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Abstract

Data assimilation is uniquely challenging in weather forecasting due
to the high dimensionality of the employed models and the nonlinearity of
the governing equations. Although current operational schemes are used
successfully, our understanding of their long-term error behaviour is still
incomplete. In this work, we study the error of some simple data assimila-
tion schemes in the presence of unbounded (e.g. Gaussian) noise on a wide
class of dissipative dynamical systems with certain properties, including
the Lorenz models and the 2D incompressible Navier-Stokes equations.
We exploit the properties of the dynamics to derive analytic bounds on
the long-term error for individual realisations of the noise in time. These
bounds are proportional to the variance of the noise. Furthermore, we
find that the error exhibits a form of stationary behaviour, and in partic-
ular an accumulation of error does not occur. This improves on previous
results in which either the noise was bounded or the error was considered
in expectation only.

1 Introduction

Data assimilation is a term used in the geophysical community to describe ef-
forts to improve our knowledge of a system by combining incomplete observa-
tions with imperfect models [1]. Data assimilation is important in many fields
of engineering and geophysical applications, and is an essential part of modern
numerical weather prediction where it is used to initialise the forecasts based
on observations of the atmosphere, combined with short term predictions [13].
In this field, data assimilation is uniquely challenging due to the infinite dimen-
sionality and nonlinearity of the weather problem. Currently employed models
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use discretizations with O(109) dimensional state vectors and O(107) partial
observations of the atmosphere per day [2]. Furthermore, equations governing
the dynamics of the atmosphere are well known to exhibit sensitive dependence
on initial conditions [19, 13], meaning that determining them as accurately as
possible is a key factor in increasing the length of the forecasting horizon.

Combining noisy data with uncertain models is an inverse problem whose opti-
mal solution is necessarily probabilistic and sits naturally in a Bayesian frame-
work [15] and [13], Sec. 5.5. Due to the nonlinear nature of the underlying
equations, deriving an explicit form for the posterior distribution is in general
not possible [24]. A sufficiently precise numerical representation (e.g. by MCMC
methods or particle filters [18]) of the solution is very computationally expensive
and not currently feasible in operational weather forecasting [15], although this
is a promising area of research [27]. Therefore, the data assimilation schemes
used in practice are approximations based on exact schemes derived for lin-
ear systems with Gaussian priors and additive Gaussian noise, known as the
Kalman filter [17]. The schemes are applied to the nonlinear dynamics sequen-
tially with various further simplifications, the simplest of which is to assume
constant prior covariance. This is known as the 3DVAR method [13], Sec 5.5.
A more advance method, the ensemble Kalman filter, involves an evolving prior
covariance, estimated through the use of ensembles, that is, several simultane-
ous runs of the data assimilation cycle using a set of perturbed observations [6].
Although clearly used with great success [2], these are nonetheless ad hoc ap-
proximations, and a satisfactory understanding of their fundamental properties
is still lacking.

A rigorous study of data assimilation in the context of the full primitive equa-
tions (a reasonable model of atmospheric circulation [26]) is currently out of
scope. There has been extensive study of a simpler but still infinite dimen-
sional model; the 2D viscous, incompressible Navier-Stokes (N-S) equations.
Other models typically studied in the context of data assimilation in geophys-
ical applications (see e.g. [20, 14, 16, 23]) are the Lorenz ’63 and Lorenz ’96
models, as they exhibit many of the properties of the N-S equations such as
being dissipative with a quadratic and energy conserving nonlinearity, while
having the advantage of being finite dimensional. Fortunately some remarkable
properties of the 2D N-S equations have been known for some time. It was
first shown by C. Foias and G. Prodi in 1967 [7] that the solution is completely
determined by the temporal evolution of some finite number of spatial Fourier
modes, which have since been named the “determining modes”. Subsequent
work [8, 12] showed that this also holds for a finite set of appropriately chosen
nodal values.

More recent work re-frames these results in the context of data assimilation [21,
11], and shows that certain data assimilation schemes have zero asymptotic
error even with only finitely rank observations. Hayden, Olson and Titi [11]
consider the Lorenz ’63 and N-S equations with a data assimilation scheme where
noiseless observations are directly replaced into the approximating solution at
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discrete times. Their result shows that for a sufficiently large number of observed
low modes, the higher modes synchronise, that is, the error goes to zero with
the number of assimilation cycles.

In [5], Brett et al build on the results in [11] by allowing for observational errors
and using the 3DVAR algorithm. They show that for bounded observational
errors, the asymptotic (t → ∞) error between the approximating solution and
the true state of the atmosphere is bounded, and of the same order of magnitude
as the bound on the noise. The same result is obtained in [10] for another type
of data assimilation scheme, which is related to the once widely used ‘nudging’
schemes. Therefore, in both papers, the overall error is driven by the error in
the observations, regardless of initial error. Furthermore, this result is obtained
pointwise, that is, it is true for any realization of the noise. The stochastic
properties of the observational errors however, do not enter into the derivation
of the bound, except the boundedness, which is essential.

In [14, 16], results are obtained in expectation for unbounded noise for the
Lorenz ’96 and ’63 models, respectively. They show that for the 3DVAR scheme,
the mean square of the error is of the same order of magnitude as the variance
of the noise. In [23], Sanz-Alonso and Stuart extend this result, in expectation,
to a wide class of dissipative PDEs, including infinite dimensional systems, that
satisfy certain properties; the “absorbing ball” property and the “squeezing
property”. As is noted in [5], in a remark after Assumption 3.1, there is es-
sentially a trade-off to be made between having bounded noise, with pointwise
bounds, and unbounded noise, where similar techniques lead to results in ex-
pectation.

The main objective of the present paper is to investigate whether data assimi-
lation into certain dissipative systems of PDEs is well behaved. Our approach
is based on the works of [11], [5] and [23]. In those publications, results regard-
ing data assimilation accuracy with unbounded noise are given in expectation,
while in the present paper we derive (almost surely) pointwise bounds, even for
unbounded noise. More specifically, we prove that for large time, the error is
bounded by a finite and stationary process, and give an explicit description of
this process in terms of the observation noise. Technically, there are realisations
of the noise for which this bound fails, but these have zero probability, and
hence are statistically irrelevant.

We use the simple replacement data assimilation scheme as studied by Titi
et al in [11] although we expect our results to be extendible to 3DVAR type
algorithms. Indeed our results extend to the framework put forward in [5];
this will be presented in a forthcoming publication. We require assumptions
similar to the absorbing and squeezing properties of [23] but with some crucial
differences. We allow the squeezing function to be random, and require only that
its expectation is less than one. We are then able to apply Birkhoff’s Ergodic
Theorem to show that the squeezing function is sufficiently often less than one
to give us a bound which is pointwise finite (Theorem 1 and 2). The result holds
for any strength of the noise, given by the variance σ2, and furthermore, the
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bound decreases as the variance of the noise is decreased. Therefore the data
assimilation error (for large time) is at least proportional to the strength of the
noise. As in [23], we test our assumptions on two finite dimensional systems;
Lorenz ’63 and ’96, before turning to the infinite dimensional N-S system.

The paper is organised as follows. In Section 2 we describe the dynamical system
framework, the data assimilation scheme, and the assumptions we require on
the observation error. Observations at each data assimilation time are assumed
to contain a random error, the nature of which we keep as general as possible.
In particular, we do not require i.i.d. or bounded noise, just that the noise is
stationary and ergodic. In Section 3, we set out general assumptions on the
dynamical systems needed for our main result, Theorem 1, the theorem itself
and the proof. In Section 4, we investigate the properties of an apriori bound
we derive for the dissipative systems considered in this paper. In Section 5 we
show that our assumptions are satisfied by a large class of finite dimensional
dissipative systems provided they satisfy certain properties. We discuss the
Lorenz ’63 and ’96 models as examples of such systems. In Section 6, we prove
that the N-S equations satisfy the Assumptions of 1 as well. In Section 7 we run
numerical simulations for the Lorenz 63’ model, showing that the bound hold
asymptotically, while Section 8 has a a brief discussion of possible extensions to
our results and future work.

2 The data assimilation problem

2.1 Dissipative dynamical system

Informally, we think of an equation as being “dissipative” if all solutions are
eventually bounded and this bound is uniform for any initial condition. For-
mally, a semigroup is dissipative if it possesses a compact absorbing set [22].

Let H be a Hilbert space with | . | the induced norm. Let U be the solution of
a dissipative system with initial conditions U0 at t0 and let ψ be the continuous
semi-flow defined by

U(t) = ψ(t, t0, U0), (1)

where

ψ(t+ s, t0, U0) = ψ(t, s, ψ(s, t0, U0)), (the semigroup property),

and
ψ(0, t, U(t)) = U(t)

for all real t ≥ 0, such that ψ is continuous in t and with respect to initial
condition U0.

We assume that this dynamical system is a perfect representation of the real
world system we are interested in; for instance the atmosphere, and we refer to
U as the “reference” solution.
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2.2 Data assimilation

As mentioned in the introduction, we will be using a simple data assimilation
method as defined by Titi et al in [11] but with unbounded noise added at each
discrete data assimilation time.

Let OP , the observation space, be a finite dimensional subspace of H and P the
orthogonal projection onto OP .

An observation at time tn is given by PU(tn) +σRn, where σRn is the noise, or
random error, in the observation. We will define Rn more precisely in Section
2.3. We assume that Rn is a random variable with values in OP so that PRn =
Rn.

The finite dimensionality of the observation space OP is not a limiting assump-
tion as from an operational perspective it’s natural to assume that we have a
finite number of observations at each time step. However, the observations are
restricted to a linear transformation of the model state. This is a restrictive
assumption and is often not the case in weather prediction; the observation
operator can be highly non-linear, as for example, in the case of satellite ob-
servations. Furthermore assuming additive noise is clearly an idealisation of
representing observational uncertainty.

The approximating solution of the discrete data assimilation scheme that we
use is obtained as follows. Initially at t0 = 0 we have,

ū0 = η + PU0 + σR0,

where η is the initial guess of the unobserved part of the solution. Then at
discrete times 0 < t1 < t2 < ... we set

ūn = Qψ(tn, tn−1, ūn−1) + PU(tn) + σRn, (2)

where Q = I − P is the projection onto unobserved space.

At intermediate times tn ≤ t < tn+1, the approximating solution u(t) is a
continuous in time function defined by

u(t) = ψ(t, tn, ūn) for t ∈ [tn, tn+1). (3)

We note that u is continuous on each interval [tn, tn+1) but has discontinu-
ities at tn, n ∈ N, with u continuous from the right and with limits to the left,
since

u(t+n ) = lim
t→t+n

ψ(t, tn, ūn) = ūn = u(tn),

while
u(t−n ) = lim

t→t−n
ψ(t, tn−1, ūn−1) = ψ(tn, tn−1, ūn−1) 6= ūn.

We are interested in the data assimilation error δ(t), which is the difference be-
tween the reference and approximating solutions described above. In particular,
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we are interested in the asymptotic behaviour as t→∞. Like the approximating
solution, δ(t) is piece-wise continuous in time and defined by

δ(t) = U(t)− u(t) = ψ(t, t0, U0)− ψ(t, tn, ūn) (4)

in the interval [tn, tn+1). At tn we have

δn := δ(tn) = U(tn)− ūn = Qψ(tn, t0, U0)−Qψ(tn, tn−1, ūn−1)− σRn.

For simplicity, we assume that the time between observational updates (the data
assimilation interval),

h = tn+1 − tn > 0

is constant.

2.3 Observations

As we will be considering the asymptotic data assimilation error, we will be
looking at a sequence of noise realisation that extends into infinite time and in
fact it will be useful to extend it backward in time also.

Let (Ω,F ,P) be a probability space and T : Ω→ Ω a measure preserving map
such that T and T−1 are ergodic with respect to P. Let R : Ω → OP be a
random variable on (Ω,F ) and denote Rn = R ◦ Tn; a sequence of random
variables, with n ∈ Z. Rn will serve to model the noise in the observations at
time tn. We let

R̄ : (Ω,F )→ (O∞P ,B∞)

be given by
ω → (..R−1(ω), R0(ω), R1(ω)...).

This is a measurable map and represents a realisation of the noise for all time,
extending to infinite past and future. We denote the probability distribution of
R̄ by PR̄.

We note that with T measure preserving, Rn is a strictly stationary sequence
(see e.g. [4], Proposition 6.9. for proof). We further assume that E(R) = 0 and
E(|R|2) = 1 and we model the random noise in our observation at time tn as
σRn, where σ ∈ R+. Therefore σ2 is the variance of the observation noise. If R
were to have non-zero mean, this would represent a systematic error.

As an example, suppose that the Rn are i.i.d random variables with T : O∞P →
O∞P being the shift map defined by (T k(r̄))n = rn+k for r̄ ∈ O∞P . Then the dis-
tribution PR̄ of R̄ is the product probability and (O∞P ,B∞, PR̄) is the canonical
probability model1. It can be shown that T is measure preserving and T , T−1

are ergodic. The proof is similar to the Kolmogorov zero-one law [4], Theorem
3.12.

1Since the distribution of the process contains all the information we are interested in, we
have discarded the original process on Ω and have represented it in term of the coordinate
representation process instead on O∞P .
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3 Assumptions and main result

In this section we state the main assumptions that we will need in order to prove
our main result, Theorem 1. Assumption 1 requires the existence of an absorb-
ing ball which is natural to dissipative systems. Assumption 2 can often be
deduced from the same estimates that give us Assumption 1, as is demonstrated
in Lemma 5, and is an a priori bound on the error dynamics. Assumptions 3
and 4 are generally more difficult to prove, particularly Assumption 4 in the
presence of unbounded random error. They represent a kind of contraction or
squeezing on the unobserved part of the dynamics.

Assumption 1. (Absorbing ball property) There exists K > 0, depending
on the dynamical system, such that the ball B = {U ; |U |2 ≤ K} is absorbing
and forward invariant.
Assumption 2. (A priori bound) For all σ, h > 0, there exists a measurable
function ρ0 : R+ × R+ × Ω→ R+ with

|δn|2 ≤ ρ0(h, σ) ◦ Tn(ω) := ρn

such that ρn is a continuous monotone increasing function of σ.
Assumption 3. There exist continuous functions M,γ : (R+,R+)→ R+ such
that whenever U ∈ B and |U − V | ≤ ρ,

|Q{ψ(t+ τ, t, U)−ψ(t+ τ, t, V )}|2 ≤M(τ, ρ)|Q(U − V )|2 + γ(τ, ρ)|P (U − V )|2.

Without loss of generality we can assume that M and γ are not decreasing
in ρ because we can always replace M,γ by functions that are larger and not
decreasing.
Assumption 4. With ρ0 as in Assumption 2 and M(τ, ρ) and γ(τ, ρ) as in
Assumption 3; for every σ > 0 there exists an h > 0, such that

EM(h, ρ0(h, σ)) < 1,

and
Eγ(h, ρ0(h, σ)) <∞.

We note that for any measurable function f : R → R, the process f ◦ ρn
is stationary and ergodic, since T is assumed to be measure preserving and
ergodic.

In particular, we can write,

Mn(τ) := M(τ, ρn) = M0(τ, ρ0) ◦ Tn(ω), (5)

and
γn(τ) := γ(τ, ρn) = γ0(τ, ρ0) ◦ Tn(ω). (6)
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Remark: We want to point out that Assumptions 1 to 4 are related to ‘absorb-
ing ball’ and ‘squeezing’ properties which are used in the literature on dissipative
dynamics. These properties can take various similar forms and are at the heart
of the analysis in several of the works mentioned in the introduction, e.g. [11],
[5] and [23]. In particular, we can compare our assumptions to that in [23],
in which the authors also treat unbounded noise and apply results to a class
of general dissipative systems as we do in this paper. We note first that the
absorbing ball property of [23] implies our Assumptions 1 and 2, as shown in
Section 4, Corollary 1, as will be shown.

Our ‘squeezing’ assumption and that of [23] are not directly comparable. In [23]
the squeezing applies only to a neighbourhood of the attractor. Our squeez-
ing property, that is assumptions 3 and 4, may appear to be global (i.e. not
restricted to a neighbourhood), however note that the coefficient Mn can be
larger than one and hence not always contracting. Assumption 4 ensures that
squeezing happens often enough by requiring that the expected value of the
coefficient is less than one. Although [23] treats unbounded noise, the approx-
imating solution or filter is in fact truncated so that it is always inside the
required neighbourhood of the attractor. In our case, the noise is allowed to
take the approximating solution outside of any neighbourhood of the attractor.

We now state the main result of the paper.
Theorem 1. Suppose Assumptions 1 to 4 hold. Let σ∗ > 0 and take h > 0 as
in Assumption 4 with σ∗ instead of σ. Then there exists a stationary and a.s.
finite process Cn, a non-negative constant β̄ < 1 and a random variable D, such
that for all σ < σ∗, the error δn = U(tn)− u(tn) satisfies

|δn|2 ≤ σ2Cn +Dβ̄n|QU0 − η|2, (7)

almost surely. In particular,

lim sup
n

(
|δn|2 − σ2Cn

)
≤ 0, (8)

a.s., where Cn, β̄ and D are given in the proof by Equations (20), (21) and (22).
In particular, Cn, β̄ and D only depend on σ∗.

Theorem 1 shows that, for almost all realisations of the noise, at any data
assimilation update time tn, the error δn is bounded. In addition, asymptotically
for large time, the bound is given by σ2Cn which constitutes a stationary process
so that its distribution is time independent. Furthermore as σ → 0 the bound
decreases to zero like σ2.

To get a bound for intermediate times t ∈ (tn, tn+1), we require a further as-
sumption.
Assumption 5. There exists a constant κ > 0 such that |δ(t)|2 ≤ eκ(t−tn)|δn|2
for t ∈ [tn, tn+1).
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We can easily see that if Assumption 5 holds, then the following modified version
of Theorem 1 follows.
Theorem 2. Suppose Assumptions 1 to 5 hold. Let σ∗ > 0 and take h > 0 as
in Assumption 4 with σ∗ instead of σ. Then there exists a stationary and a.s.
finite process Cn, a non-negative constant β̄ < 1 and a random variable D, such
that for all σ < σ∗, the error δ(t) = U(t)−u(t) with t ∈ [tn, tn+1) := In satisfies

|δ(t)|2 ≤ (σ2Cn +Dβ̄n|QU0 − η|2)eκh, (9)

almost surely. In particular,

lim sup
n

[
sup
t∈In

(
|δ(t)|2 − eκhσ2Cn

)]
≤ 0, (10)

a.s., where Cn, β̄ and D are given in the proof by Equations (20), (21) and (22).
In particular, Cn, β̄ and D only depend on σ∗.

Before turning to the proof of the main result, we require some lemmas.
Lemma 1. Under Assumptions 1 to 3, δn = U(tn)− u(tn) satisfies

|δn|2 ≤ σ2
n∑
l=1

n−1∏
k=l

Mk|Rl−1|2γl−1 +

n−1∏
k=0

Mk|QU0 − η|2 + σ2|Rn|2, (11)

where Mk := M(h, ρk(h)) and h = tn+1 − tn is the update interval.

Proof. By Assumption 1 we have that the solution U(t) ∈ B for some t > 0.
Without loss of generality we can assume that U(t0) ∈ B. Then, U(tn) ∈ B, by
the forward invariance of B. Furthermore, by Assumption 2, for any h > 0, we
have a stationary process ρn such that |δn|2 ≤ ρn for all n ∈ N. Therefore we can
apply Assumption 3 at each update time tn. Let t ∈ [tn, tn+1), U = U(tn), V =
u(tn), andMn(τ)(respectively γn(τ)) be as in Equation (5) (respectively Eq. (6))
where τ = t− tn ∈ [0, h). We obtain

|Qδn+1|2 = lim
t→tn+1

|Qδ(t)|2

≤ lim
t→tn+1

Mn(t− tn)|Qδn|2 + σ2γn(t− tn)|Rn|2

= Mn(h)|Qδn|2 + σ2γn(h)|Rn|2,

where we have used the continuity of Qδ(t) at tn+1. Write Mn := Mn(h) and
γn := γn(h) for simplicity. By induction on the above,

|Qδn|2 ≤ σ2
n∑
l=1

n−1∏
k=l

Mk|Rl−1|2γl−1 +

n−1∏
k=0

Mk|QU0 − η|2,

since |Qδ0|2 = |QU0 − η|2 and we define
∏n−1
k=nMk = 1.
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Finally, using that |Pδn|2 = σ2|Rn|2,

|δn|2 = |Qδn|2 + |Pδn|2,

≤ σ2
n∑
l=1

n−1∏
k=l

Mk|Rl−1|2γl−1 +

n−1∏
k=0

Mk|QU0 − η|2 + σ2|Rn|2,

as required.

To obtain a meaningful bound as stated in Theorem 1, we need that the RHS
of estimate (11) is almost surely finite in the long term. This would clearly be
the case if Mk would be less than one, for all k (with some conditions on γn).
Unfortunately, since the a priori bound is stochastic, the Mk are also stochastic
and it is not, in general, possible to guarantee that Mk < 1 for all k, whatever
the value of h. However, we are able to use the Ergodic Theorem to show that
if E(Mk) < 1, it ensures Mk < 1 often enough to guarantee that estimate (11) is
almost surely finite. That is, for almost all realizations of the sequence {Mk}k,
the proportion of Mk < 1 is sufficient to ensure that the product is less than
1.
Lemma 2. For any real ξ > 0, there exist almost surely finite random variables
Cω,ξ and C

′

ω,ξ, such that for all N > 0

N−1∏
k=0

M−k ≤ Cω,ξ(β + ξ)N , (12)

N−1∏
k=0

Mk ≤ C
′

ω,ξ(β + ξ)N , (13)

where

Cω,ξ := max
N

∏N−1
k=0 M−k

(β + ξ)N
, (14)

C
′

ω,ξ := max
N

∏N−1
k=0 Mk

(β + ξ)N
, (15)

where {Mk} is as in Lemma 1 and β = E(Mk).

Proof. Assuming logM0(ω) is measurable we can apply the Ergodic Theo-
rem [28, 4] to T−1 to obtain

lim
n→∞

1

n

n−1∑
k=0

logM−k(ω) = lim
n→∞

1

n

n−1∑
k=0

logM0(ω) ◦ T−k(ω)

= E(logM0(ω))

≤ logE(M0(ω)), (16)

where the last inequality follows from Jensen’s Inequality.
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We note that we did not require that logM0(ω) is integrable as we can apply
the Ergodic Theorem to random variables that are either bounded below or
above. In the present case, logM0(h, ω) could be unbounded below but we may
replace it with M̄0(h, ω) = max(ε,M0(h, ω)) for some small ε > 0 and apply the
Ergodic Theorem to log M̄0(h, ω).

Let β = E(Mk). From Inequality (16) we have that for a.e. ω, for all ξ > 0,
there exists Nω,ξ such that for all n ≥ Nω,ξ,

1

n

n−1∑
k=0

logM−k ≤ ln(β + ξ),

and hence
n−1∏
k=0

M−k ≤ (β + ξ)n.

This implies ∏n−1
k=0 M−k

(β + ξ)n
≤ 1. (17)

Next, we note that for all N > 0 it holds that

N−1∏
k=0

M−k =

∏N−1
k=0 M−k

(β + ξ)N
(β + ξ)N

≤ Cω,ξ(β + ξ)N ,

where

Cω,ξ := max
N

∏N−1
k=0 M−k

(β + ξ)N
.

Cω,ξ is finite for a.e. ω since by Inequality (17) it is less than 1 for large enough
N . To get estimate (13), we repeat the proof above with k = −k but using the
ergodicity and P-invariance of T .

Lemma 3. Let χn(ω) = χ0 ◦ Tn(ω) be a sequence of random variables and let

En,m :=

n∑
l=m

( n∏
k=l

Mk

)
χl

for n > m. Then
En,0 = E0,−n ◦ Tn.

11



Proof.

En,0(ω) =

n∑
l=0

( n∏
k=l

Mk

)
χl(ω)

=

0∑
l=−n

( 0∏
k=l

Mk+n

)
χl+n(ω)

=

0∑
l=−n

( 0∏
k=l

Mk ◦ Tn(ω)
)(
χn ◦ Tn(ω)

)
l

= E0,−n ◦ Tn(ω).

Lemma 4. Let χn(ω) = χ0◦Tn(ω) be non-negative random variables with finite
expectation, and suppose Assumption 4 holds. Then

n∑
l=0

n−1∏
k=l

Mkχl ≤ Bξ ◦ Tn−1,

where

Bξ = Cω,ξ

∞∑
l=0

(β + ξ)lχ−l + χ1 (18)

is an almost surely finite random variable and Cω,ξ is as defined by (14).

Proof. By definition and by Lemma 3, we have that

n−1∑
l=0

n−1∏
k=l

Mkχl = En−1,0 = E0,−(n−1) ◦ Tn−1(ω),

where

E0,−n(ω) =

0∑
l=−n

( 0∏
k=l

Mk

)
χl =

0∑
l=−n

( −l∏
k=0

M−k

)
χl.

Therefore,

n∑
l=0

n−1∏
k=l

Mkχl = En−1,0 + χn =
(
E0,−(n−1) + χ1

)
◦ Tn−1(ω).
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Then using estimate (12) from Lemma 2 we have

E0,−(n−1) ≤ Cω,ξ
0∑

l=−(n−1)

(β + ξ)|l|χl

≤ Cω,ξ
0∑

l=−∞

(β + ξ)|l|χl,

= Cω,ξ

∞∑
l=0

(β + ξ)lχ−l.

Let

Bξ := Cω,ξ

∞∑
l=0

(β + ξ)lχ−l + χ1,

then
n∑
l=0

n−1∏
k=l

Mkχl ≤ Bξ ◦ Tn−1,

as required.

It is clear that Bξ is measurable since χn are non-negative. We need to show
that Bξ is finite for a.e. ω.

Since β < 1 by Assumption 4, we can choose ξ > 0 such that β + ξ < 1. We
know that Cω,ξ is a.s. finite by Lemma 2 and χ1 is non-negative with finite
expectation. Hence, by Monotone Convergence Theorem,

E
( ∞∑
l=0

(β + ξ)lχ−l

)
=

∞∑
l=0

(β + ξ)lE(χ−l) <∞.

Hence
∞∑
l=0

(β + ξ)lχ−l <∞

almost surely. Therefore, Bξ is a.s. finite as required.

For clarity, where necessary, we will use σ as a parameter in the notation for
the remainder of this section.

Proof of Theorem 1. By our choice of σ∗ and h, we have EM∗k < 1, where
M∗k := Mk(h, ρk(h, σ∗)).

We consider Inequality (11). By monotonicity of Mk and γk we can replace σ∗

inside the functions so that the Inequality (11) still holds. We have

|δn|2 ≤ σ2
n∑
l=1

n−1∏
k=l

M∗k |Rl−1|2γ∗l−1 +

n−1∏
k=0

M∗k |QU0 − η|2 + σ2|Rn|2, (19)
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where M∗k := M(h, ρk(h, σ∗)) and γ∗k := γ(h, ρk(h, σ∗)).

We note first that the second term of Inequality (19) is bounded a.s. by (13);

n−1∏
k=0

M∗k |QU0 − η|2 ≤ C
′∗
ω,ξ(β

∗ + ξ)n|QU0 − η|2,

where β∗ = β(σ∗) and C
′∗
ω,ξ = C

′

ω,ξ(σ
∗). Fix ξ > 0 so that β∗ + ξ < 1. Then,

lim
n→∞

n−1∏
k=0

M∗k |QU0 − η|2 ≤ lim
n→∞

Dβ̄n|QU0 − η|2 = 0, (20)

with D = C
′∗
ω,ξ and β̄ = β∗ + ξ.

Next, we use Lemma 4. Let

Cn := B∗ξ ◦ Tn−1 + |R ◦ Tn|2, (21)

where B∗ξ is as defined by Equation (18) with σ replaced by σ∗ and χl =

|Rl−1|2γ∗l−1. Hence explicitly,

B∗ξ = C∗ω,ξ

∞∑
l=0

β̄l|R−l+1|2γ∗−l+1 + |R0|2γ∗0 , (22)

with β̄ = β∗ + ξ. The remaining terms of Inequality (19) are bounded by σ2Cn
which is a.s. finite and stationary by Lemma 4 and by our assumptions on Rn.

Therefore,
|δn|2 ≤ σ2Cn +Dβ̄n|QU0 − η|2

and
lim sup

n

(
|δn|2 − σ2Cn

)
≤ 0,

by Equation (20) a.s. as required. Furthermore it holds that σ2Cn → 0 as σ → 0
since Cn does not depend on σ.

4 A priori bound for strongly dissipative sys-
tems

The next lemmas show that we can usually have a more explicit candidate for
the a priori bound ρn, if one has an estimate of the rate of contraction to the
attractor. This rate is closely related to the absorbing ball property and to our
requirement that the system is dissipative. This contraction can be shown to
hold for many important dynamical systems, such as Lorenz ’63, ’96 and the
2D, incompressible, Navier-Stokes. In fact, it is how we are able to show that
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these systems have the absorbing ball property and are dissipative. We will
study this in more detail in the subsequent sections.

The next lemma derives a bound on the approximating solution based on a
specific rate of contraction. The bound depends on the observation noise up to
time tn, the initial guess η, initial condition U(t0) and the length of the data
assimilation interval h.
Lemma 5. Let U be as defined in Section 2.1 and suppose that there exist
constants c1, c2 > 0 such that

|U(t)|2 ≤ e−c1(t−s)|U(s)|2 + c2 (23)

for all 0 ≤ s < t. Let u(t) be the approximating solution as defined by Equa-
tion (3), then

|u(tn)|2 ≤ φn(h, η, |U(t0)|2) + 2σ2
n∑
k=0

e−c1kh|Rn−k|2 (24)

for all n ∈ N, where h = tn − tn−1 and

φn(h, η, x) = |η|2 +
2x

c1h
+ 3c2

1− e−c1nh

1− e−c1h
.

Proof. By Inequality (23) and because un−1(t) is a solution in the interval
[tn−1, tn), we have

|u(t−n )|2 ≤ e−c1h|u(tn−1)|2 + c2. (25)

By definition and continuity of Qu(t) at tn we have

|u(tn)|2 = |Qu(t−n )|2 + |PU(tn) + σRn|2 ≤ |u(t−n )|2 + |PU(tn) + σRn|2. (26)

For simplicity, let On = |PU(tn) + σRn|2 and substitute Inequality (25) into
Inequality (26) to get;

|u(tn)|2 ≤ e−c1h|u(tn−1)|2 +On−1 + c2.

Therefore by induction

|u(tn)|2 ≤ e−c1nh|u(t0)|2 +

n−1∑
k=0

e−c1kh
(
On−k + c2

)
. (27)

We note that

|PU(tn−k) + σRn−k|2 ≤ 2|U(tn−k)|2 + 2σ2|Rn−k|2

≤ 2e−c1(n−k)h|U(t0)|2 + 2c2 + 2σ2|Rn−k|2,
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where we have used Inequality (23) on U(tn−k). This implies

n−1∑
k=0

e−c1khOn−k ≤
n−1∑
k=0

e−c1kh
(

2e−c1(n−k)h|U(t0)|2 + 2c2 + 2σ2|Rn−k|2
)

= 2ne−c1nh|U(t0)|2 + 2c2
1− e−c1nh

1− e−c1h
+ 2σ2

n−1∑
k=0

e−c1kh|Rn−k|2.

Then Inequality (27) becomes

|u(tn)|2 ≤ |η|2 +
2|U(t0)|2

c1h
+ 3c2

1− e−c1nh

1− e−c1h
+ 2σ2

n∑
k=0

e−c1kh|Rn−k|2.

where we have used that ne−c1hn ≤ 1
c1h

for all n ≥ 0 and h > 0 and |u(t0)| =

|η|2 +σ2|R0|2, where η is the initial guess. Thus we have shown Inequality (24).

We can readily see that Inequality (23) gives us an absorbing ball B(0, r) with

r > c
1/2
2 since any bounded set will eventually be inside the ball. However, we

cannot deduce forward invariance. We will see that the actual contractions we
encounter in the dynamical systems we study, do guarantee forward invariance
and hence imply that Assumption 1 holds.

The following corollary of Lemma 5 gives the a priori bound required for As-
sumption 2.
Corollary 1. Let the conditions of Lemma 5 hold and let δn = U(tn)−u(tn) be
the data assimilation error and h = tn − tn−1 the update interval. Then there
exists a stationary, a.s. finite process

ρn = K̄ + F (h) + 4σ2
∞∑
k=0

e−c1kh|Rn−k|2, (28)

such that |δn|2 ≤ ρn, for all n ∈ N.

Proof. By definition of |δn|2, we have

|δn|2 ≤ 2|U(tn)|2 + 2|u(tn)|2. (29)

We insert (23),(24) into (29) to obtain

|δn|2 ≤ 2φ(h, η, |U(t0)|2) + 4σ2
n∑
k=0

e−c1kh|Rn−k|2 + 2e−c1hn|U(t0)|2 + 2c2.

The above simplifies to

|δn|2 ≤ K̄ + F (h) + 4σ2
∞∑
k=0

e−c1kh|Rn−k|2,

16



where F (h) = 6c2
1−e−c1h + 4|U(t0)|2

c1h
and K̄ = 2

(
|U(t0)|2 + c2 + |η|2

)
, as required.

To see that ρn is a measurable process, set

ρNn := K̄ + F (h) + 4σ2
N∑
k=0

e−c1kh|Rn−k|2.

For each N , ρNn is a finite sum of random variables and therefore measurable and
{ρNn } is a pointwise non decreasing sequence, since we are adding non-negative
terms. Therefore, ρn = supN ρ

N
n , is measurable. To see that ρn is almost surely

finite, we note that by the Monotone Convergence Theorem

E(ρn) = sup
N

E(ρNn ) = K̄ + F (h) +
4σ2

1− e−c1h
<∞ (30)

for all h > 0. Furthermore, ρn is stationary as Rn is stationary.

We can see from Equation (30) that the a priori bound behaves badly at h = 0
as its expectation is O( 1

h ), for small h. In the next lemma we show that for
almost all ω ∈ Ω, limh→0 ρnh := Dω exists. Therefore, pointwise, for small
h, ρn = O( 1

h ) as well. We note also that ρn is decreasing if the noise level σ
decreases and converges to a noise-independent constant when σ → 0.
Lemma 6. For ρn as defined by Equation (28) we have that

1. limh→0 E(ρn)h = C <∞ where C > 0 is a constant,

2. limh→0 ρn(ω)h = Dω for a.e. ω,

3. for all h > 0, ρn(ω) is monotone in σ and limσ→0 ρn(ω) = K̄ + F (h)
almost surely.

Proof. To prove item 1, note that

lim
h→0

E(ρn(ω))h = lim
h→0

(K̄ + F (h) + 4σ2
∞∑
k=0

e−c1kh)h

= lim
h→0

6c2h

1− e−c1h
+

4|U(t0)|2h
c1h

+
4σ2h

1− e−c1h

=
6c2 + 4|U(t0)|2 + 4σ2

c1
:= C.

To prove item 2, it remains to check the pointwise limit of the third term in
Equation (28). Using summation by parts, for any N > 0,

N∑
k=0

e−c1kh|Rn−k|2 = e−Nc1h
N∑
k=0

|Rn−k|2 +

N−1∑
k=0

e−kc1h(1− ec1h)

k∑
j=0

|Rn−j |2.

(31)
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Considering the first term of RHS of Equation (31), by ergodicity of Rn,

lim
N→∞

Ne−Nc1h
∑N
k=0 |Rn−k|2

N
= lim
N→∞

(
Ne−Nc1h

)
E(|Rn−k|2) = 0,

for a.e. ω.

Next we consider the second term. Again from ergodicity, we have that

limk→∞

∑k
j=0 |Rn−j |2

k = 1, since E(|Rn|2) = 1. Therefore, for any ε > 0, there

exists Nω,ε such that for all k ≥ Nω,ε,
∑k

j=0 |Rn−j |2

k < 1+ε. Hence for any k > 0,

k∑
j=0

|Rn−j |2 =

∑k
j=0 |Rn−j |2

k
k ≤ D̄ωk,

where

D̄ω := sup
k

(

∑k
j=0 |Rn−j |2

k
),

and D̄ω <∞ since for large enough k it is smaller than 1 + ε.

Thus the second term of the RHS of Equation (31) is bounded a.s. by

(1− e−c1h)D̄ω

N−1∑
k=0

e−kc1hk = (1− e−c1h)D̄ω
e−c1h

(1− e−c1h)2
= D̄ω

e−c1h

(1− e−c1h)
.

In summary, in the limit h→ 0,

ρnh→
6c2
c1

+
4|U(t0)|2

c1
+ 4σ2D̄ω := Dω

and ρn = O( 1
h ) a.s. as required.

For item 3, we note that the random term of ρn is a.s. finite, therefore for a.e.
ω, and h > 0, limσ→0 ρn = K̄ + F (h), is a constant that does not depend on
the noise.

5 Application to finite dimensional systems

In this section we derive more concrete properties, sufficient to imply the general
Assumptions 1 to 5 in 3, for dissipative and finite dimensional systems of the
form

dU

dt
+AU +B(U,U) = f, (32)

where solutions U and forcing f are functions in a finite dimensional vector
space H = Rd, A is a linear operator and B is a symmetric, bilinear operator;
consequently, the results of Theorems 1 and 2 hold. In Subsections 5.1 and 5.2
we apply our results to the Lorenz ’63 and Lorenz ’96 models respectively.

We assume the following properties,
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Property 1. 1. B(U, V ) = B(V,U) for all U, V ∈ H.

2. (B(U,U), U) = 0, for all U ∈ H.

3. B(QU,QU) = 0, for all U ∈ H.

4. There exists a constant a1 > 0 such that for all U, V ∈ H,
|(B(U, V )| ≤ a1|U ||V |.

5. (AU,U) ≥ |U |2, for all U ∈ H.

Similar properties are used in [16], [14] and [23]. Indeed, Property 1 is equivalent
to Assumption 5.1 in [23] as will be shown below. In [23], it is shown that
Assumption 5.1 implies the relevant squeezing and absorbing ball property used
by those authors (Assumption 2.1 ). As we will show, Property 1 likewise implies
Assumptions 1 to 5 in 3 in our paper. As we have discussed in the remark after
Assumption 4 in 3, our assumptions are related to those of [23] but are not
equivalent.

For the Lorenz ’63 model and standard observation operator P , as specified in
Subsection 5.1, Properties 1.1 to 1.4 are easily deduced, while Property 1.5 is
shown in e.g. [11]. For the Lorenz ’96 system and standard P , as specified in
Subsection 5.2, all the properties are shown in [16].

Remark 1: Property 1.1 is not a restriction on our dynamical system (32)
since only the symmetric part of B enters the dynamics anyway. Property 1.2
implies that the non-linear term does not contribute to the change in energy,
analogous with the nonlinear part of the Navier-Stokes Equations. Property
1.3 effectively represents a non trivial condition on the observation operator P ,
ensuring a form of observability of the system. Property 1.4 is true for any
bilinear operator on a finite dimensional space and hence represents no loss of
generality. Property 1.5 reflects the fact that Au is considered to be a dissipative
term in the dynamics.

Remark 2: From the above description of the dynamical system, it is clear
there are many parallels with the N-S equations, such as dissipativity, and a
nonlinearity which is quadratic and energy conserving. Furthermore, we will
see in Section 6 that the N-S equations can be rewritten in a very similar form
as Equation (32).

Remark 3: We note that by orthogonality of Q and following from Property 1.5
we always have that

(AU,PU) ≥ a2|PU |2 − a3|U |2 (33)

for some a2 > 0 and a3 ≥ 0.2

2(AU,PU) = (A(P +Q)U,PU) = (APU,PU) + (AQU,PU) ≥ |PU |2 −‖A‖|U |2, where we
have used Property 1.5. Therefore we have a2 = 1 and a3 = ‖A‖ but these are not necessarily
the sharpest such constants.
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Remark 4: We note that if Property 1.3 holds for an orthogonal projection Q
then they also hold for any projection whose image is contained in the image of
Q.

The next two lemmas follow directly from Property 1. For the case of Lorenz ’96,
the proofs are given in [14].
Lemma 7. Properties 1.1 and 1.2 imply that

(B(V, V ), U) = −2(B(U, V ), V )

holds for all U, V ∈ H.

The proof is simply expanding (B(U + V,U + V ), U + V ) and (B(U − V,U −
V ), U − V ) using Properties 1.1 and 1.2 and bilinearity of B.
Lemma 8. Suppose that Properties 1.1, 1.2 and 1.4 are satisfied. Then Prop-
erty 1.3 is equivalent to the following; there exists a constant b > 0 such that

2|(B(U, V ), V )| ≤ b|PV ||U ||V |. (34)

Proof. By Lemma 7, 2|(B(U, V ), V )| = |(B(V, V ), U)|. Note that

(B(V, V ), U) = (B(PV +QV,PV +QV ), U)

= 2(B(PV,QV ), U) + (B(PV, PV ), U),

where we have used Property 1.3. Therefore by Property 1.4,

|(B(V, V ), U)| ≤ 2a1|PV ||QV ||U |+ a1|PV |2|U |
= a1|PV ||U |(2|QV |+ |PV |)
≤ 3a1|PV ||U ||V |,

as required with b = 3a1.

Conversely, suppose that Inequality (34) holds. Then

|B(QV,QV ), U)| ≤ b|PQV ||QV ||U | = 0

since |PQV | = 0. As this holds for all U ∈ H we get that B(QV,QV ) = 0 for
all V ∈ H.

In the next several lemmas we show that if Property 1 holds, then ODEs of the
form (32) satisfy Assumptions 1 to 5 of 3, and consequently Theorems 1 and 2
hold.

We start with showing that Properties 1.2 and 1.5 imply Assumptions 1 and 2
of 3.
Lemma 9. Let U be the solution of a finite dimensional ODE as defined by
(32) and suppose that Properties 1.2 and 1.5 are satisfied. Then Assumption 1
holds for any K > |f |2 and Assumption 2 for ρn as given in Corollary 1 with
c1 = 1 and c2 = |f |2.
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Proof. The absorbing ball property is easily verified. Take the inner product of
ODE (32) with U and use Property 1.2 and Property 1.5 to get

1

2

d|U |2

dt
+ |U |2 ≤ (f, U).

Then, by the Cauchy-Schwarz and Young’s inequality we obtain

1

2

d|U |2

dt
+ |U |2 ≤ |(f, U)| ≤ |f ||U | ≤ 1

2
|f |2 +

1

2
|U |2,

and hence,
d|U |2

dt
+ |U |2 ≤ |f |2.

Assumption 1 follows from using Gronwall’s lemma;

|U(t)|2 ≤ |U(0)|2e−t + |f |2(1− e−t). (35)

We see that any ball B(0,K1/2) with K > |f |2 is absorbing and forward invari-
ant. Furthermore, Inequality (35) implies that the conditions of Corollary 1 are
satisfied with c1 = 1 and c2 = |f |2 and hence Assumption 2 (a priori bound)
holds.

Before proceeding to the next lemmas we derive an equation for the error
δ = U − u. Since the approximating solution u satisfies Equation (32)
in the interval [tn, tn+1), we have that

dδ

dt
+Aδ + 2B(U, δ)−B(δ, δ) = 0, (36)

where we have used the bilinearity and symmetry ofB to derive the above.

In the next Lemma we show that Assumption 5 holds (Eq. (37)), and we
derive a bound on |Pδ| (Eq. (38)) which is used in Lemma 11 to show that
Assumption 3 holds. The bound on |Pδ| and its proof are similar to that of the
bound obtained in [23], Lemma 5.3, but with an important difference. If we were
to simply replace the bound on |δ0| (given by r′2 in that paper) by our a priori
bound ρn, we would have a term multiplying |δ|2 that in the limit h→ 0 tends
to a constant (see Lemma 6). In our bound (38), the a priori bound appears in

lower order, ρ
1/2
n . This means that in the limit, this term goes to zero, which, in

turn, enables us to show in Lemma 12, that there is a h for which the squeezing
holds in expectation, as required by Assumption 4.
Lemma 10. Assume that Properties 1.1, 1.2, 1.4 and 1.5 hold. Let U be a
solution to ODE (32) contained in the invariant set B = B(0,K1/2). Then
δ(t) = U(t)− u(t) satisfies

|δ(t)|2 ≤ |δn|2eκ(t−tn), (37)
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and
|Pδ|2 ≤ |δn|2(a4 + a5ρ

1/2
n )(t− tn) + |Pδ(tn)|2, (38)

for t ∈ [tn, tn+1), n ∈ N0, κ = 2(2a1K
1/2 − 1), a4 = 2eκh(

a21
a2
K + a3), a5 =

2a1e
3κh/2, and ρn is as in Lemma 9.

Outline of Proof: Proof of Eq. (37) is straightforward and similar to the proof
given for the Lorenz system in [11], so we omit it for brevity.

Proof of Eq. (38); Taking inner product of the error Equation (36) with Pδ and
applying Inequality (33), we get

1

2

d|Pδ|2

dt
+ a2|Pδ|2 − a3|δ|2 + 2(B(U, δ), P δ)− (B(δ, δ), P δ) ≤ 0.

Inequality (38) is obtained by applying Cauchy-Schwarz, Property 1.4, Inequal-
ity (37), Young’s and the a priori bound, which holds by Lemma 9, to the above
and then applying Gronwall’s lemma.

The next lemma shows that Assumption 3 holds.
Lemma 11. Let U ∈ B = B(0,K1/2) be a solution to ODE (32), satisfy-
ing Properties 1.1 to 1.5 with δ(t) as defined by Equation (4), then there exist
continuous functions M : R+ × R+ → R+ and and γ: R+ → R+ such that

|δ(t)|2 ≤M(t− tn, ρn)|δn|2 + γ(t− tn)|Pδn|2,

for t ≥ tn, where

M(τ, ρn) = e−τ (1 + a6

∫ τ

0

(a4 + a5ρ
1/2
n )essds)

and
γ(τ) = a6(1− e−τ ),

with a6 = b2K.

Proof. Taking inner product of error Equation (36) with δ and using Proper-
ties 1.5 and 1.2 we get

1

2

d|δ|2

dt
+ |δ|2 ≤ 2|(B(U, δ), δ)|.

Note that |U | ≤ K1/2. Using Lemma 8 and then Young’s, we obtain

1

2

d|δ|2

dt
+ |δ|2 ≤ |δ|2/2 + b2K|Pδ|2/2,

and hence
d|δ|2

dt
+ |δ|2 ≤ b2K|Pδ|2. (39)
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We use the bound (38) on |Pδ|2 from Lemma 10 and replace in above inequality
to obtain

d|δ|2

dt
+ |δ|2 ≤ b2K

(
|δn|2(a4 + a5ρ

1/2
n )(t− tn) + |Pδ(tn)|2

)
.

Multiplying by the integrating factor et−tn and using Gronwall we get

|δ|2 ≤ |δn|2Mn(t− tn, ρn) + |Pδn|2γ(t− tn),

where

Mn(τ) := M(τ, ρn) = e−τ (1 + a6

∫ τ

0

(a4 + a5ρ
1/2
n )essds)

and
γ(τ) = a6(1− e−τ ),

with a6 = b2K. Since ρn is continuous w.r.t. τ for all τ > 0, so are Mn for a.e.
ω.

We note that in this case the γn are all the same, non-random and finite for all
τ ≥ 0. Therefore Assumption 4 is satisfied if the following lemma holds.
Lemma 12. There exists τ∗ > 0 such that EMn(τ) < 1 and Eγn(τ) < ∞ for
all τ ∈ (0, τ∗].

Proof. We wish to show that the function

m(τ) = EMn(τ) = e−τ (1 + a6

∫ τ

0

(a4 + a5E(ρ1/2
n ))essds)

is less than 1 in some neighbourhood around 0. The a priori bound ρn, and
consequently Mn, is not well defined at zero. However, we will show that
E(ρn(τ)1/2)τ1/2 is finite in a neighbourhood around τ = 0, that is, E(ρn(τ)1/2)s1/2 <
B for some constant B > 0, for all s ≤ τ and τ sufficiently small.

Supposing the above holds, we have that in this neighbourhood

m(τ) ≤ e−τ (1 + a6

∫ τ

0

(a4s
1/2 + a5B)s1/2esds) := m(τ), (40)

which implies that

m(0) = lim
τ→0

EMn(τ) ≤ lim
τ→0

m(τ) = 1.

Furthermore,

dm(τ)

dτ
= −m(τ) + a6(a5τ

1/2 + a4B)eττ1/2,

and hence
dm(0)

dτ
= −1.
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Therefore, there exists a τ∗ such that m(τ) < 1 for all 0 < τ ≤ τ∗. Hence by
the bound in (40) the same is true of m(τ), for sufficiently small τ .

It remains to show that E(ρ
1/2
n )τ1/2 = E((ρnτ)1/2) is bounded in a neighbour-

hood around τ = 0. Recall that

ρn = K̄ +
6|f |2

1− e−τ
+

4|U(t0)|
τ

+ 4σ2
∞∑
k=0

e−kτ |Rn−k|2.

Therefore,

E((ρnτ)1/2) ≤ E(ρnτ)1/2

=
(
K̄τ +

6|f |2

1− e−τ
τ + 4|U(t0)|2 + 4σ2τ

∞∑
k=0

e−kτ
)1/2

=
(
K̄τ + 4|U(t0)|2 +

6|f |2 + 4σ2

1− e−τ
τ
)1/2

.

This bound is continuous at 0, and the limit is

lim
τ→0

E((ρnτ)1/2) ≤ (4|U(t0)|2 + 6|f |2 + 4σ2)1/2,

which is finite.

Before turning to the N-S equations we will analyse two well known finite di-
mensional systems, known as Lorenz ’63 and ’96, that are commonly used as
model problems for data assimilation.

5.1 Lorenz ’63 model

The Lorenz ’63 model consists of a system of three coupled ODEs, obtained
from the N-S equations by truncation of the Fourier series to the first three
modes [19, 25]. It is given by

U̇1 = −αU1 + αU2,

U̇2 = −αU1 − U2 − U1U3,

U̇3 = −bU3 + U1U2 − b(r + α),

where the parameters b, r, α ≥ 0 are real constants with standard values of
b = 10, r = 8/3, α = 28.

We can write this system in the form of ODE (32), (see e.g. [9]), where

A =

α −α 0
α 1 0
0 0 b

 , B(U, Ū) =

 0
(U1Ū3 + U3Ū1)/2
−(U1Ū2 + U2Ū1)/2

 , f =

 0
0

−b(r + α)

 .
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The standard observation operator P is the projection onto the U1 subspace.
With this operator P all items of Property 1 are easily verified. Furthermore,
we have

(B(U, V ), PW ) = 0

for all U, V,W ∈ R3, meaning that the nonlinear part of the flow is always
perpendicular to the observations.

This last property is specific to Lorenz ’63; it does not hold for Lorenz ’96 or
N - S. It means that we can have a much simplified estimate for |Pδ|2, since
taking inner product of the error Equation (36) and Pδ and applying Inequal-
ity (33) now yields;

d|Pδ|2

dt
+ 2a2|Pδ|2 ≤ 2a3|δn|2eκ(t−tn) ≤ 2a3|δn|2eκh.

Setting a7 = 2a3e
κh, the estimate (38) on |Pδ|2 is simplified to

|Pδ(t)|2 ≤ e−2a2(t−tn)(
a7

2a2
|δn|2(e2a2(t−tn) − 1) + |Pδn|2).

We note that the stochastic ρn no longer appears. We follow the proof of Lemma
11 till Equation (39) and then use the simplified bound obtained above. Thus
we get,

|δ|2 ≤ |δn|2M(t− tn) + γ(t− tn)|Pδn|2,

where

M(τ) = e−τ (1 + a8

∫ τ

0

es − e(−2a2+1)sds) (41)

and

γ(τ) = b2Ke−τ
∫ τ

0

e(−2a2+1)sds,

where a8 = b2K a7
2a2

.

We can see that in the particular case of Lorenz ’63, we get a stronger re-
sult because M is deterministic and does not depend on the size of |δ(tn)|.
Consequently we just need to show that the non-random function M(τ) < 1
for Assumption 4 to hold. This can readily be verified as M(0) = 1 and
M
′
(τ) = −M(τ) + a8(eτ − e−2a2τ ) + κe−τa8

∫ τ
0
es − e(−2a2+1)sds, so that

M
′
(0) = −1 < 0. Therefore, there exists a τ∗ > 0 such that M(τ) < 1 for

all τ < τ∗.

In this case the Cn of Theorem 1 have a much simpler form. Choose some
h ∈ (0, τ∗). Let ζ > 0 be some constant such that M(h) < ζ < 1. We can
replace Mk by the constant ζ in Equation (11) and get;

|δn|2 ≤ σ2
n−1∑
l=0

ζlγ|Rn−l−1|2 + ζn|QU0 − η|2 + σ2|Rn|2.
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Therefore Equation (11) and get;

lim sup
n

(
|δn|2 − σ2(

∞∑
l=0

ζlγ|Rn−l−1|2 + |Rn|2)
)
≤ 0. (42)

Hence, a possible form of Cn is Cn =
∑∞
l=0 ζ

lγ|Rn−l−1|2 + |Rn|2, which is a
stationary process due to the assumptions on Rn. Furthermore,

E(Cn) =
1− ζ + γ

1− ζ
<∞. (43)

Therefore, since Cn ≥ 0, it is a.s. finite.

We note also that

lim sup
n

E|δn|2 ≤ σ2E(Cn) =
σ2(1− ζ + γ)

1− ζ
,

so that the long-term mean square of the error is proportional to the strength of
the noise, since constants ζ and γ are independent of the noise and only depend
on the data assimilation interval h.

The bounding process Cn gives little information in the limit h → 0, because
then ζ → 1. The same problem arises using 3DVAR as shown by [14], how-
ever they also give numerical results showing that the accuracy of the filter is
fortunately a lot better than the theoretical bound implies. Clearly the bounds
we give are not sharp since we make a number of estimates along the way. The
main problem with our analysis for small h is that we are always summing the
squared magnitude of the observational error. If h is small enough however,
the dynamics is close to the identity, which should lead to considerable cancel-
lations between the propagated errors. This is not taken into account in our
approach.

We remark also that the above P is not the only observation projection that
would allow for Theorem 1 to hold. Any such P would need to satisfy Prop-
erty 1.3. That is, B(QU,QU) = 0, so that the image of Q is contained in the
null space of B. The null space of B is given by U3U1 = 0 and U1U2 = 0 so
that it is composed of the plane U1 = 0 and the line U3 = U2 = 0. This means
that Q must project either onto the (U2, U3)-plane or the U1 subspace or the
origin. Since P = I − Q, P can project either onto the (U2, U3)-plane or the
U1 subspace, or the whole space (i.e. P is the identity). We note that observing
only the U2 or only the U3 subspace would not work.

5.2 Lorenz ’96 model

The Lorenz ’96 model [20] is given by

dUi
dt

= (Ui+1 − Ui−2)Ui−1 − Ui + F,
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for i = 1...N , N = 3M , for some M ∈ N with U−1 = UN−1, U0 = UN , UN+1 =
U1 and F = 8.

As given in [16], in this model A is the N ×N identity matrix, f = (8, ..., 8)T

is an N dimensional vector, and the symmetric bilinear form is given by

B(U, V )i = −1

2
((Ui+1 − Ui−2)Vi−1 + (Vi+1 − Vi−2)Ui−1).

The projection operator P is produced by setting every third column of the
identity matrix to 0. That is,

P = (e1, e2, 0, e4, ..., 0, eN−2, eN−1, 0).

With the above observation operator it has been shown, see [16], that Property 1
holds and that a2 = 1 and a3 = 0 since A is the identity matrix. Furthermore,
we have that b = 6 and a1 = 2.

In some ways the Lorenz ’96 model behaves more like the 2D Navier-Stokes, in
that the equation for P is not as simple; Lorenz ’63 is in this sense exceptional.
Thus, in the case of Lorenz ’96 we cannot easily deduce an explicit form for the
process Cn.

6 Application to Navier Stokes

In this section we show that the 2-D incompressible Navier-Stokes equations,
with L-periodic boundary conditions, satisfy Assumptions 1 to 5 of Section 3,
and therefore that Theorems 1 and 2 hold also for this model.

As we will see, the strategy for showing Assumptions 3 and 4 of 3 for the N-S
equations will differ from the finite dimensional case we saw in Section 5. In the
case of N-S, we are able to use only the Q part of the error equation to derive
the “squeezing” property of Assumption 3. This is due to the specific form that
the observation operator Pλ takes, which means that the Q equation represents
the higher modes, which are dissipated quicker, the larger the λ. In the Lorenz
models all modes are dissipated at the same rate so we cannot hope to adjust
the operator P in order to obtain the same effect.

Following the notation of [11], let Ω = [0, L] × [0, L]. The equations for the
velocity field u and pressure p are given by

∂u

∂t
− ν∆u+ (u.∇)u+∇p = f, (44)

∇ · u = 0,

where ν is the kinematic viscosity and f the time independent body forcing. Let
V be the space of L-periodic trigonometric polynomials, with zero divergence
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and zero constant term. That is,

V = {u : R2 → R2; L-periodic trig. polynomial,∇.u = 0,

∫
Ω

u = 0},

and let H be the closure of V in L2(Ω) and V the closure of V in Sobolev space
H1. Let v ∈ V and let u ∈ V be a solution to Equation (44). Take the L2 inner
product of (44) with v to get

(
∂u

∂t
, v)− ν(∆u, v) + (u · ∇u, v) + (∇p, v) = (f, v).

Since v is divergence-free we obtain for the pressure term

(∇p, v) =

∫
Ω

∇p · v = −
∫

Ω

p∇ · v = 0,

where we also use that v is periodic. By density of V ∈ H1, the weak form

du

dt
+ νAu+B(u, u) = f (45)

of the N-S equations holds for all v ∈ V . Equation (45) is an ODE in the
dual space V ∗, so that A and B are operators from V to V ∗. If u ∈ H2 then
(Au, v) =

∫
Ω
−∆u · v dx and (B(u, u), v) =

∫
Ω

(u · ∇u) · v dx.

We can express u ∈ H by its Fourier series

u =
∑
k̄∈J

uk̄e
ik̄.x,

where

J =
{
k̄ =

2π

L
(k1, k2) : ki ∈ Z, k̄ 6= 0

}
.

We define norms on H,V and H2 ∩H respectively as

|u|2 = L2
∑
k̄∈J

|uk̄|2,

‖u‖2 = L2
∑
k̄∈J

k̄2|uk̄|2,

and
|Au|2 = L2

∑
k̄∈J

k̄4|uk̄|2,

which can be shown to be equivalent to the standard norms on L2, H1 and H2

on these spaces.

The key idea of the approach taken in [11], and which we follow, is that there is a
natural splitting of the phase space V into a finite-dimensional sub-space and its
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infinite dimensional orthogonal complement such that the orthogonal projection
of the solution onto the finite dimensional subspace dominates.

We define the orthogonal projection Pλ as

Pλu =
∑
|k̄|2≤λ

uk̄e
ik̄.x,

where 0 < λ ∈ Z. We say that Pλ is a projection onto the low modes.

Let us state some well known properties of the system. In this setting and
with initial conditions in V , the existence and uniqueness of strong solutions is
shown for example in [22]. Therefore we can define a semi-flow. We will verify
Assumption 1 and 2 for Equation (45) by the following Theorem which is proved
in [12].

Theorem 3. Let u(t) solve the N-S Equation (45) and u0 ∈ H, then the fol-
lowing estimate holds

‖u(t)‖2 ≤ e−νλ1(t−s)‖u(s)‖2 +
1

ν

∫ t

s

e−νλ1(t−τ)|f |2 dτ (46)

for every 0 < s ≤ t, where λ1 is the smallest eigenvector of A. In particular,
we have

lim sup
t→∞

‖u(t)‖2 ≤ |f |
2

ν2λ1
:= K. (47)

It follows from Corollary 1 that Assumption 2 is satisfied with constant c1 = νλ1

and c2 = K.

It follows from Inequality (46) that the ball B(0, r) with r > K1/2 is an absorb-
ing set because whatever bounded set we start with there will be a time after
which it will be contained in the ball. Furthermore it’s straightforward to show
from (46) that B(0, r) is forward invariant, as required for Assumption 1.

In the case where no noise is present in the observations, the existence of a
function M , as required for Assumption 3, is shown in [11], Theorem 3.9. We
follow the same reasoning but with the adjustment that in our setting Pλδ(tn) 6=
0, so that the induction argument used to ensure a bound on ‖δn‖2 is in our
case impossible due to the noise term in the observation that can be arbitrarily
large. Hence, we replace the R = ‖δ0‖2 bound from [11], by an a priori bound
from Assumption 2. We conclude that whenever there exists a ρ > 0 such that
‖δn‖2 < ρ we have for t ∈ [tn, tn+1),

‖Qλδ(t)‖2 ≤M(t− tn, ρ)‖δ(tn)‖2,

where

M(h) = e−νλh
(

1 +

∫ h

0

g(s, ρ)eνλs ds
)

29



and

g(s, ρ) = C1λ
1/4eκs(ρ(h, ω)1/2eκs/2+2K1/2)2+C2e

κs(ρ(h, ω)1/2eκs/2+2K1/2)8/3,

and where C1 = 2−1/4ν−1λ
−1/4
1 , C2 = 55/32−22/33ν−5/3λ

−1/3
1

3. Further, K is
the size of the attractor of the N-S dynamical system defined by Equation (47).

Finally, κ = 2−1/3(5/8)5/3(3/8)ν−5/3λ
−1/3
1 K4/3 is the constant as in [11], The-

orem 3.8.

We want to use Theorem 1 to show that this random bound is sufficient to
obtain convergence. Indeed, we can show that Assumption 4 holds.
Theorem 4. Suppose that E(|R0|8/3) < ∞, then for all h > 0, there exists a
λ∗ <∞ such that for all λ > λ∗, Assumption 4 holds. That is, E(M(h, ρ0(h))) <
1.

Proof. By the previous discussion, we have that

E(M(h, ρ0(h))) = e−νλh
(

1 +

∫ h

0

ḡ(s, ρ0(h))eνλs ds
)
,

where
ḡ(s, ρ0(h)) := C1λ

1/4eκsE(l(h, s)2) + C2e
κsE(l(h, s)8/3),

and where l(h, s) := ρ0(h)1/2eκs/2 + 2K1/2.

Note that ḡ(s, ρ0(h)) ≤ ḡ(h, ρ0(h)) for all s ≤ h. Then

E(M(h, ρ0(h))) ≤ e−νλh
(

1 + ḡ(h, ρ0(h))

∫ h

0

eνλs ds
)

= e−νλh +
ḡ(h, ρ0(h))

νλ

(
1− e−νλh

)
.

From the above it follows that E(Mn(h)) < 1 if −νλ + ḡ(h, ρ0(h)) < 0. Using
the definition of ḡ, we get

−νλ+ C1λ
1/4eκhE(l2) + C2e

κhE(l8/3) < 0, (48)

where l := l(h, h).

It is clear that Inequality (48) will hold for some sufficiently large λ if the second
and third terms of (48) are finite. It is sufficient to show that E(l8/3) is finite,
since then, any lower moment is finite.

3We have used the explicit value for the dimensionless constant c = 2−3/2 that appears
in [11], Theorem 3.4.
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Recall that l8/3 = (ρ0(h)1/2eκh/2 + 2K1/2)8/3. It is sufficient to show that
E(ρ0(h)4/3) < ∞ since

E(l8/3) =

∫
(ρ0(h)1/2eκh/2 + 2K1/2)8/3dP

= ‖(ρ0(h)1/2eκh/2 + 2K1/2)‖8/38/3

≤
(
eκh/2‖ρ0(h)1/2‖8/3 + 2K1/2

)8/3

,

where in the last step we applied the Minkowski inequality.

It’s clear that the right hand side of the above inequality is finite if

‖ρ0(h)1/2‖8/3 = ‖ρ0(h)‖1/24/3 <∞.

Using the Minkowski inequality on the a priori bound we get

‖ρ0(h)‖4/3 ≤ K̄ + F (h) + 4σ2
∞∑
k=0

e−νλ1kh‖R2
−k‖4/3,

where K̄ and F (h) are both deterministic and the right hand side is finite if
h > 0 and ‖R2

−k‖4/3 <∞.

The above result does not hold uniformly for small h since the bound diverges
at h = 0.

In the previous theorem we saw that for any h > 0, there exists a finite λ
which guarantees that E(M(h, ρ0(h))) < 1. We can compute an explicit expres-
sion for a possible λ from Equation (48), which is given in Lemma 13 in the
Appendix.

7 Numerical results

In this section we show some numerical results to illustrate the asymptotic
bound obtained in our main result (Theorem 1) applied to Lorenz ’63 system
as described in Section5.1.

To obtain the optimal data assimilation step size, we minimize the function
M(h) given in equation (41), which is minimal at h ≈ 3 × 10−5. At this h, M
evaluates to ≈ 1− 1.4× 10−5.

The forward model is numerically integrated using the function Odeint within
the Scipy package in Python. We generate the reference solution from an initial
state [1.0, 1.0, 1.0] and integrate forward for 50, 000 time steps n of size h.

The observation data is generated by adding Gaussian random variable σRn
to the U1 component of the reference solution at each integration step, where
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σ = 0.3 and {Rn}, n ∈ Z are i.i.d. standard normal. The bound in (42) we
write as σ2Cn where Cn = γDn+ |Rn|2, D0 =

∑∞
l=0 ζ

l|R−l−1|2 and Dn satisfies
the recursion
Dn = ζDn−1 + Rn−1, n ≥ 1. We note that D0 is independent of {Rn, n ≥ 0}.
We approximate D0 through

D0 ≈
L∑
l=0

ζl|R−l−1|2,

with L = 250, 000. The expected value of the bound is ≈ 8.13 using the equation
in (43). Finally, the approximating solution is computed with initial guess of
[0.0,−2.0, 3.0].

Figure 1 shows how the bound (blue line) and the data assimilation error (green
line) evolve with time. It illustrates that the bound holds asymptotically. In
addition, we can see that the DA assimilation error converges quite quickly,
after approximately 10, 000 steps to below the bound. It can be seen that the
asymptotic error is in fact much smaller than the bound. We believe that this is
due to our very conservative estimate of the squeezing constant (ζ in the present
case). Small errors seem to decay much faster than ζn, which is the ‘worst case’
decay rate.

Next, we investigate whether the DA error asymptotically behaves like O(σ2).
In fact, from Figure 1, we hypothesize that E( 1

n

∑n
i=1 |δi|2) = σ2. Although

we have no proof of this we note that the error being equal to σ is the best
possible performance for this type of algorithm. The reason is that the noise
of order σ is injected at each data assimilation step. Let Ejn = 1

n

∑n
i=1 |δi|2

for a particular instance j of the noise realisation. Let Xj
n =

Ej
n−σ

2

σ2 , then
our hypothesis is equivalent to E(Xj

n) = 0. In order to test the DA error
asymptotically, we run data assimilation with initial condition of [1.0, 1.0, 1.0] for
a “true” solution starting from [1.0, 1.0, 1.0] as well, so that the only deviations is
the noise injected by the observations. We ran 100 MC simulations for different
values of σ, using the same 100 noise samples for each σ. More specifically, for 10
values of σ; σi = 1− i

10 for i = [0, .., 9] we perform a 30, 000 step (n = 30, 000)
data assimilation run for 100 instances of noise realisations (I = 100). We
found no evidence to reject this null hypothesis for any value of σ. Our 95
% confidence interval is [−0.001813, 0.001813] with no appreciable dependence
on σ. Computing the expectation with the same 100 realisations for each σi
gives very similar results with variation of three orders of magnitude lower.
Figure 2 shows the results of the same experiment but with re-sampling of the
100 realisations for each σ. It demonstrates that also in this experiment the
expectations remains within the confidence interval for each σi.
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Figure 1: Comparison of the asymptotic bound as given in (42) for Lorenz ’63
(blue line), versus a data assimilation error for 50,000 data assimilation steps
and noise variance of 0.09 (green line). Note that the bound is asymptotic, that
is, it does not take initial conditions into account.

33



0.2 0.4 0.6 0.8 1.0
0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

Figure 2: The expectation E(Xj
n), n = 30, 000, estimated with 100 MC sim-

ulations re-sampled for each of the 10 instances of the standard deviation of
the noise σ. We can see that this remains within the 95% confidence interval
providing no evidence to reject the hypothesis.

8 Further work

There are several natural continuations to this work. Most immediately, our
framework could be extended to other, more complex, data assimilation algo-
rithms. As already mentioned, we expect that extension to 3DVAR algorithms
(for example as set up in [5]) is possible.

We can also ask whether it is possible to apply our method to continuous in
time data assimilation. Results regarding accuracy of the filter in continuous in
time data assimilation already exist, see for example [3] where Bessaih, Olsen
and Titi study the case of the 2D N-S model, with observations taken to be
finite volume averages or at nodal points with stochastic measurement error.
The authors show that this leads to a stochastically forced partial differential
equation for the approximating solution and obtain asymptotic bounds on the
error in expectation. Furthermore they show that the bound scales with the
variance of the noise in the observations. Deriving pointwise bounds in this
setting would require a suitable comparison theorem for stochastic differential
equations. Comparison theorems do exist but whether they are applicable in
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this setting remains to be investigated.

In this work, and in most works that we are aware of concerning the accuracy of
filters, the model for the dynamics is assumed to have no error, that is, the model
used for the ‘true’ signal and for the data assimilation is the same. However,
given the chaotic nature of many models relevant for real world applications,
e.g. weather, it could be natural to model the uncertainty in the signal with a
stochastic forward model.
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9 Appendix

Lemma 13. Equation (48) holds for all

λ ≥ max
(

2−1e4/3κhE(l2)4/3, 55/32−19/33eκhE(l8/3)
)
λ
−1/3
1 ν−8/3 (49)

Proof. We consider two possible cases of the second term of Inequality (48) being
greater or smaller than the third term, which correspond to λ being greater or
smaller than the expression(E(l8/3)

E(l2)

)4

(55/32−19/123)4λ
−1/3
1 ν−8/3 := M1. (50)

Replacing in Inequality (48), we have that for λ greater than or equal to (50),
if λ holds for below equation then it holds for (48) as well;

−νλ+ 2−3/4ν−1λ
−1/4
1 λ1/4eκhE(l2) < 0,

so that
λ > 2−1ν−8/3λ

−1/3
1 e4/3κhE(l2)4/3 := M2,

and hence
λ > max

(
M1,M2

)
. (51)

On the other hand, if λ is less than expression (50), we can replace Inequal-
ity (48) with

−νλ+ 55/32−19/33ν−5/3λ
−1/3
1 eκhE(l8/3) < 0,

so that
λ > 55/32−19/33λ

−1/3
1 ν−8/3eκhE(l8/3) := M3,

and hence
M3 < λ < M1. (52)

There are solutions for λ in Inequality (52) if and only if

eκh <
E(l8/3)3

E(l2)4
552−1633,

so that

e4/3κh <
E(l8/3)4

E(l2)16/3
(552−1633)4/3.

Multiplying both sides by 2−1ν−8/3λ
−1/3
1 E(l2)4/3 we get precisely that

M2 < M1.
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Conversely, when M3 > M1, we have that M2 > M1, which means that In-
equality (51) becomes

λ > M2. (53)

Putting Inequalities (52) and (53) together, we see that we require that

λ > max
(
M2,M3

)
.
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