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Abstract. Derivation of reduced order representations of dynamical systems requires the modeling of the trun-
cated dynamics on the retained dynamics. In its most general form, this so-called closure model has
to account for memory effects. In this work, we present a framework of operator inference to extract
the governing dynamics of closure from data in a compact, non-Markovian form. We employ sparse
polynomial regression and artificial neural networks to extract the underlying operator. For a special
class of non-linear systems, observability of the closure in terms of the resolved dynamics is analyzed
and theoretical results are presented on the compactness of the memory. The proposed framework is
evaluated on examples consisting of linear to nonlinear systems with and without chaotic dynamics,
with an emphasis on predictive performance on unseen data.
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1. Introduction. Complex problems in science and engineering are typically character-
ized by high-dimensional dynamics. Examples include the modeling of turbulent fluid flows,
molecular dynamics, and astrophysical plasmas. When such problems are viewed from a dy-
namical systems perspective, the high dimensionality of phase space is a consequence of the
fact that important physical processes occur over a wide range of spatial and temporal scales.
However, effective computational models of these systems for the purposes of analysis, design
and control require accurate low-dimensional representations. Popular techniques to obtain
low-dimensional representations include projection-based reduced order models [22, 6, 52, 9],
reduced basis methods [50, 37], proper generalized decomposition [10], and Krylov subspace
techniques [4]. All of these techniques aim to capture the dynamics essential to a quantity of
interest in by solving for a small number of uknowns (usually by restricting the dynamics to a
low-dimensional manifold). In most practical situations, however, the multiscale nature of the
problem is such that a low-dimensional representation requires closure. In other words, the
influence of the discarded degress of freedom on the retained unknowns becomes important
and must be modeled.

The closure problem is well-recognized by the scientific computing community, and is typ-
ically addressed by invoking physical and/or mathematical arguments. A pertinent example
of physics-based closure is Large Eddy Simulation [38] (LES) in fluid dynamics, where the
impact of the unresolved scales on the resolved scales is often modeled via an eddy diffusivity
hypothesis [18]. Another example [27] involves the determination of constitutive properties of
complex materials through the detailed modeling of the microstructure. Approximate Green’s
function-based closures [24], adaptive deconvolution [43], and homogenization techniques [33]
are representative of mathematically-inspired closures.
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An alternate approach is to pursue data-driven techniques to address closure. There are
several instances of the use of data in closure modeling and the following is not intended
to be a complete or chronological review, but rather presents representative references from
the viewpoint of the various levels at which data has been used to aid closure modeling.
Observational data has been used to calibrate closure parameters in reduced fidelity [31] and
reduced order [14, 5] models. In these approaches, the functional form of the closure term
is prescribed (for instance, via an eddy viscosity assumption) with free parameters which
are inferred by minimizing the misfit between the model output and training data. As an
example of a more extensive approach, Xie et al. [54] impose a general structure to the closure
term and infer matrix operators within the structure. At the next higher level, Ibanez et
al. [25] use manifold learning to identify locally-linear embeddings and construct constitutive
relationships for elasticity. Parish et al. [32], Singh et al. [42] directly extract the functional
form of augmentations to the closure term by combining statistical inference and learning.

The goal of this work is to extract closure operators for reduced-dimensional dynamical
systems using data snapshots generated from the original high-dimensional dynamical system.
The low-dimensional state is augmented with a new set of variables, which represent the
closure term, and the evolution equation for the dynamics is discovered in terms of the low-
dimensional state using polynomial regression and neural networks. A key difference compared
to the literature cited above is that the closed lower-dimensional system is capable of emulating
non-Markovian characteristics. Further, the functional form of the evolution equation of the
closure is not imposed, but rather extracted directly from the data.

Over the past few years, much research has been dedicated to the topic of “data-driven
discovery of governing equations,” using techniques such as dynamic mode decomposition [40],
feature-space regression [53, 8], operator inference [35], and neural networks [36], etc. These
works have demonstrated that it is possible to a) rediscover known equations from data,
or b) derive approximate representations of systems for which precise equations cannot be
written (such as the spread of epidemics [29]). The scope of the present work is different, as
the structure of the closure is unknown even for simple non-linear dynamical systems. It is,
however, assumed that the full-order model corresponding to the high-dimensional system is
known (as is the case in many physical problems, such as fluid dynamics where the governing
equations are known, but are prohibitively expensive to solve in high-dimensional form) and
this knowledge is incorporated into the model formulation process. Furthermore, emphasis is
on prediction rather than reconstruction.

This paper is structured as follows: In section 2, the closure problem is briefly described.
In section 3, a framework of operator inference is presented. In section 4 and section 6,
applications of this framework with sparse polynomial regression and artificial neural network
(ANN) are presented on various problems ranging from simple linear systems to a nonlinear
PDE system. Theoretical investigations are conducted on the structure of the closure dynamics
in section 5. Conclusions and perspectives are drawn in section 7.

2. Description of the closure problem. Consider the autonomous nonlinear dynamical
system in (2.1)

(2.1)
dx

dt
= F (x),
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where x(t) ∈ RN , N ∈ N+, t ∈ [0,+∞), x(0) = x0 and F (·) : RN 7→ RN .
To serve as a representative lower-dimensional dynamical system, we consider a partition

(2.2) x =

[
x̂
x̃

]
,F (x) =

[
F̂ (x̂, x̃)

F̃ (x̂, x̃)

]
,

where F̂ (·, ·) : RQ × RN−Q 7→ RQ, F̃ (·, ·) : RQ × RN−Q 7→ RN−Q, Q ∈ N+. x̂ ∈ RQ is the
low-dimensional or resolved state and x̃ ∈ RN−Q represents the unresolved modes. In general
terms, the above partition appears arbitrary. This partition is, however, directly relevant in
a number of problems: (i) in projection-based Reduced Order Models (ROMs), where the
components of the state in the original dynamical system are ordered according to an energy
metric; (ii) in large eddy simulations (LES) of turbulence using spectral or finite element
methods, where there is a clear separation between resolved and unresolved scales; (iii) in
system identification, where the system is only partially observed and a governing equation
for the partially observed system is desired.

The evolution of the reduced state is given by

(2.3)
dx̂

dt
= F̂ (x̂, x̃),

where x̂(0) = x̂0 ∈ RQ and x̃(0) = x̃0 ∈ RN−Q.
Note that (2.3) is not very useful, as the trajectory of the unresolved state x̃(t) is present

in these equations. In reduced order modeling, a closed set of equations of the form

(2.4)
dx̂

dt
= FROM (x̂),

is obtained through physically-insipired [14, 5], data-augmented [55] or purely data-driven [35]
methods.

In 2.4, x̂(0) = x̂0 and FROM : RQ 7→ RQ. When FROM (x̂) = F̂ (x̂,0), one obtains a
classic truncated ROM. In fluid dynamic modeling terms, this corresponds to a Large Eddy
Simulation without a explicit subgrid scale model. In obtaining such approximations, a key
fact to consider is that, even if the high-dimensional system is Markovian, the corresponding
projected low-dimensional system can be non-Markovian. This is evident even in the simplest
case of a linear system. Consider that the full order model with its partition into resolved and
unresolved states:

(2.5)
d

dt

[
x̂
x̃

]
=

[
A11 A12

A21 A22

] [
x̂
x̃

]
.

The evolution of the resolved states is given by:

(2.6)
dx̂

dt
= A11x̂+

∫ t

0
A12e

A22τA21x̂(t− τ)dτ +A12e
A22tx̃(0).

This equation is closed in the resolved variables. The first term on the right hand side
is F̂ (x̂,0); the second term, which represents the closure, involves the time-history of the



4 SHAOWU PAN, KARTHIK DURAISAMY

resolved modes, and the third term involves the initial condition of the unresolved state, and
can be expected to decay in time for a dissipative system.

The above expression of closure can be generalized to any nonlinear system (2.1) and (2.2)
using the Mori-Zwanzig formalism [13, 12], and exact evolution equations can be written for
the reduced state in the following Generalized Langevin form:

(2.7)
dx̂

dt
= F̂ (x̂,0) +

∫ t

0
K(x̂(s), t− s) ds +Q(x̂(t)),

where K, Q are complex operators associated with convolution and influence of the initial
conditions, respectively.

While the above equation is mathematically precise and formally closed in the resolved
variables, the functional forms of K and Q are not explicitly known and numerically in-
tractable, even for the simplest non-linear dynamical systems, and must thus be determined
via the solution of another high-dimensional partial differential equation [20]. The key mes-
sage is that reduced-order representations of even a linear Markovian system can introduce
memory or time-history effects in an explicit form that requires all its previous states. In the
present work, we introduce a dynamic memory and aim to extract its evolution using operator
inference. It is also shown that for a specialized class of nonlinear systems that the memory
length is compact, and thus the full history of resolved states is not necessary.

3. Framework of operator inference. As indicated by the Mori-Zwanzig formalism, the
exact closure is a compositional convolution operator on all past resolved states. This approach
is equivalent to the concept of dynamic or recurrent memory [19], a concept which has been
very attractive in the time series modeling and deep learning communities. To address complex
memory structures, we consider time delay vectors in the framework as implied by Takens
embedding theorem [45] which states that there exists a diffeomorphism between proper time
delayed (reconstructed) attractor and the original manifold.

By leveraging both dynamic memory and implications of Takens embedding theorem, a
framework of operator inference is proposed as shown in the following discretized augmented
system:

Dx̂

Dt
= F̂ (x̂(t),0) + δ(t),(3.1)

Dδ

Dt
= G(x̂(t− s0), . . . , x̂(t− sp), δ(t− s0), , . . . , δ(t− sp)),(3.2)

where δ ∈ RQ is the closure term, p ∈ N is the number of delays of past time information,
and D

Dt represents time discretization. {si}pi=0 is given as a strictly monotonic equally spaced
time sequence with si = i∆t, si ∈ [0, t].

We note that Shulkind et al. [41] also pursue closure, but are focused on developing a
Markovian correction term with the restriction that the magnitude of the closure term is
small compared to the resolved term. In the present work, memory effects are represented
via an additional governing equation for δ. Two important features of the current framework
are: a) the functional form of G is extracted from data, i.e., solution snapshots from the
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high-dimensional model, and b) this framework is inherently non-Markovian (for the resolved
variables x̂). As a side note in Appendix A, the current framework of operator inference for
the shortest memory case p = 0 is compared to Elman’s network [16], a forerunner to modern
recurrent neural networks [19], to highlight similarities and differences.

3.1. Interpretation of operator inference. In a simple setting, assume the dynamical
system above is discretized using first-order forward time integration. Rewrite the partitioned
system as

x̂n+1 − x̂n

∆t
= F̂ (x̂n,0) + F̂ (x̂n, x̃n)− F̂ (x̂n,0) = F̂ (x̂n,0) + δn,(3.3)

x̃n+1 − x̃n

∆t
= F̃ (x̂n, x̃n),(3.4)

where δ = F̂ (x̂, x̃) − F̂ (x̂,0) , R(x̂, x̃). Note that δn+1 = F̂ (x̂n+1, x̃n+1) − F̂ (x̂n+1,0) =
R(x̂n+1, x̃n+1) = R(x̂n + ∆tF̂ (x̂n,0) + ∆tδn, x̃n + ∆tF̃ (x̂n, x̃n)). Thus, one must obtain x̃n

to further evolve the closure.
As implied by the Takens embedding theorem, it is possible to use the information of

past resolved states to obtain x̃n. Considering a time delay up to p steps, the equations that
involve x̃ are given as follows:

δn = R(x̂n, x̃n),(3.5)

x̃n − x̃n−1

∆t
= F̃ (x̂n−1, x̃n−1),(3.6)

δn−1 = R(x̂n−1, x̃n−1),(3.7)

...

x̃n−p+1 − x̃n−p

∆t
= F̃ (x̂n−p, x̃n−p),(3.8)

δn−p = R(x̂n−p, x̃n−p),(3.9)

with the number of equations, component-wise, being Neq = pN + Q and the number of
unknowns, component-wise, beingNunk = (p+1)(N−Q). Note thatNeq−Nunk = (p+2)Q−N .
Therefore, for large enough p, it should be possible to determine x̃n from x̂n−1, . . . , x̂n−p and
δn, . . . , δn−p by solving the nonlinear algebraic equations above. Once x̃n is determined, one
can obtain δn+1−δn

∆t as a function G of x̂n, . . . , x̂n−p and δn, . . . , δn−p. This suggests the
possibility of finding G through a data-driven method.

3.2. Definition and data preparation. As discussed above, the goal of the operator in-
ference framework is to determine G in (3.2). This process can also be viewed as a nonlinear
system identification problem by considering δ as the states of an undetermined system and
x̂ as inputs to this system. Our approach requires the parameterization of G(·) in the form
of GW using two different methodologies and then solving an optimization problem over
the parameter space W . The first parametrization method is sparse polynomial regression
(similar to the SINDy approach of Brunton et al. [8]) which leverages the fact that many
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dynamical systems in science and engineering can be represented as a sparse combination of
monomials. The second method uses time delayed neural networks [51] which are scalable to
high-dimensional nonlinear systems and possesses the universal approximator property and
implicit feature selection. Note that for simplicity, the time derivative is realized by a first-
order forward scheme throughout this work.

Assume M temporally sequential snapshots X =
[
x̂j
]
j∈I ∈ RM×Q spaced uniformly with

a time interval ∆t, i.e., si = i∆t, ∀i ∈ {0, . . . , p} and dX =
[
Dx̂j/Dt

]
j∈I ∈ RM×Q obtained

from the full order model (Eq.(2.1)). Here, I = {j|j ∈ N+, 1 ≤ j ≤ M}, M ∈ N+ and
p ∈ N is the number of steps of past memory. We divide X into training and testing data
through the index set, considering p time delayes: Ip = {j|j ∈ I, ∀i ∈ N, 0 ≤ i ≤ p, j − i ∈ I};
training data index set: Iptrain = {j|j ∈ Ip, j ≤ Mtrain}, Mtrain ∈ N+; testing data index
set: Iptest = Ip \ Iptrain. It should be noted that we simply choose si = i∆t, where ∆t is the
time interval between equally spaced snapshots. As a result, given F̂ (·, 0), the corresponding
snapshots of training closure are

(3.10) ∆Iptrain
=
[
δj
]
j∈Iptrain

=
[
Dx̂j/Dt− F̂ (x̂j ,0)

]
j∈Iptrain

.

Therefore, the time-delayed feature matrix of x̂ and δ in the training data can be con-
structed as

(3.11) YIptrain =
[
x̂j , . . . , x̂j−p, δj , . . . , δj−p

]
j∈Iptrain

=
[
yj
]
j∈Iptrain

,

where yj ∈ R2(1+p)Q.
Considering the dependency indicated by the relation between the sequences of δ and x̂,

∀j ∈ N+, j ≤ n, δn−j = x̂n−j+1−x̂n−j

∆t − F̂ (x̂n−j ,0); the economic time-delayed feature matrix
can be constructed as

(3.12) Y eco
Iptrain

=
[
x̂j , . . . , x̂j−p, δj

]
j∈Iptrain

=
[
yjeco

]
j∈Iptrain

,

where yjeco ∈ R(2+p)Q.
The training target is

(3.13) ZIptrain = D∆Iptrain
/Dt = [Dδj/Dt]j∈Iptrain = [zj ]j∈Iptrain ,

where zj ∈ RQ.
Likewise, the testing feature matrix and target are

(3.14) YIptest =
[
x̂j , . . . , x̂j−p, δj , . . . , δj−p

]
j∈Iptest

=
[
yj
]
j∈Iptest

,

(3.15) ZIptest =
d∆

dt
= [zj ]j∈Iptest ,

and the corresponding economic feature matrix is

(3.16) Y eco
Iptest

=
[
x̂j , . . . , x̂j−p, δj

]
j∈Iptest

=
[
yjeco

]
j∈Iptest

.
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3.3. Data driven modeling. Based on the above definitions, the general idea is to trans-
form the functional approximation problem into an optimization problem either through sparse
polynomial regression (SINDy) or neural networks as described in the following subsections.

3.3.1. Sparse polynomial model. Since polynomial features frequently appear in many
science and engineering applications, polynomial regression [8] is typically a popular choice.
An approximation of the form G = ĜW = ΘkW is employed by transforming the problem
of finding a sparse representation of dynamical system into a convex optimization problem in
(3.18), where W ∈ RL

p
k×Q is a matrix of decision variables, and Lpk ∈ N+ is the number of

component-wise polynomial features up to total degree k of resolved states and using previous
p steps. To illustrate this idea, given row vector h ∈ R1×n, ∀n ∈ N+, Θk is a corresponding
feature row vector from a monomial library with a certain maximum total order k

(3.17) Θk(h) =
[
1 h hP2 · · ·hPk

]
,

where hPk refers to all product terms of monomials with total degree k. Naturally, ∀m,n ∈ N+,
H ∈ Rm×n, Θk(H) is the row stack of Θk(Hi), i ∈ {1, . . . ,m}, H = [HT

1 , . . . ,H
T
m]T .

The basic idea of sparse polynomial regression is to find a sparse representation by spar-
sifying the coefficient matrix W from a predefined feature library through either a sequential
thresholded least-squares algorithm [8] or using lasso [29].

Applying lasso [46, 47], given |Iptrain| ≥ (1 + p)Lpk, (3.18) can be shown to be a convex
optimization problem for wk, the kth column of W :

(3.18) w∗k = argmin
wk

1

|Iptrain|
∑

j∈Iptrain

∥∥zj −Θk(y
j)wk

∥∥2

2
+ λ ‖wk‖1 ,

where | · | is the cardinality, Θk(y
j) ∈ R|I

p
train|×L

p
k , and λ ∈ R+ is the penalty coefficient. It

is important to note that for lasso to achieve ideal support recovery, the following constraint
must be satisfied [44]

(3.19) nk/np ≤ δ/(2 log np)(1 + o(1)),

where nk is the number of true features, np is the number of total features, δ = n/np where
n is the number of i.i.d data points. The simplest way to achieve this is to ensure one has
a large number data n compared to number of total features np. lasso is implemented via
Scikit-learn packages [34].

Regarding the dependency between features, since j ≤ n, δn−j = x̂n−j+1−x̂n−j

∆t −F̂ (x̂n−j ,0).

Hence, if F̂ is compact in monomials, it is possible to replace δn−1, . . . , δn−p by polynomials of
x̂n, . . . , x̂n−p. However, if F̂ is not in polynomial form or if F̂ contains a very high order poly-
nomial of x̂, the size of the library will be extremely large and potentially non-convergent.
While reuse of δn−j can alleviate this issue, the trade-off involves using twice the degrees
of freedom. For the sparse polynomial regression model, employment of δn−j is considered
throughout this work for better fitting performance.

The current framework with polynomial features is different from the operator inference of
Peherstorfer and Willcox [35], which targets the entire system and can be viewed as a particular
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case of the present work with p = 0, k = 2, and F̂ = 0, and with POD as preprocessing for
dimension reduction. Additionally, sparsity is not encouraged and no memory effects are
required in their model. The present framework thus seeks a more general non-Markovian
operator inference.

3.3.2. Artificial neural network model. In the previous subsection, the number of poly-
nomial features in the feature library is found to grow exponentially with Q. One of the
most popular tools for efficient high-dimensional functional approximations is the artificial
neural network (ANN). The appealing feature of neural networks with a single hidden layer
and squashing nonlinear activation function is that any Borel measurable function can be ap-
proximated to any degree of accuracy on a compact domain. This property is guaranteed by
the universal approximation theory [23]. ANN has attracted considerable attention in recent
years. The success of deep learning (näıvely and narrowly speaking for supervised learning,
ANN with a large number of hidden layers) lies in learning low-dimensional representations
from high-dimensional, complex data effectively and building relationships between learned
features and the target [19].

To parametrize the model described in (3.24), the standard feedforward neural network
structure shown in Figure 1 is employed for G = Ĝθ,b. Due to the previously mentioned
dependency between sequences of δ and x̂ and the universal approximator property of ANN,
yeco ∈ R(2+p)Q is used as input. To construct a densely connected feedforward neural network
Ĝθ,b: R(2+p)Q 7→ RQ with L−1 hidden layers and a linear output layer, the following recursive
expression is used for each hidden layer:

(3.20) ηl = σl(θlη
l−1 + bl),

for l = 1, . . . , L− 1, where η0 stands for the input of the neural network, ηl ∈ Rnl×1, nl ∈ N+

is the number of units in layer l, θl ∈ Rnl×nl−1 , bl ∈ Rnl×1, n0 = (2 + p)Q, and σl is the
activation function of layer l. Note that the output layer is linear, i.e., σL(x) = x:

(3.21) Ĝ(yeco;θ, b) = ηL = θLη
L−1 + bL,

where θL ∈ RnL×nL−1 , bl ∈ RnL×1, and nL = Q. Parameters of the neural network are
summarized as W = {θ, b}: weights θ = {θj}j=1,...,L and biases b = {bj}j=1,...,L. In this work
we use two hidden layers where L = 3 and hidden units are all the same. The full expression
of the neural network model is

(3.22) Ĝ(yeco;W ) = Ĝ(yeco;θ, b) = θ3σ(θ2σ(θ1yeco + b1) + b2) + b3,

where σ(·): R 7→ R is a nonlinear activation function, e.g., ReLU, SeLU, tanh [1].
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Figure 1. Schema of a typical feedforward neural network Rm 7→ Rn with two hidden layers with x as input
and y as output

The problem of finding a good neural network model is equivalent to searching for a set of
parameters θ and b that optimize the mean-square-error on training data with weight decay
regularization

(3.23) W ∗ = {θ∗, b∗} = argmin
θ,b

1

|Iptrain|
∑

j∈Iptrain

∥∥∥zj − Ĝ(yjeco;θ, b)
∥∥∥2

2
+ λ

L∑
l=1

‖θl‖2F ,

where ‖(·)‖F denotes the Frobenius norm. The weights are initialized using the standard
truncated normal distribution, and a first order gradient-based technique [26] is used for
optimization. Unfortunately, due to the non-convex nature of (3.22), one can often only
afford to find a local minimum instead of the global minimum. However, in practice, a local
minimum is usually satisfactory if it is properly trained and validated. Hyperparameters
for each case given below are selected using grid search in a certain range. The model is
implemented with the Keras [11] and Tensorflow libraries [1].

3.4. Reducing the computational complexity of multi-time effects. From a training
perspective, the most difficult part of generating the polynomial model is in characterizing
multi-time effects. The most general way of treating the memory effect in (3.1) is to consider
all interactions between the past, i.e., cross-time memory effects, similar to a nonlinear au-
toregressive network with exogenous inputs (NARX) model [7] with multi-time correlations.
Unfortunately, this method of discovering G is severely hindered by the curse of dimensional-
ity. Introducing full interactions with polynomial features up to a total degree k ∈ N+ would
lead to a number of features scaling as Lpk =

(2(1+p)Q+k
k

)
∝ (2(1 + p)Q)k.

An alternative strategy to build computationally feasible set of features is to assume that
full memory effects can be approximated with linear superposition of multi-time nonlinear
features, i.e., linear treatment of multi-time memory in the form
(3.24)

G(x̂(t− s0), . . . , x̂(t− sp), δ(t− s0), , . . . , δ(t− sp);W ) ≈
p∑
i=0

Gi(x̂(t− si), δ(t− si);W i),
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where Gi(·, ·) : RQ × RQ 7→ RQ represents the contribution of the system at t = t− si to t in
closure dynamics. With a polynomial basis, this approach will reduce the number of features
up to k total degrees to Lpk,reduced = (1 + p)

(
2Q+k
k

)
− p ∝ p(2Q)k, which grows linearly with p

1.
The above assumption would lead to a reduction in the number of fitting parameters with

respect to increasing memory length p. We note that, if this decoupling is applied to the time
delay neural network (TDNN) model, this strategy can be viewed as a regularization of the
neural network model by pruning weights between units of different time instances.

3.5. Model selection. Since both types of models mentioned above require the specifi-
cation of hyperparameters before training, model selection is an important aspect. For the
sparse polynomial regression model, the associated hyperparameters are:

• maximum total degree of polynomials: k
• maximum number of previous states: p
• penalty coefficient: λ

In practice, we choose p and k heuristically and as small as possible, while still fitting the
model with ordinary-least-square (OLS) and keeping the total number of features smaller than
the number of samples to ensure strict convexity of the lasso problem [47]. To determine λ,
we draw the lasso path to decide the most appropriate solution that balances complexity and
mean-squared-error (MSE) error. It should be noted that when drawing the lasso path, we
split the training data in time; the first 80% is training data used to compute the lasso path,
and the last 20% is validation data. The goal is to obtain a robust model that generalizes
beyond the training set.

For the neural network, a logical strategy of hyperparameter selection has proved to be
challenging for even the simplest standard feedforward neural network. In the present work,
since the problem size is small, we choose hyperparameters via simple grid search for the type
of activation function and number of hidden units.

3.6. Evaluation of MSE a priori and a posteriori. Notice that the optimization problems
described in (3.18) and (3.23) only guarantee performance in an a priori sense on training
data. A proper evaluation of the model should be performed both in an a priori sense as
mean-squared-error over the data index set Ip,

(3.25) eaprMSE =
1

|Ip|
∑
j∈Ip

∥∥∥zj − Ĝ(yj ;W ∗)
∥∥∥2

2
,

and in an a posteriori sense in which only the initial condition is given to the model, as

(3.26) eapoMSE =
1

|Ip|
∑
j∈Ip

∥∥x̂j − x̂∗j∥∥2

2
,

where x̂∗(t) is the solution of the augmented system (3.1) and (3.2) with Ĝ(·;W ∗) starting
with an exact initial condition. This type of a posteriori evaluation is also called free-run in
the time series modeling community [2].

1−p comes from removing the redundant constant feature
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4. Results - Linear system. To illustrate the idea of applying operator inference and
to motivate further developments, the polynomial closure model is first applied on a three
dimensional linear system shown below

(4.1)
d

dt

x1

x2

x3

 =

 0 −1 −1
0.5 −1.1 1.5
1 −3 0.5

x1

x2

x3

 ,
where x̂(0) = x̂0 = x0

1 = 1 and x0
2 = x0

3 = 0. The first-order forward discretized form of (4.1)
is shown in (4.2) with total degrees of freedom N = 3 and number of reduced states Q = 1

(4.2)

xn+1
1

xn+1
2

xn+1
3

 =

xn1xn2
xn3

+ ∆t

 0 −1 −1
0.5 −1.1 1.5
1 −3 0.5

xn1xn2
xn3

 .
Consequently, following the operator inference framework with the polynomial form in

(3.1) and (3.2) and a linear superposition assumption of multi-time effects, we have x̂ = x1,
F̂ = 0 for the following ROM formulation

x̂n+1 = x̂n + ∆tδn,(4.3)

δn+1 = δn + ∆t

p∑
i=0

Gi.(4.4)

The goal is to extract a functional form of the governing equation {Gi}pi=0 for closure δ
from data, i.e., to determine (δn+1− δn)/∆t as a function of previous x̂ and δ from data. The
true closure is δ = −x2 − x3, x̃ = [x>2 , x

>
3 ]>, which is assumed to be unknown to the ROM.

The simulation is run for t ∈ [0, 40] and ∆t = 0.01, resulting in a collection of 4000 snapshots
in {x̂, δ}. The first 10% of data is set for training and the remaining 90% as testing data.

For this 3D linear system, the exact solution for the closure dynamics is

δn+1 − δn

∆t
=

(
3

2
− 17∆t

20

)
x̂n−1 −

183∆t+ (35∆t+ 10)

(
1

∆t
− 41

10

)
10

 δn−1(4.5)

− 3

2
x̂n +

(
35∆t+ 10

10∆t
− 41

10

)
δn.

4.1. Model selection. As displayed in Figures 2 and 3, by applying the model with p = 1,
k = 1 and λ chosen as 10−12 from the Pareto front of lasso path, the resulting model is found
to only contain 4 non-zero terms.
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Figure 2. lasso path for the 3D linear system. Left: coefficients. Right: MSE.

Figure 3. lasso path for the 3D linear system: number of non-zero terms

4.2. A posteriori evaluation of model performance. Using the hyperparameters deter-
mined above, the predicted trajectory of x̂(t) is found to match the target trajectory to an
excellent degree, as shown in Figure 4.

Figure 4. A posteriori model performance on the linear system. Left: training data. Right: testing data.

However, if one sets p = 0, the resulting model cannot produce good predictions, as the
true solution is δn+1 − δn = −∆t(1.5x̂n + 4.1δn + 6.1xn3 ). Since xn3 is unknown to {x̂n, δn},
additional memory length is required. The lasso path is shown in Figures 5 and 6 for the case
with insufficient memory. The corresponding a posteriori performance is shown to be poor in
Figure 7.
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Figure 5. lasso path for the 3D linear system. Left: coefficients. Right: MSE.

Figure 6. lasso path for the 3D linear system: number of non-zero terms

Figure 7. A posteriori model performance on the linear system with p = 0. Left: training data. Right:
testing data.

One might suspect that the sparsest solution, i.e., min‖wk‖0, should contain at most 3
non-zero terms because as mentioned before, there is one redundancy in {xn1 , x

n−1
1 , δn−1}. The

lasso based on the `1 norm does not guarantee the sparsest solution in the sense of the `0
norm, but it makes the problem computationally tractable.

5. Theoretical results. In this section, theoretical results are presented with regard to
the capability of the closure model to determine the resolved dynamics with time-delayed
features.
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Definition 5.1 (Nonlinear dynamical system with dual linear closure). A nonlinear dynamical
system with dual linear closure is defined in the following form:

d

dt

[
x̂
x̃

]
=

[
F (x̂) +A12x̃
H(x̂) +A22x̃

]
,

where x̂ ∈ RQ, x̃ ∈ RN−Q, F (·) : RQ 7→ RQ and H(·) : RQ 7→ RN−Q, A12 ∈ RQ×N−Q,
A22 ∈ RN−Q×N−Q with δ = A12x̃, N ∈ N and Q ∈ N, Q < N .

The corresponding first order forward discretized dynamical system is[
x̂n+1

x̃n+1

]
=

[
x̂n

x̃n

]
+ ∆t

[
F (x̂n) +A12x̃

n

H(x̂n) +A22x̃
n

]
,

where n denotes steps in time.

The exact discrete closure dynamics is

δn+1 = A12x̃
n+1 = δn + ∆t(A12A22x̃

n +A12H(x̂n)).

Note that the only unknown is x̃n. Clearly, a sufficient condition for the data-driven
framework to exactly represent the closure term A12x̃

n, would be the determination of x̃n

from a linear combination of x̂n−1, . . . , x̂n−p, δn, . . . , δn−p. It will be shown that, with certain
structures of A12 and A22, one can recover the entire history of x̃ using up to previous p
steps. The following proposition has strong similarities with the observability problem in
linear system theory.

Theorem 5.2. For k ∈ N+, define the following matrix Ok ∈ RkQ×(N−Q)

Ok =


A12

A12A22
...

A12A
k−1
22

 ,
and the following mapping rO(·) : N+ 7→ N

rO(k) = rank(Ok).

If ON−Q is full rank, i.e., rO(N − Q) = N − Q , then for the first order forward discretized
system with dual linear closure, ∃p, n ∈ N, with collected δ ∈ RQ and x̂ ∈ RQ up to step n,
such that x̃n, . . . , x̃n−p can be determined as a linear combination of H(x̂n−1), . . . ,H(x̂n−p),
δn, . . . , δn−p. For p = 0, only δn is used.

Further, the minimal p∗ that satisfies the above is

p∗ = min ΩO − 1,

where

ΩO = {l|l ∈ N+, rO(l) = N −Q}.
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Proof. Consider the first order forward discretized system of a dynamical system with
linear closure, with n, p ∈ N, n > p. We have the following evolution equations for the
unresolved variable x̃

x̃n = (I + ∆tA22)x̃n−1 + ∆tH(x̂n−1),(5.1)

· · ·
x̃n−p+1 = (I + ∆tA22)x̃n−p + ∆tH(x̂n−p),(5.2)

and projection equations for δ

A12x̃
n = δn,(5.3)

· · ·
A12x̃

n−p = δn−p.(5.4)

Note that the independent unknowns are {x̃n−i}pi=0 and we are provided with {x̂n−i}pi=1 and
{δn−i}pi=0. Rearranging equations in matrix form, we have

(5.5) ΓpXp = Σp,

where

(5.6) Γp =



I −(I + ∆tA22) . . . 0
0 I −(I + ∆tA22) . . .
...

...
...

...
0 . . . I −(I + ∆tA22)
A12 0 0 . . .
0 A12 0 . . .
...

...
...

...
0 0 . . . A12


,

(5.7) Xp =



x̃n

x̃n−1

...

...

...

...
x̃n−p


, Σp =



∆tH(x̂n−1)
∆tH(x̂n−2)

...
∆tH(x̂n−p)

...
δn

...
δn−p


,

Using row operations to remove the diagonal block matrix of A12,
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Γp →



I −(I + ∆tA22) . . . 0
0 I −(I + ∆tA22) . . .
...

...
...

...
0 0 I −(I + ∆tA22)
0 0 . . . A12(I + ∆tA22)p

0 0 . . . A12(I + ∆tA22)p−1

...
...

...
...

0 0 . . . A12


,(5.8)

Thus

(5.9) rank(Γp) = p(N −Q) + rank(


A12(I + ∆tA22)p

A12(I + ∆tA22)p−1

...
A12

).

Note that

(5.10) rank(


A12(I + ∆tA22)p

A12(I + ∆tA22)p−1

...
A12

 = rank(


A12A

p
22

A12A
p−1
22

...
A12

) = rank(Op+1).

From basic linear algebra, it is known that rO(·) is bounded and monotonic, where rO(·) :
N 7→ N. Also recall that ON−Q is full rank thus the following set Ω is not empty

(5.11) ΩO = {l|l ∈ N+, rO(l) = N −Q}.

Therefore setting

(5.12) p∗ = min ΩO − 1,

we will have

(5.13) rank(Γp) = p(N −Q) + (N −Q) = (p+ 1)(N −Q),

indicating Γp is full column rank. Therefore, consider Γ+
p as the left Moore-Penrose inverse

of Γp

(5.14) Γ+
p = (Γ>p Γp)

−1Γp,

and thus

(5.15) Xp = Γ+
p ΓpXp = Γ+

p Σp.
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Again, note that once x̃n is determined from past time instances of δ and x̂ up to step
p, the closure dynamics is fully determined as well. As an example, applying Theorem 5.2

to the 3D discrete linear system described in (4.1), A12 =
[
−1 −1

]
and A22 =

[
−1.1 1.5
−3 0.5

]
,

rank(A12) = 1, rank(

[
A12

A12A22

]
) = rank(

[
−1 −1
4.1 −2

]
) = 2. Therefore, p∗ = min ΩO − 1 = 1.

As a trivial observation, based on the Theorem 5.2, one can immediately obtain the following
proposition.

Proposition 5.3. If A12 has full column rank, x̃n can be determined with only δn.

However, full observability on all past states of x̃ is a very strong criterion to guarantee
predictability of dual linear closure dynamics. Indeed, from a data-driven perspective, one
only requires that the linear closure is in the p-time delayed observable space of x̃ as defined
in Definition 5.4. Therefore, we now turn our focus to finding A12x̃

n directly. First, a strict
definition of p-time delayed linear observable space is given below.

Definition 5.4 (p-time delayed linear observable space). For the first order forward dis-
cretized nonlinear dynamical system with dual linear closure, define the corresponding p time
delayed linear observable space χp as

χp = {η|η = v>Xp, v ∈ ImVp},

where Vp is from the reduced singular value decomposition of Γp

Γp = UpSpV
>
p ,

with Up ∈ R(pN+Q)×r, Sp ∈ Rr×r, Vp ∈ R(p+1)(N−Q)×r, r = rank(Γp).

Regarding the question of determining a general linear combination of Xp from a p-time
delayed observable space, the following lemma shows that a rank test can provide essential
insight.

Lemma 5.5. For a nonlinear dynamical system with dual linear closure, for any quantity
ξ ∈ Rq×1 that is a linear combination of Xp characterized by C,

ξ = C>Xp,

where C ∈ R(p+1)(N−Q)×q, if

rank(Vp) = rank(

[
C>

V >p

]
),

then

ξ ∈ χp,

i.e., ξ is observable with p-time delayed information of δ and x̂.

Proof. ∵ rank(

[
C>

V >p

]
) = rank(

[
C Vp

]
) = rank(V >p ) = rank(Vp) ∴ C ⊂ ImVp.

∴ ξ = C>Xp ∈ χp.
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Given the above lemma, one can obtain a rank test criterion in Theorem 5.6 for whether
the closure dynamics of a nonlinear system with dual linear closure can be determined with
p time delayed observable space. Furthermore, analysis of the rank of the augmented matrix
provides further insights into the role of time delay in observation.

Theorem 5.6. A nonlinear dynamical system with dual linear closure with p = N −Q− 1
will satisfy the following rank test

rank(Vp) = rank(

[
C>

V >p

]
),

where C> =
[
A12A22 0

]
, and the closure dynamics is observable from p time delayed ob-

servable space, i.e., can be determined as a linear combination of H(x̂n−1), . . . ,H(x̂n−p),
δn, . . . , δn−p. Furthermore, the minimal number of previous steps p that satisfies the above
condition can be found through

p∗ = min ΠO − 1,

where

ΠO = {l|l ∈ N+, rO(l) = rO(l + 1)}.

Proof. To determine δn+1, A12A22x̃
n has to be in the p time delayed observable space.

∵ x̃n =
[
A12A22 0

]
Xp. ∴ from Lemma 5.5, if

rank(Vp) = rank(

[
A12A22 0

V >p

]
),

then x̃n is p time delayed linear observable. Since V >p shares the same independent row space
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as Γ, augmenting Γp with C> will result in the same rank.

[
Γp
C>

]
=



I −(I + ∆tA22) . . . 0
0 I −(I + ∆tA22) . . .
...

...
...

...
0 . . . I −(I + ∆tA22)
A12 0 0 . . .
0 A12 0 . . .
...

...
...

...
0 0 . . . A12

A12A22 0 . . . 0



→



I −(I + ∆tA22) . . . 0
0 I −(I + ∆tA22) . . .
...

...
...

...
0 0 I −(I + ∆tA22)
0 0 . . . A12(I + ∆tA22)p

0 0 . . . A12(I + ∆tA22)p−1

...
...

...
...

0 0 . . . A12

0 0 . . . A12A22(I + ∆tA22)p



→ rank(

[
Γp
C>

]
) = p(N −Q) + rank(


A12A

p
22

A12A
p−1
22

...
A12

A12A
p+1
22

) = p(N −Q) + rank(Op+2)

→ rank(

[
Γp
C>

]
) = rank(Γp)→ rank(Op+2) = rank(Op+1).

∵ Recall rO(·) is a monotonic integer function and from the Cayley Hamilton theorem, AN−Q22

is linearly dependent on {I, A22, . . . , A
N−Q−1
22 } ∴ ∀p ≥ N −Q− 1, rank(Op+2) = rank(Op+1).

Correspondingly the minimal number of previous steps that satisfies the rank test can be
defined as the minimal integer that satisfies the rank(Op+2) = rank(Op+1).

(5.16) p∗ = min ΠO − 1,

where

(5.17) ΠO = {l|l ∈ N+, rO(l) = rO(l + 1)}.

Because of the monotonicity of integer function rO(·), p∗ can be found in a sequential sense.

The fact that one can determine the closure dynamics of any nonlinear system with dual
linear closure given all previous resolved states is not surprising. It will be shown shortly that
this is possible for a slightly more general case.
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Proposition 5.7. Closure dynamics of any nonlinear dynamical system with dual linear
closure can be determined as a linear combination of x̂n−1, . . . , x̂n−p, δn, . . . , δn−p, with
p ≤ N −Q− 1.

As a trivial observation, if we replace closure with x̃n, one can easily obtain the following
rank test as a criterion.

Proposition 5.8. For a nonlinear dynamical system with dual linear closure, if

rank(Vp) = rank(

[
C>

V >p

]
),

where C> =
[
IN−Q×N−Q 0

]
, then x̃n is observable from a p time delayed observable space.

The key ingredient of Theorem 5.2 is the exploitationo of projection equations in the dual
linear closure setting, which may be overlooked since they share the same information as
previous observables in the statistical sense if the initial condition is fully known. Without
the explicit usage of projection equations, one can obtain a closure with explicit memory
dependence on all previous observables, but is correspondingly applicable to a more general
system stated in Definition 5.9.

Definition 5.9 (Nonlinear dynamical system with linear closure). A nonlinear dynamical
system with linear closure is defined as

(5.18)
d

dt

[
x̂
x̃

]
=

[
F (x̂, x̃)

H(x̂) +A22x̃

]
,

where x̂ ∈ RQ, x̃ ∈ RN−Q, F (·) : RN 7→ RQ and H(·) : RQ 7→ RN−Q, A22 ∈ RN−Q×N−Q
with δ = A12x̃ and Q ∈ N, Q < N .

Corollary 5.10. With only evolution equations, one can write the following equation for a
first order forward discretized dynamical system ∀n, p ∈ N, n > p

x̃n = (I + ∆tA22)px̃n−p +

p−1∑
l=0

∆t(I + ∆tA22)lH(x̂n−l−1),

which links the unresolved states between any two time instances.

Proof. Considering only the evolution equations, one can write the following in matrix
form

(5.19) ΓepXp = Σe
p,

where

(5.20) Γep =


I −(I + ∆tA22) . . . 0
0 I −(I + ∆tA22) . . .
...

...
...

...
0 . . . I −(I + ∆tA22)

 ,
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(5.21) Xp =



x̃n

x̃n−1

...

...

...

...
x̃n−p


, Σe

p =


∆tH(x̂n−1)
∆tH(x̂n−2)

...
∆tH(x̂n−p)

 .

Recall we are interested in x̂n, with several row operations on the first row block,

Γep →
[
I 0 . . . −(I + ∆tA22)p

. . . . . . . . . . . .

]
,(5.22)

and correspondingly

Σe
p →

[∑p−1
l=0 ∆t(I + ∆tA22)lH(x̂n−l−1)

...

]
,(5.23)

Therefore,

(5.24) x̃n = (I + ∆tA22)px̃n−p +

p−1∑
l=0

∆t(I + ∆tA22)lH(x̂n−l−1).

The implication is that, if x̃ is known at one previous time instant, the future of x̃ starting
from that point is completely determined by x̂ in a convolutional sense. For example, starting
from the initial condition, we have the following result often seen in linear systems theory:

Proposition 5.11. For a nonlinear dynamical system with linear closure, if x̃0 is known,
one can uniquely determine x̃n in the following

(5.25) x̃n = (I + ∆tA22)nx̃0 +
n−1∑
l=0

∆t(I + ∆tA22)lH(x̂n−l−1).

The present framework exploits the fact that although the closure is explicitly based on all
previous information of the observables, the operator driving this function might only possess
a finite memory dependence as indicated in Theorem 5.2. Therefore, the essential structure
of the closure may be much more compact.

6. Results - Non-linear systems. In this section, the operator inference framework is used
to derive closures for several problems ranging from chaotic and non-chaotic nonlinear ordinary
differential equation (ODE) systems to nonlinear partial differential equations (PDE).

6.1. Van del Pol system.
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6.1.1. Problem description. The Van del Pol (VdP) system with first order forward
discretization is

(6.1)

[
xn+1

1

xn+1
2

]
=

[
xn1
xn2

]
+ ∆t

[
xn2

µ(1− xn1xn1 )xn2 − xn1

]
,

where µ = 2, x̂(0) = x0
1 = 1, x̃(0) = x0

2 = 0, and δ = x2. The simulation is run from t ∈ [0, 60]
collecting {x̂, δ} as data over 6000 snapshots with a ∆t = 0.01. The first 30% of data is set
as training data and the rest is set for testing.

Consider x̂ = x1, x̃ = x2 thus N = 2 and Q = 1. Correspondingly, the ROM formulation
is given below with linear superposition of multi-time effects assumption

x̂n+1 = x̂n + ∆tδn,(6.2)

δn+1 = δn + ∆t

p∑
i=0

Gi.(6.3)

For VdP system, the exact solution for the closure dynamics with p = 0 is

(6.4)
δn+1 − δn

∆t
= µ (1− x̂nx̂n) δn − x̂n = −x̂n + 2δn − 2x̂nx̂nδn.

6.1.2. Model selection for polynomial regression. To determine the underlying sparse
dynamics, the lasso path is computed and presented in Figures 8 and 9. It can be seen that
an elbow is present in the error plot as λ near 10−10, where a number of non-zero terms
jump above 3 to 9, causing a slight increase in MSE. Thus, the optimal λ is chosen as 10−10

according to the Pareto front.

Figure 8. lasso path for 2D VdP system. Left: coefficients. Right: MSE.



DATA-DRIVEN DISCOVERY OF CLOSURE MODELS 23

Figure 9. lasso path for 2D VdP system: number of non-zero terms

6.1.3. A posteriori evaluation of model performance. The corresponding model perfor-
mance in an a posteriori sense for both training and testing data is excellent, as shown below
in Figure 10.

Figure 10. A posteriori model performance on 2D VDP system. Left: training data. Right: testing data.

6.2. Duffing Map.

6.2.1. Problem description. The Duffing map is a classic example of a chaotic map. We
take the form

xn+1
1 = xn1 + ∆t(xn2 − xn1 ),(6.5)

xn+1
2 = xn2 + ∆t(−bxn1 + (a− 1)xn2 − (xn2 )3),(6.6)

with a = 2.75 and b = 0.2, ∆t = 1, x1(0) = x0
1 = 0.5, x2(0) = x0

2 = 0. The resolved variable
x̂ = x1. We simulate this system up to 6000 steps with the first 30% for training, and the rest
for testing. For this case, the corresponding closure dynamics for δ is

(6.7) δn+1 = aδn − (δn)3 − bx̂n.

6.2.2. Model selection. As displayed in Figures 11 and 12, by sweeping λ, an optimal
value of λ = 10−10 is found. At that sparsity level, the resulting expression is given as follows:

δn+1 = δn + ∆t(−0.199999x̂n + 1.749999δn − 0.999999δn3(6.8)

+ 2.99× 10−11x̂n2 − 1.34× 10−8x̂n3 + 2.41× 10−11δnx̂n + 6.81× 10−10δnx̂n2).
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Figure 11. lasso path for 2D Duffing system. Left: coefficient. Right: MSE.

Figure 12. lasso path for 2D Duffing system: number of non-zero terms

6.2.3. A posteriori evaluation of model performance. For a chaotic system, since it is
extremely difficult to achieve accurate long time predictions, models are most often evaluated
in a variety of ways. These include subjective visual inspection [21] or measures for the
attractor [2] such as maximum Lyapunov exponent [17], correlation dimension and other
time averaged characteristics[28]. The first approach, although perhaps the most widely used
[30][39][49], can sometimes be misleading [15].

In this work, we first show there is excellent correspondence in maximum Lyapunov ex-
ponent (MLE) and correlation dimension γ, computed on both the ground truth time series
and modeled time series for both training and testing data. Following this, we employ a null
hypothesis test proposed by Diks et al. [15] to show that the attractor reconstructed by embed-
ding the time series predicted by our model is indeed close to the phase space reconstruction
of the ground truth within a confidence interval. As suggested by Diks, the null hypothesis
that the two delay vectors are drawn from the same multidimensional probability distribution
is accepted if S < 3. Diks criterion has been previously employed as an early stop criterion
during the training of neural networks [3].

The comparison of the predicted time series between the modeled system and ground
truth is displayed in Figure 13 for training and testing data. Due to the chaotic nature of
the dynamics, direct measurement of the MSE is not suitable for this case. Examination
of the MLE and correlation dimension in Table 1 shows excellent agreement. Furthermore,
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Diks test shows |S| = 1.003 for training data and |S| = 1.588 for testing data, which further
confirms the validity of the model. Details of the implementation of Diks criterion are given
in Appendix B.

Figure 13. A posteriori model performance on the Duffing map. Left: training data. Right: testing data.

Table 1
Comparison of MLE and correlation dimension between truth and model

case MLE γ

true train 0.98 1.12
model train 0.97 1.12

true test 0.97 1.13
model test 0.97 1.13

6.3. Lorenz system.

6.3.1. Problem description. The corresponding first order forward discretized Lorenz
system is given as:

(6.9)

xn+1
1

xn+1
2

xn+1
3

 =

 xn1 + ∆tσ(xn2 − xn1 )
xn2 + ∆t(xn1 (ρ− xn3 )− xn2 )
xn3 + ∆t(xn1x

n
2 − βxn3 ),


with x1(0) = 0.5, x2(0) = x3(0) = 0. Parameters for each case are shown in Table 2 where
the only difference is ρ.

Table 2
Parameters of Lorenz system for chaotic and nonchaotic cases

case σ β ρ

non-chaotic 10 8/3 15
chaotic 10 8/3 35

For the non-chaotic case, the simulation time is t = [0, 20] with 8000 snapshots; and for
the chaotic case, the simulation time is t = [0, 400] with 40000 snapshots. The snapshots are
equally split between training and testing sets.
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For the Lorenz system with x̂ = x1, δ = σx2, one can find the analytical closure for δ with
p = 1 after some algebra:

(6.10) δn+1 = (1−∆t)δn+σ∆tx̂n
(

(1− β∆t)

(
δn + (∆t− 1)δn−1

σx̂n−1∆t

)
− x̂n−1δn−1

σ
+ ρβ∆t

)
,

which clearly involves cross time features and rational forms instead of pure polynomial forms.
The corresponding ROM formulation is given as

x̂n+1 = x̂n −∆tσx̂n + ∆tδn,(6.11)

δn+1 = δn + ∆tG(x̂n, x̂n−1, δn),(6.12)

where G is modeled by a neural network.
Standard polynomial regression is found to be unsuitable to extract governing equations in

this case. A recently developed method called implicit-SINDy [29], which can account for non-
rational functions could perhaps improve predictions. Alternatively, we employ an artificial
neural network model with p = 1 and consider full memory interaction between different time
instances. The architecture of the neural network is chosen as 4-16-16-1 for both chaotic
and non-chaotic cases with p = 1 and tanh as the activation function. The neural network
model is trained for 16000 epochs with the Adam optimizer with a learning rate of 0.0001, a
mini-batch size of 256 and the last 10% of training data is split as validation set to monitor
generalization.

6.3.2. A posteriori evaluation of model performance. For the non-chaotic case, the
model performs well for both training and testing data, as shown in Figure 14.

Figure 14. A posteriori model performance on the non-chaotic Lorenz system. Left: training data. Right:
testing data.

For the chaotic case, results are shown in Figure 15 for training and testing evaluations.
Table 3 shows that both MLE and correlation dimension are in accordance with the truth.
Furthermore, Diks criterion shows |S| = 1.509 for training data and |S| = 2.83 for testing data,
which implies that the null hypothesis is accepted. Details of implementation are provided in
Appendix B.
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Table 3
Comparison of MLE and correlation dimension between truth and model

case MLE γ

true train 0.044 1.34
model train 0.042 1.33

true test 0.041 1.34
model test 0.041 1.34

Figure 15. A posteriori model performance on the chaotic Lorenz system. Top left: training data. Bottom
left: testing data. Top right: training data zoomed in t ∈ [0, 4]. Bottom right: testing data zoomed in t ∈ [20, 24]

6.4. One dimensional viscous Burgers equation.

6.4.1. Problem description. In this section, the one dimensional viscous Burgers equation
is considered in a periodic domain x ∈ [0, 2π]

(6.13)
∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2

with ν = 0.02, t ∈ [0, 10], u(x, 0) = sin(x).
Using a standard pseudo-spectral method with two-thirds dealiasing and with Runge-

Kutta 3rd order SSP scheme for time stepping, the system is resolved with 1024 grid points
uniformly distributed in space, and a time step ∆t = 0.01∆x. 2000 snapshots of u(x, t)
are uniformly collected in time. For the setup of coarse graining, we use a spectral filter to
obtain the state and corresponding closure with wavenumber k ranging from −6 to 5. The
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corresponding equation in spectral form for kth wavenumber or mode is

dûk
dt

= −νk2ûk −
ik

2

∑
p+q=k

ûpûq = −νk2ûk −
ik

2

∑
p+q=k,p∈F,q∈F

ûpûq(6.14)

− ik

2

∑
p+q=k,p∈F,q∈G

ûpûq −
ik

2

∑
p+q=k,p∈G,q∈F

ûpûq −
ik

2

∑
p+q=k,p∈G,q∈G

ûpûq,

where u(x, 0) = sin(x) ; x ∈ [0, 2π]; k ∈ {−N/2, . . . , N/2 − 1}; index set of resolved
modes F = {−Q/2, . . . , Q/2 − 1}; index set of unresolved modes: G = {−N/2, . . . ,−Q/2 −
1, Q/2 . . . , N/2− 1}. The closure is the sum of last three terms in (6.14), and noticing there
is a symmetry in the solution with sine wave initial condition, a truncation corresponding to
Q = 6 is considered. Only the imaginary part of ûk with k ranges from −6 to −1 is consid-
ered. For the evaluation of the closure model, we consider 0 ≤ t ≤ 4 as our training data and
4 < t ≤ 10 as testing data.

6.4.2. Model selection. For the polynomial model, the optimal time delay p and polyno-
mial order k is chosen by sweeping p from 0 to 2. For each p, the optimal k and corresponding
λ is extracted.

For the application of the ANN, the best model is selected from a range of hyperparameters
with p ranging from 0 to 2. Two hidden layers are used with identical numbers of hidden units
for each layer as 4, 8, 12, 16 and type of activation as ReLU, SeLU, tanh. The optimal model
was chosen as that which yields the most satisfactory validation result with the smallest
number of parameters. We found this to be p = 2, with 12 hidden units and the tanh
activation function. The type of activation function does not appear to be critical in this
case, which may be a consequence of the fact that it is not a deep neural network where the
vanishing gradient problem may be significant [19].

6.4.3. A posteriori evaluation of model performance. As seen in Figures 16 and 18, both
SINDy and ANN perform well on the training data. When evaluated against unseen testing
data, however, performance of SINDy was seen to deteriorate as displayed in Figure 17 as a
consequence of the extrapolation going out of bounds with high order polynomial features.
The ANN is a convergent series of infinite polynomials, and therefore the corresponding model
remains less unbounded compared to the polynomial model as shown in Figure 18.

Figure 16. A posteriori model performance on training data : 1D VBE using polynomial closures.



DATA-DRIVEN DISCOVERY OF CLOSURE MODELS 29

Figure 17. A posteriori model performance on testing data : 1D VBE using polynomial closures.

Figure 18. A posteriori model performance on 1D VBE with ANN. Left: training data. Right: testing data.

Comparison of the results on unseen testing data with ANN at snapshots t = 4.5, t = 6.0,
t = 7.5 and t = 9.0 between the data-driven model, no closure, and ground truth in physical
space is shown in Figure 19. The results highlight the importance of the closure in predicting
the future state of this system. The ANN model performs particularly well between t ∈ [4, 6],
with a slight degradation in performance at later times.

Figure 19. A posteriori model performance on 1D VBE with ANN. Left: without closure. Right: with
operator inference closure.
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7. Conclusion. An operator inference framework was presented, with the goal of devel-
oping closures for reduced models of dynamical systems2. Dynamic memory is embedded
into the equations and the evolution of this term is parametrized via polynomial features and
artificial neural networks (ANN). The polynomial model is determined using non-linear regres-
sion and lasso with Pareto-front-based model selection. The ANN model is determined using
gradient-based methods with weight decay regularization. By assuming that different time
instances are decoupled from each other, the exponential growth of the number of parameters
is limited to a linear growth. For special types of non-linear systems, the closure dynamics
was proven to have a compact memory, and the form of the closure is shown to be precisely
discoverable using a sparse set of features. Numerical evaluations of the model on non-chaotic
and chaotic dynamical systems are used to evaluate the viability of the procedure, with an
emphasis on model selection and a posteriori prediction of unseen data.
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Appendix A. Comparison with Elman’s recurrent neural network.
Elman’s network[16] is one of the earliest [48] recurrent neural network models, and was

originally proposed to represent temporal structure in linguistics. Although Elman’s network
is similar to a standard feedforward neural network (FNN), the key difference is that its input
includes an additional feedback, and thus the memory effect is addressed in a lossy sense [19]
using one previous step.

In this section, we will highlight similarities and differences between the operator inference
framework for closure modeling (3.1) and (3.2) and Elman’s model. Given a general predictive
task for a discrete dynamical system: {xi}i=1,..., xi ∈ RQ, i ∈ N+, Q ∈ N+, Elman’s network
is:

(A.1) xi+1 = C(hi+1),

(A.2) hi+1 = H(hi, xi),

where H(·) and C(·) are perceptrons and hi ∈ RH , H ∈ N+ is the number of units in the
context layer. On the other hand, if one considers a simplified discrete case of (3.1) and (3.2)
with p = 0, following the same notation, one has:

(A.3) xi+1 = f(xi) + hi,

(A.4) hi+1 = G(hi, xi),

where f : RQ 7→ RQ is known, while G : RQ × RQ 7→ RQ is unknown. The similarity is that
both (A.2) and (A.4) address the memory effect and extract the dynamics in the same fashion.
However, there are at least three different aspects:

2Sample code available at: https://github.com/pswpswpsw/siads data driven closure.git

https://github.com/pswpswpsw/siads_data_driven_closure.git
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• Elman’s network assumes output dependence only on newly activated hidden units
hi+1, while our model at p = 0 considers output dependence on previously activated
hidden units hI , together with the current input xI . Our model also extends the case
to p > 0,
• Our model decouples the evolution processes of hidden units and states while Elman’s

is formulated in a sequential fashion,
• Elman’s network requires the determination of all relationships, i.e., the perceptrons,

in a purely data-driven fashion, whereas the structure of state evolution is considered
known in our operator inference framework.

Appendix B. Implementation of Diks criterion.
Diks et al. [15] developed a test that evaluates whether two attractors are similar. Diks

criterion follows statistical inference and can provide probabilistic confidence bounds. In our
work, this criterion is used to compare the reconstructed dynamics of an attractor with the
ground truth. The method is based on testing a null hypothesis: two sets of delay vectors
are drawn from the same multidimensional probability distribution. It was later employed
by Bakker as a monitoring metric during the training of ANNs for time series modeling.
The time series is divided into segments of length l and averaged. To cope with the fractal
probability distribution of the chaotic attractor, smoothing is performed via a Gaussian kernel.
A bandwidth d is determined by performing sweeps on another trajectory and choosing the
d that reveals the highest discrepancy between the two time series. Other hyperparameters
are the embedding dimension m, and delay time τ . τ is chosen as the first local minimum of
mutual information of Fraser, and m is simply chosen as 2 for the Duffing map and 3 for the
Lorenz system.

Given two sets {Xi}N1
i=1 and {Yi}N2

i=1 and realizations {xi}N1
i=1 and {yi}N2

i=1, the square root

of Q defines a distance between the two probability distribution of delay vectors. Q̂ is an
unbiased estimator of Q and given by:

(B.1) Q̂ =
1(
N1

2

)∑
1≤i<j≤N1

h(Xi,Xj) +
1(
N2

2

) ∑
1≤i<j≤N2

h(Yi,Yj)−
2

N1N2

N1∑
i=1

N2∑
j=1

h(Xi,Yj).

The variance of Q̂ under a null hypothesis and conditionally on the set of N = N1 + N2

observed vectors is given by:

(B.2) Vc(Q̂) =
2(N − 1)2(N − 2)

N1(N1 − 1)N2(N2 − 1)(N − 3)

1(
N
2

) ∑
1≤i<j≤N

φ2
ij ,

where

φij = Hij − gi − gj ,

h(s, t) = e−|s−t|/4d
2
,

and

Hij = h(zi, zj)−
1(
N
2

) ∑
1≤i<j≤N

h(zi, zj),
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and gi = 1
N−2

∑
j,j 6=iHij , where zi is defined as

zi =

{
xi, for 1 ≤ i ≤ N1

yi−N1 , for N1 < n ≤ N
.

Note that S = Q̂/Vc(Q̂) is a random variable with zero mean and unit standard derivation
under the null hypothesis. As suggested by Diks, we reject the null hypothesis with more than
95% confidence for S > 3.

In this work, for the Duffing map, the optimal d = 0.0001, l is chosen as 100, τ is chosen
as 20. For the Lorenz system, the optimal d = 0.001 and l is chosen as 100, τ is chosen as 25.
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R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. G.
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