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A variational method for analyzing stochastic limit cycle oscillators∗

Paul C. Bressloff† and James N. MacLaurin‡

Abstract. We introduce a variational method for analyzing limit cycle oscillators in R
d driven by Gaussian

noise. This allows us to derive exact stochastic differential equations (SDEs) for the amplitude
and phase of the solution, which are accurate over times over order exp

(

Cbǫ
−1

)

, where ǫ is
the amplitude of the noise and b the magnitude of decay of transverse fluctuations. Within the
variational framework, different choices of the amplitude-phase decomposition correspond to
different choices of the inner product space R

d. For concreteness, we take a weighted Euclidean
norm, so that the minimization scheme determines the phase by projecting the full solution on
to the limit cycle using Floquet vectors. Since there is coupling between the amplitude and
phase equations, even in the weak noise limit, there is a small but non-zero probability of a rare
event in which the stochastic trajectory makes a large excursion away from a neighborhood of
the limit cycle. We use the amplitude and phase equations to bound the probability of it doing
this: finding that the typical time the system takes to leave a neighborhood of the oscillator
scales as exp

(

Cbǫ
−1

)

.
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1. Introduction. A well-studied problem in dynamical systems theory is the con-
struction and analysis of phase equations for stochastic limit cycle oscillators [7, 17]. For
example, consider the Ito stochastic differential equation (SDE) on R

d,

du = F (u)dt+
√
ǫG(u)dW (1.1)

where ǫ > 0 determines the noise strength and Wt is a vector of (correlated) Brownian
motions with covariance Q ∈ R

d×d,

E
[
W (t)W⊤(t)

]
= tQ.

Suppose that the deterministic equation for ǫ = 0,

du

dt
= F (u), u ∈ R

d (1.2)

with F ∈ C2 has a stable periodic solution u = U(t) with U(t) = U(t + ∆0), where
ω0 = 2π/∆0 is the natural frequency of the oscillator. In state space the solution is an
isolated attractive trajectory called a limit cycle. The dynamics on the limit cycle can be
described by a uniformly rotating phase such that

dθ

dt
= ω0, (1.3)
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and u = Φ(θ(t)) with Φ a 2π-periodic function. Note that the phase is neutrally stable with
respect to perturbations along the limit cycle – this reflects invariance of an autonomous
dynamical system with respect to time shifts. Turning to the SDE (1.1), let us assume that
the noise amplitude ǫ is sufficiently small given the rate of attraction to the limit cycle,
so that deviations transverse to the limit cycle are also small (up to some exponentially
large stopping time). This suggests that the definition of a phase variable persists in
the stochastic setting, and one can derive a stochastic phase equation. However, there is
not a unique way to define the phase, which has led to two complementary methods for
obtaining a stochastic phase equation: (i) the method of isochrons [23, 10, 18, 25, 22], and
(ii) an explicit amplitude-phase decomposition [11, 14, 4]. (See also the recent survey by
Ashwin et al [2].) A major point to note is that while many of the current definitions of
the stochastic phase are only accurate on timescales of O(ǫ−1), the oscillator will typically
stay in a neighborhood of the limit cycle for times of order O

(
exp(Cbǫ−1)

)
(where b is the

rate of decay of transverse fluctuations), and it is therefore desirable to have a definition
of the phase on these much longer timescales. This is particularly important, since many
of the cited papers are explicitly trying to study the long-time ergodic behavior of the
oscillator.

In this paper, we introduce a variational method for carrying out the amplitude-phase
decomposition, which yields exact SDEs for the amplitude and phase, similar to those
recently obtained in [4] using the implicit function theorem. In addition to simplifying the
derivation of these equations, the variational method provides a more general framework
for analyzing stochastic dynamical systems with marginally stable degrees of freedom, see
for example [13, 16, 12]. Within the variational framework, different choices of phase
correspond to different choices of the inner product space R

d. For concreteness, we take
a weighted Euclidean norm, so that the minimization scheme determines the phase by
projecting the full solution on to the limit cycle using Floquet vectors. Hence, in a neigh-
borhood of the limit cycle the phase variable coincides with the isochronal phase [4]. This
has the advantage that the amplitude and phase decouple to linear order.

In addition, our variational method provides an explicit analytic expression for the
phase SDE, which is accurate for exponentially long times, as well as a precise formula
for determining the phase given any particular realization of the SDE for ut. More signif-
icantly, since the stochastic phase and amplitude do couple even in the weak noise limit,
there is a small but non-zero probability of a rare event in which the stochastic trajec-
tory makes a large excursion away from an O(ǫρ) neighborhood of the limit cycle, for any
ρ < 1/2. In this paper, we use the exact amplitude and phase equations to derive strong
exponential bounds on the growth of transverse fluctuations. More precisely, we show
that the expectation of the time it takes to leave an O(ǫρ) neighbourhood of the limit
cycle scales as exp

(
Cbǫ2ρ−1

)
, for a constant C, where b is the magnitude of decay of the

transverse fluctuations. These bounds are thus very useful in both the small noise limit,
and the limit of strong decay of transverse fluctuations (as discussed in [22, 19]). Indeed
they are accurate for finite ǫ/b and are more flexible and powerful than classical large
deviations bounds. Our method is novel and uses a rescaling of time to demonstrate that
the leading order behavior of the amplitude term is that of a stable Ornstein-Uhlenbeck
Process. These bounds also mean that the SDE for the phase defined in §2 is well-defined
for times of order exp

(
Cb/ǫ

)
.

In the remainder of this section we briefly review the two main phase reduction meth-
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ods. The variational formulation is introduced in §2, where we derive the exact amplitude
and phase equations using Ito’s lemma. In §3 we carry out a perturbation expansion in
the weak noise limit and compare the resulting phase equation with previous versions.
Finally, exponential bounds on transverse fluctuations are derived in §4.

1.1. Isochrons and phase–resetting curves. Suppose that we observe the unper-
turbed system (1.2) stroboscopically at time intervals of length ∆0. This leads to a
Poincare mapping

u(t) → u(t+∆0) ≡ P(u(t)).

This mapping has all points on the limit cycle as fixed points. Choose a point u∗ on the
cycle and consider all points in the vicinity of u∗ that are attracted to it under the action
of P. They form a (d − 1)-dimensional hypersurface I, called an isochron, crossing the
limit cycle at u∗ (see Fig. 1.1) [24, 15, 9, 5]. A unique isochron can be drawn through each
point on the limit cycle (at least locally) so the isochrons can be parameterized by the
phase, I = I(θ). Finally, the definition of phase is extended by taking all points u ∈ I(θ)
to have the same phase, Θ(u) = θ, which then rotates at the natural frequency ω0 (in the
unperturbed case). Hence, for an unperturbed oscillator in the vicinity of the limit cycle
we have

ω0 =
dΘ

dt
=

d∑

k=1

∂Θ

∂uk

duk
dt

=
d∑

k=1

∂Θ

∂uk
Fk(u).

Now consider the deterministically perturbed system

du

dt
= F (u) +

√
ǫG(u, t), (1.4)

where G is a ∆-periodic function of t, say. Keeping the definition of isochrons for the
unperturbed system, one finds that to leading order

dΘ

dt
=

d∑

k=1

∂Θ

∂uk
(Fk(u) +

√
ǫGk(u, t)) = ω0 +

√
ǫ

d∑

k=1

∂Θ

∂uk
Gk(u, t).

u*

I(θ)

Figure 1.1. Isochrones in the neighborhood of a stable limit cycle
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As a further leading order approximation, deviations of u from the limit cycle are ignored.
Hence, setting u(t) = Φ(ω0t) with Φ the 2π-periodic solution on the limit cycle,

dΘ

dt
= ω0 +

√
ǫ

d∑

k=1

∂Θ

∂uk

∣∣∣∣
u=Φ

Gk(Φ, t).

Finally, since points on the limit cycle are in 1:1 correspondence with the phase θ, one can
set U = U(θ) and Θ(U(θ)) = θ to obtain the closed phase equation

dθ

dt
= ω0 +

√
ǫ

d∑

k=1

Rk(θ)Gk(Φ(θ), t) (1.5)

where

Rk(θ) =
∂Θ

∂uk

∣∣∣∣
u=Φ(θ)

(1.6)

is a 2π-periodic function of θ known as the kth component of the phase response curve
(PRC).

It is well known that the PRC R(θ) can also be obtained as a 2π-periodic solution of
the linear equation [6, 7, 17]

ω0
dR(θ)

dθ
= −J(θ)⊤ · R(θ), (1.7)

with the normalization condition

R(θ) · dΦ(θ)
dθ

= 1. (1.8)

Here J(θ)⊤ is the transpose of the Jacobian matrix J(θ), i.e.

Jjk(θ) ≡
∂Fj

∂uk

∣∣∣∣
u=Φ(θ)

. (1.9)

It should be noted that we can evaluate the multiplication of the Jacobian by the derivative
of Φ by differentiating the unperturbed ODE on the limit cycle,

ω0
dΦ

dθ
= F (Φ(θ)),

with respect to θ. This gives

d

dθ

(
dΦ

dθ

)
= ω−1

0 J(θ) · dΦ
dθ

, (1.10)

The next step is to assume that the above phase reduction procedure can also be
applied to the SDE (1.1). This would then lead to the stochastic phase equation

dθ = ω0dt+
√
ǫ

d∑

k,l=1

Rk(θ)Gkl(Φ(θ))dWl(t). (1.11)

4



SIAM J. APPLIED DYNAMICAL SYSTEMS c© Society for Industrial and Applied Mathematics
Vol. , pp.

However, this does not take proper account of stochastic calculus as expressed by Ito’s
lemma [8]. That is, the phase reduction procedure assumes that the ordinary rules of
calculus apply. In the stochstic setting, this only holds if the multiplicative white noise
term in equations (1.1) and (1.11) are interepreted in the sense of Stratonovich. However,
the Ito form of the stochastic phase equation is more useful when calculating correlations,
for example. Hence, converting equation (1.11) from Stratonovich to Ito using Ito’s lemma
gives [25, 22]

dθ =

[
ω0 + ǫ

d∑

k=1

Z ′
k(θ)QklZl(θ)

]
dt+

√
ǫ

d∑

k,l=1

Zk(θ)dWl(t), (1.12)

where we have set

Zl(θ) =

d∑

k=1

Rk(θ)Gkl(Φ(θ)). (1.13)

Hence, Ito’s lemma yields an O(ǫ) contribution to the phase drift. Another subtle feature
of the stochastic phase reduction procedure is that another O(ǫ) contribution occurs when
taking into account perturbations transverse to the limit cycle [25]. However, the latter
contribution is negligible if the limit cycle is strongly attracting [22].

1.2. Amplitude-phase decomposition. An alternative way to derive a stochastic-
phase equation is to explicitly decompose the solution of (1.1) into longitudinal (phase)
and transverse (amplitude) fluctuations of the limit cycle [3, 14, 4]. The basic intuition
is that Gaussian-like transverse fluctuations are distributed in a tube of radius 1/

√
ǫ (up

to some stopping time), whereas the phase around the limit cycle undergoes Brownian
diffusion. Thus, the solution is decomposed in the form

u(t) = Φ(ω0t+ θ(t)) +
√
ǫv(t), (1.14)

where the scalar random variable θ(t) represents the undamped random phase shift along
the limit cycle, and v(t) is a transversal perturbation, see Fig. 1.2. Since there is no

Φ(ω0t)

u(t)

Φ(ω0t+θ(t))

√εv(t)

Figure 1.2. Decomposition of the stochastic solution u(t) into a random phase shift θ(t) along the
deterministic limit cycle and a random transversal component

√

ǫv(t).
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x(0)

isochron

θ(t)

x(0)

vt

x(t)

θ(t)
Φ’(θ)

R(θ)

(a) (b)

x(t)

Figure 1.3. The two different projection schemes highlighted in Ref. [4]. (a) Orthogonal projection with
respect to the Euclidean norm of the solution x(t) at time t on to the limit cycle. Response to perturbations
depends on the tangent vector to the limit cycle, Φ′(θ) (b) The method of isochrons determines the phase
θ(t) by tracing where the isochron through x(t) intersects the limit cycle.The response to perturbations
depends on the phase response curve R(θ), which is normal to the isochron at the point of intersection with
the limit cycle.

damping of fluctuations along the limit cycle, the random phase θ(t) is taken to undergo
Brownian motion. However, it is important to note that the decomposition (1.14) is not
unique, so that the precise definition of the phase depends on the particular method of
analysis. For example, one study defines the phase so that there is no drift [14]. On the
other hand, Gonze et al. [11] focus on determining an effective phase diffusion coefficient
based on a WKB approximation of solutions to the corresponding Fokker-Planck equation.
Finally, Bonnin [4] combines an amplitude-phase decomposition with Floquet theory to
show that if Floquet vectors are used, then the resulting phase variable in a neighborhood
of the limit cycle coincides with the asymptotic phase based on isochrons, see Fig. 1.3.

2. Variational method. Suppose that the deterministic ODE

dut
dt

= F (ut), ut ∈ R
d (2.1)

supports a stable periodic solution of the form ut = Φ(ω0t) with Φ(ω0t + 2πn) = Φ(t)
for all integers n, and ∆0 = 2π/ω0 is the fundamental period of the oscillator. We are
interested in deriving a stochastic equation for the effective phase of the oscillator when
the system is perturbed by weak noise. Therefore, consider the Ito SDE∗

dut = F (ut)dt+
√
ǫG(ut)dWt (2.2)

where ǫ > 0 determines the noise strength. Here Wt is a vector of (potentially correlated)
Brownian motions with covariance Q ∈ R

d×d,

E
[
WtW

⊤
t

]
= tQ.

In the above, G is a Lipschitz map from R
d → R

d×d. Throughout this paper, for any
matrix A, ‖A‖ denotes the spectral norm. We assume a uniform bound on the spectral

∗It would be straightforward to extend the results of the paper if we were to interpret the stochastic
integrals in the Stratonovich sense.
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norm of G, i.e. there exists a constant λG such that

sup
u∈Rd

‖G(u)‖ ≤ λG. (2.3)

In the presence of noise we wish to decompose the solution ut into two components:
the ‘closest’ point of Φ(βt) to ut for a R

d-valued process βt, and an ‘error’ vt that represents
the amplitude of transversal fluctuations:

ut = Φ(βt) +
√
ǫvt, vt ∈ R

d. (2.4)

However, as pointed out in §1.2, such a decomposition is not unique unless we impose
an additional mathematical constraint. We will adapt a variational principle previously
introduced by Inglis and Maclaurin [13] within the context of traveling waves in stochastic
neural fields. First, we must introduce a little Floquet Theory.

2.1. Floquet decomposition and weighted norm. For any 0 ≤ t, define Π(t) ∈ R
d×d

to be the following Fundamental matrix for the ODE

dz

dt
= J(t)z (2.5)

for J(t) = J(ω0t). That is, Π(t) :=
(
z1(t)|z2(t)| . . . |zd(t)

)
, where zi(t) satisfies (2.5),

z1(0) = Φ′(0), and {zi(0)}di=1 is an orthogonal basis for R
d. Floquet Theory states that

there exists a diagonal matrix S = diag(ν1, . . . , νd) whose diagonal entries are the Floquet
characteristic exponents, such that

Π
(
t
)
= P

(
ω0t

)
exp

(
tS

)
P−1(0), (2.6)

with P (θ) a 2π-periodic matrix whose first column is Φ′(ω0t), and ν1 = 0. That is,
P (θ)−1Φ′(θ) = e with ej = δ1,j . In order to simplify the following notation, we will
assume throughout this paper that the Floquet multipliers are real and hence P (θ) is a
real matrix. One could readily generalize these results to the case that S is complex. The
limit cycle is taken to be stable, meaning that for a constant b > 0, for all 2 ≤ i ≤ d,

νi ≤ −b. (2.7)

It follows from the fact that F ∈ C2 and P ∈ C2. Furthermore P−1(θ) exists for all θ,
since Π−1(t) exists for all t.

The above Floquet decomposition motivates the following weighted inner product: For
any θ ∈ R, denoting the standard Euclidean dot product on R

d by 〈·, ·〉,

〈u, v〉θ =
〈
P−1(θ)u, P−1(θ)v

〉
,

and ‖u‖θ =
√
〈u, u〉θ . This weighting is useful for two reasons: it leads to a leading

order separation of the phase from the amplitude (see §3), and it facilitates the strong
bounds of §4 because the weighted amplitude always decays, no matter what the phase.
The former is a consequence of the fact that the matrix P−1(θ) generates a coordination
transformation in which the phase in a neighborhood of the limit cycle coincides with the
asymptotic phase defined using isochrons (see also [4]). This is reflected by the following
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relationship between the tangent vector to the limit cycle, Φ′(θ), and the PRC R(θ) of
equation (1.6):

M(θ)P⊤(θ)R(θ) = P−1(θ)Φ′(θ), (2.8)

where

M(θ) :=
∥∥P−1(θ)Φ′(θ)

∥∥2 . (2.9)

We will proceed by defining R(θ) according to equation (2.8) and showing that it
satisfies the adjoint equation (1.7). We will need the relation

ω0P
′(θ) = J(θ)P (θ)− P (θ)S, (2.10)

which can be obtained by differentiating (2.6). Differentiating both sides of equation (2.8)
with respect to θ, we have

M
′P⊤R+MP TR′ +M(P⊤)′R = P−1Φ′′ + (P−1)′Φ′, (2.11)

with

M
′ = 2

〈
P−1Φ′′ + (P−1)′Φ′, P−1Φ′

〉
.

Equation (2.10) implies that

ω0(P
⊤(θ))′ = P⊤(θ)J⊤(θ)− SP⊤(θ)

and

ω0(P
−1(θ))′ = −P−1(θ)J(θ) + SP−1(θ).

We have used the fact that S is a diagonal matrix and P−1P ′ + (P−1)′P = 0 for any
square matrix. Substituting these identities in equation (2.11) yields

M
′P⊤R+MP T (R′ + ω−1

0 J⊤R)− ω−1
0 MSP⊤R

= P−1[Φ′′ − ω−1
0 JΦ′] + ω−1

0 SP−1Φ′,

and

M
′ =

〈
P−1[Φ′′ − ω−1

0 JΦ′] + ω−1
0 SP−1Φ′, P−1Φ′

〉
.

Now note that Φ′ satisfies equation (1.10) and SP−1Φ′ = 0. The latter follows from the
condition P (θ)−1Φ′(θ) = e and Se = ν1 = 0. It also holds that M

′(θ) = 0. (In fact, for
the specific choice of P (θ), we have M(θ) = 〈e, e〉 = 1.) Finally, from the definition of
(R(θ), equation (2.8), we deduce that SP⊤(θ)R(θ) = 0 and hence

MP T (R′ + ω−1
0 J⊤R) = 0.

Since P T (θ) is non-singular for all θ, R satisfies equation (1.7) and can thus be identified
as the PRC.
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2.2. Defining the stochastic phase using a variational principle. We can now state
the variational principle for the stochastic phase: βt is determined by requiring βt = at(θt),
where at(θt) for a prescribed time dependent weight θt is a local minimum of the following
variational problem:

inf
a∈N (a(θt))

‖ut −Φ(a)‖θt = ‖ut − Φ(at(θt))‖θt , (2.12)

with N
(
at(θt)

)
denoting a sufficiently small neighborhood of at

(
θt
)
. The minimization

scheme is based on the orthogonal projection of the solution on to the limit cycle with
respect to the weighted Euclidean norm at some θt. We will derive an exact SDE for βt
(up to some stopping time) by considering the first derivative

G0(z, a, θ) :=
∂

∂a
‖z − Φ(a)‖2θ = −2

〈
z − Φ(a),Φ′(a)

〉
θ
. (2.13)

At the minimum,

G0(ut, βt, θt) = 0. (2.14)

We stipulate that the location of the weight must coincide with the location of the mini-
mum, i.e. βt = θt, so that βt must satisfy the implicit equation

G(ut, βt) := G0(ut, βt, βt) = 0. (2.15)

It will be seen that, up to a stopping time τ , there exists a unique continuous solution to
the above equation. Note that we could have defined βt according to

inf
a∈N (βt)

‖ut − Φ(a)‖a = ‖ut − Φ(βt)‖βt
, (2.16)

which might seem more intuitive. However to leading order in (ut−Φ(βt)), the above two
schemes are equivalent, and we prefer the former because it leads to simpler equations.

Define M(z, a) ∈ R according to

M(z, a) :=
1

2

∂G(z, a)
∂a

=
1

2

∂G0(z, a, θ)

∂a

∣∣∣∣
θ=a

+
1

2

∂G0(z, a, θ)

∂θ

∣∣∣∣
θ=a

= 1−
〈
z − Φ(a),Φ′′(a)

〉
a
−

〈
z − Φ(a),

d

da

[
P−⊤(a)P−1(a)

]
Φ′(a)

〉
, (2.17)

where we have used the fact that ‖Φ′(a)‖2a = 1, which we proved in the previous section.
Assume that initially M(u0, β0) > 0. We then seek an SDE for βt that holds for all times
less than the stopping time τ

τ = inf{s ≥ 0 : M(us, βs) = 0}. (2.18)

The implicit function theorem guarantees that a unique continuous βt exists until this
time. It is a consequence of Theorem 4.1 in the next section that there exists constants
C, C̃ > 0 such that

P

(
τ ≤ exp

(
Cbǫ−1

))
≤ exp

(
− C̃bǫ−1

)
,

9
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where we recall that b is the lower bound on the rate of decay of the Floquet exponents.
In order to derive the SDE for βt, we apply Ito’s lemma to the identity

dGt := dG(ut, βt) = 0, (2.19)

with dut given by equation (2.2) and dβt taken to satisfy an SDE of the form

dβt = V (ut, βt)dt+
√
ǫ 〈B(ut, βt), G(ut)dWt〉βt

, (2.20)

for functions V and B that we determine below. Using the definition of G(ut, βt, βt), dGt

is found to be

dGt =− 2
〈
dut,Φ

′(βt)
〉
βt

+
∂Gt

∂a

∣∣∣∣
a=βt

dβt +
1

2

∂2Gt

∂a2

∣∣∣∣
a=βt

dβtdβt − 2
〈
dut,Φ

′′(βt)dβt
〉
βt

− 2

〈
dut,

d

da

[
P−⊤(a)P−1(a)

]∣∣
a=βt

Φ′(βt)
〉
dβt. (2.21)

Note that we only include the dt contributions from the quadratic differential terms in-
volving the products dutdβt and dβtdβt, which are also known as cross-variations. In
particular, writing K(ut, βt) = G⊤(ut)[P (βt)P

⊤(βt)]−1,

dβtdβt=̂ǫ 〈K(ut, βt)B(ut, βt), QK(ut, βt)B(ut, βt)〉 dt, (2.22)

〈
dut,Φ

′′(βt)dβt
〉
βt

=̂
√
ǫ
〈
G(ut)dWt,Φ

′′(βt)dβt
〉
βt

=̂ǫ
〈
G(ut)dWt,Φ

′′(βt)〈B(ut, βt), G(ut)dWt〉βt

〉
βt

=̂ǫ
〈
K(ut, βt)Φ

′′(βt), QK(ut, βt)B(ut, βt)
〉
dt. (2.23)

and

〈
dut,

d

da

[
P−⊤(a)P−1(a)

]∣∣
a=βt

Φ′(βt)
〉
dβt

= ǫ

〈
G⊤(ut)

d

da

[
P−⊤(a)P−1(a)

]∣∣
a=βt

Φ′(βt), QK(ut, βt)B(ut, βt)

〉
. (2.24)

Substituting equations (2.20), (2.22) and (2.23) into equation (2.21) yields an SDE of
the form

dGt = V(ut, βt)dt+
√
ǫ〈B(ut, βt), G(ut)dWt〉βt

. (2.25)

In order that (2.19) is satisfied, we require that both terms on the right-hand side of the
above equation are zero, which will determine V and B. First, we have

0 :=
1

2
〈B(ut, βt), G(ut)dWt〉βt

= M(ut, βt) 〈B(ut, βt), G(ut)dWt〉βt

−
〈
G(ut)dWt,Φ

′(βt)
〉
βt

.

Since for all times less than τ , M(ut, βt) > 0, it follows that M−1 exists, and hence

B(ut, βt) = M(ut, βt)
−1Φ′(βt). (2.26)
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Second,

0 := V(ut, βt)dt =
[
∂Gt

∂a

∣∣∣∣
a=βt

V (ut, βt)− 2
(〈

F (ut),Φ
′(βt)

〉
βt

dt+ ǫκ(ut, βt)
)]

dt, (2.27)

with

ǫκ(ut, βt)dt := −1

4

∂2Gt

∂a2

∣∣∣∣
a=βt

dβtdβt +
〈
dut,Φ

′′(βt)dβt
〉
βt

+

〈
dut,

d

da

[
P−⊤(a)P−1(a)

]∣∣
a=βt

Φ′(βt)
〉
dβt. (2.28)

The cross-variations (2.22) and (2.23) can now be evaluated using equation (2.26):

dβtdβt=̂ǫM(ut, βt)
−2

〈
K(ut, βt)Φ

′(βt), QK(ut, βt)Φ
′(βt)

〉
dt, (2.29)

〈
dut,Φ

′′(βt)dβt
〉
βt

=̂ǫM(ut, βt)
−1

〈
K(ut, βt)Φ

′′(βt), QK(ut, βt)Φ
′(βt)

〉
dt, (2.30)

and

〈
dut,

d

da

[
P−⊤(a)P−1(a)

]∣∣
a=βt

Φ′(βt)
〉
dβt

= ǫM(ut, βt)
−1

〈
G⊤(ut)

d

da

[
P−⊤(a)P−1(a)

]∣∣
a=βt

Φ′(βt), QK(ut, βt)Φ
′(βt)

〉
dt. (2.31)

Equations (2.27)–(2.30) determine the drift term V so that

dβt = M(ut, βt)
−1

[(〈
F (ut),Φ

′(βt)
〉
βt

+ ǫκ(ut, βt)
)
dt+

√
ǫ

〈
G(ut)dWt,Φ

′(βt)
〉

βt

]
,

(2.32)
where

κ(ut, βt) := M(ut, βt)
−1

〈
K(ut, βt)Φ

′′(βt), QK(ut, βt)Φ
′(βt)

〉

+M(ut, βt)
−1

〈
G⊤(ut)

d

da

[
P−⊤(a)P−1(a)

]∣∣
a=βt

Φ′(βt), QK(ut, βt)Φ
′(βt)

〉

+
M(ut, βt)

−2

2

[〈
ut − Φ(βt),Φ

′′′(βt)
〉

βt

−
〈
Φ′(βt),Φ′′(βt)

〉

βt

+

〈
ut − Φ(βt),

d2

da2
[
P−⊤(a)P−1(a)

]∣∣
a=βt

Φ′(βt)
〉

+ 2

〈
ut − Φ(βt),

d

da

[
P−⊤(a)P−1(a)

]∣∣
a=βt

Φ′′(βt)
〉

−
〈
Φ′(βt),

d

da

[
P−⊤(a)P−1(a)

]∣∣
a=βt

Φ′(βt)
〉]〈

K(ut, βt)Φ
′(βt), QK(ut, βt)Φ

′(βt)
〉
. (2.33)

Finally, recall that the amplitude term vt satisfies

√
ǫvt = ut − Φβt

. (2.34)
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Hence, applying Ito’s lemma

√
ǫdvt = dut − Φ′(βt)dβt −

1

2
Φ′′(βt)dβtdβt

=
[
F (ut)−M(ut, βt)

−1Φ′(βt)
(〈

F (ut),Φ
′(βt)

〉
βt

+ ǫκ(ut, βt)
)

− ǫ

2
Φ′′(βt)M(ut, βt)

−2
〈
K(ut, βt)Φ

′(βt), QK(ut, βt)Φ
′(βt)

〉]
dt

+
√
ǫ
[
G(ut)dWt −M(ut, βt)

−1Φ′(βt)
〈
G(ut)dWt,Φ

′(βt)
〉
βt

]
, (2.35)

where we have used equation (2.2), and the differentials dΦt = F (Φt)dt and dΦβt
=

Φ′dβt + 1
2Φ

′′dβtdβt.

3. Weak noise limit. In order to obtain a closed equation for βt we carry out a
perturbation analysis in the weak noise limit, and compare the variational phase equation
with various versions of the phase equations previously derived using isochronal phase
reduction methods, see §1.1. We demonstrate that the linearization of our phase equation
is accurate over timescales of order ǫ−1. This means that the timescale over which the
linearization of our phase equation is accurate is of the same order as the isochronal phase
equation. It should be noted that, as we explain in more detail in §5, our method possesses
the additional virtue of having an analytic SDE that is accurate over timescales of order
O(exp(Cbǫ−1)), where b is the rate of decay of transverse fluctuations.

Suppose that 0 < ǫ ≪ 1 and set ut = Φ(βt) on the right-hand side of equation (2.32).
That is, we drop any vt-dependent terms. Setting βt = θ, we obtain the explicit stochastic
phase equation

dθ = [ω0 + ǫκ̂(θ)]dt+
√
ǫ

〈
G(Φ(θ))dWt, R(θ)

〉
, (3.1)

with R(θ) identified as the normal to the isochron crossing the limit cycle at θ, see Fig.
1.3(b) and equation (2.8):

R(θ) = [PP⊤(θ)]−1Φ′(θ), (3.2)

since M(θ) = 1. We have used the identity
〈
Φ′(θ)

)
, R(θ)

〉
= 1, (3.3)

and F (Φ(θ)) = ω0Φ
′(θ). Equation (3.1) has a similar form to the isochronal phase equa-

tion (1.12). However, in contrast to the latter, there is no O(ǫ) contribution to the drift

of the form

〈
Z ′(θ), QZ(θ)

〉
since we take the noise in SDE (2.2) to be Ito rather than

Stratonovich. Thus, the O(ǫ) drift term κ̂(θ) in equation (3.1) is the analog of the contri-
butions from transverse fluctuations identified in [25, 22].

As highlighted by Bonnin [4], although neglecting the coupling between the phase
and amplitude dynamics by setting vt = 0 yields a closed equation for the phase, it does
lead to imprecision at short and intermediate times. (Errors at longer times due to large
deviations from the limit cycle will be addressed in §4.) Here we show that taking into
account the amplitude coupling only results in O(ǫ) contributions to the drift, not O(

√
ǫ).

Neglecting vt-independent O(ǫ) drift terms, equation (2.32) becomes

dβt =

〈
F (ut),R(ut, βt)

〉

βt

dt+
√
ǫ

〈
G(ut)dWt,R(ut, βt)

〉

βt

, (3.4)
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where

R(ut, βt) = M(ut, βt)
−1Φ′(βt). (3.5)

Suppose that we rewrite R as a function R̂ of βt and vt using equation (2.17): R(ut, βt) =
R̂(vt, βt) with

R̂(vt, βt) =

(
1−√

ǫ

〈
vt,Φ

′′(βt)
〉

βt

−√
ǫ

〈
vt,

d

da

[
P (a)P⊤(a)

−1]∣∣
a=βt

Φ′(βt)
〉)−1

Φ′(βt)

Let us define

H(v, θ) =
〈
F (Φ(θ) +

√
ǫv), R̂(v, θ)

〉
θ
. (3.6)

In the phase equation (3.1) we set v = 0 and used H(0, θ) = ω0. Suppose that we now
include higher-order terms by Taylor expanding H(v, θ) with respect to v. In particular,
consider the first derivative

∂H

∂v
(0, θ) · v =

√
ǫM−1

〈
J(θ) · v,Φ′(θ)

〉

θ

√
ǫM−2

〈
F
(
Φ(θ)),Φ′(θ)

〉

θ

[〈
v,Φ′′(θ)

〉

θ

+

〈
v,

d

da

[
P−⊤(a)P−1(a)

]∣∣∣∣
a=θ

Φ′(θ)
〉]

=
√
ǫ

〈
J(θ) · v,Φ′(θ)

〉

θ

+
√
ǫ ω0

d

dθ

〈
v,Φ′(θ)

〉

θ

,

since M(θ) = 1 and

〈
F
(
Φ(θ)),Φ′(θ)

〉

θ

= ω0. Observe that

〈
J(θ) · v,Φ′(θ)

〉

θ

=

〈
P−1(θ)J(θ) · v, P−1(θ)Φ′(θ)

〉

=

〈
J(θ) · v, [P (θ)P⊤(θ)]−1Φ′(θ)

〉

=

〈
v, J(θ)⊤ ·R(θ)

〉

= −ω0

〈
v,R′(θ)

〉

= −ω0

〈
v,

d

dθ

{[
P−⊤(θ)P−1(θ)

]
Φ′(θ)

}〉

= −ω0
d

dθ

〈
v,Φ′(θ)

〉

θ

,

where in the third last line we have used (1.7), and in the second last line we have used
(3.2).

We have thus proven that the phase equation decouples from the amplitude equation
at O(

√
ǫ), which is consistent with the analysis of [4]. Since the errors in the SDE are of

O(ǫ), this linearization of our phase equation is accurate over timescales of order O(ǫ−1),
which is the same order as the isochronal phase equation.
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4. Explicit bounds on the growth of the weighted amplitude ‖ut −Φ(βt)‖βt
. In

this section we obtain powerful bounds on how long it takes the weighted amplitude of the
orthogonal fluctuations, ‖ut − Φ(βt)‖βt

to exceed some value a. These bounds are valid
for ‖ut − Φ(βt)‖βt

= o(b), where b is the magnitude of the decay of transverse fluctuations,
and are useful in a variety of situations. One situation is in the limit of small noise as
ǫ → 0. Another situation where these bounds are useful is in the regime of finite noise (so
we do not take ǫ → 0), but a large decay of fluctuations that are transverse to the limit
cycle (i.e. large b) [22, 19]. These bounds are more powerful and flexible than classical
large deviations bounds, because both the neighborhood [0, a] and the time interval T can
vary with ǫ and b. The relative simplicity of the proof of this theorem provides further
justification for the phase decomposition outlined in the first half of this paper. It results
in a uniform lower bound for the decay of the transformed drift wt = P

(
βt
)−1

vt, which
means that after a rescaling of time using the Dambins-Dubins-Schwarz theorem [20], it
becomes straightforward to demonstrate that the amplitude term behaves like a stable
Ornstein-Uhlenbeck Process. This theorem can also be used to bound the probability of
the stopping time τ (defined in (2.18)) exceeding a certain value.

The following bounds are expressed in terms of the first hitting time of the scalar

Ornstein-Uhlenbeck Process, which we restate here. Let p
(−b)
x,a (t) be the density for the

first hitting time of the Ornstein Uhlenbeck process with drift gradient −b started at x.
More precisely, if

dYt =− bYtdt+ dWt, Y0 = x, (4.1)

for a one-dimensional Brownian Motion W , then

P

(
inf{s > 0 : Ys = κ} ∈ [t, t+ dt]

)
:= p(−b)

x,κ (t)dt. (4.2)

Let I(ǫ, b) ⊂ R
+ be the following closed interval

I(ǫ, b) =

{
a ∈ R

+ : C1ǫ+ C2a
2 ≤ ba

2
and

a ≤ 1

2

(
sup

α∈[0,2π]

∥∥∥∥Φ
′′(α)− d

dθ

[
P (θ)P⊤(θ)

]∣∣
θ=α

[P (α)P⊤(α)]−1Φ′(α
)∥∥∥∥

α

)−1}
, (4.3)

where C1 and C2 are positive constants (independent of ǫ and b) that are specified in
Lemma A.1. The second condition in the above definition is to ensure that the SDE for
βt is well-defined as long as ‖ut − Φ(βt)‖βt

∈ I(ǫ, b).
The following theorem obtains bounds on how long it takes ‖ut −Φ(βt)‖βt

to attain

any a in I(ǫ, b). The theorem is most useful in the regime a ∈
(
O
(√

ǫ
b

)
, O(b)

)
. It is not

very useful for values of a towards the lower end of I(ǫ, b), since ‖ut − Φ(βt)‖βt
will very

quickly attain O
(√

ǫ
b

)
, since in this regime the fluctuations of the noise dominate the −b

decay resulting from the stability of the deterministic dynamics.
Recall that τ (defined in (2.18)) is the stopping time such that the SDE for the phase

in §2 is well-defined for all t ≤ τ .
Theorem 4.1. For all a ∈ I(ǫ, b), if

sup
s∈[0,T ]

‖us − Φ(βs)‖βs
≤ a, (4.4)
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then T ≤ τ . Furthermore, if ‖u0 − Φ(β0)‖β0
:= x < a

2 , then

P

(
sup

s∈[0,T ]
‖us − Φ(βs)‖βs

≥ a

)
≤

∫ T

0
p
(−b)
x̄,ā (u)du, (4.5)

where x̄ = x/
√
λǫ and ā = a/2

√
λǫ, and λ is a positive constant that is given in (A.22).

Note that λ is determined by Π, G and Q.
Remark 1.To facilitate the exposition, we have chosen ā = a/2

√
λǫ. In fact, we could

have chosen ā = ρa/
√
λǫ, for any ρ ∈ (0, 1), and the bound would still hold in the limit

ǫ/b → 0.
Remark 2.We can use classical results on the first hitting time of the Ornstein-Uhlenbeck

process to derive the leading order asymptotics of the above [21, 1]. To leading order, as
b/ǫ → ∞ ,

p
(−b)
0,ā (t) ≃ bg

(
a2b

4λǫ

)
exp

{
− btg

(
a2b

4λǫ

)}
, (4.6)

where g(z) =
√
z√
2π

exp
{
− z

2

}
. We find that for a ∈ I(ǫ, b), if T = o

(
g
{
a2b
4λǫ

}−1)
, then

P
(
sups∈[0,T ] ‖us − Φ(βs)‖βs

≥ a
)
≃ Tg

{
a2b
4λǫ

}
≪ 1. There are much more refined estimates

in the literature: note in particular the exact analytic expression in [1, Theorem 3.1].

5. Discussion and Future Work. In summary, the variational approach developed in
this paper determines the phase of a stochastic oscillator by requiring it to minimize a
weighted norm. We have demonstrated that to leading order, the phase separates from
the amplitude and agrees with the isochronal phase. Hence, the linearization of our phase
dynamics is accurate over timescales of O(ǫ−1), which is the same order of accuracy as
the isochronal phase equation. In addition, our exact phase equation (2.32) is accurate
over much longer timescales of order O

(
exp(Cbǫ−1)

)
, recalling that b is the rate of decay

of transverse fluctuations. There exists a precise analytic expression for the phase SDE,
as well as a stopping time τ up to which this SDE applies. Furthermore, one can immedi-
ately determine the phase from any particular realization of the fundamental SDE using
(2.15) (as long as one takes the phase to be the global minimum). This is an advantage
of our method compared to the isochronal method, since in most cases there does not
exist an analytic solution for the isochronal method, and it is difficult to implement in a
computationally efficient way [2].

The phase SDE (2.32) is thus very well-suited to studying the long-time dynamics of
the phase on timescales of O

(
exp(Cbǫ−1)

)
. In §4 we obtained powerful bounds on the

probability of the oscillator leaving any particular neighborhood of the oscillator over any
particular timescale. These bounds are very flexible, because they shed light on the mutual
scaling of the amplitude of the noise, rate of decay of transverse fluctuations, the size of the
neighborhood of the limit cycle and the time the oscillator spends in this neighborhood.

In forthcoming work, we will use the phase SDE of this paper to study the synchroniza-
tion of uncoupled oscillators subject to common noise. In particular, we will obtain precise
bounds on the probability of two synchronized oscillators desynchronizing, and conditions
under which two oscillators never desynchronize. Another interesting application of the
phase SDE of this paper would be the effect of finite noise on oscillators with a strong
decay of transverse fluctuations [19].
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Appendix A. Proof of Theorem 4.1.

Proof. We start with the first part of the theorem. From (2.17),

M(z, θ) =1−
〈
z − Φ(θ),Φ′′(θ)

〉

θ

−
〈
z − Φ(θ), P (θ)P⊤(θ)

d

dθ

[
P (θ)P⊤(θ)

]−1
Φ′(θ)

〉

θ

=1−
〈
z − Φ(θ),Φ′′(θ)− d

dθ

[
P (θ)P⊤(θ)

][
P (θ)P⊤(θ)

]−1
Φ′(θ)

〉

θ

,

and through an application of the Cauchy-Schwarz Inequality to the above, it may be
observed that

M(ut, βt) ≥ 1− ‖ut − Φ(βt)‖βt

∥∥∥∥Φ
′′(βt)−

d

dθ

[
P (θ)P⊤(θ)

]∣∣
θ=βt

P−⊤(βt)P−1(βt)Φ
′(βt

)∥∥∥∥
βt

.

It then follows from the definition of I(ǫ, b) that if sups∈[0,t] ‖us − Φ(βs)‖βs
≤ a, for a ∈

I(ǫ, b), then M(us, βs) ≥ 1
2 for all s ∈ [0, t], and therefore

sup
s∈[0,t]

M(us, βs)
−1 ≤ 2. (A.1)

This means that
τ ≥ inf

{
s ≥ 0 : ‖us − Φ(βs)‖βs

= a
}
. (A.2)

In other words, the SDE for the phase βt that we derived in §2 is well-defined as long as
‖ut − Φ(βt)‖βt

≤ a.
We now prove the second part of the theorem. Recall that the amplitude term satisfies

equation (2.35). In the following it is convenient to perform the rescaling
√
ǫvt → vt.

dvt =
[
J
(
βt
)
vt + γ0(ut, βt)

]
dt+

√
ǫG̃(ut, βt)dWt (A.3)

where

γ0(ut, βt) = F (ut)− J(βt)vt −M(ut, βt)
−1Φ′(βt)

(〈
F (ut),Φ

′(βt)
〉
βt

+ ǫκ(ut, βt)
)

− ǫ

2
Φ′′(βt)M(ut, βt)

−2
〈
K(ut, βt)Φ

′(βt), QK(ut, βt)Φ
′(βt)

〉
(A.4)

and G̃(ut, βt) ∈ R
d×d is given by

G̃(ut, βt) = G(ut)−M(ut, βt)
−1Φ′(βt)Φ

′(βt)
⊤P−⊤(βt

)
P−1

(
βt
)
G(ut).

We now perform the change of variable wt = P
(
βt
)−1

vt, since ‖vt‖βt
= ‖wt‖. Using Ito’s

Lemma, we find that

dwt = −P
(
βt
)−1

P ′(βt
)
wtdβt + P

(
βt
)−1

dvt − P
(
βt
)−1

P ′(βt
)
P
(
βt
)−1

dvtdβt. (A.5)

As will be seen further below, the reason for this change of variable is that the drift of wt

decays uniformly (to leading order), so that the leading order behavior of the SDE is like
a stable Ornstein-Uhlenbeck process. We now demonstrate this. Recall from (2.10) that
the derivative of P (t) satisfies

ω0P
′(t) = J(t)P (t)− P (t)S (A.6)
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This means that

dwt = ω−1
0

(
−P

(
βt
)−1

J(βt)vt+Swt

)
dβt+P

(
βt
)−1

dvt−P
(
βt
)−1

P ′(βt
)
P
(
βt
)−1

dvtdβt,

and therefore

dwt =
[
Swt + γ(ut, βt)

]
dt+

√
ǫP−1(βt)G̃(ut, βt)dWt

+
√
ǫω−1

0 M
−1(ut, βt)

{
− P

(
βt
)−1

J(βt)vt + Swt

}
Φ′(βt)

⊤P−⊤(βt)P
−1(βt)G(ut)dWt,

(A.7)

where

γ(ut, βt) = P (βt)
−1

(
J(βt)vt + γ0(ut, βt)

)
− Swt

+ ω−1
0

(
− P

(
βt
)−1

J(βt)vt + Swt

)
M(ut, βt)

−1
(〈

F (ut),Φ
′(βt)

〉
βt

+ ǫκ(ut, βt)
)

− ǫM−1(ut, βt)P
(
βt
)−1

P ′(βt
)
P
(
βt
)−1

G̃
(
ut, βt

)
QG⊤(ut)P−⊤(βt)P−1(βt)Φ

′(βt). (A.8)

and we have used the fact that

dβt =
√
ǫM−1(ut, βt)

〈
P−1(βt)Φ

′(βt), P−1(βt)G(ut)dWt

〉
+ F.V.T

=
√
ǫM−1(ut, βt)Φ

′(βt)⊤P−⊤(βt)P−1(βt)G(ut)dWt + F.V.T,

where F.V.T stands for ‘finite variation terms’ (i.e. the drift terms). We write this as

dwt =

[
ω0Swt + γ(ut, βt)

]
dt+

√
ǫḠ(ut, βt)dWt, (A.9)

where Ḡ(ut, βt) can be inferred from (A.7).
Since the map w → ‖w‖2 is twice differentiable, we can apply Ito’s Lemma to equation

(A.9). We find that

d ‖wt‖2 =
[
2
〈
wt,Swt + γ(ut, βt, t)

〉
+ ǫtr

{
Ḡ(ut, βt)QḠ⊤(ut, βt)

}]
dt

+ 2
√
ǫ

〈
wt, Ḡ(ut, βt)dWt

〉
. (A.10)

It follows from the stability assumption at the start of this paper that
〈
wt,Swt

〉
≤

−b ‖wt‖2, which means that

d ‖wt‖2 ≤
[
− 2b ‖wt‖2 + 2γ2(ut, βt)

]
dt+ 2

√
ǫ〈wt, Ḡ(ut)dWt〉, (A.11)

where
γ2(ut, βt, t) = 〈wt, γ(ut, βt)〉+

ǫ

2
tr
{
Ḡ(ut, βt)QḠ⊤(ut, βt)

}
.

Define the stopping time

τ̂a = inf

{
s ≤ τ : ‖ws‖−1 γ2

(
us, βs

)
= ba/2

}
, (A.12)
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recalling that τ (defined in (2.18)) is the stopping time for which the SDE for βt is well-
defined).

We determine an SDE for ‖wt‖ by applying Ito’s Lemma to the square root function,
finding that for all times t ≤ τ̂a

d ‖wt‖ ≤ √
ǫ ‖wt‖−1 〈wt, Ḡ(ut)dWt

〉

+

(
− b ‖wt‖+ ‖wt‖−1 γ2(ut, βt, t)−

ǫ

4 ‖wt‖3
〈
QḠ⊤(ut)wt, Ḡ

⊤(ut)wt

〉)
dt

≤ √
ǫ ‖wt‖−1 〈wt, Ḡ(ut)dWt

〉
+

(
− b ‖wt‖+ ‖wt‖−1 γ2(ut, βt, t)

)
dt, (A.13)

since ǫ

4‖wt‖3
〈
QḠ⊤(ut)wt, Ḡ

⊤(ut)wt

〉
≥ 0, because the covariance matrix Q is positive semi-

definite. Note that the coefficients of the above SDE are continuous and bounded in a
sufficiently small neighborhood of ‖wt‖ = 0. This is true for ‖wt‖−1 γ2 thanks to the
inequality in Lemma A.1, and it is true for the diffusion term thanks to the Cauchy-
Schwarz Inequality (this will be clear in the following).

Now define yt = exp
(
bt
)
‖wt‖. Through Ito’s Lemma, we find that

dyt = bytdt+ exp
(
bt
)
d ‖wt‖ ,

and therefore for all times t ≤ τ̂a,

dyt ≤ exp
(
bt
){

b ‖wt‖ − b ‖wt‖+ ‖wt‖−1 γ2(ut, βt, t)

}
dt

+
√
ǫ ‖wt‖−1 exp

(
bt
)〈
wt, Ḡ(ut, βt)dWt

〉
.

We integrate the above expression, before dividing both sides by exp(bt), and find that

‖wt∧τ̂a‖ ≤ exp
{
− b(t ∧ τ̂a)

}
‖w0‖+

√
ǫ

∫ t∧τ̂a

0
exp

(
b(s − t ∧ τ̂a)

)
‖ws‖−1 〈ws, Ḡ(us)dWs

〉

+

∫ t∧τ̂a

0
exp

(
b(s− t ∧ τ̂a)

)
‖ws‖−1 γ2(us, βs)ds.

This means that

‖wt∧τ̂a‖ ≤ exp
{
− b(t ∧ τ̂a)

}
‖w0‖+

1

b
sup

s∈[0,t∧τ̂a]
‖ws‖−1

∣∣γ2(us, βs)|

+
√
ǫ

∫ t∧τ̂a

0
‖ws‖−1 exp

(
b(s− t ∧ τ̂a)

)〈
ws, Ḡ(us, βs)dWs

〉

≤ exp
{
− b(t∧ τ̂a)

}
‖w0‖+

a

2
+
√
ǫ

∫ t∧τ̂a

0
‖ws‖−1 exp

{
b(s− t∧ τ̂a)

}〈
ws, Ḡ(us, βs)dWs

〉
,

(A.14)

using the definition of τ̂a.
Define the stopping time

τa,x = inf
{
τ̂a, τ̀a,x

}
(A.15)
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where

τ̀a,x = inf

{
s ≥ 0 : x exp

(
− bs

)
+

√
ǫ

∫ s

0
‖wt‖−1 exp

(
b(t− s)

)〈
wt, Ḡ(ut)dWt

〉
= a/2

}

(A.16)

It follows from (A.14) that for all s ∈ [0, τa,x],

‖ws‖ ≤ a. (A.17)

This means that

P
(
τa,x ≤ T

)
≤ P

(
There exists s ∈ [0, T ] such that either ζs − x ≥ exp(bs)

a

2

or

∣∣∣∣
1

‖ws‖
γ2(us, βs)

∣∣∣∣ = ba/2, and sup
r∈[0,s]

‖wr‖ ≤ a

)

≤ P

(
There exists s ∈ [0, T ] such that ζs − x ≥ exp(bs)a/2

)

+ P

(
There exists s ∈ [0, T ] such that

∣∣γ2(us, βs)
∣∣ = ba/2

or τ ≤ Tτ , and sup
r∈[0,s]

‖wr‖ ≤ a

)
, (A.18)

where ζs =
√
ǫ
∫ s

0 ‖wt‖−1 exp
(
bt
)〈
wt, Ḡ(ut)dWt

〉
.

Now it follows from (A.2) that

P

(
τ ≤ T and sup

s∈[0,T ]
‖ws‖ ≤ a

)
= 0.

Furthermore, it follows from Lemma A.1 that

P

(
There exists s ∈ [0, τ ] such that

∣∣ ‖ws‖−1 γ2(us, βs)
)∣∣ = ba/2 and sup

t∈[0,s]
‖wt‖ ≤ a

)

≤ P

(
There exists s ∈ [0, τ ] such that C1ǫ+ C2 ‖ws‖2 = ba/2 and sup

t∈[0,s]
‖wt‖ ≤ a

)

= 0,

thanks to the fact that a ∈ I(ǫ, b), which we recall is defined in (4.3).
It therefore remains for us to prove that

P

(
There exists s ∈ [0, T ] such that ζs − x ≥ exp(bs)

a

2

)
≤

∫ T

0
p
(−b)
x̄,ā (y)dy, (A.19)

recalling that ā = a/2
√
λǫ and x̄ = x/

√
λǫ.

By the Dambis Dubins-Schwarz Theorem [20, Theorem 1.6, Page 181], Xt := ζιt is
Brownian, where

ιs = inf
{
r ≥ 0 : ηr ≥ s

}
and (A.20)

ηr :=ǫ

∫ r

0
‖ws‖−2 exp

(
bs
)〈
Ḡ⊤(us)ws, QḠ⊤(us)ws

〉
ds. (A.21)
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Let λG,P be an upper bound for
∥∥Ḡ(ut, βt)

∥∥ (the spectral norm), that is uniform over
all βt ∈ R and ut ∈ R

d, recalling the implicit definition of Ḡ in (A.9). Such an upper
bound exists, because by assumption ‖G(ut)‖ possesses a uniform upper bound. Similarly
P−1(βt) and J(βt) possess uniform upper bounds because they are continuous and 2π
periodic. Since Ḡ(ut, βt) is equal to sums and multiplications of matrices with uniform
upper bounds, it must also possess a uniform upper bound. It follows that

〈
Ḡ⊤(us)ws, QḠ⊤(us)ws

〉
=
〈
ws, Ḡ(us)QḠ⊤(us)ws

〉

≤λ ‖ws‖2 , (A.22)

where λ = λ2
G,PλQ. We find that ηr ≤ η̄r :=

ǫ
b

{
exp

(
br
)
− 1

}
λ. Writing ῑs = inf

{
r ≥ 0 :

η̄r ≥ s
}
, we have that ῑs ≤ ιs, and

P

(
There exists r ∈ [0, T ] , ζr − x ≥ exp(br)

a

2

)

= P

(
There exists r ∈ [0, T ] , Xηr − x ≥ exp(br)

a

2

)

= P

(
There exists y ∈ [0, ηT ] , Xy − x ≥ exp(bιy)

a

2

)

≤ P

(
There exists y ∈ [0, η̄T ] , Xy − x ≥ exp

(
bιy

)a
2

)

≤ P

(
There exists y ∈ [0, η̄T ] , Xy − x ≥ exp

(
bῑy

)a
2

)
. (A.23)

Now suppose that Z satisfies the SDE

dZt =− bZtdt+
√
λǫdWt (A.24)

Z0 =x, (A.25)

for a 1d Brownian Motion W . The solution of this SDE is

Zt = exp
(
− bt

)
x+

√
λǫ

∫ t

0
exp

(
b(s − t)

)
dWs. (A.26)

Now let αt =
√
λǫ

∫ t

0 exp
(
bs
)
dWs, and observe that the quadratic variation of αt is η̄t.

This means that

P

(
sup

t∈[0,T ]
Zt ≥

a

2

)
= P

(
There exists t ∈ [0, T ] such that αt + x ≥ a

2
exp

(
bt
))

= P

(
There exists t ∈

[
0, η̄T

]
such that υt + x ≥ a

2
exp

(
bῑt

))
. (A.27)

by the Dambis Dubis-Schwarz Theorem, since υt := αῑt is Brownian. It can be observed
that the expressions in (A.27) and (A.23) are equal.

This means that

P

(
There exists t ∈ [0, T ] such that Zt ≥

a

2

)

= P

(
There exists y ∈ [0, η̄aT ] such that Xy − ‖u0 − Φ(β0)‖β0

≥ exp(bῑy)
a

2

)
.
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Now it can be seen that Z̄t :=
1√
λǫ
Zt is an Ornstein-Uhlenbeck process, and therefore

P

(
There exists t ∈ [0, T ] such that Zt ≥

a

2

)

= P

(
There exists t ∈ [0, T ] such that Z̄t ≥

a

2
√
ǫλ

)
=

∫ T

0
p
(−b)
x̄,ā (s)ds,

and we have proved the required bound in (A.19).

Lemma A.1. There exist positive constants C1 and C2 such that, as long as ‖wt‖ ≤ a ∈
I(ǫ, b), ∣∣γ2(ut, βt)

∣∣ ≤ C1 ‖wt‖ ǫ+ C2 ‖wt‖3

Proof. We can decompose γ2 = γ12 + ǫγ22 : where γ
1
2 comprises higher order-corrections

to the linearized behaviour, and γ22 arises from quadratic and cross-variations. In the
following equations, since vt = P (βt)

−1wt, and P (βt)
−1 is continuous on S

1, it must be the
case that for come constant CP , supθ∈[0,2π]

∥∥P (θ)−1
∥∥ ≤ CP , and therefore ‖vt‖ ≤ CP ‖wt‖.

Using the definitions in (A.4), the higher order corrections to the linearized behavior are

γ12 =

〈
wt, P (βt)

−1

{
F (ut)−M(ut, βt)

−1Φ′(βt)
〈
F (ut),Φ

′(βt)
〉
βt

− J
(
βt
)
vtM(ut, βt)

−1
〈
F (ut),Φ

′(βt)
〉
βt

}〉

+ ω−1
0

〈
wt,Swt

〉(
ω0 −M(ut, βt)

−1
〈
F (ut),Φ

′(βt)
〉
βt

)
,

and the quadratic / cross-variation terms are

γ22 = −κ(ut, βt)M(ut, βt)
−1

〈
wt, P (βt)

−1Φ′(βt)
〉

− M(ut, βt)
−2

2

〈
K(ut, βt)Φ

′(βt), QK(ut, βt)Φ
′(βt)

〉〈
wt, P (βt)

−1Φ′′(βt)
〉

+M
−1(ut, βt)

〈
wt, P

(
βt
)−1

P ′(βt
)
P
(
βt
)−1

G̃
(
ut, βt

)
QG⊤(ut)P

−⊤(βt)P
−1(βt)Φ

′(βt)
〉

+
1

2
tr
{
Ḡ(ut, βt)QḠ⊤(ut, βt)

}
. (A.28)

We start by bounding the quadratic and cross-variation terms, i.e. γ22 . Now since, by
assumption, ‖wt‖ ≤ a ∈ I(ǫ, b), it follows from (A.1) that

M(us, βs)
−1 ≤ 2. (A.29)

By assumption, there are uniform bounds for the following: ‖G(ut)‖, ‖Q‖,
∥∥P (βt)

−1
∥∥,

‖Φ′(βt)‖, ‖Φ′′(βt)‖, ‖P ′(βt)‖ and ‖P ′′(βt)‖. The uniform bounds on the latter five matrices
follows from the fact that they are continuous and 2π periodic. We can therefore apply
the Cauchy-Schwarz Inequality to each of the above terms in γ22 , finding that for some
constant C2 > 0,

∣∣γ22
∣∣ ≤ C2 ‖wt‖.
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We now turn to bounding γ12 . First, it follows from the uniform boundedness of P−1

that for some constant CP ,

‖wt‖ =
∥∥P−1(βt)vt

∥∥ ≤ CP ‖vt‖ .

Now it follows from (2.15) that
〈
wt, P (βt)

−1Φ′(βt)
〉
= 0, and therefore

〈
wt,M(ut, βt)

−1Φ′(βt)
〈
F (ut),Φ

′(βt)
〉
βt

〉
= 0,

since this is just a scalar multiple of
〈
wt, P (βt)

−1Φ′(βt)
〉
. Now we saw in the equations

following (3.6) that

M(ut, βt)
−1

〈
F (ut),Φ

′(βt)
〉
βt

= ω0 +O
(
‖vt‖2

)
.

This means that

〈
wt,Swt

〉(
ω0 −M(ut, βt)

−1
〈
F (ut),Φ

′(βt)
〉
βt

)
≃ O

(
‖wt‖4

)

It remains for us to show that F (ut) − ω0J
(
βt
)
vt = O(v2t ). But this follows from the

multivariate Taylor Remainder Theorem, since for some υ ∈ [0, 1],

F
(
Φ(βt) + vt

)
= F

(
Φ(βt)

)
+ J

(
βt
)
vt +

1

2
F ′′(υΦ(βt) + (1− υ)vt

)
· vt · vt. (A.30)

By assumption, the second derivative of F is uniformly bounded, and we have therefore
obtained the required bound.
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