees with the second order Taylor expansion of the error, and consequently its higher
order terms are exact differentials.
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4. Numerical demonstration

We now demonstrate that the additional terms in the backward error analysis may lead
to significant bias in the probability density estimation for both the first order forward Euler
scheme and, to a lesser degree, the second order Heun’s method. In particular we show that
the numerical methods converge for ε → 0 with ∆t = κ ε2 to the homogenized limits of
their respective modified equations, which are different from the long-time statistical limit
of the original deterministic multi-scale system.
We consider the deterministic multi-scale system (1)–(2) with

f0(y) = ay, h(x) =
√
x, f(x, y) = b(c− x)y2,

so the slow dynamics is described by the continuous-time system

ẋ =
1

ε
a
√
xy + b(c− x)y2 .(29)

We choose here a = 0.1, b = 0.005 and c = 0.75. The slow dynamics is driven by y = ζ2+ ζ3
generated by a fast chaotic Rössler system

ε2ζ̇1 = −ζ2 − ζ3,(30)

ε2ζ̇2 = ζ1 + rζ2,(31)

ε2ζ̇3 = s+ (ζ1 − u)ζ3 ,(32)

with r = s = 0.25 and u = 7. We will compare the results of a numerical integration of
this deterministic multi-scale system using first and second order discretization methods to
results from the associated limiting homogenized SDE of this system, describing the long-
time statistical behavior.
The diffusive limiting equation of the multi-scale dynamical system (29)–(32) can be ob-
tained via the homogenization techniques presented in Section 2 and is given by the Cox-
Ingersoll-Ross (CIR) model [4, 5]

dX = σa
√
X dWt + 2αb(β −X) dt,(33)

where Wt is unit 1-dimensional Brownian motion. The parameters are:

α =
1

2
E[y2],(34)

σ2 = 2

∫ ∞

0

E[(ϕty)y] dt,(35)

β = c+
σ2a2

8αb
.(36)

To approximate α, an ensemble simulation of the (unscaled) Rössler system was carried out
using a 1000-member ensemble on a time interval t ∈ [0, 3.2 × 104] with initial conditions
drawn approximately from µ (see below). We obtain α = 28.4 ± 0.1. To estimate σ2

we solve wn+1 = wn + ε∆t yn where ∆t = κ ε2 and κ = 0.5. Then for a time series of

length N = ⌊1/ε2⌋, wN ∼ ∆t√
N

∑N−1

j=1 yj is approximate Brownian motion with variance

V[wN ] = σ2N∆t. In this way the diffusivity is estimated as σ2 ≈ 0.140 ± 0.002.
The Cox-Ingersoll-Ross (CIR) model (33) has the closed form solution

X(t)

c(t)
∼ H(t), c(t) =

σ2a2

8αb
(1− e−2αbt),(37)
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where H(t) is a noncentral χ-squared distribution with 8αβb/(a2σ2) degrees of freedom and
noncentrality parameter c(t)−1e−2αbtX(0).

To numerically integrate the two-scale system (29)–(32) we use a multiple time-stepping
approach [22], with a step size ∆t = κ ε2 for (29) and step size δt = ∆t/K for the fast subsys-
tem (30)–(32). For our illustration we choose successively ε ∈ {0.05, 0.025, 0.0125, 0.00625}
and integrate over the interval t ∈ [0, 2.5] using κ = 0.5 and K = 50. For this scaling of time
step the fast dynamics (30)–(32) is well resolved but is not solved with increasing accuracy
in the limit ε → 0. The probability density function (pdf) of x(t) is estimated using an
ensemble with 160000 members. Each member starts from x(0) = 1 but observes a distinct
time series y(t). Each member initial condition y(0) is drawn from the invariant measure µ
by letting a randomly drawn initial condition relax onto the attractor over a transient time
of length 25. We initially compare two different numerical discretizations of the multi-scale
system (29)–(32). Applied to the generic differential equation

ẋ(t) = v(x(t), y(t)),

these methods are: the forward Euler method

(38) xn+1 = xn +∆t v(xn, yn),

and the second order Runge-Kutta method (Heun’s method)

(39) xn+1 = xn +
∆t

2
[v(xn, yn) + v (xn +∆tv(xn, yn), yn+1)] .

In the above equations yn denotes the approximation to y(tn) obtained from nK steps of
size δt.
When the slow dynamics (29) is discretized using a forward Euler method (38) with time
step ∆t we obtain the map

xn+1 = xn +∆t
1

ε
a
√
xnyn +∆t b(c− xn)y

2
n.(40)

We compare the following probability density functions at time t = 2.5:

• [MS1] The empirical pdf of the multi-scale system (29)–(32) computed using the
forward Euler scheme (38).

• [MS2] The empirical pdf of the multi-scale system (29)–(32) computed using the
second order Runge-Kutta scheme (39).

• [HMC] The exact pdf (37) of the limiting homogenized stochastic CIR model (33)
with parameters α given by (34) and σ and β given by (35)–(36) associated with
the continuous-time model (29)–(32).

Empirical pdfs of the slow variable x are computed using Matlab’s histogram counter with
bin size ∆x = 0.005.

The rigorous homogenization results presented in Section 2 assert that the long-time
statistics of the full deterministic multi-scale system is described by the pdf [HMC]. Figure
1 shows convergence of the empirical pdfs of the numerically approximated multi-scale
system, obtained with the forward Euler ([MS1], left frame) and Runge-Kutta ([MS2], right
frame) methods for decreasing ε (dashed lines, with ε = 0.05 in blue, ε = 0.025 in red,
ε = 0.0125 in yellow, and ε = 0.00625 in purple). The exact pdf [HMC] is also indicated in
each frame (solid black line). Both numerically computed pdfs appear to converge, in the
limit ε → 0, ∆t = κ ε2, to a density with the wrong mean. The pdf [MS2] of the RK method
is significantly closer to [HMC] than is [MS1], but bias is nevertheless clearly present.
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Figure 1. Comparison of the pdfs of the numerically approximated multi-
scale system (29)–(32) with the exact density of the CIR model (37) at time
t = 2.5 for the forward Euler scheme (38) (left) and the second order Runge-
Kutta scheme (39) (right). In each plot the solid black line indicates the
exact pdf associated with the homogenized CIR model (33) for the actual
time-continuous multi-scale system (29)–(32) (i.e. with parameters (34)–
(36)). The dashed lines indicate the empirical probability density function
for the numerical simulations of the continuous-time multi-scale system (29)–
(32) for ε = 0.05 (blue), 0.025 (red), 0.0125 (yellow), and 0.00625 (purple).

For the first order forward Euler discretization (40) the homogenized SDE (22) describing
the long-time behavior of the slow motion is also given by the CIR model (33), but now
with parameters

α =
1

2
E[y2],(41)

σ̂2 = E[y2] + 2
∞
∑

n=1

E[(Φn y)y] = lim
n→∞

n−1
E[(

n−1
∑

j=0

Φj y)2],(42)

β = c+
σ̂2∆t a2

8αb
− ∆ta2

4b
,(43)

and σ̂2∆t ≈ σ2. Note that the only difference in the homogenized CIR systems associated
with the continuous-time multi-scale system (1)–(2) and the discrete Euler map (40) is in
the parameter β (cf. (36) and (43)). For a2/b ≫ 1 and σ2/4α ≪ 1 this difference is large and
may cause significant discrepancy between the statistics of the continuous-time multi-scale
system (29)–(32) and its first order Euler discretization (40). The latter condition, σ2/4α =
∫∞
0

E[(ϕty)y] dt/E[y2] ≪ 1 puts a requirement on the decay of the fast dynamics and states

that the fast dynamics should be far from i.i.d. with σ2 = 2E[y2]. This requirement is
satisfied for the Rössler system (30)–(32) with the parameters r = s = 0.25 and u = 7.
For these parameters the autocorrelation function has a slow decay and E[y2] ≫ σ2/2. For
comparison, we introduce an additional pdf:
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• [HMD] The exact pdf (37) of the limiting homogenized stochastic CIR model (33)
with parameters α given by (34) and σ and β given by (42)–(43) associated with
the discrete Euler model (40).

The backward error analysis presented in Section 3 predicts that the empirical pdf [MS1] of
the Euler method may be better approximated by the pdf [HMD], derived by homogenizing
the modified equation of the Euler method. Figure 2 confirms this prediction, showing that
as ε → 0, the statistical behavior of the discrete Euler scheme is well described by the
pdf of its associated homogenized stochastic CIR model. The extra drift term E in the
homogenized discrete model leads to an error of 16% in the mean of the pdf [HMD] with
respect to the mean of the pdf of the original continuous time multi-scale system (29)–(32)
to be modelled [HMC].

We remark that for fast chaotic dynamics with rapidly decaying autocorrelation function
such as the Lorenz 63 system with the classical parameters, we have E[y2] ≈ σ2/2. The
homogenized equation of the full multi-scale dynamics and its first order Euler discretization
will be close (cf. (36) and (43)), and a first order discretization would be sufficient to capture
the long-time statistics of the slow dynamics.
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Figure 2. Comparison of the pdfs of the numerically approximated multi-
scale system (29)–(32) with the exact density of the homogenized modified
equation model at time t = 2.5 for the forward Euler scheme (38). The solid
black line indicates the exact pdf associated with the homogenized modified
equation (33) of the Euler scheme (i.e. with parameters (41)-(43)). The
dashed lines indicate the empirical probability density function computed
with the forward Euler approximation (40) applied to the continuous-time
multi-scale system (29)–(32) for ε = 0.05 (blue), 0.025 (red), 0.0125 (yellow),
and 0.00625 (purple).

Finally, the backward error analysis of the second order Taylor method (18) indicates
there is no error in the drift (28) to O(κ3) for this method. Indeed, Figure 3 confirms this
result, illustrating that the empirical pdf of the Taylor method closely matches that of the
pdf [HMC] as ε → 0. In fact both the mean and the variance of the distribution closely
match that of the pdf [HMC], suggesting that errors in the diffusion parameter are also
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small for this parameter regime. The excellent approximation of the drift makes the Taylor
method an attractive alternative for multi-scale problems with stochastic limit behavior.
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Figure 3. Comparison of the pdfs of the numerically approximated multi-
scale system (29)–(32) with the exact density of the CIR model (37) at
time t = 2.5 for the second order Taylor method (18). The solid black
line indicates the exact pdf associated with the homogenized CIR model
(33) for the actual time-continuous multi-scale system (29)–(32) (i.e. with
parameters (34)–(36)). The dashed lines indicate the empirical probability
density function computed with the second order Taylor method (18) applied
to the continuous-time multi-scale system (29)–(32) for ε = 0.05 (blue), 0.025
(red), 0.0125 (yellow), and 0.00625 (purple).

5. Summary

To summarize, using backward error analysis we have demonstrated that the extraneous
drift term (10) that arises in homogenization of the discrete map (5) compared to homoge-
nization of the flow (1)–(2) can be traced to the relation between the map (5) and a forward
Euler discretization of (1)–(2) with large step size ∆t = 1. In particular, we relate this drift
term which appears in the literature of homogenization for discrete time systems [15] and
which neither corresponds to an Itô nor to a Stratonovich interpretation of the SDE to
discretization errors of first order schemes using backward error analysis. We have shown
that the local first order errors contribute to a well-defined drift error, leading to potentially
strong bias, in the long-time statistical behavior. The accumulated local error, as quantified
by the backward error analysis, was shown to account for the long-time statistical error of
the discretization scheme as provided by homogenization theory.

We further quantified the requirement for a dynamical system such that its Euler scheme
discretization reliably recovers its long-time statistical behavior. In particular, we found
that for sufficiently rapidly decaying fast dynamics an Euler scheme is sufficient. On the
contrary, the failure of first order discretization methods to capture the statistics of the
full continuous-time multi-scale system was shown to be exacerbated if the fast dynamics
exhibits slow decay of correlations. We remark that the slow decay of correlation is not
hampering the validity of the homogenized limit system and the validity of the underlying
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functional central limit theorem which is assured solely by requiring ε ≪ 1. The difference
is entirely given by the failure to match the limiting homogenized SDE of the first order dis-
cretization with the limiting homogenized SDE associated with the original time-continuous
multi-scale system.

Here we discussed deterministic skew product systems of the form (1)–(2). In order to
obtain a stochastic homogenized equation for the slow dynamics, the fast dynamics is re-
quired to support an ergodic invariant measure and generate an integrable autocorrelation
function of f0 (cf. the Green-Kubo formula (4)). Hence the conclusions drawn here for the
deterministic setting remain valid in the case when the fast dynamics is stochastic. For
a large class of stochastic ordinary differential equations stochastic integrators were con-
structed which accurately approximate the invariant measure [1]. Their construction also
uses the framework of modified equations and the analysis is not restricted to the multi-
scale setting. It would be interesting to compare the higher order methods developed there
in the multi-scale setting considered here. This is a topic for further research.

In this article, we have examined the limit ε → 0, ∆t ∼ O(ε2) in multi-scale systems
(1)–(2) which approach a rigorous SDE limit under homogenization. In this limit, with
constant κ = ∆t/ε2 > 0, the fast motion of the system remains resolved, but does not

converge as ∆t → 0. The limit is achieved by choosing K to be sufficiently large and κ/K
to be sufficiently small. Our numerical experiments demonstrate significant bias in the pdf
of the slow variables in the limit ∆t → 0 under this scaling. This bias may be mitigated by
reducing the ratio κ = ∆t/ε2 in the numerical experiments as the bias is multiplied by κ
(cf. 10). However, full convergence requires κ = ∆t/ε2 → 0 as ε → 0.
We assumed throughout that the fast dynamics is numerically sufficiently resolved such
that the statistical properties, e.g. the auto-correlation structure, is sufficiently reproduced.
If this were not the case, errors arising from the flow map associated with the fast modified
equation enter the Green-Kubo formulae (see, for example, (25) for the Euler method)
implying errors in the diffusion coefficient in addition to the bias error.

We remark that special numerical methods are often specifically tailored to multi-scale
problems to accommodate time steps that are large with respect to the fast time scale. It is
precisely in this regime that statistical bias may occur. The implication of this for numerical
integration of multi-scale systems is that, to avoid statistical bias, it may be important to
use a higher order method for the slow variables. The second order Taylor method (18)
offers an interesting alternative here, as it may be efficiently implemented and is unbiased
with respect to the drift up to O(∆t3). To avoid statistical bias altogether, one might want
to solve the actual limiting SDE instead of the deterministic multi-scale system provided
that ǫ is sufficiently small to allow for the central limit theorem to hold.
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