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Abstract. In this work, we consider unfitted finite element methods for the numerical approximation of
the Stokes problem. It is well-known that this kind of methods lead to arbitrarily ill-conditioned systems.
In order to solve this issue, we consider the recently proposed aggregated finite element method, originally
motivated for coercive problems. However, the well-posedness of the Stokes problem is far more subtle and
relies on a discrete inf-sup condition. We consider mixed finite element methods that satisfy the discrete
version of the inf-sup condition for body-fitted meshes, and analyze how the discrete inf-sup is affected
when considering the unfitted case. We propose different aggregated mixed finite element spaces combined
with simple stabilization terms, which can include pressure jumps and/or cell residuals, to fix the potential
deficiencies of the aggregated inf-sup. We carry out a complete numerical analysis, which includes stability,
optimal a priori error estimates, and condition number bounds that are not affected by the small cut cell
problem. For the sake of conciseness, we have restricted the analysis to hexahedral meshes and discontinuous
pressure spaces. A thorough numerical experimentation bears out the numerical analysis. The aggregated
mixed finite element method is ultimately applied to two problems with non-trivial geometries.

Keywords: Embedded boundary; unfitted finite elements; Stokes; inf-sup; conditioning.

1. Introduction

Unfitted finite element (FE) techniques are receiving increasing attention since they are very appealing
in many practical situations. Such techniques avoid the generation of body-fitted meshes, which is
a serious bottleneck in large scale simulations. They are particularly well-suited to multi-phase and
multi-physics applications with moving interfaces (e.g., fracture mechanics, fluid-structure interaction
[1], or free surface flows), and in applications with varying domains (e.g., shape or topology optimization
frameworks, additive manufacturing and 3D printing simulations [2], stochastic geometry problems).
Unfitted FE methods have been named in different ways. When designed for capturing interfaces, they are
usually denoted as extended finite element method (XFEM) [3], whereas they are denoted as embedded,
immersed, or unfitted methods when the motivation is to simulate a problem using a (usually simple)
background mesh (see, e.g., the cutFEM method [4]).

Yet useful, unfitted FE methods have known drawbacks. They pose problems to numerical integration,
imposition of Dirichlet boundary conditions, and lead to ill conditioned problems [5]. For most of the
unfitted FE techniques, the condition number of the discrete linear system does not only depend on the
characteristic element size of the background mesh, but also on the ratios for all cut cells of the total
cell volume and the cell volume inside the physical domain, which can be arbitrarily small, leading to
the so-called small cut cell problem. Methods based on fictitious material [6] require a penalty term that
goes to zero with a power of the mesh size for optimal convergence and thus, are also affected by these
problems. Preconditioned iterative linear solvers suitable for standard FE methods are not robust for these
formulations. Recently, a robust domain decomposition preconditioner able to deal with cut cells has
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been proposed in [7] for first order methods, but these preconditioners still require some special treatment
for the robust direct solution of local-to-subdomain systems.

The authors have recently proposed in [8] an unfitted FE formulation, referred to as the aggregated finite
element method (agFEM), that fixes the ill conditioning issues associated with cut cells for elliptic partial
differential equations (PDEs). This novel method relies on the so-called aggregated finite element (agFE)
spaces, grounded on cell aggregation techniques and judiciously chosen linear constraints for conflictive
degrees of freedom (DOFs) with respect to interior ones. This approach can be applied to grad-conforming
(globally continuous) spaces and discontinuous FE spaces of arbitrary order. The agFEM leads to a well-
posed Galerkin formulation of elliptic problems, viz., no stabilization terms are needed and the method is
thus consistent. Furthermore, the resulting linear system have condition numbers that scale only with the
element size of the background mesh in the same way as in standard FE methods for body-fitted meshes.
These methods have been implemented in FEMPAR, a large scale FE software package [9, 10].
Compared to other existing approaches, the most salient one is the ghost penalty formulation used in

the CutFEM method [4, 11]. In any case, this approach leads to weakly non-consistent algorithms and
requires to compute high order derivatives on faces for high order FEs, which are not at our disposal in
general FE codes and are expensive to compute, certainly complicating the implementation of the methods
and harming code performance. For B-spline approximations, one can consider the so-called extension
or extrapolation techniques (see, e.g., [12, 13, 14]). These works are close to the agFEM [8] in the
sense that the problematic DOFs associated with B-splines with small support inside the physical domain
are eliminated by constraining them as a linear combination of well-posed DOFs. Such aggregation
approaches are not new in discontinuous Galerkin (DG) methods (see, e.g., [15, 16, 17]), for which the
situation is much easier, since no conformity must be kept. In fact, some aggregation techniques in DG
[15, 16, 17] can be casted as discontinuous agFEMs.

The use ofmixed FEmethods on unfittedmeshes has been explored in previousworks. The combination
of ghost penalty stabilization and inf-sup stable elements for the unfitted FE approximation of the Stokes
problem was originally addressed in [18] for triangular meshes in two dimensions. The analysis therein
relies on the continuous inf-sup condition on the interior domain, viz., the union of interior cells (not
intersecting the boundary), in order to prove pressure stability in interior cells, whereas cut cell pressure
stability relies on ghost penalty stabilization. The extension of this work to interface Stokes problems for
the MINI element has been proposed in [19] (see also [20] for a similar strategy). It has been observed
in [21] that the analysis of unfitted and XFEM FE methods, e.g., in [18, 19, 20], is not fully satisfactory,
because it relies on the inf-sup condition of the interior domain, which has an inf-sup constant that depends
on the mesh refinement and can tend to zero. Guzmán and Olshanskii follow a different approach in
[21], proving stability and error estimates for some families of inf-sup stable elements on triangles and
tetrahedra. We refer the reader to [18, 21] for more references on this subject in the frame of XFEM. As an
alternative to mixed FE methods, globally stabilized residual-based and pressure jump first order schemes
combined with ghost penalty stabilization have been used in [22]. Global residual-based stabilization has
also been used in [13, 14] for B-spline approximations.

In this work, we propose to combine the agFEM approach, which fixes the small cut cell problem for
the numerical approximation of elliptic PDEs, with mixed FE spaces. Unsurprisingly, the development
of mixed agFE spaces that satisfy a discrete version of the inf-sup condition is not straightforward. The
discrete inf-sup condition requires a perfect balance of the velocity and pressure spaces, whereas the
boundary-cell intersections can be arbitrary, leading to a large set of possible cell aggregates geometries.
In this work, we consider hexahedral meshes and arbitrary order mixed FE spaces with discontinuous
pressures, and analyze the potential deficiencies of the unfitted inf-sup in terms of a set of improper
aggregates and interfaces that will require additional stabilization. An abstract stability analysis under
some assumptions about such stabilization allows us to define effective stabilization terms. We propose
two algorithms. The first one combines a standard aggregated tensor-product Lagrangian FE with interior
residual-based and pressure jump face stabilization on improper aggregates and faces, respectively. The
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second one makes use of an agFE space in terms of a serendipity-based extension of tensor-product
Lagrangian FEs combined with pressure jump stabilization on improper faces. The resulting schemes can
be used in quadrilateral/hexahedral meshes, the order of approximation can be selected by the user, the
algorithm does not require to compute (higher than order one) derivatives on cell boundaries (unlike ghost
penalty/cutFEM approaches), and it involves minimal stabilization (e.g., only pressure jump stabilization
on a very small subset of faces close to the interface). A complete numerical analysis shows the uniform
stability (that does not rely on the potentially ill inf-sup condition on the union of interior cells), optimal
a priori error estimates, and condition number bounds with respect to the mesh size and cell boundary
intersection. Another remarkable feature of our approach is that it exposes a high degree of message-
passing parallelism, and thus it is suitable for the development of a highly scalable parallel unfitted FE
framework on distributed memory computers, so far still missing in the literature. In fact, a highly
scalable parallel implementation of agFEM, grounded on p4est for efficient octree handling [23], is
under development in FEMPAR [9, 10]. Apart from their ability of controlling geometry approximation
errors by local adaptation in regions of high geometric variability, octree meshes can be very efficiently
generated, refined and coarsened, partitioned, and 2:1 balanced on hundreds of thousands of processors
[23], being the latter the main reason why we favour this sort of meshes in our approach.

The outline of this work is as follows. In Sect. 2, we introduce the Stokes problem and, in Sect.
3, a brief introduction to FE spaces and some notation follows. Sect. 4 is devoted to the definition of
agFE spaces and their mathematical properties. A discrete agFEM for the approximation of the Stokes
problem is proposed in Sect. 5, in which the stabilization terms are not defined yet. Sect. 6 is devoted to
a complete numerical analysis of mixed agFEMs. More specifically, in Sect. 6.1, we perform an abstract
stability analysis under some assumptions over the mixed agFE space and the stabilization terms. Two
different algorithms that satisfy these assumptions are proposed in Sect. 6.2. A priori error estimates and
condition number bounds that are independent of the cut cell intersection with the boundary are proved
in Sect. 6.3 and Sect. 6.4, respectively. A complete set of numerical experiments can be found in 7. To
close this work, some conclusions are drawn in Sect. 8.

2. Problem statement

Let us consider an open and bounded physical domain Ω ⊂ Rd (where d = 2, 3 is the physical space
dimension) with Lipschitz boundary Γ, occupied by a viscous fluid. We consider Dirichlet boundary
conditions on Γ for brevity in the exposition; the introduction of Neumann boundary conditions is
straightforward. The Stokes problem, after scaling the pressurewith the inverse of the diffusion coefficient,
reads as: find the velocity field u : Ω→ Rd and the pressure field p : Ω→ R such that

−∆u + ∇p = f in Ω, ∇ · u = 0 in Ω, u = g on Γ, (1)

where f is the body force and g is the prescribed Dirichlet data, which must satisfy
∫
Γ
g · n = 0, where n

stands for the outward normal. In order to uniquely determine the pressure, we additionally enforce that∫
Ω

p = 0.
We use standard notation for Sobolev spaces (see [24]). In particular, the L2(ω) scalar product will be

denoted by (·, ·)ω for some ω ⊂ Rd . Making abuse of notation, we represent the H1(ω) duality pairing
the same way. L2

0(ω) is the subspace of functions in L2(ω) with zero mean value. For a Sobolev space
X , we denote its norm by ‖ · ‖X . In particular, the L2(ω) norm is denoted by ‖ · ‖ω, whereas the H1(ω)
norm as ‖ · ‖1,ω. The seminorm on the Sobolev space W k,p(ω) is denoted by | · |Wk,p(ω), or simply | · |1,ω
for H1(ω). Given a function g ∈ H

1
2 (∂ω), the subspace of functions in H1(ω) with trace equal to g is

represented with H1
g (ω). Vector-valued Sobolev spaces are represented with boldface letters.

Let us assume that f ∈ L2(Ω) and g ∈ H
1
2 (Γ). The weak form of the Stokes problem (1) reads as

follows: find (u, p) ∈ H1
g(Ω) × L2

0(Ω) such that
(∇u,∇v)Ω − (p,∇ · v)Ω − (q,∇ · u)Ω = ( f , v)Ω , (2)
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for any (v, q) ∈ H1
0(Ω) × L2

0(Ω). The well-posedness of this linear problem relies on the fact that the
divergence operator on H1

0(Ω) is surjective in L2
0(Ω). There exists a constant β that depends on Ω such

that

inf
p∈L2

0 (Ω)
sup

v∈H1
0(Ω)

(p,∇ · v)Ω
‖p‖Ω‖v‖1,Ω

≥ β > 0. (3)

In the following exposition, we consider the numerical approximation of this problem by using FE
methods. In particular, we are interested in the discretization of the Stokes problem when using unfitted
FE methods, i.e., the mesh is not fitted to Ω.

3. Finite element spaces

Let us consider an open polyhedral domainω and its partitionKh(ω) into a set of cells. Wemay consider
the case in which all cells are hexahedra/quadrilaterals (hex mesh) or all cells are tetrahedra/triangles (tet
mesh). At any cell K ∈ Kh(ω), we define the local FE spaces as follows. Using the abstract definition of
Ciarlet, a FE is represented by the triplet {K,V, Σ}, where K is a compact, connected, Lipschitz subset
of Rd , V is a vector space of functions, and Σ is a set of linear functionals that form a basis for the dual
space V′. The elements of Σ are the so-called DOFs of the FE; we denote the number of DOFs as nΣ.
The DOFs can be written as σa for a ∈ NΣ � {1, . . . , nΣ}. We can also define the basis {φa}a∈NΣ forV
such that σa(φb) = δab for a, b ∈ NΣ. These functions are the so-called shape functions of the FE, and
there is a one-to-one mapping between shape functions and DOFs.

In this work, we consider three different concretizations of the vector space V: (1) the space Pq(K)
of polynomials of degree less or equal to q; (2) the space Qq(K) of polynomials of degree less or equal
to q with respect to each reference space coordinate; (3) the space Q̆q(K) of polynomials of superlinear
degree less or equal to q (see [25] for more details). Q̆q(K) on hex meshes leads to the serendipity FE.
For the sake of simplicity, we assume that all cells in the mesh have the same topology and (for a given
field) the same polynomial order.1

In order to build globally continuous FE spaces, we denote by N(K) the set of nΣ Lagrangian nodes
of order q of cell K for Pq(K) in tets and Qq(K) in hexs. The set of nodal values, i.e., σa(v) � v(xa) for
a ∈ N(K), is a basis for the dual spaceV′. By definition, it holds φa(xb) = δab, where xb are the space
coordinates of node b in the corresponding set of nodes. Next, we assume that there is a local-to-global
DOF map such that the resulting global space is C0 continuous. It leads to the following C0(ω) global FE
spaces: (1) the space Pq,h(ω) of functions such that its cell restriction belongs to Pq(K) for a tet mesh;
(2) the space Qq,h(ω) (resp. Q̆q,h(ω)) of functions such that its cell restriction belongs to Qq(K) (resp.
Q̆q(K)) for a hex mesh. We note that for discontinuous FE spaces, the definition of DOF is flexible, since
no inter-cell continuity must be enforced. We will make use of the global space P−q,h(ω) of piecewise
discontinuous functions that belong to Pq(K), for an arbitrary cell topology. The spaces of vector-valued
functions with components in these spaces are represented with boldface letters.

Given a function v, we define the local interpolator for nodal Lagrangian FEs, as

πI
K(v) �

∑
a∈N(K)

σa(v)φa =
∑

a∈N(K)
v(xa)φa, K ∈ Kh(ω). (4)

It is easy to check that the interpolation operator is in fact a projection. The global interpolator πI
h(·) is

defined as the sum over the cells of the corresponding local interpolators, i.e., πI
h(v) =

∑
K∈Kh(ω) π

I
K(v).

1The polynomial spaces are defined in the physical space cell, instead of relying on a reference cell and a map from the
reference to the physical space. Both approaches are equivalent for affine maps, whereas the second one is more appealing
due to lower computational cost. The convergence properties of serendipity FEs are deteriorated if the map is not affine [26].
Fortunately, the equivalence holds for the Cartesian hex meshes below.
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4. Aggregated finite element spaces

In this section, we define agFE spaces. We refer to [8] for more details. First, we introduce some
geometrical concepts related to the use of embedded boundary methods, the cell aggregation algorithm,
and the map between vertices, edges, and faces (VEFs) on cut cells and aggregates. Next, we use the
geometrical aggregation to define agFE spaces on unfitted meshes. Finally, we provide some trace and
inverse inequalities, together with approximability properties that will be used in the following sections to
analyze the stability and to obtain a priori error estimates. In the following, we assume that hexmeshes are
being used. In practice, we are interested in Cartesian hex meshes, where all the cells can be represented
as the scaling of a d-cube. This restriction simplifies implementation issues, since polynomial bases in
the physical space can be obtained as the mapped reference cell polynomial bases, a fact that does not
hold for general (first order) hex meshes. However, agFE spaces can readily be obtained for tet meshes
using the ideas below.

4.1. Embedded boundary setup and cell aggregation. As usual for embedded boundary methods, we
consider an artificial domain Ωart with a simple shape that can easily be meshed using a conforming
Cartesian grid Kart

h � Kh(Ωart) of characteristic size h that includes the physical domain Ω ⊂ Ωart (see
Fig. 1a). Let us assume for the sake of simplicity that the domain boundary is implicitly defined as the
zero level-set of a given scalar function ψls, i.e., Γ � {x ∈ Rd : ψls(x) = 0}. In practice, we consider an
approximationΩh ofΩ, e.g., using a marching cubes-like algorithm, which also leads to an approximated
boundary Γh. Even though the actual computational domain is Ωh, we will omit the subscript for the sake
of conciseness in the notation, unless the distinction is important.

Cells in Kart
h can be classified as follows: a cell K ∈ Kart

h such that K ⊂ Ω is an internal cell; if
K ∩ Ω = ∅, K is an external cell; otherwise, K is a cut cell (see Fig. 1b). The set of interior (resp.,
external and cut) cells is represented with K in

h and its union Ωin ⊂ Ω (resp., (Kext
h ,Ωext) and (Kcut

h ,Ωcut)).
Furthermore, we define the set of active cells as Kh � K in

h ∪ K
cut
h and its union Ωact. We assume

that the background mesh is quasi-uniform (see, e.g., [27, p.107]) to reduce technicalities, and define a
characteristic mesh size h.

(a) (b)

internal cells

cut cells

external cells

Figure 1. Embedded boundary setup.

We can also consider a partition of Ω into non-overlapping cell aggregates composed of cut cells
and only one interior cell such that each aggregate is connected, using, e.g., the strategy described in
Algorithm 4.1 below.

Algorithm 4.1 (Cell aggregation algorithm).
(1) Mark all interior cells as touched and all cut cells as untouched.
(2) For each untouched cell, if there is at least one touched cell connected to it through a facet F such

that F ∩ Ω , ∅, we aggregate the cell to the touched cell belonging to the aggregate containing
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the closest interior cell. If more than one touched cell fulfills this requirement, we choose one
arbitrarily, e.g., the cell connected via the facet with more area inside the physical domain, or the
one with smaller global label.

(3) Mark as touched all the cells aggregated in step 2.
(4) Repeat steps 2. and 3. until all cells are aggregated.

Fig. 2 shows an illustration of each step in Alg. 2. The black thin lines represent the boundaries of
the aggregates. Note that from step 1 to step 2, some of the lines between adjacent cells are removed,
meaning that the two adjacent cells have been merged in the same aggregate. The aggregation schemes
can be easily applied to arbitrary spatial dimensions.

touched untouched Aggregates’ boundary ∂Ω

(a) Step 1. (b) Step 2. (c) Step 3. (d) Step 4.

Figure 2. Illustration of the cell aggregation scheme defined in Algorithm 4.1. We note
that the definition of an aggregate in (5) is such that it only considers the part of the
aggregated cells inside Ω as this simplifies the notation in the numerical analysis.

In the forthcoming sections, we need an upper bound of the size of the aggregates generated with
Algorithm 4.1 in terms of the cell mesh size h, i.e., the characteristic size of an aggregate is bounded by
γh for some γ independent of h and the cut cell intersection with the boundary. We refer to [8, Lem. 2.2]
and the subsequent discusion for a bound of this quantity, supported with the numerical experiments in
[8, Sect. 6.3].

Alg. 2 leads to another partition Th into aggregates, where an aggregate is defined in terms of a set of
cells as follows:

A � {∪nA

i=0Ki ∩Ω : Ki ∈ Kh}, ∀A ∈ Th, (5)
where (without loss of generality) K0 ∈ K in

h is the owner interior cell, also represented with O(A). By
construction of Algorithm 4.1, it holds: 1) nA ≥ 0; 2) interior cells that have no aggregated cut cells
(nA = 0) remain the same; 3) there is only one interior cell per aggregate, i.e., Ki 1 Ω for i > 0; 4) every
cut cell belongs to one and only one aggregate.

For a interior/cut cell K ∈ Kh, we define its owner (interior) cell O(K) as the owner O(A) of the only
aggregate A ∈ Th that contains the cell, i.e., K ∪ A has non-zero measure in dimension d. Thus, the owner
of an interior cell is the cell itself. 2

We can also construct a map that, given an outer VEF, i.e., a VEF that belongs to at least one cut cell in
Kcut

h but does not belong to any interior cell inK in
h , provides its aggregate owner among all the aggregates

that contain it (see Fig. 3). This map can be arbitrarily built, e.g., we can consider the smallest aggregate

2Other aggregation algorithms could be considered, e.g., touching in the first step of the algorithm not only the interior
cells, but also cut cells without the small cut cell problem. It can be implemented by defining the quantity ηK � |K∩Ω |

|K | and
touch in the first step not only the interior cells but also any cut cell with ηK > η0 > 0 for a fixed value η0.
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that contain the VEF. The map between the outer VEF b and the interior cell owner is also represented
with O(b).3

(a) Outer vertex to aggregate map (b) Outer face to aggregate map

Aggregate

Cell
Outer face
Outer vertex

Figure 3. Map from outer faces and vertex to aggregate owner. The small pointers denote
the aggregate owner. Pointers are not used for vertex and faces belonging to only one
aggregate since the owner is obvious. Aggregates in (a) and (b) are the same, but the
aggregate bounds are clearer in (a.

4.2. Aggregated finite element spaces. Our goal is to define FE spaces using the cell aggregates
introduced above, in order to end upwith unfitted FE spaces on the domainΩ, with optimal approximability
properties not affected by the small cut cell problem. In this work, the spaces will eventually be used for
the interpolation of every velocity component and the pressure in the Stokes problem. Thus, it is enough
to define the agFE spaces for a generic scalar-valued field.

Let us represent with Vh(ω) a generic global and continuous Lagrangian FE space, i.e., it can be
Qq,h for hex meshes and Pq,h for tet meshes, for an arbitrary order q. We introduce the active FE space
associated with the active portion of the background mesh Vact

h � Vh(Kact
h ) and the interior FE space

V in
h � Vh(K in

h ). The active FE spaceVact
h (see Fig. 4c) is the functional space typically used in unfitted

FE methods (see, e.g., [7, 5, 6]). It is well known that Vact
h leads to arbitrary ill conditioned systems

when integrating the FE weak form on the physical domain Ω only (if no stabilization technique is used
to remedy it). It is obvious that the interior FE space V in

h (see Fig. 4a) is not affected by this problem,
but it is not usable since it is not defined on Ω.
Herein, we propose an alternative agFE space Vh that is defined on Ω but does not present the ill-

conditioning issues related toVact
h . To this end, we can define the set of nodes ofV in

h andVact
h asN in

h and
N act

h , respectively (see Fig. 4). We define the set of outer nodes asNout
h � N act

h \N
in
h (e.g., the nodes that

belong to outer VEFs in Fig. 3). The outer nodes are the ones that can lead to conditioning problems due
to the small cut cell problem (see, e.g., [5]). The space of global shape functions ofV in

h andVact
h can be

represented as {φb : b ∈ N in
h } and {φ

b : b ∈ N act
h }, respectively. Any function uh ∈ V in

h can be written
as uh =

∑
a∈N in

h
ua

hφ
a; analogously for functions inVact

h . The spaceVh is defined taking as starting point
Vact

h , and adding judiciously defined constraints for the nodes in Nout
h .

In order to define Vh, we observe that, in nodal Lagrangian FE spaces, there is a one-to-one map
between DOFs and nodes (points) of the FE mesh. For globally continuous FE spaces, we can define the
owner VEF of a node as the lowest-dimensional VEF that contains the node. As a result, the geometrical
outer-VEF-to-cell-owner map above leads to an outer-DOF-to-cell-owner map too. Making abuse of
notation, we also define the DOF map as O(b) for an outer DOF b.
Given a function vh ∈ V in

h and a cell K ∈ K in
h , we define the unique polynomial ξK

h (vh) : Rd → R such
that its restriction to the cell K coincides with the FE function, i.e., vh(x) = ξK

h (vh)(x), x ∈ K . With these

3After the cell aggregation and the VEF owner definition, we have defined a map O(·) such that, given any outer VEF or
cut cell, provides its owner (interior) cell.
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(a)V in
h

(b)Vh (c)Vact
h

◦ nodes in N in
h

• nodes in N act
h

× nodes in Nout
h

Figure 4. Finite Element spaces.

ingredients, we defineVh ⊂ Vact
h as the subset of functions inVact

h such that, for any DOF a ∈ Nout
h ,

va
h = σ

a(ξO(a)h (vh)) =
∑

b∈N(O(a))
σa(ξO(a)h (φb))σb(vh). (6)

By construction, functions in Vh are uniquely determined by the DOFs of V in
h . Thus, we can define

the extension operator E : V in
h → Vh ⊂ Vact

h , such that, given uh ∈ V in
h provides the FE function

Eh(uh) ∈ Vact
h with outer nodal values computed as in (6). Thus, the agFE space is the range of this

operator, i.e., Vh � Eh(V in
h ) ⊂ V

act
h . Since Vh ⊂ Vact

h , if V in
h and Vact

h are C0 continuous, so it is
Vh. We note that (6) has sense for continuous and discontinuous spaces, and both tensor-product and
serendipity spaces for hex meshes.

4.2.1. Nodal Lagrangian aggregated finite element spaces. In particular, for nodal-based Lagrangian
FE spaces (which include tensor-product Qq,h(Kh) and serendipity spaces Q̆q,h(Kh) for hex meshes and
Pq,h(Kh) for tet meshes), the previous expression is reduced to:

vh(xa) =
∑

b∈N(O(a))
vh(xb)φb(xa). (7)

The computation of the constraint is straightforward, and simply involves to evaluate the shape function
polynomials of a cell in a set of points that do not belong to the cell, viz., the nodes of an aggregated cut
cell. The definition of DOF ownership is simple, the VEF or cell that contains the node related to the
DOF with minimum dimension, which is uniquely defined.

4.2.2. Discontinuous aggregated finite element spaces. Let us comment on discontinuous FE spaces,
e.g., P−q,h(Kh) on hex meshes. In this case, all the DOFs belong to the cell itself, since no continuity must
be enforced. Thus, the DOFs owner and DOFs-to-cell maps are trivial once defined the cell aggregation.
Since no continuity must be enforced among cells, the DOFs definition is very flexible. The definition in
(6) is general and can be used for discontinuous spaces with DOFs that are not nodal evaluations. It is
easy to check that for discontinuous spaces, the agFE space can be analogously defined as:

Vh = {v : v |A ∈ P−q (A), for any A ∈ Th}. (8)

The equivalence between the definition based on (6) and the one in (8) is straightforward. The use of
aggregation techniques within DG methods has already been used, e.g., in [28, 17].
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4.2.3. Aggregated finite elements with serendipity extension. Up to now, we have assumed that the
constraints for the extension operator were computed using the same shape functions as the ones of the
local FE space in the owner interior cell (see (6)). Here, we consider a more general case in which
these two shape functions bases (and the corresponding spanned spaces) can differ. In particular, we
are interested in using a tensor-product Lagrangian space at all cells in a hex mesh, but to compute the
constraints through the corresponding serendipity basis (preserving the order of approximation). As we
will see later on, it does not affect accuracy and has positive properties when considering stable mixed
agFE spaces.

Let us introduce some notation, in order to distinguish between tensor-product and serendipity FE
spaces. For serendipity FEs and hex meshes, i.e., Q̆q(K), we represent its unisolvent set of nodes with
N̆(K), i.e., the corresponding nodal values are a basis for the dual space, with cardinality n̆Σ (see [25,
Fig. 1]). The corresponding shape functions and DOFs are represented with {φ̆a}a∈N̆(K) and {σ̆a}a∈N̆(K),
respectively. For serendipity spaces, we denote its corresponding nodal interpolator in (4) as π̆I

K(v).
We constrain every outer DOF a ∈ Nout

h of a function vh ∈ Vact
h as

va
h = σ

a(ξO(a)h ◦ π̆I
O(a)(vh))) =

∑
b∈N̆(O(a))

σa(ξO(a)h (φ̆b))σ̆b(vh),

or analogously,
vh(xa) =

∑
b∈N̆(O(a))

vh(xb)φ̆b(xa). (9)

It leads to the new agFE space V̆h and its corresponding extension operator Ĕh.

4.3. Mathematical properties. In the following, we list some FE inequalities that will be used in the
next sections. We use A . B to say that A < CB for some positive constant C; analogously for & and h.
We use C to denote such a constant, which can be different in different appearances. The word constant
in this work always denotes independence with respect to h and the cut cell intersection, i.e., it is not
affected by the small cut cell problem.

Let us consider an arbitrary FE spaceVh. The following inverse inequalities hold (see, e.g., [27]):

‖∇uh‖K . h−1
K ‖uh‖K, (10)

‖∂nuh‖Γ∩K . h
− 1

2
K ‖∇uh‖K,

where n is the outward normal (in this appearance, with respect to ΓD∩K), and ∂n � n ·∇. Furthermore,
we have the following trace inequalities (see [29]):

‖uh‖∂K . h
− 1

2
K ‖uh‖K + h

1
2
K ‖∇uh‖K . (11)

‖uh‖Γ∩K . h
− 1

2
K ‖uh‖K + h

1
2
K ‖∇uh‖K, (12)

(We note that (12) implies (11)). The extension operators Eh(·) and Ĕh(·) satisfy the following stability
bounds. The standard extension operator can be considered for both tet and hex meshes, whereas the
serendipity extension operator only for hex meshes.

Lemma 4.2. Given a function uh ∈ V in
h , it holds:

‖Eh(uh)‖Ωact . ‖uh‖Ωin, ‖Ĕh(uh)‖Ωact . ‖uh‖Ωin,

‖∇Eh(uh)‖Ωact . ‖∇uh‖Ωin, ‖∇Ĕh(uh)‖Ωact . ‖∇uh‖Ωin .

Proof. The proof for Eh(·) can be found in [8, Corollary 5.3] for a general agFE space, that can be either
V in

h or the discontinuous FE space of its gradients. The results for Ĕh(·) can be proved analogously. �
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Given the interior FE space V in
h , we can define the standard Scott-Zhang interpolation using the

standard definition in [30]. Let us define an extended Scott-Zhang interpolant as follows: 1) perform
the standard interior Scott-Zhang interpolator onto V in

h through the assignment for every interior DOF
a ∈ N in

h of an arbitrary VEF/cell4 K̃a ⊂ Ωin that contains the owner VEF of a, and compute the mean
value of the function on K̃a, represented with σSZ,a

K̃a
(·); 2) extend the interior function to Ω using the

extension operator Eh(·) (or Ĕh(·)), leading to a function inVh (or V̆h). Thus, the extended Scott-Zhang
interpolant reads:

πSZ
h (u)(x) �

∑
a∈N in

h

σSZ,a
K̃a
(u)E(φa(x)).

The serendipity-extended interpolant, represented with π̆SZ
h (u), is obtained as above, but using Ĕh(·)

instead.
In the next theorem, we prove the approximability properties of the extended Scott-Zhang interpolant.

In the statement of the theorem, we represent with ω(A) the union of the owner of the aggregate itself and
the owners of all its neighbors, i.e., ω(A) � {O(B) : A ∩ B , ∅, B ∈ Th}. We note that A * ω(A) ⊂ Ωin
in general.

Theorem 4.3. Let us consider an agFE space Vh such that Pq(A) ⊂ Vh(A) for A ∈ Th, q ∈ N+. Let us
consider a function u ∈ Wm

p (Ω), where 1 ≤ p ≤ ∞, m ≤ q + 1, and m ≥ d for p = 1 or m > d
p for p > 1.

It holds:
‖u − πSZ

h (u)‖W s
p(A) . hm−s |u|Wm

p (ω(A)), ‖u − πSZ
h (u)‖W s

p(S) . hm−s− 1
2 |u|Wm

p (ω(A)), (13)

for 1 ≤ s ≤ m, A ∈ Th, and S being the intersection between a plane in Rd and A. The same results apply
for the serendipity-extended agFE space V̆h and its corresponding interpolant π̆SZ

h (·).
Proof. The standard and serendipity interpolants can be analyzed analogously. The Scott-Zhangmoments
σSZ,a

K̃a
(·) are bounded in Wm

p (Ω) owing to the trace theorem, i.e., W l
p(Ω) ⊂ L1(K̃a) for K̃a being a facet

or cell (see [30]). On the other hand, E(φa(x)) ∈ Wm
∞(Ω) ⊂ Wm

p (Ω), since it is a combination of shape
function with bounded nodal values (see (6) and Lem. 4.2). Moreover, from the definition of the extension
operator, the nodal values of πSZ

h (·)|A are constrained from the DOFs of the owner interior cell of A or the
DOFs of the owner cell of a neighbor of A. Thus, we readily obtain that ‖πSZ

h (u)‖Wm
p (A) ≤ C‖u‖Wm

p (ω(A)).
Next, we consider an arbitrary function π(u) ∈ Wm

p (Ω) such that π(u)|K ∈ Pq(ω(A)) ⊂ Vh(ω(A)) (note
that the inclusion also holds for the serendipity extension). The fact that πSZ

h (·) is a projection ontoVh by
construction yields π(u)|A = πSZ

h (π(u))|A. Thus, we have:

‖u − πSZ
h (u)‖Wm

p (A) ≤ ‖u − π(u)‖Wm
p (A) + ‖π

SZ
h (π(u) − u)‖Wm

p (A)

. ‖u − π(u)‖Wm
p (A) + ‖π(u) − u‖Wm

p (ω(A)) . ‖u − π(u)‖Wm
p (ω(A)).

Sinceω(A) is an open bounded domain with Lipschitz boundary by definition, one can use the Deny-Lions
lemma (see, e.g., [31]). As a result, using the π(u) that minimizes the right-hand side, it holds:

‖u − πSZ
h (u)‖Wm

p (A) . |u|Wm
p (ω(A)).

The Sobolev embedding theorem and the trace theorem yield:
‖u − πSZ

h (u)‖W s
p(A) ≤ C(A)|u|Wm

p (ω(A)),

‖u − πSZ
h (u)‖

W
s− 1

2
p (S)

≤ ‖u − πSZ
h (u)‖W s

p(A) ≤ C(A)|u|Wm
p (ω(A)).

Using standard scaling arguments, we prove the lemma. �

4Even though this choice is arbitrary, we do not permit K̃a ⊂ Ωin to be a vertex, since it would restrict the applicability of
the interpolator to C0(Ω) functions with pointwise sense. We note that the concept of VEF/cell ownership of a DOF can be
extended to non-nodal DOFs (see, e.g., [9]).
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5. Approximation of the Stokes problem

In this section, we consider the FE approximation of the Stokes problem (1) using agFE spaces on
unfitted meshes. We focus on extended by aggregation inf-sup stable spaces (velocity-pressure pairs of
FE spaces that satisfy a discrete version of the inf-sup condition on body-fitted meshes) with additional
stabilizing terms to cure the potential deficiencies of the unfitted inf-sup condition. In this section, the
velocity and pressure spaces are represented with V h and Qh, respectively. As usual in unfitted FE
methods, the Dirichlet boundary conditions cannot be enforced strongly. Instead, we consider a Nitsche-
type weak imposition of the Dirichlet data [32, 33]. It provides a consistent numerical scheme with
optimal converge rates (also for high-order elements) that is commonly used in the embedded boundary
community (see, e.g., [22] for its application in unfitted discretizations of the Stokes problem). Another
important ingredient in unfitted FE approximations is the integration on cut cells. We refer to [7] for a
detailed exposition of the particular technique used in this paper. With these ingredients, we define the
Stokes operator:

Ah(uh, ph, vh, qh) � ah(uh, vh) + bh(vh, ph) + bh(uh, qh) − jh(uh, ph, vh, qh), (14)

where

ah(uh, vh) � (∇uh,∇vh)Ω − (∂nuh, vh)Γ − (∂nvh, uh)Γ + τ (huh, vh)Γ , (15)
bh(vh, ph) � − (∇ · vh, ph)Ω + (n · vh, ph)Γ , (16)

with τ a large enough positive constant, for stability purposes. The right-hand side reads:

Lh(vh, qh) � ( f , vh)Ω + gh( f , vh).
The pressure stabilization term jh and the corresponding potential modification of the right-hand side gh
to keep consistency will be defined in Sect. 6.2, motivated from the numerical analysis. The discrete
Stokes problem finally reads: find (uh, ph) ∈ V h ×Qh such that

Ah(uh, ph, vh, qh) = Lh(vh, ph), ∀ (vh, qh) ∈ V h ×Qh. (17)

In the following analysis, we restrict ourselves to hexahedral meshes and discontinuous pressures.
Similar ideas can be applied to inf-sup stable mixed FEs on tetrahedral meshes and continuous pressures,
but we do not consider these cases for the sake of conciseness. Thus, using the notation in Sect. 4.2,
we will make use of the following global agFE spaces: the space Qq,h, for q ≥ 1, in which the local FE
space is the tensor-product Lagrangian Qq(K) in all cells K ∈ Kh, and the constraints are defined using
the standard expression in (7); the space Q̆q,h, for q ≥ 1, which only differs from the previous one in
the constraint definition, based now on the serendipity extension in (9); the discontinuous space P−q,h, for
q ≥ 0, defined in (8).

6. Numerical analysis

In this section, we perform the stability analysis of FE methods for (14). First, in Sect. 6.1, we consider
an abstract stability analysis , i.e., we prove an inf-sup condition under some assumptions over the mixed
agFE space and the stabilization terms. Two different algorithms that satisfy these assumptions, and thus
are stable, are proposed in Sect. 6.2. A priori error estimates for these methods are obtained in Sect. 6.3.
Finally, in Sect. 6.4, we prove condition number bounds that are independent of the cut cell intersection
with the boundary, i.e., the small cut cell problem.

The analysis of the discrete problem obviously relies on the well-posedness of the continuous problem,
i.e., the inf-sup condition in (3). For the sake of conciseness in notation, we have not distinguished
between the actual computational domain Ωh and the physical domain Ω. However, it is important to
distinguish between these two in the definition of the inf-sup constant, i.e., β(Ω) vs. β(Ωh). In general,
β(Ωh) can tend to zero as h→ 0. The lower bound for β(·) relies on a decomposition of the domain into
a finite number of strictly star shaped domains. β(Ωh) could tend to zero as h → 0 unless one can prove
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that this number is bounded away from zero forΩh. It is in fact a problem for methods that rely on inf-sup
conditions for Ωin (see [21]). Even though it is hard to imagine that a reasonable smooth approximation
Ωh of Ω would require a decomposition into a number of star shaped domains that blows up as h → 0,
there are constructions of Ωh for which one can prove that in fact β(Ωh) is bounded below, or even more,
converges to β(Ω). In particular, if Ωh is a polygonal h-approximation of Ω in the sense of [34, Def. 4.5],
it holds |β(Ω) − β(Ωh)| ≤ c(Ω)h. In what follows, we simply consider β � infh<h0 β(Ωh), for h0 a fine
enough mesh size to represent the topology of the geometry at hand.

6.1. An abstract stability analysis. In this section, we analyze the well-posedness of the discretization
of the Stokes problem (14) in an abstract setting, in which the FE spaces and stabilization terms are not
explicitly stated. Instead, we do the analysis under some assumptions of these ingredients.

We define the following norms:

|||u |||2h � ‖∇u‖2Ω + ‖h−
1
2 u‖

2
Γ, |||u, p|||2h � |||u |||

2
h + ‖p‖

2
Ω. (18)

In the following lemma, we prove some stability and continuity properties of the different terms that
compose the Stokes operator in (14).

Lemma 6.1. It holds for any uh, vh ∈ V h

ah(uh, uh) ≥ γa |||uh |||2h, ah(uh, vh) ≤ ξa |||uh |||h |||vh |||h, bh(vh, qh) ≤ ξb |||vh |||h |||qh |||h. (19)

for τ a large enough positive constant in (15).

Proof. The continuity and stability of ah can be found, e.g., in [8, Th. 5.7]. The continuity of bh is
obtained by using in its two terms the Cauchy-Schwarz inequality and in the second one the inequalities
(10) and (12) (see also [22]). �

Next, we prove the unfitted inf-sup condition for agFE spaces, using the following strategy. First, we
introduce some definitions for the concept of improper facets and aggregates (Defs. 6.2-6.3 and 6.4-6.5)
which are the ones that will require some type of stabilization, due to the potential deficiency of the
discrete inf-sup condition. Second, we prove a weak inf-sup condition for a particular type of mixed FE
spaces in Th. 6.9. Finally, using an abstract definition of the pressure stabilization term that satisfies Asm.
6.10, we prove the stability of the agFE method for the Stokes problem in Th. 6.11. In the subsequent
sections, we will consider different realizations of mixed FE spaces, analyze how to determine a superset
of improper facets/aggregates, and define a pressure stabilization fulfilling Asm. 6.10 for (14) to be
well-posed.

Let us define the set of aggregate interfaces:

FAB � ∂A ∩ ∂B, A, B ∈ Th, Fh � {FAB : A, B ∈ Th}.

We note that, since A ⊂ Ω for any aggregate A ∈ Th by its definition in (5), FAB can include a cut facet of
a cut cell.

Definition 6.2 (Aggregate interface bubble). Given an aggregate interface FAB ∈ Fh shared by A, B ∈ Th,
an aggregate interface bubble is a function φFAB

h ∈ V h with sup(φFAB

h ) ⊆ AB � A ∪ B such that∫
FAB

φFAB

h · n > C |FAB | > 0, ‖φFAB

h ‖∞ ≤ C, φFAB

h · n = 0 on ∂AB.

Definition 6.3 (Improper interface set of V h). Given an aggregate interface FAB shared by A, B ∈ Th,
it is improper with respect to V h if there not exists any interface bubble satisfying the properties of Def.
6.2. The set of improper interfaces is denoted by F −h . Its complement is represented with F +h � Fh \ F −h .
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Definition 6.4 (Aggregate bubble). Given an aggregate A ∈ Th, an aggregate bubble is a function
φA

h ∈ Q2(A) ∩ H1
0 (A) with sup(φA

h ) ⊆ A such that:

φA
h (x) ≥ 0,

∫
A
φA

h > C |A| > 0, ‖φA
h ‖∞ ≤ C. (20)

Definition 6.5 (Improper aggregate set of V h). Given an aggregate A ∈ Th, it is improper with respect
to V h if there not exists any aggregate bubble satisfying the properties of Def. 6.4. The set of improper
aggregates is denoted by T −h . Its complement is represented with T +h � Th \ T −h .

In the next lemma we propose a weak version of the standard Fortin interpolator (see, e.g., [31]), which
we denote as quasi-Fortin interpolator.

Lemma 6.6 (Quasi-Fortin interpolant). For any v ∈ H1
0(Ω), there exists a function πqF

h (v) ∈ V h such
that: ∫

F
v · n =

∫
F
π

qF
h (v) · n ∀F ∈ F +h , |||πqF

h (v)|||h ≤ ξqF ‖v‖1,Ω, (21)

for a positive constant ξqF > 0.

Proof. Given a function v ∈ H1
0(Ω), let us consider, e.g., the extended Scott-Zhang interpolant πSZ

h (vh)
with the optimal approximability properties in Th. 4.3. For agFE spaces with serendity extensions, we
would consider π̆SZ

h (vh) instead. From Def. 6.2, at every proper interface F ∈ F +h , we can compute
ζF(v) ∈ R such that:

ζF(v)
∫

F
φF

h · n =
∫

F
(v − πSZ

h (v)) · n,

and define ζ h(v) =
∑

F∈F +
h
φF

h ζF(v). Thus, taking π
qF
h (v) � πSZ

h (v) + ζ h(v), one readily checks the
equality in (21). Next, we prove the stability of the quasi-Fortin interpolant. We can bound ζF(v), since
F ∈ F +h , as follows. Let us represent with AF ∈ Th one of the two aggregates sharing F. The definition
of the aggregate bubble in Def. 6.4, the extended Scott-Zhang approximability properties in (13), the
inverse inequality (12), and the Cauchy-Schwarz inequality yield:

ζF =

∫
F(v − π

SZ
h (v)) · n∫

F φ
F
h · n

.

∫
F(v − π

SZ
h (v)) · n
|F | .

‖v − πSZ
h (v)‖F
|F | 12

(22)

. h−
d−1

2 ‖v − πSZ
h (v)‖∂AF

. h−
d−1

2 (h− 1
2 ‖v − πh(v)‖AF

+ h
1
2 |v − πh(v)|1,AF

) . h−
d−2

2 ‖v‖1,ω(AF ).

Using scaling arguments and the properties of the interface bubbles in Def. 6.2 and (22), and the fact that
for any interior cell K ∈ K in

h , the cardinality of the set {A ∈ Th : K ⊆ ω(A)} is bounded independently
of h, we get:

|||ζ h(v)|||2h =
∑

F∈F +
h

‖ζFφ
F
h ‖

2
1,ABF

.
∑

F∈F +
h

ζ2
F hd−2‖φF

h ‖
2
L∞(ABF ) .

∑
F∈F +

h

‖v‖21,ω(AF ) . ‖v‖
2
1,Ω.

This result, combined with the stability and approximability of the Scott-Zhang projector and the triangle
inequality, leads to the stability of the quasi-Fortin interpolant in (21):

|||πqF
h (v) + ζ h(v)|||h . |||π

qF
h (v)|||h + |||ζ h(v)|||h . ‖v‖1,Ω.

It proves the lemma. �

Lemma 6.7. Given an aggregate A ∈ T +h , we consider the aggregate bubble function φA
h ∈ H1

0 (A) that
satisfies the properties in Def. 6.5. For any ph ∈ Qh, the function ϕh(ph) �

∑
A∈T +

h
φA

h h2∇ph satisfies the
following properties:

1
β′0

∑
A∈T +

h

‖ph − π−,0h (ph)‖
2
A ≤ bh(ϕh(ph), ph), |||ϕh(ph)|||2h ≤

∑
A∈T +

h

‖ph − π−,0h (ph)‖
2
A. (23)
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Proof. The fact that ϕh(ph) vanishes on Γ, the definition of the norms in (18), and the inverse inequality
(10), yield the continuity bound in (23):

|||ϕh(ph)|||2h = ‖ϕh(ph)‖21,Ω .
∑

A∈T +
h

h2‖∇ph‖2 =
∑

A∈T +
h

h2‖∇(ph − π−,0h (ph))‖2 .
∑

A∈T +
h

‖ph − π−,0h (ph)‖
2
A.

Next, we note that given a proper aggregate A ⊂ T +h and FE function vh, using scaling arguments, the
first two properties in (20), and the equivalence of norms in finite dimension, we have:

C− (vh, vh)A ≤
(
φA

h vh, vh

)
A
≤ C+ (vh, vh)A , (24)

for positive constants independent of h and cut cell intersections. Thus, integrating by parts the first term
in (16), using the definition of ϕh(ph) in the statement of Lem. 6.7, the fact that aggregate bubbles vanish
on aggregate boundaries (see Def. 6.4), and the equivalence of norms in (24), we obtain:

bh(ϕh(ph), ph) =
∑

A∈T +
h

(ϕh(ph),∇ph)A =
∑

A∈T +
h

h2
(
φA

h , |∇ph |2
)

A
&

∑
A∈T +

h

h2‖∇ph‖2A. (25)

On the other hand, since (ph−π−,0h (ph))|A ∈ Qh(A)∩L2
0(A), it holds from the Poincaré-Wirtinger inequality

with a scaling argument:

‖ph − π−,0h (ph)‖A . h‖∇(ph − π−,0h (ph))‖A = h‖∇ph‖A. (26)

Combining (25) and (26), we prove the lemma. �

In what follows, we will make use of the jump operator over facets:

[[p]](x) = lim
ε→0+
(p(x + εn) − p(x − εn)) , ∀x ∈ F, ∀F ∈ Fh,

where n is a normal to the facet.

Lemma 6.8. Let us consider the mixed FE space V h × Qh for Qh � P−0,h ∩ L2
0(Ω). Then, for any

ph ∈ P−0,h ∩ L2
0(Ω), there exists a vh ∈ V h such that:

1
β0
‖ph‖2Ω ≤ bh(vh, ph) +

∑
F∈F −

h

h‖[[p]]‖2F, |||vh |||h ≤ ‖ph‖Ω, (27)

for a positive constant β0.

Proof. Relying on the continuous inf-sup condition (3), for any ph ∈ P−0,h∩L2
0(Ω) there exists a v ∈ H

1
0(Ω)

such that:

bh(v, ph) = − (∇ · v, ph)Ω + (v · n, ph)Γ = −
∑

F∈Fh

(v · n, [[ph]])F ≥
1
β
‖ph‖2Ω, ‖v‖1,Ω . ‖ph‖Ω, (28)

where we have used integration by parts and added up the contributions from both cells sharing an interior
interface. Using the properties of the quasi-Fortin interpolant in (21), after some algebraic manipulation,
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we obtain:

b(πqF
h (v), ph) = −

(
∇ · πqF

h (v), ph

)
Ω
+

(
π

qF
h (v) · n, ph

)
Γ
= −

∑
F∈Fh

(
π

qF
h (v) · n, [[ph]]

)
F

= −
∑

F∈F +
h

(
π

qF
h (v) · n, [[ph]]

)
F
−

∑
F∈F −

h

(
π

qF
h (v) · n, [[ph]]

)
F

= −
∑

F∈F +
h

(v · n, [[ph]])F −
∑

F∈F −
h

(
π

qF
h (v) · n, [[ph]]

)
F

= −
∑

F∈Fh

(v · n, [[ph]])F +
∑

F∈F −
h

(
(v − πqF

h (v)) · n, [[ph]]
)

F
. (29)

We can bound the last term in (29) using the trace inequality (12), the local Scott-Zhang interpolant
error estimate in Th. 4.3 for v ∈ H1

0 (Ω), the second bound in (28), and Young’s and Cauchy-Schwarz
inequalities as follows:∑

F∈F −
h

(
(v − πqF

h (v)) · n, [[ph]]
)

F
≤

∑
F∈F −

h

‖v − πqF
h (v)‖F ‖[[ph]]‖F

.
∑

F∈F −
h

(h− 1
2 ‖v − πqF

h (v)‖AF
+ h

1
2 ‖v − πqF

h (v)‖1,AF
)‖[[ph]]‖F

.
∑

F∈F −
h

‖v‖1,ω(AF )h
1
2 ‖[[ph]]‖F . α‖v‖21,Ω +

1
α

∑
F∈F −

h

h‖[[ph]]‖2F

. α‖ph‖2Ω +
1
α

∑
F∈F −

h

h‖[[ph]]‖2F, (30)

for any α > 0. Combining (28), (29), and (30) with α large enough, we readily get:

b(πqF
h (v), ph) ≥

1
β
‖ph‖2Ω − Cα‖ph‖2Ω −

C
α

∑
F∈F −

h

h‖[[ph]]‖2F ≥
1
β0
‖ph‖2Ω −

C
α

∑
F∈F −

h

h‖[[ph]]‖2F,

for β0 > 0. It proves the lemma. �

Let us define the L2 interpolant for extended discontinuous Lagrangian spaces as follows. Given
ph ∈ P−q,h and 0 ≤ r < q, π−,rh (ph) ∈ P−q,h is such that(

π−,rh (ph), qh

)
A
= (ph, qh)A , ∀qh ∈ P−r,h.

Theorem 6.9. Let us assume that there exists a q ∈ Z+, q ≥ 2, such that Qq(A) ⊂ V h(A) and that
the mixed FE space V h × P−0,h ∩ L2

0(Ω) satisfies the inf-sup condition (27) in Lem. 6.8. Then, for any
ph ∈ P−q−1,h, there exists a vh ∈ V h such that:

1
βq
‖ph‖2Ω ≤ bh(vh, ph) +

∑
F∈F −

h

h‖[[ph]]‖2F −
∑

A∈T −
h

‖ph + π
−,0
h (ph)‖

2
A, |||vh |||h ≤ ‖ph‖, (31)

for a positive constant βq.

Proof. Let us decompose bh(vh, ph) as follows:

bh(vh, ph) = bh(vh, π
−,0
h (ph)) + bh(vh, π

−,0
h (ph) − ph). (32)
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Since V h × (P−0,h ∩ L2
0(Ω)) is weakly inf-sup stable by the statement of the theorem, i.e., it satisfies (27),

there exists a function vh such that
1
β0
‖π−,0h (ph)‖

2
Ω
≤ bh(vh, π

−,0
h (ph)) +

∑
F∈F −

h

h‖[[π−,0h (ph)]]‖
2
F, |||vh |||h ≤ ‖π−,0h (ph)‖Ω. (33)

Using the trace inequality (11), the inverse inequality (10), the stability of vh in the weak inf-sup condition
(33), and Young’s and Cauchy-Schwarz inequalities, the first term in (32) can be bounded as follows:

bh(vh, π
−,0
h (ph) − ph) . ‖vh‖1,Ω‖ph − π−,0h (ph)‖Ω + h−

1
2 ‖vh‖Γh

1
2 ‖ph − π−,0h (ph)‖Γ

. |||vh |||h‖ph − π−,0h (ph)‖Ω

. α‖π−,0h (ph)‖
2
Ω
+

1
α
‖ph + π

−,0
h (ph)‖

2
Ω
. (34)

Combining (32), (33), and (34) for α small enough, we get:
1
β∗0
‖π−,0h (ph)‖

2
Ω
≤ bh(vh, ph) +

∑
F∈F −

h

h‖[[π−,0h (ph)]]‖
2
F + C‖ph − π−,0h (ph)‖

2
Ω
, (35)

where β∗0 > 0. On the other hand, we have that ∇ph ∈ P−q−2,h and ϕh(ph) ∈ Qq(A) ∩H1
0(A) ⊂ V h for any

A ∈ F +h . Thus, combining the first inequality in (23) from Lem. 6.7 with (35), we obtain, for an arbitrary
positive constant α′:

bh(ϕh(ph) + α′vh, ph) ≥
1
β′0

∑
A∈T +

h

‖ph − π−,0h (ph)‖
2
A +

α′

β∗0
‖π−,0h (ph)‖

2
Ω

− α′
∑

F∈F −
h

h‖[[π−,0h (ph)]]‖
2
F − α

′C‖ph − π−,0h (ph)‖
2
Ω

≥ 1
β′0

∑
A∈T +

h

‖ph − π−,0h (ph)‖
2
A +

α′

β∗0
‖π−,0h (ph)‖

2
Ω
− α′

∑
F∈F −

h

h‖[[π−,0h (ph)]]‖
2
F

− α′C
∑

A∈T +
h

‖ph − π−,0h (ph)‖
2
A − α

′C
∑

A∈T −
h

‖ph − π−,0h (ph)‖
2
A

≥
1 − α′Cβ′0

β′0

∑
A∈T +

h

‖ph − π−,0h (ph)‖
2
A +

α′

β∗0
‖π−,0h (ph)‖

2
Ω

− α′
∑

F∈F −
h

h‖[[π−,0h (ph)]]‖
2
F − α

′C
∑

A∈T −
h

‖ph − π−,0h (ph)‖
2
A

≥
1 − α′Cβ′0

β′0

∑
A∈Th
‖ph − π−,0h (ph)‖

2
A +

α′

β∗0
‖π−,0h (ph)‖

2
Ω

− α′
∑

F∈F −
h

h‖[[π−,0h (ph)]]‖
2
F −

1 − 2α′Cβ′0
β′0

∑
A∈T −

h

‖ph − π−,0h (ph)‖
2
A. (36)

Furthermore, using the fact that ‖π−,0h (ph)‖Ω ≤ ‖ph‖Ω, the stability in (23), and the triangle inequality,
we get:

|||ϕh(ph) + α′vh |||2h . |||ϕh(ph)|||2h + |||α′vh |||2h ≤
∑

A∈T +
h

‖ph − π−,0h (ph)‖
2
A + ‖α

′π−,0h (ph)‖
2
Ω
. ‖ph‖2Ω.
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On the other hand, the trace inequality (12) and the triangle inequality yield:∑
F∈F −

h

h‖[[π−,0h (ph)]]‖
2
F ≤

∑
F∈F −

h

h‖[[ph − π−,0h (ph)]]‖
2
F +

∑
F∈F −

h

h‖[[ph]]‖2F

.
∑
A∈Th
‖ph − π−,0h (ph)‖

2
A +

∑
F∈F −

h

h‖[[ph]]‖2F . (37)

Bounds (36)-(37) yield (31) for α′ small enough, after a proper scaling of ϕh(ph) + α′vh. �

Assumption 6.10 (Pressure stabilization). For a mixed FE space V h × Qh, we consider a pressure
stabilization that is positive semidefinite and holds:

1
γ j

jh(uh, ph, uh, ph) ≥
∑

A∈T −
h

‖ph − π−,0h (ph)‖
2
A +

∑
F∈F −

h

h‖[[ph]]‖2F −
γa

2γ j
|||uh |||2h, (38)

jh(uh, ph, vh, qh) ≤ ξ j |||uh, ph |||h |||vh, qh |||h, (39)

for any (uh, ph), (vh, qh) ∈ V h ×Qh.

Theorem 6.11. Let us assume that the mixed FE space V h × Qh satisfies the inf-sup condition (31) and
that the pressure stabilization jh satisfies Ass. 6.10. It holds:

1
βd
|||uh, ph |||h ≤ sup

(vh,qh)∈Vh×Qh

Ah(uh, ph, vh, qh)
|||vh, qh |||h

, (40)

for a positive constant βd .

Proof. First, we take as test function (uh,−ph). Using the first inequality in (19), we get:
Ah(uh, ph, uh, ph) = ah(uh, uh) + jh(uh, ph, uh, ph) ≥ γa |||uh |||2h + jh(uh, ph, uh, ph).

Next, taking as test function (vh, 0), where vh satisfies the weak inf-sup (31) in Th. 6.9, we get:

Ah(uh, ph, vh, 0) =ah(uh, vh) + bh(vh, ph) − jh(uh, ph, vh, 0)

≥ 1
βq
‖ph‖2Ω −

∑
F∈F −

h

h‖[[ph]]‖2F −
∑

A∈T −
h

‖ph − π−,0h ph‖
2
A

+ ah(uh, vh) − jh(uh, ph, vh, 0). (41)

On one side, the second inequality in (19) together with Young’s and Cauchy-Schwarz inequalities yield:

ah(uh, vh) ≤
4ξ2

a

α
|||uh |||2h + α |||vh |||2h ≤

4ξ2
a

α
|||uh |||2h + α‖ph‖2Ω,

for an arbitrary constant α. On the other side, using the fact that the pressure stabilization is positive
semidefinite, Cauchy-Schwarz and Young’s inequalities, the continuity in (39), and the stability for vh in
(31), we get:

jh(uh, ph, vh, 0) ≤
4
α

jh(uh, ph, uh, ph) + α jh(vh, 0, vh, 0)

≤ 4
α

jh(uh, ph, uh, ph) + αξ j |||vh |||2h ≤
4
α

jh(uh, ph, uh, ph) + αξ j ‖ph‖2Ω. (42)

As a result, combining (41)-(42), and taking α small enough, we obtain:

Ah(uh, ph, vh, 0) &‖ph‖2Ω −
∑

F∈F −
h

h‖[[ph]]‖2F −
∑

A∈T −
h

‖ph − π−,0h (ph)‖
2
A

− jh(uh, ph, uh, ph) − |||uh |||2h. (43)
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By taking (uh + α
′vh, ph) as a test function with α′ small enough, using (42), (43), and the assumption

over the pressure stability in (38), we finally get:

Ah(uh, ph, uh + α
′vh, ph) & |||uh |||2h + α′C‖ph‖2Ω + jh(uh, ph, uh, ph)

− α′C
∑

F∈F −
h

h‖[[ph]]‖2F − α′C
∑

A∈T −
h

‖ph − π−,0h (ph)‖
2
A

& |||uh |||2h + ‖ph‖2Ω + jh(uh, ph, uh, ph).
On the other hand, the stability for vh in (31) and the triangle inequality yield:

|||uh + α
′vh, ph |||h . |||uh, ph |||h + |||α′vh |||h . |||uh, ph |||h + ‖α′ph‖Ω . |||uh, ph |||h.

It proves the theorem. �

6.2. Stable mixed FEs and pressure stabilization. We propose below two different algorithms that
satisfy Ass. 6.10 and thus, the stability results in Th. 6.11.

Algorithm 6.12. We consider a hex mesh, the velocity space V h � Qq,h, and the pressure space
Qh � P−q−1,h for an integer q ≥ 2. On the other hand, for any facet F ∈ Fh, and the two aggregates
AF, BF ∈ Th, we include the facet in the subset of facets F ∗h if AF or BF belong to the set Th \ Th ∩ Kh.
On the other hand, we define the set of aggregates to be stabilized as T ∗h � Th \ Th ∩ Kh. The pressure
stabilization term is taken as:

jh(uh, ph, vh, qh) �
∑

F∈F ∗
h

τj1h ([[ph]], [[qh]])F +
∑

A∈T ∗
h

τj2h2 (−∆uh + ∇ph,−∆vh + ∇qh)A ,

gh( f , vh) �
∑

A∈T ∗
h

h2 ( f ,−∆vh + ∇qh)A , (44)

for positive algorithmic constants τj1 and τj2.

The agFE space thus relies on the popular FE space Qq,h × P−q−1,h for the interior cells. The velocity
field is extended to cut cells by the standard extension operator in Sect. 4.2.3, and the discontinuous
pressure field is extended by the standard (discontinuous) one. This choice has been motivated by the
proof of the abstract discrete inf-sup condition.

Theorem 6.13. The method proposed in Alg. 6.12 has a pressure stabilization term that satisfies Ass.
6.10 and thus, it satisfies Th. 6.11. As a result, the discrete problem (17) is well-posed for f ∈ L2(Ω).

Proof. It is clear that for aggregates that are interior cells, i.e., in Th ∩Kh, the extension of their quadratic
bubble functions is the zero extension outside the cell. Thus, for these cells, there exists a cell bubble
satisfying the requirements in Def. 6.4. Analogously, for facets that are being shared by two aggregates
that are interior cells, the extension of the corresponding quadratic bubble function is also the zero
extension. These facet bubbles satisfy the requirements in Def. 6.2. Thus, F −h ⊂ F

∗
h and T −h ⊂ T

∗
h .

As required in Ass. 6.10, the pressure stabilization is positive semidefinite. In order to prove that (38)
holds, we use the following inequality. Given three functions v, p in a Hilbert space X and u in a Banach
space Y , defining γ 1

2 � ‖u‖Y
‖v‖X , we have, using Young’s inequality for an arbitrary constant α > 1:

2‖p + v‖2X = ‖p + v‖2X + ‖p‖2X + ‖v‖2X − 2(p, v)X

≥ ‖p + v‖2X +
(
1 − 1

α

)
‖p‖2X + (α − 1)‖v‖2X

= ‖p + v‖2X +
(
1 − 1

α

)
‖p‖2X −

α − 1
γ
‖u‖2Y .
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Taking α = 1 + γ
2 > 1, we obtain

2‖p + v‖2X ≥ ‖p + v‖2X +
1

1 + 2
γ

‖p‖2X − ‖u‖2Y .

Let us consider X = L2(A), v = −h∆uh, p = h∇ph, Y = H1(A), and u = ω
1
2 uh, for A ∈ T −h and an

arbitrary positive constant ω. Using the inverse inequality (10), we have that h‖ − ∆uh‖A ≤ C‖uh‖1,A,
thus γ ≥ C−2ω−1. The previous bound leads to:∑

A∈T ∗
h

h2‖ − ∆uh + ∇ph‖2A ≥ C
∑

A∈T ∗
h

h2‖∇ph‖2Ω −
∑

A∈T ∗
h

ω

2
‖uh‖21,A. (45)

The Poincaré-Wirtinger inequality with a scaling argument yields:

‖ph − π−,0h (ph)‖A . h‖∇(ph − π−,0h (ph)‖Ω = h‖∇ph‖Ω. (46)
Combining (45) and (46), and adjusting ω accordingly, we find

jh(uh, ph, uh, ph) ≥ γ j

∑
A∈T ∗

h

‖ph − π−,0h (ph)‖2A + γ j

∑
F∈F ∗

h

h‖[[ph]]‖2F −
γa

2γ j
‖uh‖21,Ω,

for a positive constant γ j . Thus, the stabilization term satisfies Ass. 6.10. Its continuity in (39) is
obtained from the trace inequalities (11)-(12) and the inverse inequality (10). This result, together with
(40), proves the well-posedness of the discrete operator. Furthermore, for f ∈ L2

0(Ω), we can easily prove
that gh( f , vh) ≤ ξg‖ f ‖Ω |||vh |||h. �

Algorithm 6.14. We consider a hex mesh, the velocity space V h � Q̆q,h, and the pressure space
Qh � P−q−1,h for an integer 2 ≤ q ≤ 2d − 2. On the other hand, for any facet F ∈ Fh, and the two
aggregates AF, BF ∈ Th, we include the facet in the subset of facets F ∗h if AF or BF belong to the set
Th \ Th ∩ Kh. In 3D, if q ≤ 2d − 3, F ∈ F ∗h can be restricted further, by considering only those before
that also satisfy that their corresponding owner interior cells KAF and KBF do not share a FE facet, i.e.,
|KAF ∩ KBF | = ∅ in d − 1 sense. The pressure stabilization term is taken as:

jh(ph, qh) �
∑

F∈F ∗
h

τj1h ([[ph]], [[qh]])F , (47)

for a positive algorithmic constant τj1, whereas gh( f , vh) � 0.

The agFE space again relies on Q̆q,h × P−q−1,h for the interior cells. The velocity field is extended to cut
cells by the serendipity extension operator in Sect. 4.2.3, and the discontinuous pressure field is extended
by the standard (discontinuous) one. This choice has also been motivated by the proof of the abstract
discrete inf-sup condition.

Theorem 6.15. The method proposed in Alg. 6.14 has a pressure stabilization term that satisfies Ass.
6.10 and thus, it satisfies Th. 6.11. As a result, the discrete problem (17) is well-posed for f ∈ H−1(Ω).

Proof. First, we note that for the serendipity FE up to order 2d − 2, a unisolvent set of DOFs are nodal
values on the cell boundary only, and thus, zero for bubble functions (see [25] for more details). Thus, the
serendipity extension of the quadratic bubble function of the owner cell of the aggregate is zero inΩ \Ωin
for q ≤ 2d − 2. Thus, all the aggregates are proper, and no cell interior stabilization is needed. On the
other hand, for facets in Fh \ F ∗h , i.e., facets between interior cells that have not been aggregated to other
cut cells, the quadratic facet function belongs to the space V h (we note that it leads to a zero extension
outside of the two interior cells that share the facet), and satisfies the requirements in Def. 6.2. Thus, the
only stabilization that is needed is on the interface between aggregates that are not simply interior cells.
In 3D, since serendipity FE up to order 2d − 3 do not include the DOFs corresponding to the quadratic
facet bubbles, i.e., the facet bubbles of interior cells that are the owner of an aggregate are extended by
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zero. Thus, the subset F ∗h can be restricted as stated in the definition of the algorithm. Thus, F −h ⊂ F
∗

h
and T −h = ∅. It is obvious to check that

jh(uh, ph, uh, ph) =
∑

F∈F ∗
h

τj1h‖[[ph]]‖2F .

We can readily check that the stabilization term satisfies (38). The continuity result in (39) is readily
obtained from the trace inequalities (11)-(12). As a result, the stabilization term satisfies Ass. 6.10. This
result, together with (40), proves the theorem. �

6.3. A priori error estimates. At this point, we have already checked that Algs. 6.12 and 6.14 are
well-posed. Next, we want to prove a priori error estimates for these algorithms. The proof of these
results is fairly straightforward, since the pressure stabilization terms are consistent for pressure fields in
H1(Ω). As usual, Galerkin orthogonality, the stability in Ths. 6.13 and 6.15, and the approximability
properties in Th. 4.3, lead to the desired results.

Let us note that the jump stabilization in (47) (also in (44)) can be modified by integrating not only on
(potentially) cut facets F ∈ Fh but in the corresponding whole facets. Such modification does provide
more stabilization and does not affect the consistency of the method in the error analysis of Th. 6.16
below.

Theorem6.16. Let us assume that the solution (u, p) of the Stokes problem (2) belongs toH k+1(Ω)×Hk(Ω)
for some k ≥ 1. Then, the discrete solution (uh, ph) ∈ vh ×Qh in Algs. 6.12 and 6.14 satisfy the following
a priori error estimate:

|||u − uh, p − ph |||h . hk ‖u‖Hk+1(Ω) + hk ‖p‖Hk (Ω).

Proof. First, let us note that the bilinear form Ah in Algs. 6.12 and 6.14 is consistent. Since p ∈ H1(Ω),
the pressure jump stabilization vanishes. It is obvious to check that the interior residual-based stabilization
vanishes too. Let us consider the extended Scott-Zhang projector for every component of the velocity
πSZ

h (u) and for the pressure π
SZ
h (p). The Galerkin orthogonality and the continuity of Ah readily yield:

Ah(uh − πSZ
h (u), ph − πSZ

h (p), vh, qh) = Ah(u − πSZ
h (u), p − πSZ

h (p), vh, qh)
≤ ξA |||u − πSZ

h (u), p − πSZ
h p|||h |||vh, ph |||h.

Taking as test function the (vh, qh) for which the global inf-sup condition in Th. 6.11 is satisfied, we
readily get:

|||uh − πSZ
h (u), ph − πSZ

h (p)|||
2
h ≤ βd Ah(uh − πSZ

h (u), ph − πSZ
h (p), vh, qh)

≤ βdξA |||u − πSZ
h (u), p − πSZ

h (p)|||h |||uh − πSZ
h (u), ph − πSZ

h (p)|||h.
Finally, the approximability properties of the extended Scott-Zhang projector in Th. 4.3 yields:

|||u − πSZ
h (u), p − πSZ

h p|||2h = ‖∇(u − πSZ
h (u))‖

2
Ω
+ ‖h− 1

2 (u − πSZ
h (u))‖

2
Γ
+ ‖p − πSZ

h p‖2
Ω

. h2k ‖u‖2Hk+1(Ω) + h2k ‖p‖2Hk (Ω).

It proves the theorem. �

6.4. Condition number bounds. It is well-known that extended FE spaces without aggregation lead to
arbitrary ill-conditioned systems, due to the small cut cell problem, i.e., when the ratio ηK tends to zero
(see [5] for details). Thus, arbitrarily high condition numbers are expected in practice since the position
of the interface cannot be controlled and the value ηK can be arbitrarily close to zero. It has motivated
the agFEM in [8]. We prove in the following theorem that the agFEM proposed herein for the Stokes
problem lead to the same condition number bounds as for body-fitted methods, i.e., they do not depend
on the cut cell intersection. We represent with | · |`2 the Euclidean norm of vectors and matrices.
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Theorem 6.17. The condition number of the matrices that arise from Algs. 6.12 and 6.14, i.e., κ(Ah) �
|Ah |`2 |A−1

h |`2 , satisfies κ(Ah) ≤ Cκh−2, for a positive constant Cκ.

Proof. First, we note that uh ∈ V h can be stated in terms of a global basis of FE shape functions as∑Nu

a=1 Uiφ
a
u. We define the Cartesian norm for the vector of DOF values of uh as |uh |`2 . We proceed

analogously for the pressure, e.g., ph =
∑Np

a=1 Piφ
a
p ∈ Qh; we note that the pressure space has dimension

Np − 1 due to the zero mean restriction, i.e., Qh ⊂ L2
0(Ω). Let us represent velocity-pressure functions in

V h × Qh with bold capital Greek letters. Given Φh � (uh, ph), we define |Φh |2`2 � |uh |2`2 + |ph |2`2 . For
any velocity component and pressure, we have from the fact that the eigenvalues of the local mass matrix
in every interior cell are bounded (see, e.g., [35]), that C−mhd |U |2

`2 ≤ ‖uh‖2Ωin
≤ C+mhd |U |2

`2 . This result,
combined with the stability of the extension operator in Lem. 4.2 yields:

C−M hd |uh |2`2 ≤ ‖uh‖2Ω ≤ C+M hd |uh |2`2 . (48)

Now, we can bound the following velocity norm using the inverse inequality (10), the trace inequality
(11), and the norm relation in (48), as follows:

|||uh |||2h = ‖∇uh‖2Ω + ‖h−
1
2 uh‖

2
Γ . h−2‖uh‖2Ω . hd−2 |uh |2`2 .

Thus, we have |||Φh |||2h . hd−2 |Φh |2`2 for any Φh ∈ V h × Qh. The Friedrichs inequality and (48) yield
|uh |2`2 ≤ C(Ω)h−d ‖uh‖2Ω . C(Ω)h−d |||uh |||2h. As a result:

C(Ω)−1hd |uh |2`2 . |||uh |||2h . hd−2 |||uh |||2h. (49)

We can bound the norm of Ah by using its continuity (from the continuity results in (19) and (39)) and
the norm equivalence in (49) as follows:

|Ah |`2 = max
Φh∈Vh×Qh

max
Ψh∈Vh×Qh

Ah(Φh,Ψh)
|Φh |`2 |Ψh |`2

≤ ξA
|||Φh |||h |||Ψh |||h
|Φh |`2 |Ψh |`2

. hd−2. (50)

Making abuse of notation, we use AhΦh � Ah(Φh, ·). Next, we provide a lower bound for the norm of the
operator AhΦh, for some Φh ∈ Qh. Using the inf-sup condition in Th. 6.11 and the norm equivalence in
(49), we obtain:

|AhΦh |`2 = max
Ψh∈Vh×Qh

Ah(Φh,Ψh)
|Ψh |`2

= max
Ψh∈Vh×Qh

Ah(Φh,Ψh)
|||Ψh |||h

|||Ψh |||h
|Ψh |`2

≥ βd |||Φh |||h min
Ψh∈Vh×Qh

|||Ψh |||h
|Ψh |`2

.

(51)

Combining (51) and the lower bound in (49), we get |AhΦh |`2 & hd |Φh |`2 .TakingΦh = A−1
h Ψh, we readily

obtain |Ψh |`2 & hd |A−1
h Ψh |`2 . Thus, |A−1

h |`2 . h−d , which, together with (50), proves the theorem. �

7. Numerical experiments

The main purpose of this section is to evaluate the performance of the agFE spaces in several different
scenarios. We start with a convergence test (cf. Sect. 7.2), where we numerically validate the a priori
error estimates of Sect. 6.3 and the condition number bounds of Sect. 6.4. Next, we consider a moving
domain test (cf. Sect. 7.3) in order to check the robustness of the methods with respect to small cuts.
Finally, we provide the numerical solution of two realistic problems (cf. Sect. 7.4) in order to illustrate
the ability of the agFEM to deal with complex geometrical data.



MIXED AGGREGATED FE METHODS FOR THE UNFITTED DISCRETIZATION OF THE STOKES PROBLEM 22

7.1. Setup. In all cases, we solve the Stokes problem (1) using Galerkin approximations with conforming
Lagrangian FE spaces as indicated in Sect. 5. We consider both agFE spaces and conventional ones in
order to evaluate the benefits of using cell aggregation. For the conventional (un-aggregated) case, we
use Q2,h(Kh), and P−1,h(Kh) spaces for the approximation of velocities and pressures, respectively (e.g.,
in 3D, hexahedral elements with continuous piecewise triquadratic shape functions for the velocity, and
discontinuous piecewise linear shape functions for the pressure). For the aggregated case, we consider the
space Q̆2,h for velocities (i.e., the aggregated version of Q2,h(Kh) using the serendipity extension in the
constraint definition as indicated in Sect. 4.2.3), whereas for pressures we use the aggregated counterpart
of P−1,h. In order to fulfill inf-sup stability, we use the facet-based stabilization given in Algorithm 6.14
for the aggregated spaces with τj1 = 0.01 (the value that minimized the error for a simple test and a set of
possible constants). The results for the usual (un-aggregated) spaces are labeled as standard throughout
the numerical examples, whereas results using cell aggregation are labeled as aggregated. considered is
provided in Table 1.

Name Description

Standard (Q2,h(Kh),P−1,h(Kh)) elements without cell aggregation.
Aggregated (Q̆2,h,P−1,h) elements with cell aggregation using the serendipity extension (cf.

Sect. 4.2.3) for velocity components.

Table 1. FE interpolations used in the experiments.

The algorithms subject of study were coded using the tools provided by the object-oriented HPC code
FEMPAR [9]. The underlying systems of linear equations are solved by means of a robust sparse direct
solver from the MKL PARDISO package [36] specially designed for symmetric indefinite matrices (to
which FEMPAR provides appropriate interfaces). The condition number estimates provided below are
computed outside FEMPAR using the MATLAB function condest.5 Numerical integration is based on
local body-fitted triangulations of cut cells into triangles (in 2D) or tetrahedra (in 3D), where standard
quadrature rules can be applied. The local triangulation of a cut cell is obtained by FEMPAR from its nodal
coordinates and the intersection points of cell edges with the unfitted boundary via the Delaunay method
available in the QHULL library [37, 38]. Note that these sub-meshes are used only for integration purposes
and are completely independent from one cut cell to another (see [7] for details).

7.2. Convergence test. We consider the Stokes problems defined in the 2D and 3D domains shown in
Fig. 5. The 2D domain (cf. Fig. 5a) is a circular cavity defined as the set difference of the unit square
[0, 1]2 and the circle of radius R = 0.3 and center C = (0.5, 0.5). The 3D domain is a complex-shaped
cavity defined as the set difference of the unit cube [0, 1]3 and a 3D body whose shape reminds the one
of a popcorn flake (cf. Figs. 5b and 5c). This “popcorn-flake” geometry is often used in the literature to
study the performance of unfitted FE methods (see, e.g., [4]). The popcorn flake geometry considered
here is obtained by taking the one defined in [4], scaling it by a factor of 0.5 and translating it a value
of 0.5 in each direction such that the body fits in the unit cube [0, 1]3. We consider Dirichlet boundary
conditions on the interior walls of the cavities, whereas Neumann conditions are imposed on the facets
of the unit square and unit cube (see Fig. 5). Dirichlet boundary conditions are imposed using Nitsche’s
method as discussed in Sect. 5.

We use the method of manufactured solutions in order to have a problem with known exact solution,
which is used here to compute discretization errors. The (manufactured) exact solutionwe have considered
is

u �
u∗

|u∗ | , p � x3y3, (52)

5MATLAB is a trademark of THE MATHWORKS INC.
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Physical domain Ω Dirichlet boundary ΓD Neumann boundary ΓN

(a) 2D case. (b) 3D case (outer view). (c) 3D case (internal view).

Figure 5. Convergence test: View of the problem geometries.

where
u∗ = (−y + 0.5, x + 0.3)t , (x, y) ∈ Ω ⊂ R2 in 2D,
u∗ = (y − 0.5, −x − z − 0.3, y − 0.5)t , (x, y, z) ∈ Ω ⊂ R3 in 3D.

This solution corresponds to a (divergence-free) velocity field of magnitude 1 that spins around the point
(x, y) = (−0.3, 0.5) for the 2D case and around the line (x, y, z) = (−z − 0.3, 0.5, z), z ∈ R, in 3D (see
Fig. 6). The particular value of the boundary conditions (both Dirichlet and Neumann) and external loads
are defined such that (52) is the exact solution of the Stokes problem (1).

(a) 2D case. (b) 3D case.

10

Figure 6. Convergence test: View of the manufactured solution (vectors / streamlines
colored by pressure field).

The numerical approximation is done using a family of uniform Cartesian meshes obtained by dividing
each direction of the unit square and cube into 2m parts, with m = 3, 4, . . . , 9 in 2D, and m = 3, 4, 5 in 3D.
The obtained results are displayed in Figs. 7, 8, and 9.

Fig. 7 shows the scaling of the condition number of the underlying linear systems as the mesh is
refined. For the agFE spaces, the condition number scales as expected in conventional FE methods for
body-fitted meshes (i.e., the condition number is proportional to h−2), which confirms the theoretical
condition number bound derived in Sect. 6.4. The same behavior is observed in 2D and 3D cases. The
lines for the 3D case in Fig. 7b have only two points, since we were able to estimate the condition number
only for two of the 3D meshes due to the large amount of memory demanded by the condest function of
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(b) 3D case.

Figure 7. Convergence test: Scaling of the condition number upon mesh refinement.
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Figure 8. Convergence test: Convergence of the discretization error for the 2D case (d = 2).

MATLAB. The benefit of using cell aggregation is clearly illustrated in Fig. 7. The standard FE spaces
without cell aggregation lead to condition numbers that do not scale proportional to h−2. Theoretically,
the condition number can be arbitrary large without cell aggregation depending on how cells are cut,
which leads in practice to an erratic scaling of the condition number that reaches large values, as shown
by the red lines in Fig. 7.

On the other hand, Figs. 8 and 9 report the convergence of the H1 semi-norm and L2 norm of the
discretization error for the velocity field, and the L2 norm of the discretization error for the pressure field
for the 2D and 3D cases respectively. Since we consider standard (Q2,h(Kh),P−1,h(Kh)) and aggregated
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(c) Pressure L2 norm.

Figure 9. Convergence test: Convergence of the discretization error for the 3D case (d = 3).

(Q̆2,h,P−1,h) velocity-pressure elements (which corresponds to 2nd polynomial order for the velocities and
1st for the pressures), the optimal convergence orders are 3rd order of convergence for the velocity error
measured in the L2 norm, 2nd order for the velocity error in the H1 semi-norm, and 2nd order for the
pressure error in L2 norm. The plots show that the agFE spaces lead to these optimal FE convergence
orders, which in turn confirms the analysis of Sect. 6.3. Note that the standard (un-aggregated) FE spaces
lead to the optimal convergence orders in the 2D case (cf. Fig. 8). However, the underlying linear systems
are so ill-conditioned (reaching condition numbers up to 1035 as previously showed in Fig. 7) that in
general one cannot rely on the results computed by the linear solver using double precision floating point
arithmetics. We have encountered some situations where the linear solver was not able to provide an
accurate solution for this reason, see, e.g., the red line in Fig. 9c.

7.3. Moving domain experiment. In the second numerical experiment, we study the robustness of the
unfitted FE formulation with respect to the relative position between the problem geometry and the
background mesh. To this end, we consider two geometries whose definition is parametrized by a scalar
value ` (cf. Fig. 10). The 2D geometry is a circular cavity, with radius R = 0.225 and whose center is
located at an arbitrary point on a diagonal of the unit square (cf. Fig. 10a). The 3D domain is again a
cavity defined using the popcorn flake geometry (cf. Fig. 10b). In this case, We scale down the popcorn
flake used in the convergence test (cf. Sect. 7.2) by a factor or 0.5 and place it at an arbitrary point of
the diagonal of the unit cube. In both cases, the position of the bodies is controlled by the value of the
parameter ` (i.e., the distance between the center of the body and a selected vertex of the square/cube).
As the value of ` varies, the objects move and their relative position with respect to the background
mesh changes. In this process, arbitrary small cut cells can show up, leading to potential ill conditioning
problems. In this experiment, we consider a background mesh that discretizes the unit square/cube with
2m elements per direction, being m = 5 for the 2D case and m = 4 for the 3D case.
Fig. 11 shows the condition number estimate of the underlying linear systems versus `. The plot

is generated using a sample of 200 different values of `. It is observed that the agFE spaces lead to
condition numbers that are nearly independent of the value of `, which shows that the agFEM is very
robust regardless how cells are cut. The benefit of using aggregation is clearly demonstrated here by
observing the results associated to the standard FE spaces. In that case, the condition numbers are very
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(a) 2D case. (b) 3D case (internal view).

Figure 10. Moving domain experiment: View of the problem geometries.

sensitive to the position of the geometry and reach very high values (condition number greater than 1035

in the 3D case).
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Figure 11. Moving domain experiment: Condition number vs. domain position.

7.4. Complex 3D examples. We conclude the numerical examples with the simulation of two complex
geometries in order to show that the cell aggregation can be effectively used also in more complex
settings. The first complex example is the simulation of a Stokes flow around a set of randomly spherical
obstacles (see Fig. 12). The (fluid) domain is the set difference of the unit cube [0, 1]3 and the spherical
obstacles. We consider homogeneous Dirichlet conditions (no-slip conditions) in the surfaces of the
spherical obstacles using Nitsche’s method. The inflow boundary is the face x = 0 of the unit cube (see
Fig. 12a), where we impose a prescribed polynomial inflow velocity profile with value:

u = (10y(y − 1)z(z − 1), 0, 0), (x, y, z) ∈ Γin = {0} × [0, 1]2.
The outflow boundary is the face x = 1 of the unit cube, where we impose homogeneous Neumann
boundary conditions. We impose homogeneous Dirichlet conditions on the remaining faces of the cube.
The problem is simulated using a background Cartesian mesh defined on the cube with 25 elements per
direction. The obtained numerical solution is plotted in Figs. 12b and 12c. Note that the approximation of
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the velocities clearly conforms to the unfitted surfaces even though the interpolation is slightly coarsened
near these surfaces by the cell aggregation.

Inflow Outflow 75.00.0 53.0−1.4

(a) Problem geometry. (b) Velocity (magnitude). (c) Pressure.

Figure 12. Complex 3D examples: Problem geometry and numerical solution for the
stokes flow around spherical obstacles (streamlines colored by velocity magnitude and
pressure).

The second complex example is a Stokes flow inside a spiral pipe (see Fig. 13). The radius of the
tubular cross section of the pipe is 0.1, whereas the radius of the spiral central axis is 0.875. We impose
homogeneous Dirichlet conditions on the walls of the spiral. The inflow boundary is one of the two
terminal cross sections of the pipe, i.e., the disk of center C = (0, 0.875, 0.86) and radius R = 0.1 (see
Fig. 13a). On the inflow boundary we impose a parabolic velocity profile with value:

u = (10 − 10
r2

R2 , 0, 0),

where r ∈ [0, R] is the distance between a point x in the inflow boundary and the center C. Homogeneous
Neumann boundary conditions are considered on the outflow boundary. Like in the previous example, the
problem is simulated using a uniform Cartesian mesh of the unit cube with 25 elements at each direction.
The results are showed in Figs. 13b and 13c. Note that, even though this is a very challenging example
for the cell-aggregation strategy because the surface to volume ratio is very high, the computed results
reproduce a perfectly laminar velocity field that flows smoothly through the spiral pipe.

Inflow Outflow 1001.8 2.8 · 104−2.8 · 10−5

(a) Problem geometry. (b) Velocity (magnitude). (c) Pressure.

Figure 13. Complex 3D examples: Problem geometry and numerical solution for the
stokes flow in a spiral pipe (streamlines colored by velocity magnitude and pressure).
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8. Conclusions

In this work, we have developed mixed agFEMs for the approximation of the Stokes problem on
unfitted meshes. We have considered the standard extension operator for the definition of agFE spaces
and a new one that relies on the extension of the serendipity component only (for hex meshes). A cell
aggregation algorithm allows one to start with a FE mesh and create an aggregate partition with some
desired properties. The agFE space is readily computed from a typical FE space plus simple cell-wise
constraints.

For the sake of conciseness, we have considered as starting point mixed FE methods on body-fitted
meshes with discontinuous pressure spaces on hexahedral meshes, considering both the standard and
serendipity extension for the velocity field. We have performed an abstract stability analysis that relies
on a set of assumptions, in order to prove a weak inf-sup condition for mixed agFE spaces. Such analysis
shows the potential deficiency of the unfitted discrete inf-sup for such spaces. It allows us to identify
a subset of aggregates/facets (close to the boundary), coined improper aggregates/facets; these subsets
depend on the mixed agFE space being used.

Based on the abstract stability analysis, we have defined two different algorithms that satisfy the
required assumption for having stability. The first algorithm relies on a standard velocity extension plus
interior (residual-based) stabilization in improper aggregates and pressure jump stabilization on improper
facets. The second algorithm relies on the serendipity extension for the velocity field components and
pressure jump stabilization on improper facets. For these algorithms, a complete numerical analysis
proves stability, a priori error estimates, and condition number bounds that are not affected by the small
cut cell problem.

A complete set of numerical experiments bears out the numerical analysis. Finally, the mixed agFEM
is applied to two problems with non-trivial geometries, viz., free flow in a medium with inclusions and
confined flow in a spiral.
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