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Abstract

A class of Hamiltonian impact systems exhibiting smooth near integrable behavior is pre-
sented. The underlying unperturbed model investigated is an integrable, separable, 2 degrees
of freedom mechanical impact system with effectively bounded energy level sets and a single
straight wall which preserves the separable structure. Singularities in the system appear either
as trajectories with tangent impacts or as singularities in the underlying Hamiltonian struc-
ture (e.g. separatrices). It is shown that away from these singularities, a small perturbation
from the integrable structure results in smooth near integrable behavior. Such a perturbation
may occur from a small deformation or tilt of the wall which breaks the separability upon
impact, the addition of a small regular perturbation to the system, or the combination of both.
In some simple cases explicit formulae to the leading order term in the near integrable return
map are derived. Near integrability is also shown to persist when the hard billiard boundary
is replaced by a singular, smooth, steep potential, thus extending the near-integrability results
beyond the scope of regular perturbations. These systems constitute an additional class of
examples of near integrable impact systems, beyond the traditional one dimensional oscillat-
ing billiards, nearly elliptic billiards, and the near-integrable behavior near the boundary of
convex smooth billiards with or without magnetic field.

1 Background

The global phase-space structure of smooth nonlinear n d.o.f. Hamiltonian systems with n ≥ 2

is usually unknown. While numerical simulations for such systems are readily available, they are
usually difficult to interpret due to our limited perception of high dimensional spaces. Moreover, the
abundance of various phase space structures in such systems (tori, cantori, homoclinic tangencies,
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lower dimensional whiskered tori etc.), shadowed by chaotic solutions, complicates the dynamics
and its averaged and asymptotic expressions. One therefore seeks to study special classes of
systems which are amenable to analysis in some limit and inspire the definition of particular
observables and projections that detect the closeness of the given system to its limiting behavior.
Traditional examples are near-integrable systems and slow-fast systems [1, 2, 15]. More recently,
analytical tools for studying smooth near-billiard and near-impact systems have been developed
[18, 30, 27, 20, 17]. In these works, the limit system is a Hamiltonian Impact System (HIS) which
describes the dynamics of a particle moving under the influence of a potential inside a domain
and reflecting elastically from its boundary. Billiards correspond to the simplest HIS with inertial
motion (trivial potential) in the domain interior. By this approach, to better understand systems
with very steep potentials at the domain’s boundary, one studies the limit system in which the
steep part is replaced by impacts. Once the dynamics under the HIS are known, one establishes
which of its features persist [27, 17] and how those which do not persist bifurcate [30, 28].

The study of HIS combines the features of Hamiltonian dynamics and those of piecewise smooth
dynamical systems [7, 19, 22], which are specific examples of hybrid systems (e.g. [16, 14]).
Utilizing the Hamiltonian structure, one hopes to gain information on global scales. Yet, impacts
destroy the smoothness [9, 18] and possibly the integrability of the underlying Hamiltonian flow
[20]. Finding integrable HIS and studying their behavior under perturbations (of the boundary
and of the potential) expands the families of non-linear systems which we can analyse and, by
utilizing the smooth impact framework, allows to establish near-integrablity results even though
the perturbation terms in this case are formally large in the Cr topology. Here we provide such a
class of prototype impact systems which are near-integrable and are amenable to analysis. Previous
near-integrability results for HIS have utilized the local dynamics near periodic orbits [11, 4, 5, 17],
near a smooth convex boundary [31, 6, 5] and near saddle-center homoclinic connection of a
quadratic potential with impacts [20]. Another approach utilized the generalized adiabatic theory
in 1.5 d.o.f. systems, where the Hamiltonian dynamics are in one dimension and the boundary
is slowly oscillating [12, 13, 25, 3] . Similar approaches were employed in the study of magnetic
billiards [29, 6, 4, 5].

Here we address the subject of global structure and stability of orbits on large portions of
the phase space by identifying regimes in which standard smooth near-integrable results apply (in
particular, persistence of KAM tori and the emergence of resonances). These objects arise even
though, formally, we are far from the classical setup of smooth small perturbations to smooth
integrable systems. To this aim, we focus on 2 degrees of freedom mechanical impact systems,
where the underlying Hamiltonian is of the form H =

p2
1

2
+

p2
2

2
+ V (q1, q2) and V (·) is a separable,

smooth (Cr+1) potential with effectively bounded level sets. The impact in the system is realized
as a single straight vertical wall, where the seperability assumption is with respect to the vertical
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wall coordinate system, so that this wall does not destroy integrability. A perturbation from the
integrable structure is then realized by either the addition of a small, O(εr), Cr+1 regular coupling
perturbation to the potential or a small O(εw), Cr+1 deformation of the wall. The main result here
is that under some specific conditions, in a large (O(1) measure) phase space region, smooth near-
integrable dynamics are realized for sufficiently small εr and εw. Moreover, using [17], it is shown
that these results may be extended for the smooth system in which the hard wall is replaced by a
soft steep potential, provided the potential is sufficiently steep (notably, the steeper the potential
is the larger the perturbation is in the Cr+1 topology).

The paper is organized as follows. In section 2, the underlying integrable structure of the sys-
tems investigated is presented, and an integrable Poincaré return map is constructed. Conditions
for smoothness of the return map are shown, as well as the conditions for twist and for resonance.
In Section 3, it is shown how, following the conclusions of section 2, one can achieve near integra-
bility results when adding a small regular perturbation to the system or when considering a small
deformation of the wall from the vertical, perpendicular position. Furthermore, it is shown that
for the case of straight walls explicit formulae for the leading order terms of this return map in the
wall inclination and the smooth perturbation term may be calculated as Melnikov-type integrals.
Near integrability is also extended to the corresponding soft impact systems. An example to the
main results is given in section 4, where, additionally, the global perturbed phase-space structure
is presented in an impact-energy-momentum diagram. We summarize our results in section 5.

2 Setup and integrability results

Consider a 2 degrees of freedom mechanical impact system of the form:

H = H(·; εr, εw, qw, b) = Hint(q1, p1, q2, p2) + εrVr(q1, q2) + b · Vb(q − qw; εw) (1)

where the underlying integrable structure is separable (see below), the potential Vr(q1, q2) corre-
sponds to a regular smooth (Cr+1 with r > 3) coupling term and the singular billiard potential
Vb(q − qw; εw) represents the singular impact term. Hereafter, for εw = 0, the impact corresponds
to a single vertical wall passing through the origin (namely, with no loss of generality, the q2 axis is
set along the wall and the origin is set at some point on the wall, otherwise shift the q2 coordinate
by a constant value). A non-zero εw corresponds to small perturbations, in Cr+1, from the vertical
geometry, so qw = (qw1 = εwQ

w(qw2 ; εw), qw2 ), and Qw is a Cr+1 function satisfying Qw(0; 0) = 0.
Motion occurs to the right of the wall; the wall is realized in the system as a singular energy

3



barrier:

Vb =

0, (q1, q2) : q1 > εwQ
w(q2; εw)

1, (q1, q2) : q1 ≤ εwQ
w(q2; εw)

(2)

and b is either a fixed large number or zero (when positive it is taken such that for all energies of
interest the wall is impassable, whereas b = 0 refers to the smooth Hamiltonian system without
the impact).

The integrable structure of Hint of (1) is of the form:

Hint =
||p||2

2
+ Vint(q1, q2) =

p2
1

2
+ V1(q1) +

p2
2

2
+ V2(q2) = H1(q1, p1) +H2(q2, p2), (3)

where the potential Vint = V1(q1) + V2(q2) is Separable, Cr+1 (r > 3) Smooth, Simple (has finite,
discrete number of simple extremum points), Bounded from below and Vi go to infinity as |qi| → ∞,
so Hint has only bounded level sets. Therefore the perturbation terms Vr(·), Qw(·) are bounded
on the energy surfaces (see appendix), where the bound depends on H. Hereafter we assume that
H = O(1) - the asymptotic behavior at large H may require additional analysis.

Definition 2.1. Integrable Hamiltonians of the form (3) satisfying the above conditions will here-
after be called Hamiltonians of the S3B (Separable, Smooth, Simple, Bounded level sets) class.

Next we define the phase space region for which the results apply. We first describe the smooth
integrable structure. Denote, in each sub phase space i = 1, 2, the nic center fixed points by
(qic,1...nic , 0) and the nis saddle fixed points by (qis,1...nis , 0). Let IHi(H) denote the set of allowed
Hi values for a givenH (here, the intervalHi ∈ [minVi, H−minVī], where ī denotes the complement
phase space to i), and let Nδ(H∗i ) denote the δ− open interval of Hi values around H∗i . The closed
set of regular integrable Hi values on a given energy level H

HR,δ
i (H) = IHi(H)\[

nis⋃
j=1

Nδ(Hi(qis,j, 0)) ∪
nīs⋃
j=1

Nδ(H −Hī(qīs,j, 0))], δ > 0, i = 1, 2 (4)

corresponds toHi values for which the Liouville leaves are bounded away from singularities, namely
the energy of the level sets in both the (qi, pi) plane and in the (qī, pī) plane are at least δ− away
from the energies of the planar singular level sets of the saddle points qis, qīs respectively (hereafter,
normally elliptic lower dimensional tori are included in the regular set). Clearly, the measure of
these Hi intervals is of O(1) when δ → 0 :

|HR,δ
i (H)| ≥ H −minVi −minVī − 2δ(nis + nīs). (5)

Using the local action-angle variables for the smooth unperturbed integrable system (εr = 0, b =

0), for all H2 ∈ HR,δ
2 (H), Hint can be written as Hint(J, I) = H1(J) +H2(I), and the dynamics on

4



the corresponding leaves of the level sets are described by:ϕ̇ = ∂Hint
∂J

= ω1(J), J̇ = −∂Hint
∂ϕ

= 0

θ̇ = ∂Hint
∂I

= ω2(I), İ = −∂Hint
∂θ

= 0
⇒

ϕ(t) = ϕ0 + ω1(J0) · t J(t) = J0

θ(t) = θ0 + ω2(I0) · t I(t) = I0

(6)

where (J0, ϕ0) = S1(q1(0), p1(0)), (I0, θ0) = S2(q2(0), p2(0)) and Si denote local transformations
to action-angle coordinates on each leaf. A branch of the Liouville folliation corresponds to a
family of regular leaves (here each leaf is a torus, each branch a one parameter family of tori). On
each branch, away from the branch boundaries, the transformation to action-angle coordinates is
smooth and well defined. For each H, the set HR,δ

2 (H) is composed of a finite number of closed
intervals, each corresponding to a finite number of branches. SinceHi are mechanical Hamiltonians,
ωi(·) > 0, i = 1, 2, and thus H−1

i (·) are uniquely defined on each branch of the Liouville folliation
[21, 8, 2]. For all level sets in HR,δ

2 (H), by the S3B assumption (no parabolic points), there exists a
K > 0 such that for all I ∈ H−1

2 (HR,δ
2 (H)) the frequencies ω2(I) = H ′2(I) are bounded from below:

ω2 ≥
∣∣∣∣ K

ln(δ)

∣∣∣∣ (7)

The notation H−1
2 (HR,δ

2 (H)) refers to the multi-valued set defined on all (finite number of) rel-
evant branches, and H−1

2 is well defined even when δ → 0 (though it may be discontinuous at
separatrices). It follows that the measure of the excluded set of action values I, similarly to the
corresponding set of excluded energies in (4) goes to 0 as δ → 0 - see Theorem 2.6.

2.1 Integrable impact return map

When the wall is vertical (b 6= 0, εw = 0), namely, it respects the separability symmetry of the
underlying integrable Hamiltonian flow, one immediately concludes, by the rule of elastic reflection
and the symmetry of the kinetic energy term, integrability:

Lemma 2.2. (Integrability) When εr = εw = 0 the dynamics of the impact system are integrable.

The vertical wall produces the additional singular level sets that correspond to tangent trajec-
tories with H1 energy V1(0). Generically, such level sets do not coincide with the singular level
sets of H1, namely:

Definition 2.3. The vertical wall position is regular if V ′1(qw1 = 0) 6= 0 and V1(qw1 ) 6= V1(q1s,j), j =

1, ..., n1s.

Since H1 is of the mechanical form, it follows that for any given H1 there exists at most a
single Liouville leaf in the (q1, p1) plane which intersects the wall at q1 = qw1 = 0, called hereafter
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the intersecting leaf. In particular, for a family of intersecting leaves, the value of |pw1 (H1)| =√
H1 − V1(0) is uniquely defined and is monotone in H1 for all H1 > H1tan = V1(0) as is the

dependence on J = H−1
1 (·) on such intersecting leaves. For fixed energy H = H1+H2, a branch can

be either intersecting (meaning that all leaves of this branch intersect the wall), non-intersecting, or
tangent. Namely, the location of the perpendicular wall determines uniquely the tangent branch;
for regular wall position, for each energy value H = h ≥ V1(0) + minV2, there exists a unique
leaf within the level set H1 = H1tan, H2 = h − H1tan , at which a tangency occurs. For a fixed
energy H, we call the branch corresponding to this leaf the tangent branch, and on this branch
J ≈ Jtan = H−1

1 (V1(0)) uniquely defines the leaves. In conclusion, we establish:

Lemma 2.4. In the unperturbed vertical wall case (εr = εw = 0) with regular wall position, for
the flow restricted to the tangent and intersecting branches, tangency occurs at Jtan = H−1

1 (V1(0))

whereas impacts occur iff J ≥ Jtan.

Hereafter, unless specified otherwise, we consider the dynamics only on the tangent and inter-
secting branches (for the integrable dynamics all other branches are unaffected by the impact).

Next, a return map of the integrable impact system is constructed and it is proven that it is
Cr smooth and satisfies the twist condition for most initial conditions. Since the motion occurs
to the right of the vertical wall and the impact occurs whenever q1 = 0, choosing the cross-section
Σ = {(q1, p1) : p1 = 0, ṗ1 < 0} ensures that in each iteration of the return map at most a single
collision with the wall occurs. The return map to Σ, for the system without the impact is simply:I ′ = I(T1(J)) = I

θ′ = θ(T1(J)) = θ + ω2(I) · T1(J(H, I)) = θ + T1(J(H,I))
T2(I)

· 2π
(8)

where J = J(H, I) = H−1
1 (H − H2(I)), T1(J) = 2π

ω1(J)
and T2(I) = 2π

ω2(I)
are well defined for

I ∈ H−1
2 (HR,δ

2 (H)) for small δ > 0. Similarly, the corresponding return map F0 : (I, θ) → (I ′, θ′)

of the integrable impact system is defined for I ∈ H−1
2 (HR,δ

2 (H)) by:I ′ = I

θ′ = θ + ω2(I) · (T1(J)−∆ttravel(J)) = θ + 2π T̃1(J)
T2(I)

≡ θ + Θ(I, J(H, I))
(9)

with

∆ttravel(J) =

2
´ 0

q1min(J)
dq1√

2(H1(J)−V1(q1))
impact (J > Jtan)

0 no impact, tangency (J ≤ Jtan)
(10)

where q1min(J) is the minimal q1 value on the chosen intersecting leaf that satisfies V1(q1min) =

H1(J), i.e. the leftmost point of the trajectory (outside the billiard). Namely, ∆ttravel is the
time of travel outside the billiard which is lost due to the impact (see Figure 1) and T̃1(J) =
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Figure 1: Isoenergetic curves in (q1, p1), with an impacting trajectory emphasized in black. The
wall is at qw1 = 0 (dashed line), and the cross-section Σ corresponding to the relevant intersecting
branch is drawn in red. The impact causes a jump in the angle ∆ϕ, which is proportional to the
time of travel ∆ttravel outside the billiard, i.e. the travel time from p1 to −p1 at the impact point
had there been no wall. The Hamiltonian H1 in this figure corresponds to the undamped Duffing
oscillator - see section 4.

T1(J) − ∆ttravel(J) is the new period time in J . Generically, we expect that the level set of
H2 = H − V1(0) is regular:

Definition 2.5. H is δ−regular with respect to the wall position if V1(0) ∈ HR,δ
1 (H).

For regular wall position, for sufficiently small δ, there are at most a finite number of δ−
intervals for which H is not regular, corresponding to the energy surfaces at which H − V1(0) are
close to V2(q2s,j) for some j. For δ-regular H values, denote by Itan(H) = H−1

2 (H − V1(0)) and
notice that impacting trajectories, corresponding to J > Jtan, yield I < Itan(H). We now establish:

Theorem 2.6. (Smoothness of (9)) Consider a Hamiltonian H of the form Eq. (1) with an S3B
integrable structure Hint and a regular wall position (Def. 2.3), with εr = εw = 0. Fix δ > 0, ρ > 0,
and consider a δ−regular energy level H < b. Then for I in H−1

2 (HR,δ
2 (H)), excluding a ρ− interval

centered at Itan (so I ∈ H−1
2 (HR,δ

2 (H))\Nρ(Itan(H))), the return map F0 : (I, θ) → (I ′, θ′) is
symplectic and Cr smooth, i.e. ∃Mr(ρ, δ) <∞ such that ||Θ(I, J(H, I))||Cr < Mr(ρ, δ). Moreover,
the regular set H−1

2 (HR,δ
2 (H))\Nρ(Itan(H)) on which the return map (9) is Cr smooth is of O(1)

in δ, ρ.

Proof. This is a result of the property of smooth dependence on initial conditions in ODEs and the
assumed structure of the flow. For impact away from tangency, the cross-sections {q1 = 0, p1 < 0},
{q1 = 0, p1 > 0} are transverse to the flow. The travel time ∆ttravel(J) corresponds to the
travel time between the former and the latter transverse cross-sections. Since neighborhoods of
separatrices are excluded, this travel time is finite and depends smoothly on initial conditions.
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Finally, it follows from (5,7) that for small δ, the measure of the set of excluded action values
satisfies:

|H−1
2 (

n2s⋃
j=1

Nδ(H2(q2s,j, 0)) ∪
n1s⋃
j=1

Nδ(H −H1(q1s,j, 0))) ∪Nρ(Itan(H))| ≤ O(δ| ln(δ)|, ρ) (11)

as for each neighborhood of q1s,j, j = 1, ..., n1s an O(δ) neighborhood of I values is excluded,
whereas for each neighborhood of q2s,j, j = 1, ..., n2s the excluded I values consist of an O(δ| ln(δ)|)
neighborhood (Eq. 7). Hence, as δ, ρ → 0, for H = O(1) as considered here, the set of regular
action values I ∈ H−1

2 (HR,δ
2 (H))\Nρ(Itan(H)) is of O(1) as claimed.

Near tangency the map F0 is symplectic and C0 - continuous but not smooth.

Remark. For impacting trajectories, the new period time in J , T̃1(J) = 2
´ q1max(J)

0
dq1√

2(H1(J)−V1(q1))

can also be calculated for level sets near a separatrix when the saddle point is outside the billiard
(so the travel time on the trajectory inside the billiard is finite), or, similarly, for potentials with
unbounded level sets where the billiard serves to effectively bound the energy level set (i.e. level
sets are unbounded only on the outer side of the wall). The theorem can therefore be extended to
such cases following suitable alterations to the initial assumptions.

The return map (9) satisfies the twist condition away from the non-twist set:

Definition 2.7. The Non-Twist set for a given energy level H is:

INT (H) = {I ∈ H−1
2 (HR,δ

2 (H)) | H1(J(H, I)) +H2(I) = H,
d

dI
(
T̃1(J)

T2(I)
· 2π) = 0} (12)

Theorem 2.8. (The Regular-Twist set) Consider a Hamiltonian H of the form Eq. (1) with an
S3B integrable structure Hint and a regular wall position, with εr = εw = 0. Fix δ > 0, ρ > 0,
and consider a δ−regular energy level H < b. Then, for sufficiently small δ, ρ, the regular-twist set
H−1

2 (HR,δ
2 (H))\Nρ(Itan(H) ∪ INT (H)) on which the return map (9) is a Cr twist map is of O(1)

in δ, ρ.

Proof. Generically, the set INT (H) is a discrete, finite set, hence excluding its ρ−intervals leaves,
for sufficiently small ρ, a set of I values of measure of O(1).

The set INT (H)∩{I > Itan(H)} corresponds to non-impacting tori which are non-twist due to
the underlying system, whereas the set INT (H)∩{I < Itan(H)} corresponds to tori that lose their
twist due to the impact.

Using the implicit relation J = J(H, I), after some algebra, the twist condition becomes:

dΘ

dI
= 2π · −T1(J) · T̃ ′1(J)− T̃1(J) · T ′2(I)

T 2
2 (I)

6= 0 (13)
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Since T1(J), T̃1(J), T2(I) are always non-negative, a necessary condition to have a non-twist torus
is that T̃ ′1(J) and T ′2(I) have opposite signs (see also section 4).

Proposition 2.9. The non-twist set may only occur in regions where the modified periods in each
d.o.f. have opposite monotonicity property: I ∈ INT (H)⇒ T̃ ′1(J) · T ′2(I) ≤ 0 (where J = J(H, I)).

Finally, notice that the rotation number for the twist map (9) changes at I = Itan(H) from
its impacting value T̃1(J)

T2(I)
to its non-impacting value T1(J)

T2(I)
, namely the resonance surfaces change

non-smoothly at I = Itan.

3 Near integrability results

In the smooth case without the impact, when εr 6= 0 is small, the usual near-integrable dynamics
emerge, including the existence of KAM tori, resonances near the rational values of T1(J)

T2(I)
and

various types of homoclinic chaos near the singular level sets [2, 24, 23, 15].
Utilizing the construction of the return map (9) which is an integrable, Cr smooth, symplectic

twist map for the vertical wall case, we now show that under small perturbations ε = (εr, εw) 6= 0,

the perturbed return map, Fε, away from the singularities, is a Cr-symplectic map (the near
singularities behavior will be studied elsewhere). Furthermore, we also establish that this map is
Cr-close to the integrable one, hence KAM theory applies and invariant near-integrable regions in
phase space can be identified. More precisely:

Theorem 3.1. Consider a Hamiltonian H of the form Eq. (1) with an S3B integrable structure
Hint and a regular wall position. Fix δ > 0, ρ > 0, let ε = (εr, εw) and ε = ||ε||, and consider
a δ−regular energy level H < b. Then for I ∈ H−1

2 (HR,δ
2 (H))\Nρ(Itan), for all θ, for sufficiently

small ε the return map Fε : (I, θ) → (I ′, θ′) is symplectic, Cr smooth and ε − Cr close to the
unperturbed impact return map F0 of Eq. (9). Namely, for all (I, θ) in this bounded domain, there
exists ε0(H, δ, ρ) > 0, such that for all ε ∈ [0, ε0(H, δ, ρ)):

Fε :

I ′ = I + εf(I, θ; ε)

θ′ = θ + Θ(I, J(H, I)) + εg(I, θ; ε)
(14)

with f, g 2π−periodic in θ, f, g ∈ Cr.

Proof. We first show that the perturbed return map Fε : (I, θ) → (I ′, θ′) can be decomposed to
three maps:

Fε = Φ[t∗ε ,t
∗∗
ε ]

εr ◦ Sεw ◦ Φ[0,t∗ε ]
εr (15)

where Φ denotes the smooth Hamiltonian flow corresponding to system without the impactH(·; εr, b =

0) which governs the dynamics before and after impact, t∗ε and t∗∗ε denote the time of impact with
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the wall and the time of return to the cross-section respectively and S is the impact (gluing) map.
The subscript indicates the dependence on the two different types of perturbations.

Since Φ
[0,t]
εr is the Cr smooth Hamiltonian flow corresponding to the Hamiltonian H(·; εr, b = 0)

which is Cr close to the unperturbed smooth Hamiltonian flow H(·; εr = 0, b = 0) for any finite
t, by considering I values only in the regular domain of the unperturbed flow, we insure that for
sufficiently small εr the two smooth flows are εr −Cr close on the finite time interval [0, t∗0 + 1],
where t∗0 denotes the finite unperturbed impact time. Since, away from t = {0, t∗0}, the unperturbed
segment of the flow for the considered regular I values is bounded away from Σ and from the section
q1 = 0, for sufficiently small εr the same statement holds for the perturbed smooth flow. Hence,
for sufficiently small εw there is no crossing of Σ or the wall coordinate occuring at t-values in the
interior of the interval (0, t∗0). It follows that for sufficiently small ε, the perturbed first impact
with the perturbed wall occurs before the trajectory returns to Σ, is transverse, and the perturbed
travel time t∗ε is finite and ε −Cr close to t∗0. Hence, for sufficiently small εw, the gluing map Sεw
is Cr smooth (for a Cr+1 smooth boundary [9]) regardless of the form of the deformation or tilt of
the wall, and, for sufficiently small ε, the composition Sεw ◦Φ

[0,t∗ε ]
εr is ε −Cr close to the unperturbed

composition, S0 ◦ Φ
[0,t∗0]
0 . Namely, the perturbed trajectory just after the impact is ε −Cr close to

the unperturbed trajectory after impact.
It follows that the perturbed trajectory which is propagated by the perturbed flow Φεr remains ε

- Cr close to the unperturbed impact trajectory for finite times (e.g. past the unperturbed return
time to the transverse cross section Σ), and hence, by similar considerations as above, cannot
collide with the wall or cross Σ at t values which are bounded away from t∗0 and t∗∗0 respectively.
In particular, we obtain that the perturbed return time t∗∗ε is finite and ε −Cr close to t∗∗0 .

Summarizing, for I ∈ H−1
2 (HR,δ

2 (H))\Nρ(Itan), for all θ, the return map Fε to Σ includes a
single transverse collision with the perturbed wall at t∗ε = t∗0 + O(ε) and thus the return map is
of the form Fε = Φ

[t∗ε ,t
∗∗
ε ]

εr ◦ Sεw ◦ Φ
[0,t∗ε ]
εr and is ε −Cr close to the unperturbed impact return map

F0 = Φ
[t∗0,t

∗∗
0 ]

0 ◦ S0 ◦ Φ
[0,t∗0]
0 given by Eq. (9).

Note that the return times and closeness results statements are non-uniform in H. Establishing
asymptotic results for largeH requires more careful analysis of the bounds and constants appearing
in the proof and will be deferred to later studies.

Corollary 3.2. For fixed H and δ, ρ > 0, consider a circle which is bounded away from separatrices,
tangencies and the non-twist set, i.e. I0 belongs to the closed "good" set I0 ∈ H−1

2 (HR,δ
2 (H))\(Nρ(Itan)∪

Nρ(INT (H))) ≡ Sg(H, δ, ρ). Furthermore, assume Θ(I0, J(H, I0))/2π is (c, ν)-Diophantine

| Θ(I0, J(H, I0))− 2πm

n
|> cn−ν−1 ∀m,n ∈ Z (16)

where 1 < ν < 1
2
(r − 1). Then, there exists ε1(H, δ, ρ; c, ν) such that for all ε < ε1 there exists
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a perturbed invariant circle (Iε(θ), θ) with rotation number T̃1(J(H,I0))
T2(I0)

which is ε/c close to the
unperturbed circle I = I0. Furthermore, the same result is valid for small c as long as c is at least
of O(

√
ε).

Proof. From Theorem 3.1, the map (14) on Sg(H, δ, ρ) is a Cr perturbation of an integrable twist
map. It remains to show that the perturbed dynamics remain bounded away from tangency and
separatrices - if this is shown, then the above corollary follows directly from KAM type results
(see [2, 24, 10]) applied to the map (14). Indeed, notice that Sg(H, δ, ρ) ⊂ Sg(H, δ/2, ρ/2) so
the upper bounds on ε of Theorem 3.1 for these sets satisfy ε0(H, δ, ρ) > ε0(H, δ/2, ρ/2). Taking
ε < ε0(H, δ/2, ρ/2), insures that if I0 ∈ Sg(H, δ, ρ) then it is at least ∆ away from the boundary of
Sg(H, δ/2, ρ/2), where ∆ = min(ρ/4, K1δ,K2δ| ln(2δ)|) and K1,2(H) are some constants depending
on the unperturbed rotation rates (see Eq. 7, 11). It follows that the map (14) is smooth in
at least an O(∆) neighborhood for all I0 ∈ Sg(H, δ, ρ). Hence, by KAM theory, there exists
ε∗(H, δ, ρ; c, ν) < ε0(H, δ/2, ρ/2), such that for all ε < ε∗ near every I0 ∈ Sg(H, δ, ρ) with c, ν-
Diophantine Θ(I0, J(H, I0))/2π, there exists a perturbed invariant curve with Iε(θ) = I0 + O( ε

c
)

with the same rotation number as I0. Since c is at least of O(
√
ε), there exists K > 0 such that

ε
c
< K

√
ε. Taking ε < ε1(H, δ, ρ; c, ν) = min(ε∗(H, δ, ρ; c, ν),

(
∆
K

)2
) insures that K

√
ε < ∆, so

the perturbed circle remains within the regular region Sg(H, δ/2, ρ/2) in which the map (14) is
smooth, as required.

Corollary 3.3. For sufficiently small ε, the complement to the set of all tori I0 belonging to an
energy surface H and satisfying the conditions of Corollary 3.2 , namely the set of tori which do
not necessarily persist under ε perturbations is of O(

√
ε, ρ, δ ln δ).

Proof. The complement to the set Sg(H, δ, ρ), namely the δ− neighborhoods of separatrices and
ρ− neighborhoods of tangency and non-twist tori, are of O(ρ, δ ln δ), see proof of Theorem 2.6.
For I0 ∈ Sg(H, δ, ρ), by Corollary 3.2, KAM theorem [2] may be applied, hence in Sg(H, δ, ρ) the
complement set is the resonant set, and its measure is of O(

√
ε).

The destroyed, resonant tori correspond to rational values of the modified rotation number
T̃1(J)
T2(I)

. Notice that the impact causes a shift in the resonant frequencies.
The excluded sets (neighborhoods of separatrices, of the tangent torus and of the non-twist

tori) correspond to a finite, discrete number of singular I(H) values. As ε → 0, the size of these
sets, which is controlled by δ, ρ, can be taken to tend slowly to 0 as well. The proof of corollary
3.2 which utilizes KAM theory implies that in such a case δ, ρ must be at least of O(

√
ε). Finding

the optimal power in ε is left for future studies. As the system is a 2 d.o.f system, this implies
that the phase space can be divided into invariant regions of motion [2].

There are two cases in which the form of the perturbed map for I may be found. The first
of which is the case of a perpendicular wall with an additional regular perturbation - εw = 0,

11



so ε = εr. We introduce the following notation: let z(t) = (q1(t), p1(t), q2(t), p2(t)) and denote
the impacting trajectory in the perturbed system by zε(t) = Φ

[0,t]
εr z(0), for 0 ≤ t < t∗ε , and

zimε (t) = Φ
[t∗ε ,t]
εr ◦ S ◦ Φ

[0,t∗ε ]
εr z(0) for t∗ε ≤ t ≤ t∗∗ε . Denote similarly by zim0 (t) the trajectory in

the unperturbed impact system. Finally, denote by zsm0 (t) = Φ
[0,t]
0 z(0) the smooth, unperturbed,

non-impacting trajectory. From Theorem 3.1 above, we have:

Corollary 3.4. Consider the settings of theorem 3.1, with εw = 0 and εr sufficiently small. Let
t̄min = min(t∗0, t

∗
εr), t̄max = max(t∗0, t

∗
εr). Then:

zεr(t) =


zim0 (t) + εrz

im
1 (t) +O(ε2r) t ∈ [0, t̄min] ∪ [t̄max, t

∗∗
εr ]zsm0 (t) + εrz

sm
1 (t) +O(ε2r) t̄min = t∗0

(qsm1,0 (t+ ∆ttravel), p
sm
1,0(t+ ∆ttravel), q

sm
2,0 (t), psm2,0(t)) +O(εr) t̄max = t∗0

t ∈ [t̄min, t̄max]

(17)
Where ∆ttravel is as in Theorem 2.6, calculated for the unperturbed impacting trajectory, and z1

solves the first variational equation along the corresponding trajectory.

In other words, for ε = εr, the perturbed trajectory zεr(t) and the unperturbed trajectory
zim0 (t) are O(εr) close except for an O(εr) time interval where one trajectory has already undergone
impact and the other has not, in which case the perturbed trajectory can be approximated by the
respective continuation of the unperturbed trajectory outside the billiard.

Theorem 3.5. Consider a Hamiltonian H of the form Eq. (1) with an S3B integrable structure
Hint and a regular wall position, with εw = 0. Fix δ > 0, ρ > 0, and consider a δ−regular energy
level H. Then for I ∈ H−1

2 (HR,δ
2 (H))\Nρ(Itan), for all θ, for sufficiently small εr, the function f

of the change in I in the return map (14) has the following form:

f(I, θ; εr) =
1

ω2(I)

ˆ T̃1(J(I,H))

0

(
∂Vr
∂q2

p2

)
zim0 (t)

dt+O(εr) (18)

Proof. Consider the evolution in time of I under the perturbed system before, during and after
impact (see Figure 2). Before and after impact the motion is described by the smooth, near
integrable Hamiltonian H(·; εr, b = 0) (Theorem 3.1 and Corollary 3.4) and at impact, as the wall
is perpendicular, I is unchanged. With no loss of generality, we consider the case t̄min = t∗0 < t∗εr
(the other case may be similarly treated). The evolution of I before the perturbed impact time t∗εr

12



Figure 2: The perturbed impacting trajectory zεr (blue), unperturbed impacting trajectory zim0
(crimson) and unperturbed smooth trajectory zsm0 (dashed crimson) during a single iteration of
the return map to the cross-section Σ, projected to the (q1, p1) phase space, for the case of a
perpendicular wall and a small regular perturbation. The wall is at q1 = 0.

may be approximated by the evolution along the unperturbed trajectory until time t∗0:

I∗ = I(t∗εr) = I +

ˆ t∗εr

0

{I,Hint + εrVr} |zεr (t) dt = I +

ˆ t∗0

0

+

ˆ t∗εr

t∗0

{I, εrVr} |zεr (t) dt

= I + εr

ˆ t∗0

0

{I, Vr} |zim0 (t) dt+O(ε2r)

(19)

where we used {I,Hint} = 0, Theorem 3.1 and Corollary 3.4. I∗ does not change at impact, and
the evolution back to the cross-section Σ after the impact may be calculated similarly:

I ′ = I(t∗∗εr ) = I(t∗εr) +

ˆ t∗∗εr

t∗εr

{I,Hint + εrVr} |zεr (t) dt

= I∗ +

ˆ t∗∗0

t∗εr

{I, εrVr} |zεr (t) dt+

ˆ t∗∗εr

t∗∗0

{I, εrVr} |zεr (t) dt

= I∗ + εr

ˆ t∗∗0

t∗εr

{I, Vr} |zim0 (t) dt+O(ε2r) = I∗ + εr

ˆ t∗∗0

t∗0

{I, Vr} |zim0 (t) dt+O(ε2r).

(20)
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Finally, substituting {I, Vr} = ∂Vr
∂θ

and since t∗∗0 = T̃1(J) (see (9)):

I ′ = I + εr

ˆ t∗∗0

0

∂Vr
∂θ
|zim0 (t) dt+O(ε2r) = I + εr

ˆ t∗∗0

0

∂Vr
∂q2

· ∂q2

∂θ
|zim0 (t) dt+O(ε2r)

= I + εr

ˆ T̃1(J)

0

∂Vr
∂q2

· q̇2

θ̇
|zim0 (t) dt+O(ε2r) = I + εr

1

ω2(I)

ˆ T̃1(J)

0

(
∂Vr
∂q2

p2

)
zim0 (t)

dt+O(ε2r)

(21)

The other case in which explicit form of the leading order term in I can be written, is the case of
a tilted, near perpendicular straight wall and a small regular perturbation (qw1 = εwQ

w(qw2 ) = εwq
w
2 ,

εw, εr small). In fact, we show next that by rotating the coordinate system this case reduces to an
example of the previous one. Consider first a tilted wall with no additional perturbation to the
potential, so εr = 0 and qw1 = εwq

w
2 , εw small. The symplectic change of coordinates, of rotating

the axes by α = arctan(εw):

q̃ = Rq, p̃ = Rp,R =

(
cosα − sinα

sinα cosα

)
(22)

makes the wall perpendicular to the new q̃1 axis, i.e. Q̃w = Qw(q̃2
w) = 0. Substituting the new

coordinates in the Hamiltonian, we obtain:

H̃(q̃1, q̃2, p̃1, p̃2) = H(cosα·q̃1+sinα·q̃2,− sinα·q̃1+cosα·q̃2, cosα·p̃1+sinα·p̃2,− sinα·p̃1+cosα·p̃2)

=
p̃1

2

2
+
p̃2

2

2
+ V1(cosα · q̃1 + sinα · q̃2) + V2(− sinα · q̃1 + cosα · q̃2) + b · Vb(q̃1, q̃2) (23)

V1,2 are Cr+1 functions and therefore can be expanded around q̃1, q̃2 respectively:

V1(q1) = V1(cosα · q̃1 + sinα · q̃2) = V1(q̃1) + (q̃1 − (cosα · q̃1 + sinα · q̃2)) · V ′1(q̃1)

+ (q̃1 − (cosα · q̃1 + sinα · q̃2)) · h1(cosα · q̃1 + sinα · q̃2)

V2(q2) = V2(− sinα · q̃1 + cosα · q̃2) = V2(q̃2) + (q̃2 − (− sinα · q̃1 + cosα · q̃2)) · V ′2(q̃2)

+ (q̃2 − (− sinα · q̃1 + cosα · q̃2)) · h2(− sinα · q̃1 + cosα · q̃2)

(24)

Where h1, h2 → 0 as εw → 0. For εw small, the trigonometric functions can also be expanded:

V1(cosα · q̃1 + sinα · q̃2) = V1(q̃1) + εwV1,rem(q̃1, q̃2; εw)

V2(− sinα · q̃1 + cosα · q̃2) = V2(q̃2) + εwV2,rem(q̃1, q̃2; εw)

Vrem(q̃1, q̃2; εw) = V1,rem(q̃1, q̃2; εw) + V2,rem(q̃1, q̃2; εw)

(25)
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where Vrem(·) is Cr and in particular bounded on the perturbed energy surface (though non-
uniformly in H). The form of the Hamiltonian in the new rotated coordinates is

H̃(q̃1, q̃2, p̃1, p̃2) =
p̃1

2

2
+
p̃2

2

2
+ V1(q̃1) + V2(q̃2) + εwVrem(q̃1, q̃2; εw) + b · Vb(q̃1; 0) (26)

where, using the expansion in (24), we have:

Vrem = −q̃2 · V ′1(q̃1) + q̃1 · V ′2(q̃2) +O(εw) (27)

namely, the integrable part of H̃, in the rotated coordinates, is exactly Hint. Notice that due to the
expansion, the smoothness of the leading order perturbation term is reduced by one. We establish:

Corollary 3.6. For H, εw and initial conditions (Ĩ , θ̃) which satisfy the assumptions of Theorem
3.1 with r > 4, an impact by a near perpendicular straight wall is equivalent to the system with
impact with a perpendicular wall and a small, regular perturbation. Moreover, the form of the
change in Ĩ due to the wall tilt becomes (see Theorem 3.5):

f(Ĩ , θ̃; εw) =
1

ω2(Ĩ)

ˆ T̃1(J̃)

0

(
[−V ′1(q̃1) + q̃1 · V ′′2 (q̃2)] p̃2

)
z̃0
im(t)

dt+O(εw) (28)

Similarly, when both εw, εr 6= 0 and are of the same order, one finds that the Hamiltonian in
the rotated coordinates corresponds to a system with a perpendicular wall and a small regular
perturbation, comprised of a rotation term εwVrem(q̃1, q̃2) and the original regular perturbation
εrṼr(q̃1, q̃2; εr, εw). Using a similar expansion to (24), we have:

Vr(q1, q2; εr) = Vr(q̃1, q̃2; εr)+ εw

(
− q̃2

∂Vr
∂q1

(q̃1, q̃2)+ q̃1
∂Vr
∂q2

(q̃1, q̃2)
)

+O(ε2w) := Ṽr(q̃1, q̃2; εr, εw) (29)

Assuming that εr = crε, εw = cwε, the form of the change in Ĩ becomes (see Theorem 3.5, equations
(24,29)):

f(Ĩ , θ̃; ε) =
1

ω2(Ĩ)

ˆ T̃1(J̃)

0

([
cw[−V ′1(q̃1) + q̃1 · V ′′2 (q̃2)] + cr

∂Vr
∂q̃2

]
p̃2

)
z̃0
im(t)

dt+O(ε). (30)

Soft impacts

For physical setups in which bodies at close range experience strong repulsion forces (e.g. the
repelling forces between two colliding atoms) [27, 30, 20, 17], a better model for the strong repul-
sion than the singular hard-wall billiard potential is a smooth steep potential. Hence, consider
Hamiltonian systems similar to those discussed above, where the hard billiard is replaced by a
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smooth potential whose softness is controlled by a small parameter εb:

H = H(·; εr, εw, εb, qw, b) = Hint(q1, p1, q2, p2) + εrVr(q1, q2) + b · Vb(q; εw, εb) (31)

As εb → 0, the smooth (Cr+1) billiard potential Vb(·, εb) becomes steeper at the wall (as q−qw → 0+)
and approaches the singular hard wall limit. For example, one can choose (see [27, 17] for additional
examples):

Vb,poly(q; εw, εb) =
εb

q1 − εwQw(q2; εw)
(32)

Vb,exp(q; εw, εb) = exp

(
−q1 − εwQw(q2; εw)

εb

)
(33)

Notice that in particular, on the wall, limq→qw b · Vb(q; εw, εb) ≥ b (this limit, which corresponds
to the "barrier height", is infinite for the potential Vb,poly and finite for Vb,exp). It has been shown
[27, 17] that under some natural conditions on Vb, for trajectory segments that are bounded away
from tangencies and have energies which are not too large (so they cannot cross the boundary),
the smooth, soft impact flow and the piecewise-smooth, hard impact flow are Cr close on a section
bounded away from the impact boundary. The detailed conditions of [17] and their realization in
the context of the current setup are included, for completeness, in appendix B. Then, the results
in [17] can be used to prove a somewhat weaker version of Theorem 3.1 that applies to the soft
impact case (in particular, unless εb is taken to be very small, the form of the perturbed return
map also depends on the errors gathered by the singular perturbation term, see corollary 3.8):

Theorem 3.7. Consider a Hamiltonian H of the form Eq. (31) with an S3B integrable structure
Hint, a regular wall position, and a soft billiard potential Vb satisfying conditions I-IV (see appendix
B). Fix δ > 0, ρ > 0, let ε = (εr, εw, εb) and ε = ||ε||, and consider a δ−regular energy level H
satisfying H < Hmax(b) (see appendix). Then for I ∈ H−1

2 (HR,δ
2 (H))\Nρ(Itan), for all θ, for

sufficiently small ε the return map Fε : (I, θ) → (I ′, θ′) is symplectic, Cr smooth and Ck close to
the unperturbed impact return map F0 of Eq. (9) for any k ≤ r. Namely, for all (I, θ) in this
bounded domain, there exists εb(H, δ, ρ) > 0 such that for all ε ∈ [0, εb(H, δ, ρ)), Fε = F0 + oCk(1).

Proof. Symplecticity and smoothness of the soft impact flow, and hence the map, are immediate.
Since the transverse section Σ is bounded away from the wall, and since we consider orbits which
are bounded away from being tangent, the Ck closeness of F(εr,εw,εb) and F(εr,εw,εb=0+) follows from
Theorem 1 in [17] (see appendix, where the conditions of Theorem 1 in [17] are shown to be
satisfied here, and the bounds on H are shown to guarantee that for sufficiently small ε particles
cannot cross the wall). The Cr closeness of F(εr,εw,εb=0+) to F0 for sufficiently small εr, εw follows
from Theorem 3.1.

Remark. Notice that the approximation of the near integrable map by the integrable one is weaker
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here, as the error is o(1) in εb, versus the O(ε) error in Theorem 3.1. This is due to the singular
nature of the soft billiard perturbation, as opposed to the regular perturbations of the Hamiltonian
structure or the vertical wall shape. Error estimates for the hard billiard case have been calculated
in [27] for some specific forms of Vb. These estimates may be extended to the soft impact case and
used to derive an explicit formula for the first order approximation term to the soft impact return
map. The exact formulation is left for future works. However, the existence of such estimates
implies that there exists εb sufficiently small such that the error remains O(ε), i.e.

Corollary 3.8. There exists εb,k(εr, εw) such that for all εb < εb,k, under the conditions of Theorem
3.7, the soft impact return map Fε is ε−Ck close to F0 and in the special calculable cases the first
order term in ε of the soft impact return map takes the corresponding forms (18), (28) or (30).

For example, we conjecture that if for a given soft potential form the error estimate for Ck

closeness as in [27] is of O( k+2
√
εb), then for εb ≤ O(εk+2

r , εk+2
w ) the overall error would be of O(ε)

as required.

4 Example

Consider the Hamiltonian Hint =
p2

1

2
+

p2
2

2
− λ2

2
· (q1 − q1s)

2 + 1
4
· (q1 − q1s)

4 + ω2

2
· (q2 − q2s)

2. In the
(q1, p1) plane the Hamiltonian flow has a saddle point (q1s, 0) and a separatrix loop which encircles
two symmetric centers - the undamped Duffing oscillator [24]; In (q2, p2) there is a single linear
center (see Figure 3). The period in the (q1, p1) plane is piecewise monotone; it becomes infinite
at the separatrix (H1 = 0), where it reverses its direction of monotonicity: T ′1(H1) · sign(H1) < 0

(see Figure 5). The period around the linear center is fixed: T2(H2) = 2π
ω
. In the regular regions

away from the separatrix, action-angle variables can be defined and Hint = H1(J) + ωI. The
periods’ relation 2π T1(H1)

T2(H2)
= ωT1(H − ωI) in these regions is monotone, and so the smooth return

map (8) for Hint is a twist map. Consider now the impact system (1) with Hint as above and
εr = εw = 0. The parameters q1s, λ can be chosen such that the wall location is either inside
or outside the separatrix loop (see [26] for the different parameter ranges and the list of singular
cases). To demonstrate the results of sections 2 and 3, we consider here two regular cases: a) the
tangent level set encircles the separatrix from outside, and b) the tangent level set is inside the
separatrix, to the left of the left center point, see Figure 4. We show that in the former case the
non-twist set remains empty whereas in the latter case there is an impacting non-twist torus (see
Figure 6).

In fact, one can show that for any regular wall position of the first type (or, respectively,
of the second type) the non-twist set remains empty (respectively, has at least one non-twist
torus). Indeed, this follows from the fact that for the impact system, on the regular set, Θ(I) =
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Figure 3: Energy level lines in the phase space (q1, p1) (left), (q2, p2) (right)

Figure 4: The separatrix and the wall locations. Here, λ = 1. The wall, located at qw1 = 0, can
be either inside (left, q1s = 1.25) or outside (right, q1s = 2) the separatrix. The tangent level line
corresponding to Jtan is indicated in black. The cross-section Σ of the return map is depicted in
crimson, and is defined on the impacting branch.

ωT̃1(H−ωI) = ωT1(H−ωI)−ω∆ttravel(H−ωI), so Θ′(I) = −ω2(T ′1(H−ωI)−∆t′travel(H−ωI)).
For I = (H ± δ)/ω, the first term approaches ±1/δ as δ → 0 (there H1 is in the δ neighborhood
of the separatrix). However, for I = (H − V1(0)− ρ)/ω (where H1 is larger by ρ from the tangent
energy leaf, V1(0)), the second term approaches 1/

√
ρ as ρ → 0. For regular wall position the

tangent level set and the separatrix are bounded away from each other, and thus it follows that if
the tangency occurs inside the separatrix (V1(0) < 0) then, for sufficiently small δ, ρ, the rotation
function derivative, Θ′(I), must change sign over the interval I ∈ [(H+δ)/ω, (H − V1(0)− ρ) /ω] ⊂
Sg(H, δ, ρ/ω), and hence there exists at least one non-twist torus in the good set. On the other
hand, if V1(0) > 0 then Θ′(I) < 0 for all I < H/ω and thus the non-twist set remains empty even
with impact. See Figure 6 for illustration.
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Figure 5: The twist in the system described by Hint, on the energy surface H = 1. In blue is a line
of initial (I, θ) values, and in red - the corresponding (I ′ = I, θ′) values following a single iteration
of the integrable return map (wrapped in 2π). Here I = 1 corresponds to H1 = 0. Due to the
singularity at the separatrix, the twist changes direction between energies inside and outside the
separatrix. In either case, there is no non-twist torus, due to the monotonicity of T1.

Figure 6: The twist in θ when impact is outside (left) or inside (right) of the separatrix. The
points of non-smoothness correspond to Itan, in which ∆ttravel is continuous but not smooth. I
values below this value correspond to impacting trajectories. As can be seen to the left, when
the impact is outside the separatrix (V1(0) > 0) the impact “contributes” to the same direction of
the original, non-impacting twist. To the right, twist monotonicity is destroyed when impact is
inside the separatrix (V1(0) < 0) and a single non-twist torus is created at an intermediate point
INT ∈ (1, Itan).
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Near integrability results

Figures 7-8 demonstrate numerically the near-integrability results described in section 3, and in
particular the equivalence between the perpendicular and near perpendicular cases. Figure 7
depicts the dynamics of the return map in the (θ, I) plane. Examined are the cases of a near
perpendicular, straight wall with an underlying integrable structure, a perpendicular wall with
underlying near integrable structure, and the near perpendicular, near integrable combination. In
all three cases, near integrable behavior in the form of KAM tori and resonances can be seen in
the regions bounded away from tangency and the separatrix. Identification of these regions is
made easily using the Impact Energy-Momentum Bifurcation Diagrams in Figure 8 (see below).
For impacting trajectories the similarities between all three cases are evident. For non-impacting
trajectories, integrable behavior is seen at the top figure (εw = 0.01, εr = 0) whereas, naturally,
the remaining cases (εr 6= 0) exhibit near integrable behavior even when the trajectories do not
hit the wall1.

In Figure 8, the same dynamics are depicted in the (Hint, I) plane, using an Impact Energy-
Momentum Bifurcation Diagram, providing insights about the structure of the flow at different en-
ergy values; The classical Energy-Momentum Bifurcation Diagram (EMBD) [21, 2] for the smooth
Hamiltonian is, in our case, a plot in the (H, I) space, where H is the energy of the integrable
system and I is the action variable in the (q2, p2) phase space. In this plot the regions of allowed
motion are shaded grey, and the curves corresponding to the (Hint, I) values on singular level sets
of the system are depicted as dashed lines (respectively, solid lines) for singular level sets that
include normally hyperbolic (respectively, normally elliptic) circles. Together with either Fomenko
graphs or indicators of the number of Liouville leaves in each region [8, 2], such plots help to
classify the dynamics on different energy surfaces.

Here we introduce a new variant to this representation, the Impact-EMBD, in which we add
the projection of the conditions of impact (blue) and tangency (green) into the EMBD. When the
wall is perpendicular, this projection results in a line which corresponds to tangent tori, and which
separates between impacting and non-impacting trajectories. When the wall is not perpendicular,
due to the breaking of the symmetry, the condition for tangency projects onto the I-EMBD as a
2-dimensional zone. While in the symmetric case each point on the tangency line corresponded
to tori on which all initial conditions achieved tangency at first collision, in the non-symmetric
case this is satisfied by only a finite (see [26]) number of points on each torus in the tangency
zone. For the non-perpendicular wall the minimal energy for impact again coincides with the

1Near the separatrix the map (14) is not well defined: the same (θ, I) values may correspond to two different
sections in the (q1, p1) plane. One needs to use the separatrix map to obtain well defined sections there. Since the
separatrix is not studied here, yet we want to present the global behavior, we do extend the marked section across
the separatrix and ignore for now the observed artificial multiplicity which appears for trajectories that cross the
separatrix.
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minimal energy for a possible tangency. By projecting the dynamics into the I-EMBD we achieve
a classification of the different types of trajectories in relation to the impact and internal phase
space structure. These behaviors are then demonstrated in the (θ, I) plane (notice that the vertical
axis in both projections corresponds to I values, which, together with fixing the total energy, allows
for straightforward inference between the two different projections).

5 Discussion

Near integrability results for a class of 2 d.o.f separable mechanical impact systems with a single
wall were derived. When the wall conserves the symmetry of the integrable system - here, the
separability - the system remains integrable. In particular, local sections allow to define Poincaré
return maps that are smooth and satisfy the twist condition. We proved that breaking the sepa-
rability of the system by the addition of a small regular perturbation, a small perturbation of the
wall, making the wall soft, or a combination of all these effects together, may destroy the integra-
bility of the return map, yet the map remains near integrable for a large portion of the phase space
(Theorems 3.1, 3.5 and 3.7). For the case of a small regular perturbation and a slightly tilted,
straight wall, an explicit form of the first order term in the perturbed return map was derived, a
form which applies also to the soft impact formulation in the limit of very steep potential. The
correction terms which arise from the steep potential part could be possibly derived as well (see
[27]).

The dynamics near singularities of the impact system - separatrices and tangencies - are yet
to be explored, as is the limit of large energy values. Away from tangency, the dynamics near the
separatrix are expected to exhibit the usual separatrix splitting and homoclinic chaos, similar to
the smooth case. The near tangent dynamics are expected to produce more exotic behavior, as is
demonstrated in Figure 9. Notably, some aspects of this behavior have been explored by Neishtadt
in [12], for a 1.5 d.o.f system with slow-fast dynamics. The system (1) may be reduced to such a
system when ω1(J) � ω2(I); Indeed, let us denote T1(J)

T2(I)
= δ, where δ > 0 and small, define the

slow time variable τ = δt and symbolically denote the slow variables

q2 = q2(τ), p2 = p2(τ) (34)

Since qw1 = εwQ(qw2 ) the collision point with the wall varies slowly with the evolution of q2 -
q∗1 = εwQ(q∗2(τ)). Similarly, the perturbation εrVr(q1, q2) changes slowly in time - εrVr(q1; τ). The
slow-fast system can therefore be effectively reduced to a 1.5 degrees of freedom system with a
slowly varying potential and a slowly moving wall, and the results of [12] can be applied. We leave
for future works the relation of these results and the fascinating patterns seen in Figure 9.

21



Appendices

A Boundedness of the perturbation terms on the energy sur-

face

Lemma A.1. The perturbed energy surface corresponding to a constant energy level set h =

Hint + εrVr is bounded.

Proof. This is a result of the assumptions on the potential form and the implicit function theorem.
Note that since the system in consideration is mechanical, i.e. H = Σi=1,2

p2
i

2
+ Vi(qi) + εrVr(q1, q2),

it is enough to show that the Hill region - the allowed region of motion in the configuration space,
(q1, q2) - is bounded. Indeed, if the motion in q1, q2 is restricted to a compact Hill region, then
from the assumptions on smoothness and boundedness the potential values V1, V2, Vr are bounded
and thus so are the momenta, hence the energy surface is bounded.

Consider therefore the boundaries in q. These boundaries are the potential level sets which
define the Hill region, and are defined by the equation Vint(q1, q2)+εrVr(q1, q2)−h ≡ F (q1, q2; εr) =

0. For εr = 0, by the S3B assumption, the solution of the equation F (q0
1, q

0
2; 0) = 0 is a bounded

region, i.e. there exists R such that ||(q0
1, q

0
2)|| < R(h) for all (q0

1, q
0
2) on the energy surface

Hint = h. Consider first energy levels which are bounded away from those containing fixed points
of the integrable system (by the S3B assumption there are a finite number of such excluded energy
intervals). Now, for F (qε1, q

ε
2; ε) = 0, since ||∇Vint|| > const. > 0 on such surfaces, by the implicit

function theorem there exists ε0 such that for all ε < ε0, there exist solutions (qε1, q
ε
2) which are ε−

close to (q0
1, q

0
2), and hence, for example, for sufficiently small ε0, ||(qε1, qε2)|| < 2R(h). Hence, q1, q2

are bounded and the Hill region is indeed compact.
Now consider the intervals of energy which contain points that are close to the extremal points

of the potential (the fixed points of the Hamiltonian system), i.e. where ||∇Vint|| = 0. The number
of these points is finite and they are contained in a bounded domain, from the assumed structure
of the integrable Hamiltonian. Furthermore, as the Hill regions Sh1 , Sh2 for different energy values
h1 < h2 are level sets of the potential function, these are nested regions in the configuration space -
Sh1 ⊂ Sh2 . Hence the energy surfaces corresponding to singular energy level sets and their nearby
energy surfaces are bounded as well.
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B Conditions I-V for the soft impact system

Theorem 1 in [17] establishes that finite segments of trajectories of the smooth impact Hamiltonian
flow

H(q, p) =
p2

2
+ U(q) + V (q; εb), (35)

with energy H < Hmax limit to those of the hard impact system in some general bounded domain
D in Rd or Td , in the Cr topology, provided these segments contain only regular reflections, and
the potentials satisfy some general conditions; The potential V (q; εb) is assumed to be a soft-billiard
potential (satisfying conditions I-IV of [17, 27], which are also listed below). The smooth, Cr+1,
potential U is quite general - one only assumes that on the domain boundary, which is assumed
to be of finite length, U is bounded from below by Û > −E (condition V in [17], see below), where
E denotes the limit of the billiard potential energy at the wall (V (q; εb) as q → qw and εb → 0, so
E may be finite, similar to the example in Eq. (33) or infinite as in Eq. (32)). Finally, setting the
maximal energy to Hmax < E + Û insures that particles with H < Hmax do not escape from the
billiard domain. Here, we denote the form of the soft impact potential by b · Vb(·, εb) and adopt
the convention that the barrier height E ≥ b and can, again, be either finite of infinite.

To apply the above result to the current work we need to address only one issue - formally, for
simplicity, the conditions in [17] were stated for compact domains D with finite length boundary
∂D, whereas here the domain D = {(q1, q2)|q1 > qw1 = εwQ

w(q2), q2 ∈ R} is unbounded and has
infinite length boundary ∂D = {(qw1 (q2), q2), q2 ∈ R}. Noting that for finite energies H, by the
S3B assumption on Vint and Vr, the Hill regions for all H ≤ Hmax are compact and are contained
in the compact Hill region of Hmax (see appendix A), solves this formal problem; In particular,
one can choose

V̂ = min
q∈DHill(Hmax)

Vint(q)− 1 ≤ min
q∈DHill(Hmax)

(Vint(q) + εrVr(q, εr)) (36)

and the results of [17] directly apply as long as the potential Vb(·, εb) of (31) is a billiard-like-
potential on D (satisfies the conditions I-IV that are listed below on this domain, with the billiard
boundary set at q1 = qw1 ). In fact, it is sufficient to require that these conditions are satisfied on
D ∩DHill(Hmax).

The conditions I-V of [17] are listed below, almost verbatim: in some places notation is adjusted
and simplified to the setting of the current paper, which is two-dimensional and has only one
boundary component with no corners. Additionally, some remarks regarding the current setup are
included.

Condition I. For any fixed compact region K ⊂ D, the potential Vb(q1, q2; εw; εb) diminishes
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along with all its derivatives as εb → 0:

lim
εb→0
||Vb(q1, q2; εw; εb) |(q1,q2)∈K ||Cr+1 = 0

We assume that the level sets of Vb may be realized by some finite function near the boundary.
Let N denote the fixed (independent of εb) neighborhood of the billiard boundary ∂D (for example,
here, N = {q|qw1 < q1 < 0.1}. Assume that for all small εb ≥ 0 there exists a pattern function

Q(q1, q2; εb) : N → R1,

which is Cr+1 with respect to (q1, q2) in N and depends continuously on εb (in the Cr+1 topology,
so it has, along with all its derivatives, a proper limit as εb → 0).

Further assume that the following is fulfilled:
Condition IIa. The billiard boundary is a level surface of Q(q1, q2; 0):

Q(q1, q2; εb = 0) |(q1,q2)∈∂D≡ Q = const.

In the neighborhood N of the barrier ∂D (so Q(q1, q2; εb = 0) is close to Q), define a barrier
function W (Q; εb), which is Cr+1 smooth in Q, is continuous in εb, and does not depend explicitly
on (q1, q2). Also assume that there exists ε0 such that conditions IIb-c are satisfied.

Condition IIb. For all εb ∈ (0, ε0] the potential level sets in N are identical to the pattern
function level sets, and thus

b · Vb(q1, q;εb) |(q1,q2)∈N≡ W (Q(q1, q2; εb)−Q; εb).

Condition IIc. For all εb ∈ (0, ε0], ∇Vb does not vanish in the finite neighborhood of the
boundary surface N ; thus

∇Q |(q1,q2)∈N 6= 0,

and for all Q(q1, q2; εb) |(q1,q2)∈N ,
d

dQ
W (Q−Q; εb) 6= 0.

Adopt the convention that Q > Q corresponds to the points near ∂D inside the billiard.
Condition III. There exists a constant E > 0 (E may be infinite) such that as εb → + 0 the
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barrier function increases from zero to E across the boundary ∂D:

lim
εb→+0

W (Q; εb) =

0, Q > Q

E , Q < Q

Condition IV. As εb → +0, for any fixed W1 and W2 such that 0 < W1 < W2 < c, the
function Q(W ; εb) tends to zero uniformly on the interval [W1,W2] along with all of its (r + 1)

derivatives.
For example, one can take hereQ(q1, q2; εw) = q1−εwQw(q2), and billiard-like potential functions

of the form b · Vb = W (Q(q; εw), εb), with W (Q, εb) = b · exp(−Q/εb) and W (Q, εb) = −b · εb/Q
corresponding to the billiard potential (32),(33) respectively, and E ≥ b. According to Theorem 1
of [17], we can choose εw to depend on εb or take them independent.

The last condition is concerned with the addition of the smooth component of the potential
U(q) assuring that together with the billiard-like potential, particles that are initially in D cannot
escape. Defining Û = minq∈∂D U(q) one assumes that:

Condition V. U(q) is a Cr+1 smooth potential bounded in the Cr+1 topology on an open set
D, where D̄ ∈ D. The minimum of U on the boundary ∂D satisfies Û > −E .

Using in the above definition U(q) = Vint(q)+εrVr(q) it suffices in our setting to require Û > −b.
In particular, Theorem 1 of [17] then applies to trajectory segments with bounded energies which
satisfy H < Hmax(b) = b+ V̂ = b+minq∈DHill(Hmax) Vint−1 where b is the minimal billiard potential
barrier height.
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Figure 7: Poincaré return map (θ′, I ′) for the following cases: (top) qw1 = εwq
w
2 , εw = 0.01, εr = 0;

(middle) εw = 0, εr = 0.005; (bottom) qw1 = εwq
w
2 , εw = 0.01, εr = 0.005. Initial conditions for

all three figures are the same. To the left, the entire possible range of I values is depicted. To
the right, a zoom on a region away from the separatrix and from tangency is shown. KAM tori
and resonances can be seen, as well as the similarity between the three different settings. The
distinction between impacting and non-impacting I values can be easily made by comparison with
Figure 8.
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Figure 8: I-EMBD (Hint, I) for the following cases: (left) qw1 = εwq
w
2 , εw = 0.01, εr = 0; (middle)

εw = 0, εr = 0.005; (right) qw1 = εwq
w
2 , εw = 0.01, εr = 0.005. Notice that in the cases of a small

tilt (left and right), tangency is projected as a zone, whereas for the vertical wall it is projected
as a line. The return map values depicted in Figure 7 are projected here into the I-EMBD.

Figure 9: I-EMBD (right) and return map values (left) for near tangent initial conditions, indicated
in the bottom left image in Figure 7 by a dashed rectangle (higher resolution of initial values is
applied to the relevant region).
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