
MASSIVELY PARALLEL SIMULATIONS OF BINARY BLACK HOLE
INTERMEDIATE-MASS-RATIO INSPIRALS∗

MILINDA FERNANDO† , DAVID NEILSEN ‡ , HYUN LIM § , ERIC HIRSCHMANN ¶, AND

HARI SUNDAR ‖

Abstract. We present a highly-scalable framework that targets problems of interest to the
numerical relativity and broader astrophysics communities. This framework combines a parallel
octree-refined adaptive mesh with a wavelet adaptive multiresolution and a physics module to solve
the Einstein equations of general relativity in the BSSNOK formulation. The goal of this work is
to perform advanced, massively parallel numerical simulations of Intermediate Mass Ratio Inspirals
(IMRIs) of binary black holes with mass ratios on the order of 100:1. These studies will be used
to generate waveforms as used in LIGO data analysis and to calibrate semi-analytical approximate
methods. Our framework consists of a distributed memory octree-based adaptive meshing framework
in conjunction with a node-local code generator. The code generator makes our code portable across
different architectures. The equations corresponding to the target application are written in symbolic
notation and generators for different architectures can be added independent of the application.
Additionally, this symbolic interface also makes our code extensible, and as such has been designed
to easily accommodate many existing algorithms in astrophysics for plasma dynamics and radiation
hydrodynamics. Our adaptive meshing algorithms and data-structures have been optimized for
modern architectures with deep memory hierarchies. This enables our framework to have achieve
excellent performance and scalability on modern leadership architectures. We demonstrate excellent
weak scalability up to 131K cores on ORNL’s Titan for binary mergers for mass ratios up to 100.

Key words. octrees, adaptive mesh refinement (AMR),binary compact mergers,numerical rel-
ativity,automated code generation, BSSNOK equations

AMS subject classifications. 83-08,85-08

1. Introduction. In 2015, shortly after beginning its first observing run, the
Laser Interferometer Gravitational-Wave Observatory (LIGO) [1, 82] made the first
direct detection of gravitational waves from the merger of two black holes [7]. Since
that time, gravitational waves from four other binary black hole mergers [8, 6, 11, 12]
have been detected by LIGO and the European Virgo detectors [2, 14]. In August
2017, LIGO and Virgo detected gravitational waves from the merger of a neutron star
binary [4]. This latter detection was particularly exciting because electromagnetic
radiation from the resulting gamma-ray burst was detected by the Fermi Gamma-Ray
Burst Monitor [44] and INTEGRAL [78], as well as by several other observatories [10].
The combination of gravitational and electromagnetic observations of binary mergers
will give new insight into the physics of black holes (BHs) and neutron stars [13, 17, 9].
As the sensitivity of the LIGO detectors improves, gravitational wave detections will
increase in frequency and open a new era of gravitational wave astronomy.

Gravitational waves carry the imprint of their origins within the complicated pat-
tern of their waveform. The information therein can be untangled through a careful

∗Submitted to the editors 06-27-2018.
Funding: This work was funded by National Science Foundation grants ACI-1464244, CCF-

1643056 and PHY-1607356. This research used resources of the Oak Ridge Leadership Comput-
ing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-
00OR22725 and the Extreme Science and Engineering Discovery Environment (XSEDE) allocation
TG-PHY180002.
†School of Computing, University of Utah. (milinda@cs.utah.edu)
‡Department of Physics and Astronomy, Brigham Young University. (david.neilsen@byu.edu)
§Department of Physics and Astronomy, Brigham Young University. (hyun.lim@byu.edu)
¶Department of Physics and Astronomy, Brigham Young University. (ehirsch@physics.byu.edu)
‖School of Computing, University of Utah. (hari@cs.utah.edu)

1

ar
X

iv
:1

80
7.

06
12

8v
2

 [
gr

-q
c]

 1
9

Ja
n

20
19

mailto:milinda@cs.utah.edu
mailto:david.neilsen@byu.edu
mailto:hyun.lim@byu.edu
mailto:ehirsch@physics.byu.edu
mailto:hari@cs.utah.edu

initial u0

t

un
zip

RK stages

zip
unzip

zip

un un+1

blocks

Fig. 1: This figure illustrates the calculation of a single Runge-Kutta time step, computing
the solution at the advanced time, un+1, from data at the previous time step, un. For
computational efficiency, spatial and time derivatives are evaluated on equispaced blocks
(unzipped); a sparse grid constructed from wavelet coefficients is used for communication
and to store the final solution (zipped). For each RK stage s we perform the unzip operation
which results in a sequence of blocks which are used to compute the solution on the internal
block (�), using the padding values at the block boundary (�) followed by a zip operation
in between RK stages while the final update (i.e. next time step) performed using the zip
version of the variables. Note that the re-meshing is performed as needed based on the
wavelet expansion of the current solution (see §3.5).

comparison of the gravitational wave signal with a library of possible waveforms con-
structed using approximate methods and results from numerical simulations. Indeed,
waveform information from numerical relativity is particularly important for certain
binary black hole configurations. Examples include binary black holes with arbitrary
spin configurations [20], binaries with orbital eccentricity, and binaries for which the
black holes have very different masses [47, 54].

In this paper, we use q to denote the mass ratio of a binary as q ≡ m1/m2,
where m1 ≥ m2. At this time, very few large mass-ratio BH binaries (q � 1) have
been studied in numerical relativity, compared to studies with nearly equal mass
(q ≈ 1) [59, 84]. Codes developed for q ≈ 1 binaries are accurate and well tuned,
so the problem is well-understood and numerical results are confidently used in the
LIGO data-analysis pipeline. However, configurations with large q remain largely
beyond the capabilities of current techniques in numerical relativity. Examples include
Intermediate Mass-Ratio Inspiral (IMRI) binaries and are characterized roughly by
q ' 100. It is estimated that about 5% of the detections in LIGO might come from
IMRIs [3, 43].

For an IMRI, the size of the smaller black hole adds an extra length-scale to the
problem, compared to the q ≈ 1 case. The need to resolve this scale, together with
the large range other important length scales for the binary system, makes this a
very challenging computational problem. It requires a highly adaptive and efficient
computational algorithm tuned to handle binaries with large mass ratios. While BH
evolutions with q = 100 have been performed [62, 61, 85] previously, they were not
completed till the merger event or simulated direct head-on collisions. Therefore the
above simulations are not satisfactory to be useful toward gravitational wave analysis.

The central goal of our effort is to create a general purpose framework to study the
evolution of spacetimes with black holes or neutron stars, including binary black holes

2

with large mass ratios up to q ' 100. Here we present our portable, highly-scalable,
extensible, and easy-to-use framework for general relativity (GR) simulations that
will be forward-compatible with next-generation heterogeneous clusters.

We build on our octree-based adaptive mesh refinement (AMR) framework Den-
dro [87, 75] to support Wavelet Adaptive Multiresolution (WAMR) [69, 68, 35]. The
fast wavelet transform can be used to create a sparse representation of functions that
retains sharp features and an a priori error bound.

The high-level overview of our approach is illustrated in Figure 1. We use an
efficient block-decomposition of the distributed octree to produce a collection of over-
lapping regular grids (at different levels of refinement, see §3.3.6).

The Einstein equations of general relativity describe the spacetime geometry and,
expressed in terms of the BSSNOK formulation [81, 66], where each spatial grid point
is associated with 24 unknowns. Given their complexity and a desire for portable code,
we auto-generate the core computational kernels automatically from the equations
written in symbolic Python (SymPy [53], see §3.4). The auto-generated code is applied
at the block-level and is therefore very efficient and enables portability. The equations
are integrated in time using the method of lines with a Runge-Kutta (RK) integrator1.
The key contributions of this work include:

Wavelet Adaptive GR. To the best of our knowledge, comparable codes use simple
models of adaptivity, i.e., structured adaptivity, block adaptivity, or logically uniform
grids [38, 67, 26, 99]. We present a novel computational GR framework (Dendro-GR)
which uses octree-based Adaptive Multiresolution (AMR) grids, where the adaptivity
is guided by wavelet expansion [97, 95, 69, 68, 49] of the functions represented in the
underlying grid. We refer this as Wavelet Adaptive Multiresolution (WAMR). This is
the first highly adaptive fully relativistic—i.e., including the full Einstein equations—
code with an arbitrary localized adaptive mesh. For example for a mass ratio of q = 1,
we use approximately 7x fewer degrees of freedom for the same accuracy compared
to the block adaptivity (via Carpet [31]).

Automatic code generation. Given the complexity of the Einstein equations, we
have developed an automatic code generation framework for GR using SymPy that
automatically generates architecture-optimized codes. This greatly improves code
portability, use by domain scientists and the ability to add additional constraints and
checks to validate the code.

Performance. We developed a new parallel search algorithm TreeSearch (see
§3.3.5), to improve the efficiency of octree meshing. We also developed efficient unzip
and zip operations (block-decomposition of WAMR grid to produce collection of over-
lapping regular grids, see §3.3.6) to allow the application of the core computational
kernels to small process-local regular blocks. This improves performance as well as
performance portability in conjunction with our automatic code generation. Local
calculations on regular blocks allows us to use established, existing numerical meth-
ods for the Einstein equations, and in future work, the relativistic fluid equations and
radiation hydrodynamics equations.

Simulations. We demonstrate the ability to scale to large mass ratios, enabling sim-
ulations and extraction of gravitational waves for mass ratios as high as 100.

1Currently 3rd and 4th order RK are supported.

3

Implementation Dendro-GR is implemented in C++ using MPI except for the
automatic code generation framework which is implemented using SymPy. Our code is
freely available at https://github.com/paralab/Dendro-GR under the MIT license.

Organization of the paper: The rest of the paper is organized as follows. In §2,
we give a brief motivation on the importance of numerical simulations of BH binary
configurations and a quick overview of the existing state-of-the-art approaches in the
field of numerical relativity. In §3, we present the methodology used in Dendro-
GR in detail and how it is efficient compared to the existing approaches. In §4, we
discuss the experimental setup, strong and weak scalability of our approach, including
a detailed comparison study with the state-of-the-art Einstein Toolkit [38] package.
In §5, we conclude with directions for future work.

2. Background. In this section, we discuss the motivating applications and
summarize the most relevant work of other groups in this area. As gravitational waves
pass through the Earth, their effect on matter is extremely small. LIGO searches for
gravitational waves by using laser interferometry to detect changes in the relative
position of mirrors, to a precision of four orders of magnitude smaller than an atomic
nucleus. The gravitational wavesignals in the detector are often smaller in magnitude
than noise from other sources, but the signals can be extracted using matched filter-
ing [77], which uses a library of hundreds of candidate waveforms that are convolved
with the data. Including complete numerical waveforms in the waveform library is
important to maximize the detection rate of IMRIs in LIGO-class detectors [83].

Fig. 2: (left) A example of the adaptive mesh created by Dendro for the binary black-hole
system. (right) the hierarchical wavelet grids generated for the binary black hole system.

The Einstein equations of general relativity describe how the geometry of space-
time curves in response to the presence and motion of matter and energy. The Einstein
equations contain both hyperbolic evolution equations and elliptic constraint equa-
tions. Commonly the hyperbolic equations are solved, and the elliptic equations are
used to ”monitor” the quality of the solution [18, 79] (see Appendix A). The solution
at time t for evolution equations should satisfy Hamiltonian and momentum con-
straints (i.e. compute the l2 norm of the constraint violation) in order to verify the
solution is physically valid. While the equations can be formulated in many different
ways, few formulations are well-suited for numerical work. One such formulation is
the BSSNOK formulation [21]. The BSSNOK evolution equations are a set of strongly
hyperbolic [76] coupled PDEs that are first-order in time and second-order in space. A
brief summary of the BSSNOK with constraint equations is provided in the Appendix
A.

4

Several computer codes have been developed to solve the Einstein equations for
binary BH and neutron star systems. One of the oldest open source projects in this
community is the Cactus Computational Toolkit [29, 45], that provides a modular
infrastructure for solving time-dependent PDEs in parallel using structured grids.
Modules for specific tasks, known as thorns in Cactus parlance, can be shared and
combined to produce a sophisticated evolution code. The Einstein Toolkit (ET)
is a suite of community-developed thorns for relativistic physics [38].

It includes thorns for constructing binary BH initial data, for evolving the Einstein
equations and/or the relativistic fluid equations, and for data analysis. Similar codes
include [91, 57, 56, 67, 39]. Further, the SXS collaboration has developed SpEC [89],
a spectral code for solving the Einstein equations that has produced the longest and
most-accurate binary waveforms to date.

The challenge of running on modern massively parallel computers is pushing new
developments in numerical relativity. The use of structured grids with block-based
AMR, such as used by Cactus/ET and similar codes, is not ideal for new massively
parallel architectures and can lead to inefficient refinement (refined in the regions
where coarser representation is sufficient), especially for q � 1. One new approach
for the ET is the SENR project [74, 64], that uses coordinate systems adapted to the
binary BHs to eliminate the need for AMR. Another approach is to use discontin-
uous Galerkin (DG) methods, that requires less communication between processes.
The first three-dimensional ADER-DG simulations of the Einstein equations were
performed by Dumbser et al. [37].

The SXS collaboration is developing the SpECTRE code [55, 73] that uses task-
based parallelism and DG. Thus far only results for the relativistic MHD equations
have been published.

We have chosen to focus on one type of BH binary that is particularly difficult to
study both numerically and with semi-analytical approximations. These are IMRIs,
BH binaries with mass ratios with 50 . q . 1000. The successful numerical simula-
tion of IMRIs and their predicted gravitational wave signal is difficult because of the
large difference in the two mass-scales in the problem. Gravitational waves must be
resolvable far from the binary system while the region around both black holes must
also be accurately simulated. Standard approaches [38, 67, 26, 99] to black hole sim-
ulations often include mesh adaptivity by which necessary resolution is concentrated
in dynamic regions.

The Dendro-GR code uses octree grids based on the wavelet expansion [97, 95,
69, 68, 49], that produces refinement regions adapted to features in the solution with
a minimum number of points. This is important for problems with fine-scale fea-
tures that are not spatially localized (i.e. adaptivity of the grid is not pre-determined
based on the spatial locations of BHs), or problems with widely disparate scales, such
as IMRIs. Moreover, the numerical methods used in this paper are based on the
conventional finite difference methods that have been widely used and tested (see,
§3.1). This allows existing numerical approaches to be more easily adapted to the
Dendro-GR through symbolic code generation framework. Given the scale of our
problem, even with adaptivity, massively parallel computing resources are required.
We build our Dendro-GR framework based on our parallel adaptive meshing frame-
work Dendro [88, 87] and extend it to support numerical relativity codes with finite
differencing.

A key reason to develop scalable codes is that as the relative differences in masses
becomes larger (∼ 100×), the computational requirements will grow significantly,
potentially requiring exascale resources. A simple calculation illustrates how spatial

5

https://einsteintoolkit.org/

resolution requirements increase with q. A convenient measure for the size of a black
hole is the radius of its event horizon, which is proportional to its mass. In a black
hole binary, the mass of the smallest black hole effectively sets the minimum length
scale for the simulation. The total mass of the binary M = m1+m2 is a global scaling
parameter and is typically fixed to a constant value. Then the mass of the smaller
black hole can be written m2 = M/(q+1), showing that the minimum resolution scale
for the binary is inversely proportional to the mass ratio. In three spatial dimensions
the number of points required to resolve the smallest black hole grows as q3. This
presents both a challenging problem in computational relativity as well as a challenge
for high-performance computing. The successful scaling of our code is a first step in
this direction.

3. Methodology. Research in relativistic astrophysics requires specialized com-
putational models for gravitational, plasma, and nuclear physics. The massively par-
allel infrastructure that we propose is compatible with the standard finite difference or
finite volume discretizations that are currently used in these communities. We solve
the BSSNOK equations using conventional finite-difference discretizations, standard
gauges, and puncture initial data (see §3.1). We also adapt them to specific computer
hardware and cache sizes using our new symbolic interface (see §3.4). While this paper
focuses on the vacuum Einstein equations, we are currently working to add modules
for the relativistic MHD equations, nuclear equations of state, and neutrino leakage.

3.1. Numerical Methods. There is extensive literature on solving the
BSSNOK equations in general relativity, and some general reviews include [18, 79, 72].
In this section we briefly outline our particular choices for solving BSSNOK equa-
tions. We write the BSSNOK equations in terms of the conformal factor χ [30]. We
use the parameterization of the “1 + log” slicing condition and the Γ-driver shift used
in [67]. Spatial derivatives are calculated using finite difference operators that are
O(h4) in the grid spacing, h, with upwind derivatives for Lie derivative terms [100].
We calculate derivatives for the Ricci tensor and enforce the algebraic constraints as
described in [26]. Outgoing radiative boundary conditions are applied to each BSS-
NOK function. The BSSNOK equations are integrated in time using an explicit RK
scheme. The solution at each point is integrated with a single global times step, that is
set by the smallest grid spacing and the Courant condition [33]. While we support 3rd
and 4 order RK, the tests in this paper were done using 3rd order RK with Courant
factor λ = 0.1. Kreiss-Oliger dissipation is added [58, 18] to the solution to eliminate
high-frequency noise that might be generated near the black hole singularities.

3.2. Wavelet Adaptive Multiresolution. WAMR uses a basis of interpolat-
ing wavelets to create a sparse, quasi-structured grid that naturally adapts to the
features of the solution [69, 68, 35]. This grid adaptivity is realized by expanding
functions using the fast wavelet transform [49], and thresholding (i.e. based on a
user-specified tolerance ε > 0) the solution to create a sparse representation that re-
tains small-scale features [36]. In WAMR, we start with the coarsest representation
(V0) of a given function f . Then we compute wavelet coefficients based on the in-
terpolation error as a result of the interpolation of f from the coarser representation
to the next finer representation (V1). Hence the wavelet coefficient denotes the inter-
polation error that occurs when f is constructed from the immediate coarser level.
The sparse representation of the function f is computed based on the user-specified
tolerance and removing the spatial points whose wavelet coefficients are within the
specified threshold (see Figure 3).

6

V0

V1

V2

(a) f(x) ∈ V0 ⊂ V1 ⊂ V2

V0

W1

W2

(b) Wi,k = |f(Vi,k)− I(f(V i− 1, :))|
V0

W1

W2

(c) Wi,k ≥ ε ≥ 0

V0

W1

W2

(d) Wavelet/sparse representation of f(x)

Fig. 3: For a given function f : V → R let Vi ⊂ V be the finite dimensional approximation
of f (see Figure 3a). As number of nodes increases (i.e. going from Vi to Vi+1) for each
additional node introduced, we compute wavelet coefficients based on the absolute difference
between f(Vi,k) and interpolated value from previous level f(Vi−1,:) (see Figure 3b). In
Figure 3c shows the chosen nodes that violate specified wavelet tolerance epsilon and these
nodal wavelets are stored as the sparse/wavelet representation of function f (see Figure 3d).

Wavelet basis functions are localized (i.e. have compact support) both spatially
and with respect to scale. In comparison, spectral bases are infinitely differentiable,
but have global support; basis functions used in finite difference or finite element
methods have small compact support, but poor continuity properties. As an example,
in Figure 2 we show a binary black hole spacetime generated with WAMR using
Dendro-GR.

Wavelets encode solution features at different scales very efficiently, a character-
istic that leads to many applications in data and image compression [16]. Studies of
WAMR have shown the method to be significantly more efficient in terms of compu-
tational cost when compared with traditional numerical schemes [70]. The wavelet
amplitudes also provide a direct measure of the local approximation error and serve
as a refinement criterion. We work simultaneously with both the point and wavelet
representations [24, 94, 71, 97, 95, 96]. This gives wavelet methods some of the same
advantages as DG [90, 27], including exponential convergence. Combining the sparse
grid generated by the truncated wavelet expansion with Dendro yields a wavelet
adaptive multiresolution method that enables a promising improvement for simulat-
ing the mergers of compact object binaries.

7

3.3. Computational Framework. We now give an overview of the approach
that Dendro-GR takes in order to obtain excellent scalability in the context of
the WAMR method. Our parallel WAMR framework is based on adaptive spatial
octrees [86, 41] where the adaptivity is determined by the hierarchical computation
of wavelet coefficients and a user-specified tolerance. The construction of adaptive
octrees is similar to other octree-codes such that every element at level l gets replaced
by eight finer (smaller) elements (i.e. level l+1) if the computed wavelet coefficient is
larger than the user-specified tolerance. The main steps in building the parallel octree-
WAMR framework are partitioning, construction and enforcement of constraints on
the relative sizes of neighboring octants, and meshing. By meshing, we refer to the
process of building required data structures to perform numerical computations on a
topological octree (see §3.3.5).

3.3.1. Preliminaries. Octree based spatial subdivisions are fairly common in
computational science applications [28, 75, 15, 98, 22], due to their simplicity and
scalability. Here we present some basic concepts and notation related to octrees used
in this paper. A distributed octree T consists of p subtrees τi, i = 1, . . . , p, where p is
the number of processes and T = ∪τi. For an octant e, F (e) denotes the faces, E(e)
denotes the edges and V (e) denotes the vertices of e. The neighbors of e are given by
N(e) = NF (e) ∪NE(e) ∪NV (e), where NF (e) denotes the octants that share only a
face, NE(e) denotes the octants that share only an edge and NV (e) denotes the octants
that share only a vertex with e. If τi spans the sub-domain ωi ⊂ Ω, the boundary
octant set, bdy(τi), consists of those octants that share faces, edges and vertices with
∂ωi. Correspondingly, the set of interior octants is given by int(τi) = τi \ bdy(τi).
Finally, the octree τ is said to be 2 : 1 balanced if and only if for any ek ∈ τ where
level(ek) = lk, ∀e ∈ N(ek) then level(e) = max(lk ± 1, 0). In this work, we enforce a
2 : 1 balance constraint on our octrees.

3.3.2. Octree partitioning. The problem size or the local number of octants
varies significantly during WAMR based octree construction (in WAMR we start with
the coarsest representation and add grid points until all the wavelet coefficients are
within the specified tolerance), balancing, meshing and during the simulation as well.

This necessitates efficient partitioning of the octree to make it load balanced. We
use a space-filling curve (SFC) [93] based partitioning scheme [41], specifically the
Hilbert-curve. An SFC specifies a surjective mapping from the one-dimensional space
to higher dimensional space. This can be used to enforce an SFC based ordering
operator on higher dimensional space. The Hilbert ordering maps higher dimensional
data (octants) to a 1D curve which makes the process of partitioning trivial. The key
challenge is to order the octants or regions according to the SFC, usually performed
using an ordering function and sorting algorithm. This approach is easily parallelized
using efficient parallel sorting algorithms such as SampleSort [42] and BitonicSort
[51] which is the approach used by several state-of-the-art packages [28, 87, 88]. We
use a comparison-free SFC sorting algorithm TreeSort, based on the radix sort.
In TreeSort, we start with the root octant and hierarchically split each dimen-
sion while bucketing points for each octant and reordering the buckets, based on the
specified SFC ordering (see Figure 4). This is performed recursively on depth-first
traversal until we reach all the leaf nodes (see Algorithm 3.1). Additional details on
our partitioning algorithm can be found in [41].

3.3.3. Octree Construction and Refinement. The octree construction is
based on expanding user-specified functions (e.g. initial conditions for a hyperbolic

8

111
110

011
010

000 0
0
0

0
0
1

1
0
1

1
0
0

1
1
1

111
110

011
010

000 0
0
0

0
0
1

1
0
1

1
0
0

1
1
1

111
110

011
010

000 0
0
0

0
0
1

1
0
1

1
0
0

1
1
1

111
110

011
010

000 0
0
0

0
0
1

1
0
1

1
0
0

1
1
1

Fig. 4: Bucketing each point and reordering the buckets based on the SFC ordering
at each level l with top-down traversal. Each color-coded point is represented by
its x and y coordinates. From the MSD-Radix perspective, we start with the most-
significant bit for both the x and y coordinates and progressively bucket (order) the
points based on these. The bits are colored based on the points and turn black as
they get used to (partially) order the points.

Algorithm 3.1 TreeSort

Input: A list of points or regions W , the starting level l1 and the ending level l2
Output: W is reordered according to the SFC.
1: counts[]← 0 . |counts| = 2d, 8 for 3D
2: for w ∈W do
3: increment counts[child num(w)]

4: counts[]← Rh(counts) . Permute counts using SFC ordering
5: offsets [] ← scan(counts)
6: for w ∈W do
7: i← child num(w)
8: append w to Wi at offsets[i]
9: increment offset[i]

10: if l1 > l2 then
11: for i := 1 : 2d do
12: TreeSort(Wi, l1 − 1, l2) . local sort

13: return W

differential equation) via the wavelet transformation and truncating the expansion
(i.e. stopping the refinement at that level) when the coefficients are smaller than a
user-specified tolerance ε > 0. Intuitively, the wavelet coefficient measures the failure
of the field to be interpolated from the coarser level. In distributed memory, all
processes start from the root and refine until at least p2 octants are produced, where
p denotes the number of processors. These are equally partitioned across all processes.
Subsequent refinements happen in an element-local fashion, and are embarrassingly
parallel. A re-partition is performed at the end of construction to load-balance.

3.3.4. 2 : 1 Balancing. Following the octree construction, we enforce a 2 : 1
balance condition. This makes subsequent operations (§3.3.5, §3.3.6 and §3.3.7)
simpler without affecting the adaptive properties. Our balancing algorithm is an
updated version of the algorithm presented in [87]. The octree is divided into small
blocks, that are independently balanced by preemptively generating all balancing
octants [23], followed by ripple propagation for balancing across the blocks. The
ripple propagation inter-block balancing approach performs poorly at large levels of
parallelism, and we instead extend the generation algorithm [23]. The basic idea is
to generate all balancing octants for a given octant and then to remove duplicates.
While this approach can generate up to 8x the number of total octants, it is very

9

simple and highly parallel. We ensure that the overall algorithm works efficiently,
by relying on our TreeSort algorithm to sort and remove duplicates periodically,
ensuring that the number of octants generated remains small.

3.3.5. Meshing. By meshing or mesh generation we simply refer to the con-
struction of data structures required to perform numerical computations on topolog-
ical octree data. As mentioned in §3.1, we use 4th order Finite Differences (FD) with
5-point stencils for ∂i, ∂

2
ij , and 7-point stencils for ∂i, i, j ∈ [1, 2, 3] with upwind/down-

wind and Kriess-Oliger derivatives. We use a RK time integrator with the method of
lines to solve the BSSNOK equations. In this section, we present the data structure
choices that we have made and how everything comes together to perform numerical
computations on adaptive octree data to evolve the BSSNOK equations in time.

Embedding nodal information on an octree: In order to perform FD com-
putations on an octree, we need to embed spatial/nodal points for each octant. As-
suming that we want to perform dth order FD computations, we uniformly place
(d + 1) × (d + 1) × (d + 1) points for each octant. In our simulations, we have used
d = 4 since we are performing 4th order FD computations, but the meshing algorithms
presented in the paper are valid for any integer value of d. The nodes obtained by
uniform node placement are referred to as octant local nodes (VD). Octants that
share a face or an edge will have duplicate nodal points in VD, and we need to remove
the duplicate nodes from VD to get shared octant nodes (VS) for several reasons.
1).VS has a lower memory footprint compared to VD. 2). A function representation,
on a VD, can be discontinuous due to node duplications, unless function values of
duplicate nodes are synchronized. Due to the above reasons, we use VS as our prime
nodal representation (also referred as zipped representation) of the octree. Since the
octrees are generated with WAMR, finding the duplicate and hanging nodes (see Fig-
ure 7) from VD becomes non-trivial and requires an octant level neighborhood data
structure which is referred to as octant to octant (o2o) mapping. Also, we need an
additional mapping to map the octants to the VS representation which is referred to
as octant to nodal (o2n) mapping.

Fig. 5: A 2D example of octant local nodes (in the center) and shared octant nodes (the
rightmost figure) nodal representation (with d = 2, where d denotes the order of FD com-
putations) of the adaptive quadtree shown in the leftmost figure. Note that in octant local
nodes representation nodes are local to each octant and contain duplicate nodes. By remov-
ing all the duplicate and hanging nodes by the rule of nodal ownership we get the shared
octant nodes representation. Note that the nodes are color coded based on the octant level.

We now describe the methods for building these maps. Note that for the mesh
generation, we assume the input is a complete, ordered and 2:1 balanced octree.

TreeSearch: amortized search operations on octrees: The common ap-
proach for building the maps o2o and o2n is to generate keys corresponding to the
location of neighboring octants and to perform a parallel binary search on the octree

10

k1
k2

k3
k4
k5

1 4

7 4

k1
k2

k3
k4
k5

1 1 1

1 1

1 1

1 4

1 1

1 1k1
k2

k3
k4
k5

1 1 1

1 1

1 1

1 1 1
1 1

1 1

1 1k1
k2

k3
k4
k5

Fig. 6: For a given ordered octree τ and a set of keys (leftmost figure), TreeSearch per-
forms the traversal in a top-down order over the set of keys, while flagging k2, k4, k5 at the
level 1 split, k3 at level 2 split, and k1 at level 3 split.

and build the maps [87, 28]. Assuming the number of keys we need to search is O(n),
where n is the number of octants, the cost of performing binary searches for all the
keys is O(n log(n)). The log(n) term corresponding to the binary search is ineffi-
cient due to poor memory access and can end up being very expensive for large n.
We present an alternative TreeSearch, with better memory access for performing
search operations on an ordered octree. To the best of our knowledge this algorithm
is new. The approach used in TreeSearch is influenced by radix sort, where we
traverse the set of search keys and the octree in the space filling curve (SFC) induced
ordering. As shown in Figure 6, we start at level 1, split and calculate bucket counts
|b| generated by the split while reordering the keys in the same traversal order dic-
tated by the SFC. |b| = 1 suggests that octant e ∈ τ . At this point, b is an ancestor
of all keys k ∈ b, and we have found the index the octant. In contrast with the other
approaches, TreeSearch performs a serial traversal over the set of keys and the
elements of the ordered octree leading to better memory and cache performance (see
Algorithm 3.2). Although the complexity for this approach is still O(n log(n)), it can
be thought as performing log n streaming sweeps over the O(n) octants, leading to
better performance.

Algorithm 3.2 TreeSearch: Searching in octrees

Input: ordered octree τ on domain Γ, list keys K ∈ Γ,
Output: list keys K ∈ Γ with flagged search results.
1: oct counts[]← 0
2: key counts[]← 0 . |oct counts| = |key counts| = 2d, 8 for 3D
3: for e ∈ τ do
4: increment oct counts[child num(e)]

5: for k ∈ K do
6: increment key counts[child num(k)]
7: k.result← ∅
8: oct counts[],key counts []← Rh(oct counts, key counts) . Permute counts using SFC ordering
9: offsets oct [] ← scan(oct counts)

10: offsets key [] ← scan(key counts)
11: for k ∈ K do
12: i← child num(k)
13: append k to Ki at offsets key[i]
14: increment offset key[i]

15: for i := 1 : 2d do
16: if oct counts > 1 then
17: TreeSearch(Ki, τi)
18: else
19: for k ∈ Ki do
20: k.result← offset oct[i]

21: return K

11

Fig. 7: An example of a hanging face and a hanging edge where in both cases octant (�)
has a hanging face (left figure) and a hanging edge (right figure) with octant (�). Nodes
on the hanging face/edge are mapped to the larger octant and the hanging nodal values are
obtained via interpolation. Note that for illustrative purposes, the two octants are drawn
separately, but are contiguous.

Ghost/Halo octants: Since the octree is partitioned into disjoint subtrees
owned by different processes, we need access to a layer of octants belonging to other
processes. These are commonly known as the halo or a ghost layer. The computation
of ghost octants can be reduced to a distributed search problem where each octant
in each partition generates a set of keys that can be searched for to determine the
ghost layer. Note that after the ghost-exchange all search operations are local to each
partition/process.

Octant to octant map (o2o): Once the ghost layer has been received, we
compute the o2o map by performing local searches using TreeSearch for the
neighbors (along x, y and z axes directions) of all octants and storing their indices.
Therefore for an given octant e ∈ τ , o2o(e) = {e1, ..., e8} will return 8 neighbor
octants of e. The algorithm for the o2o map construction is listed in Algorithm 3.3.

Algorithm 3.3 BuildOctantToOctant: compute o2o

Input: an ordered 2:1 balanced distributed octree T on Γ, comm, p, pr of current task in comm.
Output: compute o2o
1: ˆτpr ← ComputeGhostOctants(T , comm, p, pr)
2: o2o ← ∅
3: keys[]← compute K(ˆτpr)
4: TreeSearch(ˆτpr , keys)
5: for key ∈ keys do
6: if key is found then
7: o2o[key.owner][key.neighbor]=key.result

8: return o2o

Octant to nodal map (o2n): Since we use the shared octant nodes (VS) to
store all the simulation variables, we need a mapping between the underlying octree
and VS . The o2n map simply specifies the subset v of shared octant nodes nodes
(where |v| = (d + 1)3) of a given octant e ∈ τ . When computing o2n we initially
start with octant to the VD map which is trivially constructed by definition of VD. In
order to remove duplicate nodes (see Figure 5), we need to define a globally consistent
rule of nodal ownership. The ownership of nodes which lie on a hanging face or edge
(see Figure 7) will belong to the coarser octant (since they can be interpolated from
coarser level) while ties and non-hanging nodal ownership are determined by the SFC
ordering of octants. Duplicate nodes are removed from the octant local nodes (VD) to

12

Algorithm 3.4 BuildOctantToNodal: Octant to nodal map generation - o2n

Input: an ordered 2:1 balanced distributed octree T on Γ, comm, p, pr of current task in comm.
Output: compute o2n
1: ˆτpr ← ComputeGhostOctants(T , comm, p, pr)
2: o2n []← initialize(VL) . o2n initialized with octant local nodes
3: VS ← VL \ VD
4: for e ∈ τ̂k do
5: for v ∈ Nd(e) do . Nd(e) denotes (d+ 1)3 nodes of e
6: owner idx← compute O(v)
7: o2n ← owner idx
8: return o2n

obtain the shared octant nodes (VS) while modifying octant to VD map to generate
octant to VS map (o2n). The overview of computing o2n map is presented in
Algorithm 3.4. By the assumption that the octree is 2:1 balanced, the owner nodes
(see Figure 7) of hanging nodes cannot be hanging, which simplifies the construction
of the o2n mapping.

Fig. 8: A simplistic example of octree to block decomposition and unzip operation. The
leftmost figure shows the considering adaptive octree with shared octant nodes and its
block decomposition is shown in the middle. Note that the given octree is decomposed into
four regular blocks of different sizes. The rightmost figure shows the decomposed blocks
padded with values coming from neighboring octants with interpolation if needed. In order
to perform unzip operation both o2o and o2n mappings are used.

3.3.6. unzip and zip Operations:. All simulation variables are stored in
their most compact or zipped representation, i.e., without any duplication. Due to the
use of 2:1 balanced adaptive octrees, performing FD computation on the octree is non-
trivial. In order to overcome the above, we use unzip representation (a representation
in between shared octant nodes and octant local nodes). Any given adaptive octree τk
can be decomposed into a set of regular grid blocks of different sizes–basically a set of
octants that are all at the same level of refinement. Due to the memory allocation and
performance, we enforce block sizes to be powers of two. In order to perform stencil
operations on these blocks, we need information from neighboring blocks, similar to
the ghost layer which is required by the distributed case. In the context of blocks, we
refer to this layer as the padding. During meshing, we compute and save the octree-
to-block decomposition, i.e., which octants are grouped together as a block. The
computation of octree-to-block decomposition primarily involves a top-down traversal
over the local octants and stopping when all elements in the block are at the same
level. In order to convert the zipped to the unzipped representation, we copy the

13

∂tα = Lβα− 2αK,

∂tβ
i = λ2β

j ∂jβ
i +

3

4
f(α)Bi

∂tB
i = ∂tΓ̃

i − ηBi + λ3β
j ∂jB

i − λ4β
j ∂jΓ̃

i

∂tγ̃ij = Lβ γ̃ij − 2αÃij ,

∂tχ = Lβχ+
2

3
χ (αK − ∂aβa)

∂tÃij = LβÃij + χ (−DiDjα+ αRij)
TF +

α
(
KÃij − 2ÃikÃ

k
j

)
,

∂tK = βk∂kK −DiDiα+

α

(
ÃijÃ

ij +
1

3
K2

)
,

∂tΓ̃
i = γ̃jk∂j∂kβ

i +
1

3
γ̃ij∂j∂kβ

k + βj∂jΓ̃
i −

Γ̃j∂jβ
i +

2

3
Γ̃i∂jβ

j − 2Ãij∂jα+

2α

(
Γ̃ijkÃ

jk − 3

2χ
Ãij∂jχ−

2

3
γ̃ij∂jK

)

from DENDRO_sym import *

a_rhs = Dendro.Lie(b, a) - 2*a*K

b_rhs = [3/4 * f(a) * B[i] +

l2*vec_j_del_j(b, b[i])

for i in e_i]

l2*vec_j_del_j(b, b[i])

for i in e_i]

B_rhs = [Gt_rhs[i] - eta * B[i] +

l3 * vec_j_del_j(b, B[i]) -

l4 * vec_j_del_j(b, Gt[i])

for i in e_i]

gt_rhs = Dendro.Lie(b, gt) - 2*a*At

chi_rhs = Dendro.Lie(b, chi) +

2/3*chi*(a*K - del_j(b))

At_rhs = Dendro.Lie(b, At) + chi *

Dendro.TF(-DiDj(a) +

a*Dendro.Ricci) +

a*(K*At -2*At_ikAtKj)

K_rhs = vec_k_del_k(K) - DIDi(a) +

a*(1/3*K*K + A_ij_A_IJ(At))

Fig. 9: The left panel shows the BSSNOK formulation of the Einstein equations. These
are tensor equations, with indices i, j, . . . taking the values 1, 2, 3. On the right we show the
Dendro sym code for these equations. Dendro sym uses SymPy and other tools to generate
optimized C++ code to evaluate the equations. Note that Lβ , D, ∂ denote Lie derivative,
covariant derivative and partial derivative respectively, and we have excluded ∂tΓ

i from
Dendro sym to save space. (See [21, 18] for more information about the equations and the
differential operators.)

data from the zipped representation to the blocks with padding region. This involves
copying the data within the block, and copying–potentially with interpolation–from
neighboring octants. Nodes on the block boundary which are hanging need to be
interpolated during the copy. The 2:1 balance condition guarantees that at most a
single interpolation is performed for any given octant.

The stencil and other update operations are only performed on the block internal
while the padding region is read-only. At the end of the update, the simulation vari-
ables are zipped back, i.e., injected back to the zipped representation. This step does
not involve any interpolations or communication and is very fast. Note that several
key operations such as RK update and inter-process communications operate using
the zip representation, and are extremely efficient which is depicted in strong and
weak scaling results (see Figures 13 and 14). There are several additional advantages
for unzipped representation. 1). unzipped representation decouples the octree adaptiv-
ity from the FD computations. 2). The block representation enables code portability
and enables to perform architecture specific optimizations.

Although, several similar approaches [19, 31] exist for zip and unzip operations,
these approaches rely on structured or block structured adaptivity. In contrast to
existing approaches we have designed efficient scalable data structures to perform zip
and unzip operations on fully adaptive 2 : 1 balanced grids.

14

3.3.7. re-mesh and inter-grid transfer operations. As the BHs orbit
around each other, we need to remesh so that maximum refinement occurs around
the singularities. We do not enforce maximum refinement at singularities artificially,
this is automatically performed by WAMR due to the fact that, BSSNOK variables
might not even be C0 continuous at BH locations. The unzip representation at the
end of the time-step is used to determine the wavelet coefficients for each block based
on a user-specified threshold. This allows us to tag each octant with refine, coarsen or
no change. This is used to remesh, followed by a repartition to ensure load-balance.
Once the re-mesh operation is performed we transfer the solution from old mesh to
the newly generate mesh using interpolations as needed. We refer to this is inter-grid
transfer and this is done via interpolations or injections at the block level.

3.4. Symbolic interface and code generation. The Einstein equations are a
set of non-linear, coupled, partial differential equations. Upon discretization, one can
end up with 24 or more equations with thousands of terms. Sustainability, code opti-
mizations and keeping it relevant for architectural changes are additional difficulties.
To address these issues, we have developed a symbolic interface for Dendro-GR.
Note that there are several significant attempts such as Kranc[50] and NRPy [74] on
symbolic code generation for computational relativity due to the complexity of the
BSSNOK equations. We leverage symbolic Python (SymPy) as the backend for this
along with the Python package cog to embed Python code within our application-
level C++ code. The Dendro sym package allows us to write the discretized versions of
the equations similar to how they are written mathematically and enable improved
usability for Dendro-GR users. An example for the BSSNOK equations are shown
in Figure 9, with the equations on the left and the corresponding Python code on the
right.

There are several advantages to using a symbolic interface like Dendro sym for
the application-specific equations. First, it improves the portability of the code by
separating the high-level description of the equations from the low-level optimizations,
which can be handled by architecture-specific code generators. We support avx2 code
generators and are working on developing a CUDA generator as well. Since these
are applied at a block level, it is straightforward to schedule these blocks across
cores or GPUs. Note that the auto-generated code consists of several derivative
terms that are spatially dependent as well as other point-wise update operations. We
perform common subexpression elimination (CSE) [32, 63] to minimize the number
of operations. Additionally, we auto-vectorize the pointwise operations and have
specialized implementations based on the stencil-structure for the derivative terms.

3.5. Putting everything together. We use an RK time stepper to perform
the time evolution. The algorithmic choices we have made in Dendro-GR support
arbitrary dth order RK time integration. The initial octree is constructed based on
the WAMR method until the generated grid convergers to capture specified initial
data, which is followed by the 2 : 1 octree balancing and mesh generation phase which
result in all the distributed data structures that are needed to perform ghost/halo
exchange, unzip and zip operations. A given RK stage is computed by perform-
ing unzip operations with overlapped exchange of the ghost layer for the evolution
variables, computation of the derivatives and right-hand-side (rhs) using the code gen-
erated by the symbolic framework for all local blocks and finally performing zip oper-
ation to get the computed zipped rhs variables. The RK update is then performed on
the zipped variables. After a specified number of timesteps, we compute the wavelet
coefficient for the current solution represented on the grid, and perform remesh and

15

Algorithm 3.5 Overview of our approach

1: M ← initialize mesh . §3.3.5
2: u← initialize variables (M)
3: while t < T do
4: for r = 1 : 3 do . RK stages
5: B, û← Unzip(M,u) . §3.3.6
6: for b ∈ B do
7: Compute derivatives . Machine generated code §3.4
8: Compute ûrhs(b) . Machine generated code §3.4

9: urhs ← Zip(M,B, ûrhs) . §3.3.6
10: RK update

11: t← t+ dt
12: if need remesh M then . §3.3.7
13: M ′ ← remesh(M)
14: u′ ← Intergid Transfer(M,M ′, u) . §3.3.7

inter-grid transfer operations if the underlying octree grid needs to be changed. Note
that wavelet computation for the grid is a local to each process while remesh and
inter-grid transfer need interprocess communication. An complete outline of our ap-
proach for simulating binary BH mergers demonstrating how the various components
come together is listed in Algorithm 3.5 and illustrated in Figure 1.

In the Appendix A.1 we present an example on how to use Dendro-GR frame-
work to solve simpler (compared to BSSNOK) NLSM equations. NLSM example
also serves as an additional test to ensure all the Dendro-GR modules are working
and integrated correctly. We also performed additional tests with NLSM with zero
source term result in the standard linear wave equation which enables to perform
convergence testing with the analytical solution.

4. Results. In this section we perform a thorough evaluation of our code, in-
cluding detailed comparisons with the Einstein Toolkit. We first describe the
machines used for these experiments followed by results demonstrating the improve-
ments to Dendro and comparisons with Einstein Toolkit. Finally, we push our
code to the limit of extreme adaptability to demonstrate its capability, using cases
that are currently–to the best of our knowledge–beyond the capability of Einstein
Toolkit.

Experimental Setup: The large scalability experiments reported in this paper were
performed on Titan and Stampede2. Titan is a Cray XK7 supercomputer at Oak
Ridge National Laboratory (ORNL) with a total of 18,688 nodes, each consisting of
a single 16-core AMD Opteron 6200 series processor, with a total of 299,008 cores.
Each node has 32GB of memory. It has a Gemini interconnect and 600TB of memory
across all nodes. Stampede2 is the flagship supercomputer at the Texas Advanced
Computing Center (TACC), University of Texas at Austin. It has 1, 736 Intel Xeon
Platinum 8160 (SKX) compute nodes with 2 × 24 cores and 192GB of RAM per
node. Stampede2 has a 100Gb/sec Intel Omni-Path (OPA) interconnect in a fat tree
topology. We used the SKX nodes for the experiments reported in this work.

Implementation Details: The Dendro-GR framework is written in C++ using MPI.
The symbolic interface and code generation module uses symbolic Python (SymPy).
In the comparisons with the Einstein Toolkit, we have used Cactus v4.2.3 and
the Tesla release of the Einstein Toolkit. We integrated the BSSNOK equations with
third-order RK for all comparisons in this paper. The constraint analysis, apparent
horizon finder, and output were turned off for these runs.

16

https://einsteintoolkit.org/
https://einsteintoolkit.org/
https://einsteintoolkit.org/
https://einsteintoolkit.org/
https://www.olcf.ornl.gov/titan/
https://portal.tacc.utexas.edu/user-guides/stampede2
https://www.olcf.ornl.gov/titan/
https://portal.tacc.utexas.edu/user-guides/stampede2
https://einsteintoolkit.org/

0123456

4
8

9
6

19
2

38
4

76
8

15
3
6

30
7
2

timeperRKstep(s)→

E
in
st

e
in

T
o
o
l
k
it
(s
tr
o
n
g
sc
a
li
n
g
)

D
e
n
d
r
o
-G

R
(s
tr
on

g
sc
al
in
g
)

E
in
st

e
in

T
o
o
l
k
it
(w

ea
k
sc
al
in
g)

D
e
n
d
r
o
-G

R
(w

ea
k
sc
a
li
n
g
)

0
.8
3

0
.5
5

0
.3
7

−
−

−
−

1
.5
8

0
.8
6

0
.5
1

0
.3
5

−
−

−

2
.9
8

1
.5
7

0
.8
3

0
.6
1

0
.3
8

−
−

5
.9
0

3
.3
5

1
.7
5

1
.0
4

0
.5
4

0
.3
9

−

1
1
.2
3

6
.5
9

3
.6
7

1
.9
2

1
.1
0

0
.6
9

0
.3
8

1
9
.2
2
1
1
.0
8

6
.2
2

3
.2
0

1
.6
4

0
.9
8

0
.5
6

3
5
.4
6

−
1
2
.3
4

6
.8
8

4
.0
1

2
.0
6

1
.0
6

4
8

9
6

1
9
2

3
8
4

7
6
8

1
5
3
6

3
0
7
2

d
o
fs

to
ta

l

7
6
8
M

3
8
4
M

1
9
2
M

9
6
M

4
8
M

2
4
M

1
2
M

c
o
re
s

p
e
r
c
o
re

d
o
fs

(a
lo
n
g
th

e
d
ia
g
o
n
a
l)

2
5
0
K

1
2
5
K

6
2
K

3
1
K

1
5
K

8
K

4
K

D
e
n
d
r
o
-G

R

2
.2
7

2
.0
6

1
.9
3

1
.8
8

2
.0
3

2
.0
7

−

2
.6
7

2
.3
1

2
.0
8

1
.9
4

2
.0
7

2
.0
4

−

3
.3
6

2
.6
8

2
.3
1

2
.0
8

2
.1
2

2
.0
8

−

4
.6
8

3
.4
6

2
.6
9

2
.3
2

3
.4
5

2
.1
6

−

7
.1
3

4
.7
6

3
.4
5

2
.7
4

2
.5
1

2
.3
1

−

1
2
.4
4

7
.5
1

4
.8
7

3
.4
8

2
.9
2

2
.5
2

−

2
3
.3
8
1
2
.6
5

7
.6
4

4
.9
3

3
.7
1

2
.9
5

−

4
8

9
6

1
9
2

3
8
4

7
6
8

1
5
3
6

3
0
7
2

c
o
re
s

d
o
fs

to
ta

l

7
6
8
M

3
8
4
M

1
9
2
M

9
6
M

4
8
M

2
4
M

1
2
M

p
e
r
c
o
re

d
o
fs

(a
lo
n
g
th

e
d
ia
g
o
n
a
l)

2
5
0
K

1
2
5
K

6
2
K

3
1
K

1
5
K

8
K

4
K

E
in
st

e
in

T
o
o
l
k
it

F
ig

.
10

:
C

o
m

p
a
ri

so
n

b
et

w
ee

n
E

in
st

e
in

T
o
o
l
k
it

a
n
d

D
e
n
d
r
o
-G

R
w

it
h
o
u
t

fa
ct

o
ri

n
g

in
a
d
a
p
ti

v
it

y
(i

.e
.

b
o
th

E
in

st
e
in

T
o
o
l
k
it

a
n
d

D
e
n
d
r
o
-

G
R

su
p
p

o
rt

u
n
if

o
rm

g
ri

d
s.

).
F

o
r

a
fi
x
ed

to
le

ra
n
ce

,
w

e
ex

p
a
n
d

th
e

d
o
m

a
in

fo
r

a
1

:
1

m
a
ss

-r
a
ti

o
si

m
u
la

ti
o
n

su
ch

th
a
t

b
o
th

E
in

st
e
in

T
o
o
l
k
it

a
n
d

D
e
n
d
r
o
-G

R
h
av

e
ro

u
g
h
ly

th
e

sa
m

e
n
u
m

b
er

o
f

d
o
fs

.
W

e
p
re

se
n
t

b
o
th

w
ea

k
a
n
d

st
ro

n
g

sc
a
li
n
g

re
su

lt
s

u
si

n
g

b
o
th

co
d
es

.
O

n
th

e
le

ft
ta

b
le

a
re

re
su

lt
s

fr
o
m

D
e
n
d
r
o
-G

R
a
n
d

fr
o
m

E
in

st
e
in

T
o
o
l
k
it

o
n

th
e

ri
g
h
t.

In
th

e
m

id
d
le

,
w

e
p
lo

t
a

re
p
re

se
n
ta

ti
v
e

st
ro

n
g

a
n
d

w
ea

k
sc

a
li
n
g

cu
rv

e
fo

r
ea

ch
co

d
e.

T
h
e

D
e
n
d
r
o
-G

R
sc

a
li
n
g

is
p
lo

tt
ed

in
g
re

en
(l

ig
h
te

r
sh

a
d
e

fo
r

w
ea

k
)

a
n
d

b
lu

e
fo

r
E

in
st

e
in

T
o
o
l
k
it

.
T

h
e

co
rr

es
p

o
n
d
in

g
d
a
ta

en
tr

ie
s

a
re

a
ls

o
m

a
rk

ed
in

th
e

ta
b
le

s.
N

o
te

th
a
t

th
e

ro
w

s
re

p
re

se
n
t

st
ro

n
g

sc
a
li
n
g

a
n
d

th
e

d
ia

g
o
n
a
l

en
tr

ie
s

re
p
re

se
n
t

w
ea

k
sc

a
li
n
g

re
su

lt
s

a
n
d

ru
n
ti

m
e

is
re

p
o
rt

ed
in

se
co

n
d
s(
s)

.

17

https://einsteintoolkit.org/
https://einsteintoolkit.org/
https://einsteintoolkit.org/
https://einsteintoolkit.org/
https://einsteintoolkit.org/

unbalanced octants balanced octants 2:1 balance ([87]) (s) 2:1 balance (Dendro-GR) (s)
3K 5K 0.0087 0.0043
33K 59K 0.0908 0.0541
338K 553K 0.7951 0.5461
3M 5M 7.7938 6.9313
6M 11M 16.1828 14.7374

Table 1: Comparison study for 2:1 balancing approach used in [87] and the new
balancing approach in a single core in Stampede2 (SKX node), with varying input
octree sizes ranging from 3K to 6M octants.

100 1K 10K 100K 1M 10M 20M 33M

0

10

20

number of keys →

ti
m
e(
s)
→

std::bsearch

TreeSearch

Fig. 11: Comparison of std::bsearch with partial ordering operator < and compar-
ison free TreeSearch approach for performing, varying number of keys on 33M
sorted complete octree using single core in Stampede2 SKX node.

4.1. Meshing Performance. In this section, we briefly present results for the
improved scalability and performance of the proposed balancing and meshing algo-
rithms. In Table 1, we list the improvement in enforcing 2:1 balancing by using
TreeSort instead of the ripple propagation used in [87]. We present only single core
results, as the algorithmic changes are for the sequential portions of the algorithms.
In Table 1 we demonstrate significant savings for a range of problems sizes.

Similarly, significant savings are also obtained by the use of TreeSearch com-
pared to the use of binary searches for the various search operations needed for mesh-
ing. In this experiment, we searched for k keys in an array of size n = 33M octants.
This size was chosen based on the average grain size we used in our experiments.
Note that for meshing, k = O(n), and therefore we plot results up to k = n. Having
a large array that is being searched in (large n), results in the first few steps of the
binary search resulting in cache misses affecting overall performance. TreeSearch
utilizes the deep memory hierarchy in a more effective fashion, but because of the ad-
ditional work involved in sorting, requires a minimum number of keys to be searched
for before it is cheaper. This can be seen in our results plotted in Figure 11, where
TreeSearch scales better than std::bsearch, and is faster for k > 1M . Given the
number of keys being searched for during meshing, TreeSearch improves the overall
meshing performance and scalability significantly.

4.2. Correctness of Code. We performed a number of tests to assess the cor-
rectness of our code, including simulations of static (Appendix B.9) and boosted black

18

https://portal.tacc.utexas.edu/user-guides/stampede2
https://portal.tacc.utexas.edu/user-guides/stampede2

0 20 40 60 80 100
0

2

4

6

·106

mass ratio →

gr
id

p
o
in
ts
→

ET(points)

Dendro(points)

Fig. 12: Comparison between ET and Dendro-GR for number of spatial points with
increasing mass ratios. Note that these are not from complete simulations and the size of
the problem as well as the time per RK-step is likely to increase, but it illustrates the rate
of increase for both approaches. Parameters for the above experiment generated such that
total mass of black holes equals to 1 and the separation distance is 32 for all cases and
maxdepth is set in a way that the spatial discretization dx < min(m1,m2)

16
where m1,m2

denotes the individual masses of black holes.

holes (Appendix B.10), as well as comparisons to other codes. To verify the auto-
matic generation of the computer code for the BSSNOK equations, we evaluated these
equations using arbitrary analytic functions of order unity over a grid of points, and
compared the results to a known solution. The L2-norms of the error are equivalent to
machine zero, given the limitations of finite-precision arithmetic. Additional results
on the correctness are presented in Appendix B.6.

4.3. Comparison with Einstein Toolkit. We compare our code with the BSS-
NOK formulation implemented in ET. The AMR driver for Cactus, Carpet [40], only
supports block adaptivity. Therefore, we would expect Dendro-GR to require fewer
degrees of freedom (dof) for a given simulation and consequently be faster. Although
ET uses vectorization for improved performance [45], Dendro-GR outperforms ET.
Note that for all comparison studies with Einstein Toolkit , we have used the non-
vectorized version of the Dendro-GR generated code. To highlight the improvements
over ET, we perform two independent experiments. First, we compare the perfor-
mance of both codes without adaptivity, and then in a separate experiment we show
that Dendro-GR provides a more efficient adaptivity and scaling than Carpet.

Uniform Grid Tests: In Figure 10, we present a comparison between Dendro-GR
and ET. This uses a regular grid for ET, and serves to highlight the efficiency of the
Dendro-GR code including the overhead of adaptivity (i.e., zip and unzip). These
runs were performed on Stampede2, and we show strong and weak scaling for both
codes. Although both codes demonstrate good scaling, the performance (as measured
by the time for one complete timestep) is better for Dendro-GR at higher core
counts. Einstein Toolkit has better performance for large number of unknowns
per core at low core counts. This effectively captures the overhead of zip and unzip
compared to an efficient and mature code. For cases with higher core counts as
well as smaller number of unknowns per core, Dendro-GR performs better. This
is largely due to better cache utilization due to blocking, that largely compensates
for the overhead of zip/unzip. Additionally, Dendro-GR demonstrates better strong

19

https://einsteintoolkit.org/
https://einsteintoolkit.org/
https://portal.tacc.utexas.edu/user-guides/stampede2
https://einsteintoolkit.org/

p

ti
m
e(
µ
s) 3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
K

4
K

8
K

1
6
K

3
2
K

6
5
K

1
3
1
K

c
o
m
m
u
n
ic
a
ti
o
n

(µ
s
)

u
n
z
ip

(µ
s
)

rh
s
(µ
s
)

d
e
ri
v
a
ti
v
e
s
(µ
s
)

w
a
v
e
le
ts

(µ
s
)

T
o
ta

l
ti
m
e
(µ
s
)

T
o
ta

l
d
o
fs

(z
ip
p
e
d
)

d
o
fs

p
e
r
c
o
re

02469

1
.6
5

2
.7
2

1
.6
5

0
.5
0

0
.1
8

3
.2
1

1
.9
5

1
.8
5

0
.5
5

0
.0
5

3
.9
4

1
.1
0

1
.8
7

0
.5
7

0
.0
6

4
.9
1

0
.7
3

1
.9
9

0
.6
3

0
.1
1

5
.7
5

1
.0
0

1
.8
5

0
.5
7

0
.1
4

5
.5
2

0
.8
8

1
.9
4

0
.6
0

0
.1
7

5
.7
3

0
.9
3

2
.1
4

0
.8
2

0
.1
8

5
.4
6

0
.8
3

2
.1
7

0
.8
2

0
.2
5

6
.2
3

0
.7
5

1
.9
6

0
.6
3

0
.3
0

6
.0
8

0
.8
6

2
.1
2

0
.8
4

0
.3
3

5
.6
3

0
.9
1

1
.6
4

0
.5
4

0
.5
2

6
.0
5

0
.9
7

1
.7
4

0
.5
8

0
.5
6

6
.3
2

0
.8
6

1
.8
2

0
.6
1

0
.4
0

6
.7

4
8
.6
M

1
.5
2
M

7
.6

9
2
.9
M

1
.4
5
M

7
.5

1
8
7
.7
M

1
.4
7
M

8
.4

3
4
2
.1
M

1
.3
4
M

9
.3

6
9
4
.0
M

1
.3
6
M

9
.1

1
.4
B

1
.4
0
M

9
.8

2
.8
B

1
.3
5
M

9
.5

5
.6
B

1
.3
6
M

9
.9

1
1
.0
B

1
.3
4
M

1
0
.2

2
1
.7
B

1
.3
3
M

9
.2

4
6
.4
B

1
.4
2
M

9
.9

9
3
.9
B

1
.4
3
M

1
0
.0

2
0
5
.8
B

1
.5
7
M

F
ig

.
13

:
W

ea
k

sc
a
li
n
g

re
su

lt
s

in
O

R
N

L
’s

T
it

a
n

fo
r
R
K
/
(d
of
/
p
)

(a
v
er

a
g
ed

ov
er

1
0

st
ep

s)
w

h
er

e
R
K
,d
of
,p

d
en

o
te

s
th

e
ti

m
e

fo
r

si
n
g
le
R
K

st
ep

,
d
eg

re
es

o
f

fr
ee

d
o
m

,
a
n
d

n
u
m

b
er

o
f

co
re

s
re

sp
ec

ti
v
el

y,
w

it
h

d
er

iv
a
ti

v
e

co
m

p
u
ta

ti
o
n

(d
e
r
i
v
),

ri
g
h
t

h
a
n
d

si
d
e

(r
h
s)

co
m

p
u
ta

ti
o
n
,
u
n
z
i
p

co
st

,
w

av
el

et
co

m
p
u
ta

ti
o
n

(w
a
v
e
l
e
t
s
)

a
n
d

co
m

m
u
n
ic

a
ti

o
n

co
st

(c
o
m
m
)

w
it

h
th

e
av

er
a
g
e

o
f

1
.4

1
M

u
n
k
n
ow

n
s

p
er

co
re

w
h
er

e
th

e
n
u
m

b
er

o
f

co
re

s
ra

n
g
in

g
fr

o
m

3
2

to
1
3
1
,0

7
2

co
re

s
o
n

8
,1

9
2

n
o
d
es

w
h
er

e
th

e
la

rg
es

t
p
ro

b
le

m
h
av

in
g

2
0
6

B
il
li
o
n

u
n
k
n
ow

n
s.

A
b

ov
e

re
su

lt
s

a
re

g
en

er
a
te

d
w

it
h

m
a
ss

ra
ti

o
µ

=
1
0

w
it

h
m

a
x
d
e
p
t
h

1
8

a
n
d

w
av

el
et

to
le

ra
n
ce

o
f

1
0
−
6
.

N
o
te

th
a
t

th
e

u
n
k
n
ow

n
s

p
er

co
re

h
av

e
a

sl
ig

h
t

va
ri

a
ti

o
n

si
n
ce

w
it

h
W

A
M

R
w

e
d
o

n
o
t

h
av

e
ex

p
li
ci

t
co

n
tr

o
l

ov
er

th
e

g
ri

d
si

ze
a
n
d

W
A

M
R

d
ec

id
es

th
e

re
fi
n
em

en
t

re
g
io

n
o
n

th
e

m
es

h
b
a
se

d
o
n

th
e

h
ow

w
av

el
et

s
b

eh
av

e
d
u
ri

n
g

th
e

ti
m

e
ev

o
lu

ti
o
n
.

T
h
is

is
w

h
y

w
e

h
av

e
re

p
o
rt

ed
n
o
rm

a
li
ze

d
R
K

w
it

h
d
of
/
p

m
et

ri
cs

to
re

p
o
rt

a
cc

u
ra

te
w

ea
k

sc
a
li
n
g

re
su

lt
s.

20

https://www.olcf.ornl.gov/titan/

p

time(s)

4K 8K 16K 32K 65K

communication (s)

unzip (s)

rhs (s)

derivatives (s)

Total time (s)

0

6

13

20

27

18.31

3.62

5.68

2.93

8.76

1.92

3.12

1.69

3.86

1.59

1.64

1.15

1.85

1.00

0.88

0.67

0.99

0.66

0.45

0.37

30.5 15.5 8.2 4.4 2.5

Fig. 14: Strong scaling results in ORNL’s Titan for a single RK step (averaged over 10 steps)
with derivative computation (deriv), right hand side (rhs) computation, unzip cost and
communication cost (comm) for a fixed problem size of 10.5B unknowns where the number of
cores ranging from 4, 096 to 65, 536 cores on 4096 nodes. Note that for strong scaling results
re-meshing is disabled in order to keep the problem size fixed.

and weak scaling. The plot in Figure 10 highlights the strong and weak scaling of
both codes for a representative grain and problem size. Dendro-GR scales well far
beyond the 3072 cores, as shown in Figure 13 and discussed in §4.4.

Octree Adaptivity vs. Block Adaptivity: As motivated earlier, we wish to per-
form simulations of binary black hole mergers with large mass-ratios, q ' 100. Large
mass-ratios require extensive refinement, increasing the number of spatial degrees of
freedom.For an example let’s assume an equal mass binary requires a certain reso-
lution for the BSSN equations, about 100 points per BH in each dimension. For a
BH 100 times smaller, we need a resolution equivalent to 1/10,000 times the total
mass and 100× more time steps. The consequent high computational cost is the pri-
mary reason that current catalogs of numerical waveforms contain templates with a
maximum mass ratio of q < 10 [25, 48, 52].

The efficient adaptivity of Dendro is a big advantage over the block adaptivity
of the ET. To assess the effect of adaptivity on code performance, we compared both
codes for increasing mass-ratios from q = 1–100, measuring the dofs, as shown in
Figure 12. As the mass ratio increases, the number of dofs for ET increases much
more rapidly than for Dendro-GR. While these results capture the differences at the
beginning of the simulation2, they are representative of the full simulation in terms
of comparing the two codes. Because of better adaptivity and better scalability,
Dendro-GR keeps the cost of a single RK-step fairly flat as we scale up from q = 1–

2It would be very expensive to run full simulations with ET due to its scalability for large q.

21

https://www.olcf.ornl.gov/titan/

10−810−710−610−510−410−310−210−1100

0

200

400

600

800

RG

RG+ zip+ unzip

q = 1 q ≥ 10

L3

L4

L5

← α = number of octants
regular grid octants

ti
m
e
(s
)
→

Fig. 15: An illustrative single core example to evaluate the overhead of zip/unzip
operations to evaluate BSSN equations on a sequence of octree grids over 10 timesteps.
The parameter α denotes the ratio between the number of octants to the number of
regular grid octants for MaxDepth 8. Hence moving towards the right direction on x
axis the octree grids converge towards a regular grid. RG and RG+zip+unzip denotes
the baseline performance for regular grid computations and regular grid computation
with zip/unzip overhead respectively. The shaded q = 1 region denotes the α value
for an equal mass ratio simulation until the merger event using MaxDepth 12 over
2 × 105 timesteps. For larger mass ratio runs the MaxDepth will be determined
by the smaller black hole, hence for q = 10 with 15, α reached maximum value of
1.4× 10−8 over 6000 time steps and for q = 100 with MaxDepth 20 maximum value
of α reached 5.51 × 10−13 over 1000 timesteps. Note that value of α can increase
during the simulation, for the largest problem (see Figure 13) that was run in Titan
with 131K cores for q = 10 case the α value was 4.8 × 10−7. In the plot, we have
marked the Lk values for k = 3, 4, 5 where Lk is the computed α ratio for an adaptive
octree where an equal number of octants spanning across k levels.

mass ratio q 1 2 5 10 20 50 70 100
cores 27 31 64 79 89 90 99 96

Table 2: The number of cores required to maintain 24K unknowns per core with different
mass ratios with maxdepth 12 wavelet tolerance of 10−4 and black hole separation distance
of 32.

100 mass-ratio. In Table 2 we present the number of cores needed to maintain a 24K
unknowns per core with increasing mass ratio using Dendro-GR framework. Finally,
to illustrate the advantages of octree-adaptivity over block-adaptivity, even with the
overhead of zip/unzip, we plot the reduction in runtime for 10 timesteps for different
levels of adaptivity in Figure 15. Based on these results, it is clear that zip/unzip with
adaptivity can benefit especially for simulation of large mass ratio configurations and
that the overhead is about 20% even for a full regular grid simulation. These results
further support our findings in Figure 10.

22

(a) q = 1 (b) q = 10 (c) q = 100

(d) q = 1 (e) q = 10 (f) q = 100

Fig. 16: Time step snapshots of the binary black hole problem of black hole mass ratios
1, 10 and 100 where we in the top row we plot the BSSNOK variable χ in the lower row we
plot the WAMR grids for each case at that specific instance.

4.4. Parallel Scalability. Scalability is a key requirement for large-scale codes
such as Dendro. In the context of our target application this could be in order to
run simulations of black hole mergers with large mass ratios, or to be able to run
these simulations much faster. These cases correspond to weak and strong scaling
respectively. As demonstrated in §4.3, Dendro-GR scales well in both cases. In
this section, we demonstrate the ability of Dendro-GR to scale to much larger core-
counts for weak scaling. In Figure 13, we demonstrate weak scalability to 131, 072
cores on Titan using 1.5 × 106 dofs/core for a largest problem of 206 × 109 dofs.
These correspond to a simulation of q = 10, with increasing levels of refinement.
There is a slight fluctuation in the number of unknowns per core at each problem
size. Therefore, we report the average time for a single RK-step/dof/p. We can see
that the average time per RK-step/dof/p remains less than 10µs. We note that the
unzip costs are high at the lower core-counts and stabilize at higher core counts. This
is due to a larger grain size at the smaller core-counts. The communication for a
smaller number of processes is lower due to architectural reasons, as the majority of
the communication happens primarily within the same node. This is common for
most codes, and stabilizes for p > 512 as the communication starts to get dominated
by inter-node communication rather than intra-node communication.

In Figure 14, we present the strong scaling results for Dendro-GR to perform
single RK step (i.e. averaged over 10 steps) for a fixed problem size of 10.5B unknowns
in Titan up to 4096 nodes. This experiment is carried out for a mass ratio of 10
binary merger problem with wavelet tolerance of 10−6. Note that for the strong
scaling experiment we have disabled the re-mesh and inter-grid transfer operations
in order to keep the problem size constant.

4.5. Large Mass Ratios. Finally, we present some representative images from
simulations at mass rations of q = 1, 10, and 100 in Figure 16. Here we plot the one
of the evolved variables χ along with the adaptively refined mesh. We can observe
the increased refinement needed to handle the increased mass ratio.

23

https://www.olcf.ornl.gov/titan/
https://www.olcf.ornl.gov/titan/

5. Conclusion. In this work we presented a high-adaptive and highly scalable
framework for relatavistic simulations. By combining a parallel octree-refined adap-
tive mesh with wavelet adaptive multiresolution and a physics module to solve the
Einstein equations of general relativity in the BSSNOK formulation, we were able
to perform simulations of IMRIs of binary black holes with mass ratios on the or-
der of 100:1. In designing our framework and methods, we have focused on ensuring
portability and extensibility by the use of automatic code generation from symbolic
notation. This enables portability, since new architectures can be supported by adding
new generators rather than rewriting the application. The code is extensible as new
applications can be created by using the symbolic interface without having to focus
on writing scalable code. Since both of these are achieved using Python, this re-
duces the cost of extending and porting the framework, especially by non-specialist
programmers. We also made improvements to fundamental algorithms required for
generating octree-based meshes, specifically an improved 2:1 balancing algorithm and
a scalable search algorithm fundamental to constructing meshing data-structures. Fi-
nally, we performed extensive comparisons with the current state-of-the-art codes and
demonstrated excellent weak and strong scalability.

In the short time that LIGO and Virgo have been searching for gravitational
waves, we have already learned exciting things about neutron stars [65, 80], the pro-
duction of heavy elements (such as gold) [34], and the population of black holes in the
universe [5]. The full scientific impact of multi-messenger astronomy is only realized
when the observations are informed by sophisticated computer models of the under-
lying astrophysical phenomena. Dendro provides the ability to run these models in
a scalable way, with local adaptivity criteria using WAMR. While AMR codes with
block-adaptivity typically lose performance as the number of adaptive levels increases,
Dendro achieves impressive scalability on a real application even with many levels
of refinement. The combination of scalability and adaptivity will allow us to study
the gravitational radiation from IMRIs without simplifying approximations in direct
numerical simulations.

Acknowledgment. The authors would like to thank the reviewers for valuable
comments and suggestions that greatly improved this manuscript.

REFERENCES

[1] LIGO home page. http://flash.uchicago.edu/website/home/, 2018.
[2] Virgo home page. http://http://www.virgo-gw.eu, 2018.
[3] J. Abadie et al., Predictions for the Rates of Compact Binary Coalescences Observable

by Ground-based Gravitational-wave Detectors, Class.Quant.Grav., 27 (2010), p. 173001,
https://doi.org/10.1088/0264-9381/27/17/173001, https://arxiv.org/abs/1003.2480.

[4] B. Abbott et al., GW170817: Observation of Gravitational Waves from a Binary Neu-
tron Star Inspiral, Phys. Rev. Lett., 119 (2017), p. 161101, https://doi.org/10.1103/
PhysRevLett.119.161101, https://arxiv.org/abs/1710.05832.

[5] B. P. Abbott et al., Astrophysical Implications of the Binary Black-Hole Merger
GW150914, Astrophys. J., 818 (2016), p. L22, https://doi.org/10.3847/2041-8205/818/
2/L22, https://arxiv.org/abs/1602.03846.

[6] B. P. Abbott et al., GW151226: Observation of gravitational waves from
a 22-solar-mass binary black hole coalescence, Phys. Rev. Lett., 116 (2016),
p. 241103, https://doi.org/10.1103/PhysRevLett.116.241103, http://link.aps.org/doi/10.
1103/PhysRevLett.116.241103.

[7] B. P. Abbott et al., Observation of Gravitational Waves from a Binary Black Hole
Merger, Phys. Rev. Lett., 116 (2016), p. 061102, https://doi.org/10.1103/PhysRevLett.
116.061102, https://arxiv.org/abs/1602.03837.

[8] B. P. Abbott et al., Observation of gravitational waves from a binary black hole merger,

24

https://doi.org/10.1088/0264-9381/27/17/173001
https://arxiv.org/abs/1003.2480
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://arxiv.org/abs/1710.05832
https://doi.org/10.3847/2041-8205/818/2/L22
https://doi.org/10.3847/2041-8205/818/2/L22
https://arxiv.org/abs/1602.03846
https://doi.org/10.1103/PhysRevLett.116.241103
http://link.aps.org/doi/10.1103/PhysRevLett.116.241103
http://link.aps.org/doi/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1602.03837

Phys. Rev. Lett., 116 (2016), p. 061102, https://doi.org/10.1103/PhysRevLett.116.
061102, http://link.aps.org/doi/10.1103/PhysRevLett.116.061102.

[9] B. P. Abbott et al., Estimating the Contribution of Dynamical Ejecta in the Kilonova
Associated with GW170817, Astrophys. J., 850 (2017), p. L39, https://doi.org/10.3847/
2041-8213/aa9478, https://arxiv.org/abs/1710.05836.

[10] B. P. Abbott et al., Gravitational Waves and Gamma-rays from a Binary Neutron Star
Merger: GW170817 and GRB 170817A, Astrophys. J., 848 (2017), p. L13, https://doi.
org/10.3847/2041-8213/aa920c, https://arxiv.org/abs/1710.05834.

[11] B. P. Abbott et al., GW170104: Observation of a 50-Solar-Mass Binary Black Hole Co-
alescence at Redshift 0.2, Phys. Rev. Lett., 118 (2017), p. 221101, https://doi.org/10.
1103/PhysRevLett.118.221101, https://arxiv.org/abs/1706.01812.

[12] B. P. Abbott et al., GW170814: A Three-Detector Observation of Gravitational Waves
from a Binary Black Hole Coalescence, Phys. Rev. Lett., 119 (2017), p. 141101, https:
//doi.org/10.1103/PhysRevLett.119.141101, https://arxiv.org/abs/1709.09660.

[13] B. P. Abbott et al., Multi-messenger Observations of a Binary Neutron Star Merger,
Astrophys. J., 848 (2017), p. L12, https://doi.org/10.3847/2041-8213/aa91c9, https://
arxiv.org/abs/1710.05833.

[14] F. Acernese et al., Advanced Virgo: a second-generation interferometric gravitational wave
detector, Class. Quant. Grav., 32 (2015), p. 024001, https://doi.org/10.1088/0264-9381/
32/2/024001, https://arxiv.org/abs/1408.3978.

[15] A. Ahimian, I. Lashuk, S. Veerapaneni, C. Aparna, D. Malhotra, I. Moon, R. Sampath,
A. Shringarpure, J. Vetter, R. Vuduc, D. Zorin, and G. Biros, Petascale direct
numerical simulation of blood flow on 200k cores and heterogeneous architectures, in
SC10: Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, ACM/IEEE, 2010. (Gordon Bell Prize).

[16] A. Akansu and R. Haddad, Academic Press, 1992.
[17] A. Albert et al., Search for High-energy Neutrinos from Binary Neutron Star Merger

GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory, Astrophys. J.,
850 (2017), p. L35, https://doi.org/10.3847/2041-8213/aa9aed, https://arxiv.org/abs/
1710.05839.

[18] M. Alcubierre, Introduction to 3+1 numerical relativity, International series of monographs
on physics, Oxford Univ. Press, Oxford, 2008.

[19] L. B. N. L. Applied Numerical Algorithms Group, Chombo –infrastructure for adaptive
mesh refinement. http://seesar.lbl.gov/anag/chombo/, 2006.

[20] S. Babak, A. Taracchini, and A. Buonanno, Validating the effective-one-body model of
spinning, precessing binary black holes against numerical relativity, (2016), https://arxiv.
org/abs/1607.05661.

[21] T. W. Baumgarte and S. L. Shapiro, On the numerical integration of Einstein’s field equa-
tions, Phys.Rev., D59 (1999), p. 024007, https://doi.org/10.1103/PhysRevD.59.024007,
https://arxiv.org/abs/gr-qc/9810065.

[22] J. Bédorf, E. Gaburov, and S. Portegies Zwart, Bonsai: A GPU Tree-Code, in Advances
in Computational Astrophysics: Methods, Tools, and Outcome, R. Capuzzo-Dolcetta,
M. Limongi, and A. Tornambè, eds., vol. 453 of Astronomical Society of the Pacific
Conference Series, July 2012, p. 325, https://arxiv.org/abs/1204.2280.

[23] M. Bern, D. Eppstein, and S.-H. Teng, Parallel construction of quadtrees and quality tri-
angulations, International Journal of Computational Geometry & Applications, 9 (1999),
pp. 517–532.

[24] S. Bertoluzza and G. Naldi, A wavelet collocation method for the numerical solution of
partial differnetial equations, Appl. Comput. Harmon. A., 3 (1996), pp. 1–9.

[25] M. Boyle, Transformations of asymptotic gravitational-wave data, Phys. Rev. D, 93 (2016),
p. 084031, https://doi.org/10.1103/PhysRevD.93.084031, https://link.aps.org/doi/10.
1103/PhysRevD.93.084031.

[26] B. Bruegmann, J. A. Gonzalez, M. Hannam, S. Husa, U. Sperhake, and W. Tichy,
Calibration of Moving Puncture Simulations, Phys. Rev., D77 (2008), p. 024027, https:
//doi.org/10.1103/PhysRevD.77.024027, https://arxiv.org/abs/gr-qc/0610128.

[27] M. Bugner, T. Dietrich, S. Bernuzzi, A. Weyhausen, and B. Bruegmann, Solving 3D rel-
ativistic hydrodynamical problems with WENO discontinuous Galerkin methods, (2015),
https://arxiv.org/abs/1508.07147.

[28] C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel
adaptive mesh refinement on forests of octrees, SIAM Journal on Scientific Computing,
33 (2011), pp. 1103–1133, https://doi.org/10.1137/100791634.

[29] Cactus Computational Toolkit. http://www.cactuscode.org.

25

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
http://link.aps.org/doi/10.1103/PhysRevLett.116.061102
https://doi.org/10.3847/2041-8213/aa9478
https://doi.org/10.3847/2041-8213/aa9478
https://arxiv.org/abs/1710.05836
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.3847/2041-8213/aa920c
https://arxiv.org/abs/1710.05834
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.118.221101
https://arxiv.org/abs/1706.01812
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.119.141101
https://arxiv.org/abs/1709.09660
https://doi.org/10.3847/2041-8213/aa91c9
https://arxiv.org/abs/1710.05833
https://arxiv.org/abs/1710.05833
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://arxiv.org/abs/1408.3978
https://doi.org/10.3847/2041-8213/aa9aed
https://arxiv.org/abs/1710.05839
https://arxiv.org/abs/1710.05839
http://seesar.lbl.gov/anag/chombo/
https://arxiv.org/abs/1607.05661
https://arxiv.org/abs/1607.05661
https://doi.org/10.1103/PhysRevD.59.024007
https://arxiv.org/abs/gr-qc/9810065
https://arxiv.org/abs/1204.2280
https://doi.org/10.1103/PhysRevD.93.084031
https://link.aps.org/doi/10.1103/PhysRevD.93.084031
https://link.aps.org/doi/10.1103/PhysRevD.93.084031
https://doi.org/10.1103/PhysRevD.77.024027
https://doi.org/10.1103/PhysRevD.77.024027
https://arxiv.org/abs/gr-qc/0610128
https://arxiv.org/abs/1508.07147
https://doi.org/10.1137/100791634

[30] M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower, Accurate evolutions
of orbiting black-hole binaries without excision, Phys. Rev. Lett., 96 (2006), p. 111101,
https://arxiv.org/abs/gr-qc/0511048.

[31] Carpet, an AMR driver for Cactus. http://www.carpetcode.org.
[32] J. Cocke, Global common subexpression elimination, in Proceedings of a Symposium on

Compiler Optimization, New York, NY, USA, 1970, ACM, pp. 20–24, https://doi.org/
10.1145/800028.808480, http://doi.acm.org/10.1145/800028.808480.

[33] R. Courant, K. Friedrichs, and H. Lewy, On the partial difference equations of math-
ematical physics, IBM Journal of Research and Development, 11 (1967), pp. 215–234,
https://doi.org/10.1147/rd.112.0215.

[34] B. Ct, C. L. Fryer, K. Belczynski, O. Korobkin, M. Chruslinska, N. Vassh, M. R.
Mumpower, J. Lippuner, T. M. Sprouse, R. Surman, and R. Wollaeger, The origin
of r -process elements in the milky way, The Astrophysical Journal, 855 (2018), p. 99,
http://stacks.iop.org/0004-637X/855/i=2/a=99.

[35] J. DeBuhr, B. Zhang, M. Anderson, D. Neilsen, and E. W. Hirschmann, Relativistic
Hydrodynamics with Wavelets, (2015), https://arxiv.org/abs/1512.00386.

[36] D. L. Donoho, Interpolating wavelet transforms, Technical Report, Department of Statistics,
Stanford University, 2 (1992).

[37] M. Dumbser, F. Guercilena, S. Koeppel, L. Rezzolla, and O. Zanotti, A strongly
hyperbolic first-order CCZ4 formulation of the Einstein equations and its solution with
discontinuous Galerkin schemes, (2017), https://arxiv.org/abs/1707.09910.

[38] Einstein Toolkit. http://einsteintoolkit.org.
[39] Z. B. Etienne, V. Paschalidis, R. Haas, P. Msta, and S. L. Shapiro, IllinoisGRMHD:

An Open-Source, User-Friendly GRMHD Code for Dynamical Spacetimes, Class. Quant.
Grav., 32 (2015), p. 175009, https://doi.org/10.1088/0264-9381/32/17/175009, https://
arxiv.org/abs/1501.07276.

[40] E. Evans, S. Iyer, E. Schnetter, W.-M. Suen, J. Tao, R. Wolfmeyer, and H.-M. Zhang,
Computational relativistic astrophysics with adaptive mesh refinement: Testbeds, Phys.
Rev. D, 71 (2005), p. 081301, https://doi.org/10.1103/PhysRevD.71.081301, https://link.
aps.org/doi/10.1103/PhysRevD.71.081301.

[41] M. Fernando, D. Duplyakin, and H. Sundar, Machine and application aware partition-
ing for adaptive mesh refinement applications, in Proceedings of the 26th International
Symposium on High-Performance Parallel and Distributed Computing, HPDC ’17, New
York, NY, USA, 2017, ACM, pp. 231–242, https://doi.org/10.1145/3078597.3078610,
http://doi.acm.org/10.1145/3078597.3078610.

[42] W. D. Frazer and A. C. McKellar, Samplesort: A sampling approach to minimal storage
tree sorting, J. ACM, 17 (1970), pp. 496–507, https://doi.org/10.1145/321592.321600,
http://doi.acm.org/10.1145/321592.321600.

[43] J. M. Fregeau, S. L. Larson, M. C. Miller, R. W. O’Shaughnessy, and F. A. Rasio,
Observing IMBH-IMBH Binary Coalescences via Gravitational Radiation, Astrophys.
J., 646 (2006), pp. L135–L138, https://doi.org/10.1086/507106, https://arxiv.org/abs/
astro-ph/0605732.

[44] A. Goldstein et al., An Ordinary Short Gamma-Ray Burst with Extraordinary Impli-
cations: Fermi-GBM Detection of GRB 170817A, Astrophys. J., 848 (2017), p. L14,
https://doi.org/10.3847/2041-8213/aa8f41, https://arxiv.org/abs/1710.05446.

[45] T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke, E. Seidel, and J. Shalf,
The cactus framework and toolkit: Design and applications, in Vector and Paral-
lel Processing - VECPAR ’2002, 5th International Conference, Springer, 2003, http:
//www.springerlink.com/content/2fapcbeyyc1xg0mm/.

[46] E. Gourgoulhon, 3+1 Formalism and Bases of Numerical Relativity, ArXiv General Rela-
tivity and Quantum Cosmology e-prints, (2007), https://arxiv.org/abs/gr-qc/0703035.

[47] P. B. Graff, A. Buonanno, and B. S. Sathyaprakash, Missing Link: Bayesian de-
tection and measurement of intermediate-mass black-hole binaries, Phys. Rev., D92
(2015), p. 022002, https://doi.org/10.1103/PhysRevD.92.022002, https://arxiv.org/abs/
1504.04766.

[48] J. Healy, C. O. Lousto, Y. Zlochower, and M. Campanelli, The rit binary black hole
simulations catalog, Classical and Quantum Gravity, 34 (2017), p. 224001, http://stacks.
iop.org/0264-9381/34/i=22/a=224001.

[49] M. Holmström, Solving hyperbolic pdes using interpolating wavelets, SIAM J. Sci. Comput.,
21 (1999), pp. 405–420.

[50] S. Husa, I. Hinder, and C. Lechner, Kranc: A Mathematica application to generate numeri-
cal codes for tensorial evolution equations, Comput. Phys. Commun., 174 (2006), pp. 983–

26

https://arxiv.org/abs/gr-qc/0511048
https://doi.org/10.1145/800028.808480
https://doi.org/10.1145/800028.808480
http://doi.acm.org/10.1145/800028.808480
https://doi.org/10.1147/rd.112.0215
http://stacks.iop.org/0004-637X/855/i=2/a=99
https://arxiv.org/abs/1512.00386
https://arxiv.org/abs/1707.09910
https://doi.org/10.1088/0264-9381/32/17/175009
https://arxiv.org/abs/1501.07276
https://arxiv.org/abs/1501.07276
https://doi.org/10.1103/PhysRevD.71.081301
https://link.aps.org/doi/10.1103/PhysRevD.71.081301
https://link.aps.org/doi/10.1103/PhysRevD.71.081301
https://doi.org/10.1145/3078597.3078610
http://doi.acm.org/10.1145/3078597.3078610
https://doi.org/10.1145/321592.321600
http://doi.acm.org/10.1145/321592.321600
https://doi.org/10.1086/507106
https://arxiv.org/abs/astro-ph/0605732
https://arxiv.org/abs/astro-ph/0605732
https://doi.org/10.3847/2041-8213/aa8f41
https://arxiv.org/abs/1710.05446
http://www.springerlink.com/content/2fapcbeyyc1xg0mm/
http://www.springerlink.com/content/2fapcbeyyc1xg0mm/
https://arxiv.org/abs/gr-qc/0703035
https://doi.org/10.1103/PhysRevD.92.022002
https://arxiv.org/abs/1504.04766
https://arxiv.org/abs/1504.04766
http://stacks.iop.org/0264-9381/34/i=22/a=224001
http://stacks.iop.org/0264-9381/34/i=22/a=224001

1004, https://doi.org/10.1016/j.cpc.2006.02.002, https://arxiv.org/abs/gr-qc/0404023.
[51] M. F. Ionescu and K. E. Schauser, Optimizing parallel bitonic sort, in Proceedings 11th

International Parallel Processing Symposium, April 1997, pp. 303–309, https://doi.org/
10.1109/IPPS.1997.580914.

[52] K. Jani, J. Healy, J. A. Clark, L. London, P. Laguna, and D. Shoemaker, Georgia tech
catalog of gravitational waveforms, Classical and Quantum Gravity, 33 (2016), p. 204001,
http://stacks.iop.org/0264-9381/33/i=20/a=204001.

[53] D. Joyner, O. Čert́ık, A. Meurer, and B. E. Granger, Open source computer algebra
systems: Sympy, ACM Communications in Computer Algebra, 45 (2012), pp. 225–234.

[54] D. Keitel et al., The most powerful astrophysical events: Gravitational-wave peak lu-
minosity of binary black holes as predicted by numerical relativity, Phys. Rev., D96
(2017), p. 024006, https://doi.org/10.1103/PhysRevD.96.024006, https://arxiv.org/abs/
1612.09566.

[55] L. E. Kidder et al., SpECTRE: A Task-based Discontinuous Galerkin Code for Relativistic
Astrophysics, J. Comput. Phys., 335 (2017), pp. 84–114, https://doi.org/10.1016/j.jcp.
2016.12.059, https://arxiv.org/abs/1609.00098.

[56] K. Kiuchi, K. Kyutoku, Y. Sekiguchi, M. Shibata, and T. Wada, High resolution
numerical-relativity simulations for the merger of binary magnetized neutron stars,
Phys.Rev., D90 (2014), p. 041502, https://doi.org/10.1103/PhysRevD.90.041502, https:
//arxiv.org/abs/1407.2660.

[57] K. Kiuchi, K. Kyutoku, and M. Shibata, Three dimensional evolution of differentially
rotating magnetized neutron stars, Phys.Rev., D86 (2012), p. 064008, https://doi.org/10.
1103/PhysRevD.86.064008, https://arxiv.org/abs/1207.6444.

[58] H.-O. Kreiss and J. Oliger, Methods for Approximate Solution of Time Dependent Prob-
lems, GARP Publication Series, Geneva, 1973.

[59] L. Lehner and F. Pretorius, Numerical Relativity and Astrophysics,
Ann.Rev.Astron.Astrophys., 52 (2014), pp. 661–694, https://doi.org/10.1146/
annurev-astro-081913-040031, https://arxiv.org/abs/1405.4840.

[60] S. L. Liebling, Singularity threshold of the nonlinear sigma model using 3d adaptive mesh
refinement, Physical Review D, vol. 66, Issue 4, id. 041703, 66 (2002), 041703, p. 041703,
https://doi.org/10.1103/PhysRevD.66.041703, https://arxiv.org/abs/gr-qc/0202093.

[61] C. O. Lousto, H. Nakano, Y. Zlochower, and M. Campanelli, Intermediate Mass Ratio
Black Hole Binaries: Numerical Relativity meets Perturbation Theory, Phys. Rev. Lett.,
104 (2010), p. 211101, https://doi.org/10.1103/PhysRevLett.104.211101, https://arxiv.
org/abs/1001.2316.

[62] C. O. Lousto and Y. Zlochower, Orbital Evolution of Extreme-Mass-Ratio Black-Hole
Binaries with Numerical Relativity, Phys. Rev. Lett., 106 (2011), p. 041101, https://doi.
org/10.1103/PhysRevLett.106.041101, https://arxiv.org/abs/1009.0292.

[63] A. Meurer, C. P. Smith, M. Paprocki, O. Čert́ık, S. B. Kirpichev, M. Rocklin, A. Ku-
mar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P.
Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry,
A. R. Terrel, v. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and
A. Scopatz, Sympy: symbolic computing in python, PeerJ Computer Science, 3 (2017),
p. e103, https://doi.org/10.7717/peerj-cs.103, https://doi.org/10.7717/peerj-cs.103.

[64] V. Mewes, Y. Zlochower, M. Campanelli, I. Ruchlin, Z. B. Etienne, and T. W. Baum-
garte, Numerical Relativity in Spherical Coordinates with the Einstein Toolkit, (2018),
https://arxiv.org/abs/1802.09625.

[65] E. R. Most, L. R. Weih, L. Rezzolla, and J. Schaffner-Bielich, New constraints
on radii and tidal deformabilities of neutron stars from gw170817, Phys. Rev. Lett.,
120 (2018), p. 261103, https://doi.org/10.1103/PhysRevLett.120.261103, https://link.
aps.org/doi/10.1103/PhysRevLett.120.261103.

[66] T. Nakamura, K. Oohara, and Y. Kojima, General Relativistic Collapse to Black Holes
and Gravitational Waves from Black Holes, Progress of Theoretical Physics Supplement,
90 (1987), pp. 1–218, https://doi.org/10.1143/PTPS.90.1.

[67] D. Neilsen, S. L. Liebling, M. Anderson, L. Lehner, E. O’Connor, et al., Magnetized
Neutron Stars With Realistic Equations of State and Neutrino Cooling, Phys.Rev., D89
(2014), p. 104029, https://doi.org/10.1103/PhysRevD.89.104029, https://arxiv.org/abs/
1403.3680.

[68] S. Paolucci, Z. J. Zikoski, and T. Grenga, WAMR: An adaptive wavelet method for the
simulation of compressible reacting flow. Part II. The parallel algorithm, J. Comput.
Phys., 272 (2014), pp. 842 – 864.

[69] S. Paolucci, Z. J. Zikoski, and D. Wirasaet, WAMR: An adaptive wavelet method for the

27

https://doi.org/10.1016/j.cpc.2006.02.002
https://arxiv.org/abs/gr-qc/0404023
https://doi.org/10.1109/IPPS.1997.580914
https://doi.org/10.1109/IPPS.1997.580914
http://stacks.iop.org/0264-9381/33/i=20/a=204001
https://doi.org/10.1103/PhysRevD.96.024006
https://arxiv.org/abs/1612.09566
https://arxiv.org/abs/1612.09566
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.1016/j.jcp.2016.12.059
https://arxiv.org/abs/1609.00098
https://doi.org/10.1103/PhysRevD.90.041502
https://arxiv.org/abs/1407.2660
https://arxiv.org/abs/1407.2660
https://doi.org/10.1103/PhysRevD.86.064008
https://doi.org/10.1103/PhysRevD.86.064008
https://arxiv.org/abs/1207.6444
https://doi.org/10.1146/annurev-astro-081913-040031
https://doi.org/10.1146/annurev-astro-081913-040031
https://arxiv.org/abs/1405.4840
https://doi.org/10.1103/PhysRevD.66.041703
https://arxiv.org/abs/gr-qc/0202093
https://doi.org/10.1103/PhysRevLett.104.211101
https://arxiv.org/abs/1001.2316
https://arxiv.org/abs/1001.2316
https://doi.org/10.1103/PhysRevLett.106.041101
https://doi.org/10.1103/PhysRevLett.106.041101
https://arxiv.org/abs/1009.0292
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://arxiv.org/abs/1802.09625
https://doi.org/10.1103/PhysRevLett.120.261103
https://link.aps.org/doi/10.1103/PhysRevLett.120.261103
https://link.aps.org/doi/10.1103/PhysRevLett.120.261103
https://doi.org/10.1143/PTPS.90.1
https://doi.org/10.1103/PhysRevD.89.104029
https://arxiv.org/abs/1403.3680
https://arxiv.org/abs/1403.3680

simulation of compressible reacting flow. Part I. Accuracy and efficiency of algorithm, J.
Comput. Phys., 272 (2014), pp. 814 – 841.

[70] Y. A. Rastigejev and S. Paolucci, Wavelet-based adaptive multiresolution computation of
viscous reactive flows, International Journal for Numerical Methods in Fluids, 52 (2006),
pp. 749–784, https://doi.org/10.1002/fld.1202, http://dx.doi.org/10.1002/fld.1202.

[71] J. D. Regele and O. V. Vasilyev, An adaptive wavelet-collocation method for shock com-
putations, Int. J. Comput. Fluid D., 23 (2009), pp. 503–518.

[72] L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics, Oxford Univ. Press, Oxford, 2013.
[73] L. F. Roberts, C. D. Ott, R. Haas, E. P. O’Connor, P. Diener, and E. Schnetter,

General Relativistic Three-Dimensional Multi-Group Neutrino Radiation-Hydrodynamics
Simulations of Core-Collapse Supernovae, (2016), https://doi.org/10.3847/0004-637X/
831/1/98, https://arxiv.org/abs/1604.07848.

[74] I. Ruchlin, Z. B. Etienne, and T. W. Baumgarte, SENR/NRPy+: Numerical Relativity
in Singular Curvilinear Coordinate Systems, (2017), https://arxiv.org/abs/1712.07658.

[75] R. S. Sampath, S. S. Adavani, H. Sundar, I. Lashuk, and G. Biros, Dendro: Parallel
algorithms for multigrid and AMR methods on 2:1 balanced octrees, in SC’08: Proceedings
of the International Conference for High Performance Computing, Networking, Storage,
and Analysis, ACM/IEEE, 2008.

[76] O. Sarbach, G. Calabrese, J. Pullin, and M. Tiglio, Hyperbolicity of the Baumgarte-
Shapiro-Shibata-Nakamura system of einstein evolution equations, Phys. Rev. D, 66
(2002), p. 064002, https://doi.org/10.1103/PhysRevD.66.064002, https://link.aps.org/
doi/10.1103/PhysRevD.66.064002.

[77] B. S. Sathyaprakash and S. V. Dhurandhar, Choice of filters for the detection of
gravitational waves from coalescing binaries, Phys. Rev., D44 (1991), pp. 3819–3834,
https://doi.org/10.1103/PhysRevD.44.3819.

[78] V. Savchenko et al., INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coin-
cident with the Gravitational-wave Event GW170817, Astrophys. J., 848 (2017), p. L15,
https://doi.org/10.3847/2041-8213/aa8f94, https://arxiv.org/abs/1710.05449.

[79] M. Shibata, Numerical Relativity, World Scientific Publishing Co., Inc., River Edge, NJ,
USA, 2015.

[80] M. Shibata, S. Fujibayashi, K. Hotokezaka, K. Kiuchi, K. Kyutoku, Y. Sekiguchi, and
M. Tanaka, Modeling GW170817 based on numerical relativity and its implications,
Phys. Rev., D96 (2017), p. 123012, https://doi.org/10.1103/PhysRevD.96.123012, https:
//arxiv.org/abs/1710.07579.

[81] M. Shibata and T. Nakamura, Evolution of three-dimensional gravitational waves: Har-
monic slicing case, Phys. Rev. D, 52 (1995), pp. 5428–5444, https://doi.org/10.1103/
PhysRevD.52.5428.

[82] D. Shoemaker et al., Advanced LIGO reference design. ligo-m060056-v2.
https://dcc.ligo.org/LIGO-M060056-v2/public, 2011.

[83] R. J. E. Smith, I. Mandel, and A. Vecchio, Studies of waveform requirements for
intermediate mass-ratio coalescence searches with advanced gravitational-wave detec-
tors, Phys. Rev. D, 88 (2013), p. 044010, https://doi.org/10.1103/PhysRevD.88.044010,
http://link.aps.org/doi/10.1103/PhysRevD.88.044010.

[84] U. Sperhake, The numerical relativity breakthrough for binary black holes, Class. Quant.
Grav., 32 (2015), p. 124011, https://doi.org/10.1088/0264-9381/32/12/124011, https://
arxiv.org/abs/1411.3997.

[85] U. Sperhake, V. Cardoso, C. D. Ott, E. Schnetter, and H. Witek, Extreme black
hole simulations: collisions of unequal mass black holes and the point particle limit,
Phys. Rev., D84 (2011), p. 084038, https://doi.org/10.1103/PhysRevD.84.084038, https:
//arxiv.org/abs/1105.5391.

[86] H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler, Parallel
geometric-algebraic multigrid on unstructured forests of octrees, in Proceedings of the In-
ternational Conference on High Performance Computing, Networking, Storage and Analy-
sis, SC ’12, Los Alamitos, CA, USA, 2012, IEEE Computer Society Press, pp. 43:1–43:11,
http://dl.acm.org/citation.cfm?id=2388996.2389055.

[87] H. Sundar, R. Sampath, and G. Biros, Bottom-up construction and 2:1 balance refinement
of linear octrees in parallel, SIAM Journal on Scientific Computing, 30 (2008), pp. 2675–
2708, https://doi.org/10.1137/070681727.

[88] H. Sundar, R. S. Sampath, S. S. Adavani, C. Davatzikos, and G. Biros, Low-constant par-
allel algorithms for finite element simulations using linear octrees, in SC’07: Proceedings
of the International Conference for High Performance Computing, Networking, Storage,
and Analysis, ACM/IEEE, 2007.

28

https://doi.org/10.1002/fld.1202
http://dx.doi.org/10.1002/fld.1202
https://doi.org/10.3847/0004-637X/831/1/98
https://doi.org/10.3847/0004-637X/831/1/98
https://arxiv.org/abs/1604.07848
https://arxiv.org/abs/1712.07658
https://doi.org/10.1103/PhysRevD.66.064002
https://link.aps.org/doi/10.1103/PhysRevD.66.064002
https://link.aps.org/doi/10.1103/PhysRevD.66.064002
https://doi.org/10.1103/PhysRevD.44.3819
https://doi.org/10.3847/2041-8213/aa8f94
https://arxiv.org/abs/1710.05449
https://doi.org/10.1103/PhysRevD.96.123012
https://arxiv.org/abs/1710.07579
https://arxiv.org/abs/1710.07579
https://doi.org/10.1103/PhysRevD.52.5428
https://doi.org/10.1103/PhysRevD.52.5428
https://doi.org/10.1103/PhysRevD.88.044010
http://link.aps.org/doi/10.1103/PhysRevD.88.044010
https://doi.org/10.1088/0264-9381/32/12/124011
https://arxiv.org/abs/1411.3997
https://arxiv.org/abs/1411.3997
https://doi.org/10.1103/PhysRevD.84.084038
https://arxiv.org/abs/1105.5391
https://arxiv.org/abs/1105.5391
http://dl.acm.org/citation.cfm?id=2388996.2389055
https://doi.org/10.1137/070681727

[89] B. Szilagyi, L. Lindblom, and M. A. Scheel, Simulations of Binary Black Hole Mergers
Using Spectral Methods, Phys. Rev., D80 (2009), p. 124010, https://doi.org/10.1103/
PhysRevD.80.124010, https://arxiv.org/abs/0909.3557.

[90] S. A. Teukolsky, Formulation of discontinuous Galerkin methods for relativistic astro-
physics, (2015), https://arxiv.org/abs/1510.01190.

[91] M. Thierfelder, S. Bernuzzi, and B. Bruegmann, Numerical relativity simulations
of binary neutron stars, Phys.Rev., D84 (2011), p. 044012, https://doi.org/10.1103/
PhysRevD.84.044012, https://arxiv.org/abs/1104.4751.

[92] W. Tichy and P. Marronetti, A Simple method to set up low eccentricity initial data
for moving puncture simulations, Phys. Rev., D83 (2011), p. 024012, https://doi.org/10.
1103/PhysRevD.83.024012, https://arxiv.org/abs/1010.2936.

[93] L. Valgaerts, Space-filling curves an introduction, Technical University Munich, (2005).
[94] O. V. Vasilyev and C. Bowman, Second-generation wavelet collocation method for the so-

lution of partial differential equations, J. Comput. Phys., 165 (2000), pp. 660–693.
[95] O. V. Vasilyev and S. Paolucci, A dynamically adaptive multilevel wavelet collocation

method for solving partial differential equations in a finite domain, J. Comput. Phys.,
125 (1996), pp. 498–512.

[96] O. V. Vasilyev and S. Paolucci, A fast adaptive wavelet collocation algorithm for multidi-
mensional pdes, J. Comput. Phys., 138 (1997), pp. 16–56.

[97] O. V. Vasilyev, S. Paolucci, and M. Sen, A multilevel wavelet collocation method for
solving partial differential equations in a finite domain, J. Comput. Phys., 120 (1995),
pp. 33 – 47.

[98] T. Weinzierl, The peano software—parallel, automaton-based, dynamically adaptive grid
traversals., ACM Transactions on Mathematical Software., (2019), http://dro.dur.ac.uk/
26958/.

[99] T. Yamamoto, M. Shibata, and K. Taniguchi, Simulating coalescing compact binaries
by a new code SACRA, Phys. Rev., D78 (2008), p. 064054, https://doi.org/10.1103/
PhysRevD.78.064054, https://arxiv.org/abs/0806.4007.

[100] Y. Zlochower, J. G. Baker, M. Campanelli, and C. O. Lousto, Accurate black hole
evolutions by fourth-order numerical relativity, Phys. Rev., D72 (2005), p. 024021, https:
//doi.org/10.1103/PhysRevD.72.024021, https://arxiv.org/abs/gr-qc/0505055.

29

https://doi.org/10.1103/PhysRevD.80.124010
https://doi.org/10.1103/PhysRevD.80.124010
https://arxiv.org/abs/0909.3557
https://arxiv.org/abs/1510.01190
https://doi.org/10.1103/PhysRevD.84.044012
https://doi.org/10.1103/PhysRevD.84.044012
https://arxiv.org/abs/1104.4751
https://doi.org/10.1103/PhysRevD.83.024012
https://doi.org/10.1103/PhysRevD.83.024012
https://arxiv.org/abs/1010.2936
http://dro.dur.ac.uk/26958/
http://dro.dur.ac.uk/26958/
https://doi.org/10.1103/PhysRevD.78.064054
https://doi.org/10.1103/PhysRevD.78.064054
https://arxiv.org/abs/0806.4007
https://doi.org/10.1103/PhysRevD.72.024021
https://doi.org/10.1103/PhysRevD.72.024021
https://arxiv.org/abs/gr-qc/0505055

Appendix A. Overview of BSSNOK Equations. In this section, we briefly
present the specific form of the BSSNOK equations used in this work. While a com-
plete description of these equations can not be given here, many detailed descriptions
can be found in the literature [46, 18, 79].

The spacetime metric is written using the ADM 3+1 decomposition

(A.1) ds2 = −α2 dt2 + γij
(
dxi + βi dt

) (
dxj + βj dt

)
,

where α is the lapse function, βi is the shift vector, and γij is the 3-metric on a
space-like hypersurface. We write γij in terms of a conformally flat metric γ̃ij and a
conformal factor χ as

(A.2) γij =
1

χ
γ̃ij , χ = (det γij)

−1/3
, det γ̃ij = 1.

The extrinsic curvature Kij is decomposed into its trace K and the conformal, trace-

less extrinsic curvature Ãij

(A.3) K = Ki
i, Ãij = χ

(
Kij −

1

3
γijK

)
.

Covariant derivatives on the hypersurface, Di, use connection coefficients Γijk com-

puted with respect to γij . Conformal connection coefficients, Γ̃ijk, are computed with

respect to γ̃ij , and the conformal connection functions are defined to be Γ̃i = γ̃jkΓ̃iij .
Similar to the Maxwell equations in electromagnetism, the Einstein equations

contain both hyperbolic and elliptic equations; the former are the evolution equations
and the latter constraint equations. The vacuum BSSNOK evolution equations are

∂tγ̃ij = Lβ γ̃ij − 2αÃij

∂tχ = Lβχ+
2

3
χ (αK − ∂aβa)

∂tÃij = LβÃij + χ (−DiDjα+ αRij)
TF

+ α
(
KÃij − 2ÃikÃ

k
j

)
∂tK = βk∂kK −DiDiα+ α

(
ÃijÃ

ij +
1

3
K2

)
∂tΓ̃

i = γ̃jk∂j∂kβ
i +

1

3
γ̃ij∂j∂kβ

k + βj∂jΓ̃
i − Γ̃j∂jβ

i +
2

3
Γ̃i∂jβ

j − 2Ãij∂jα

+ 2α

(
Γ̃ijkÃ

jk − 3

2χ
Ãij∂jχ−

2

3
γ̃ij∂jK

)
,

where Rij is the Ricci tensor on the hypersurface, (. . .)TF indicates the trace-free part
of the quantity in parentheses, ∂i is the partial derivative with respect to xi, and Lβ
is Lie derivative with respect to βi. We use the “1+log” slicing condition and the
Γ-driver shift condition to evolve the gauge (or coordinate) variables

∂tα = Lβα− 2αK

∂tβ
i = λ2β

j ∂jβ
i +

3

4
f(α)Bi

∂tB
i = ∂tΓ̃

i − ηBi + λ3β
j ∂jB

i − λ4βj ∂jΓ̃i,

where f(α) is an arbitrary function, and η and {λ1, λ2, λ3, λ4} are parameters. We
set f(α) = λA = 1 in this work.

1

The Hamiltonian and momentum constraints are elliptic equations that must be
satisifed at all times during the evolution. These constraint equations in vacuum are

R−KijK
ij +K2 = 0(A.4)

Dj(K
ij − γijK) = 0.(A.5)

We follow the common practice in numerical relativity by solving the Einstein equa-
tions in a “free evolution,” which means that the we evolve the the hyperbolic evolu-
tion equations for the BSSNOK variables and the gauge. The independent constraint
equations are evaluated during the evolution to monitor the quality of the solution,
but they are otherwise not used in the update.

A.1. NLSM: Non-linear Sigma Model. In this section, we introduce a simple
model to demonstrate some capabilities of Dendro-GR, the classical wave equation.
We can also add a nonlinear source to this equation to explore the Non-Linear Sigma
Model with the hedgehog Ansatz (NLSM) [60]. We write the classical wave equation
in a form similar to the the BSSNOK equations, i.e., with first derivatives in time and
second derivatives in space. This allows us to test the Dendro-GR infrastructure for
the more complicated BSSNOK equations.

The NLSM for a scalar function χ(t, xi) is the classical wave equation with a
nonlinear source term. For simplicity we assume a flat spacetime and Cartesian
coordinates (t, x, y, z). The equation of motion is

(A.6)
∂2χ

∂t2
−
(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
χ = − sin(2χ)

r2
,

where r =
√
x2 + y2 + z2. We write the equation as a first order in time system by

introducing the variable φ as

∂χ

∂t
= φ(A.7)

∂φ

∂t
=

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
χ− sin(2χ)

r2
.(A.8)

We choose outgoing radiative boundary conditions for this system [18]. We assume
that the variables χ and φ approach the form of spherical waves as r → ∞, which
decay as 1/rk. The radiative boundary conditions then have the form

(A.9)
∂f

∂t
=

1

r

(
x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z

)
− k(f − f0),

where f represents the functions χ and φ, and f0 is an asymptotic value. We assume
k = 1 for χ and k = 2 for φ.

Using the Dendro-GR symbolic code generation framework we generate right-
hand side evaluation for the equations A.7 and A.8 used in the time stepping scheme.
Figure 17 shows frames from an evolution of the NLSM model using initial data from
family (b) described in Table I of [60]. This test demonstrates that the Dendro-GR
components for octree construction, mesh generation, spatial derivative operators,
and time integration work accurately.

2

(a) step=0 (b) step=7 (c) step=11

(d) step=16 (e) step=23 (f) step=44

Fig. 17: Frames from the evolution of the 3-dimensional NLSM that show the solution in
the z = 0 plane. The initial data are from family (b) defined in [60], which consist of two
Gaussian functions for χ and velocities used to define φ. Note how the mesh refines (based
on the WAMR) as the pulses first interact nonlinearly at the center of the grid and then
begin to propagate away from the origin.

Appendix B. Code Evaluation and Verification.

B.1. Getting and Compiling Dendro . The Dendro simulation code is
freely available at GitHub (https://github.com/paralab/Dendro-GR) under the MIT
License. The latest version of the code can be obtained by cloning the repository

$ g i t c l one git@github . com : para lab /Dendro−GR. g i t

The following dependencies are required to compile Dendro
• C/C++ compilers with C++11 standards and OpenMP support
• MPI implementation (e.g. openmpi, mvapich2)
• ZLib compression library (used to write .vtu files in binary format with

compression enabled)
• BLAS and LAPACK are optional and not needed for current version of Den-

dro
• CMake 2.8 or higher version

Note: We have tested the compilation and execution of Dendro with intel,
gcc 4.8 or higher, openmpi, mpich2 and intelmpi and craympi (in Titan) using the
linux operating systems.

To compile the code, execute these commands

$ cd <path to DENDRO d i r e c t o r y >
$ mkdir bu i ld
$ cd bu i ld
$ ccmake . . /

3

https://github.com/paralab/Dendro-GR
https://www.olcf.ornl.gov/titan/

The following options for Dendro can then be set in cmake:
• DENDRO COMPUTE CONSTRAINTS : Enables the computation of Hamiltonian and

momentum constraints
• DENDRO CONSEC COMM SELECT : If ON sub-communicators are selected from

consecrative global ranks, otherwise sub-communicators are selected complete
binary tree of global ranks (note that in this case global communicator size
need to a power of 2).

• DENDRO ENABLE VTU CONSTRAINT OUT : Enables constraint variable output
while time-stepping

• DENDRO ENABLE VTU OUTPUT : Enables evolution variable output while time-
stepping

• DENDRO VTK BINARY : If ON vtu files are written in binary format, else ASCII
format (binary format recommended).

• DENDRO VTK ZLIB COMPRES : If ON binary format is compressed (only effective
if DENDRO VTK BINARY is ON)

• HILBERT ORDERING : Hilbert SFC used if ON, otherwise Morton curve is used.
(Hilbert curve is recommended to reduce the communication cost.)

• NUM NPES THRESHOLD : When running in large scale set this to
√
p where p

number of mpi tasks for better performance.
• RK SOLVER OVERLAP COMM AND COM : If ON non blocking communication is used

and enable overlapping of communication and computation unzip (recom-
mended option), otherwise blocking synchronized unzip is used.

After configuring Dendro, generate the Makefile (use c to configure and g

to generate). Then execute make all to build all the targets. On completion,
bssnSolver will be the main executable as related to this paper.

B.2. Getting Started: Running bssnSolver. bssnSolver can be run as
follows.

$ mpirun −np <number o f mpi tasks>\
. / bs snSo lve r \
<parameter f i l e name>. par

Example parameter files can be found in BSSN GR/pars/. The following is an example
parameter file for equal mass ratio binary inspirals.

{
”DENDRO VERSION” : 5 . 0 ,
”BSSN RESTORE SOLVER” :0 ,
”BSSN IO OUTPUT FREQ”: 10 ,
”BSSN REMESH TEST FREQ”: 5 ,
”BSSN CHECKPT FREQ”: 50 ,
”BSSN VTU FILE PREFIX” : ” bs sn gr ” ,
”BSSN CHKPT FILE PREFIX” : ” bssn cp ” ,
”BSSN PROFILE FILE PREFIX” : ” bs sn r1 ” ,
”BSSN DENDRO GRAIN SZ” : 100 ,
”BSSN ASYNC COMM K”: 4 ,
”BSSN DENDRO AMR FAC”: 1e0 ,
”BSSN WAVELET TOL” : 1e−4,
”BSSN LOAD IMB TOL” : 1e−1,
”BSSN RK TIME BEGIN” : 0 ,
”BSSN RK TIME END”: 1000 ,
”BSSN RK TIME STEP SIZE” : 0 .01 ,
”BSSN DIM” : 3 ,
”BSSN MAXDEPTH”: 12 ,
”ETA CONST” : 2 . 0 ,
”ETA R0” : 30 .0 ,
”ETA DAMPING” : 1 . 0 ,
”ETA DAMPING EXP” : 1 . 0 ,
”BSSN LAMBDA”: {
”BSSN LAMBDA 1” : 1 ,
”BSSN LAMBDA 2” : 1 ,
”BSSN LAMBDA 3” : 1 ,
”BSSN LAMBDA 4” : 1
} ,
”BSSN LAMBDA F” : {
”BSSN LAMBDA F0” : 1 . 0 ,
”BSSN LAMBDA F1” : 0 .0

4

} ,
”CHI FLOOR”: 1e−4,
”BSSN TRK0” : 0 . 0 ,
”KO DISS SIGMA”: 1e−1,
”BSSN BH1” : {
”MASS”:0 .48528137423856954 ,
”X” : 4.00000000 e+00,
”Y” : 0 . 0 ,
”Z” : 1.41421356 e−05,
”V X” : −0.00132697 ,
”V Y” : 0 .1123844 ,
”V Z” : 0 ,
”SPIN” : 0 ,
”SPIN THETA”:0 ,
”SPIN PHI ” : 0
} ,
”BSSN BH2” : {
”MASS”:0 .48528137423856954 ,
”X”:−4.00000000 e+00,
”Y” : 0 . 0 ,
”Z” :1 .41421356 e−05,
”V X” : 0 .00132697 ,
”V Y” : −0.1123844 ,
”V Z” : 0 ,
”SPIN” : 0 ,
”SPIN THETA”:0 ,
”SPIN PHI ” : 0
}
}

Here we list the key options for bssnSolver with a short description.
• BSSN RESTORE SOLVER : Set 1 to restore RK solver from latest checkpoint.
• BSSN IO OUTPUT FREQ : IO (i.e. vtu files) output frequency
• BSSN CHECKPT FREQ : Checkpoint file output frequency
• BSSN REMESH TEST FREQ : Remesh test frequency (i.e. frequency in time steps

that is being tested for re-meshing)
• BSSN DENDRO GRAIN SZ : Number of octants per core
• BSSN ASYNC COMM K : Number of variables that are being processed during an

asynchronous unzip (< 24)
• BSSN DENDRO AMR FAC : Safety factor for coarsening i.e. coarsen if and only if
Wc ≤ AMR FAC ×WAV ELET TOL where Wc is the computed wavelet
coefficient.

• BSSN WAVELET TOL : Wavelet tolerance for WAMR.
• BSSN MAXDEPTH : Maximum level of refinement allowed (≤ 30)
• KO DISS SIGMA : Kreiss-Oliger dissipation factor for BSSNOK formulation
• MASS : Mass of the black hole
• X : x coordinate of the black hole
• Y : y coordinate of the black hole
• Z : z coordinate of the black hole
• V X : momentum of the black hole in x direction
• V Y : momentum of the black hole in y direction
• V Z : momentum of the black hole in z direction
• SPIN : magnitude of the spin of the black hole
• SPIN THETA : magnitude of the spin of the black hole along θ
• SPIN PHI : magnitude of the spin of the black hole along φ

B.2.1. Generating your own parameters. The intial data parameters for a
binary black holes [92] depend on the total mass (M = m1 + m2), the mass ratio
q and the separation distance d. These parameters are calculated using the Python
script BSSN GR/scripts/id.py. The command to generate parameters for q = 10,
total mass M = 5 and separation d = 16 is

$ python3 id . py −M 5 −r 10 16

−−
PUNCTURE PARAMETERS (par f i l e foramt)
−−

5

”BSSN BH1” : {
”MASS” :4 . 489529 ,
”X” :1 .454545 ,
”Y” :0 .000000 ,
”Z” : 0 .000014 ,
”V X” : −0.020297 ,
”V Y” : 0 .423380 ,
”V Z” : 0 .000000 ,
”SPIN” : 0 .000000 ,
”SPIN THETA”:0 .000000 ,
”SPIN PHI ” : 0.000000
} ,
”BSSN BH2” : {
”MASS” :0 . 398620 ,
”X”:−14.545455 ,
”Y” :0 .000000 ,
”Z” :0 . 000014 ,
”V X” : 0 .020297 ,
”V Y” : −0.423380 ,
”V Z” : 0 .000000 ,
”SPIN” : 0 .000000 ,
”SPIN THETA”:0 .000000 ,
”SPIN PHI ” : 0.000000
}
The tangen t i a l momentum i s j u s t an est imate , and the value f o r a
f o r a c i r c u l a r o rb i t i s l i k e l y between (0.5472794147860968 , 0.29947988193805547)

B.3. Symbolic interface and code generation. The BSSNOK formulation is
a decomposition of the Einstein equations into 24 coupled hyperbolic PDEs. Writing
the computation code for the BSSNOK formulation can be a tedious task. Hence we
have written a symbolic Python interface to generate optimized C code to compute the
BSSNOK equations. All the symbolic utilities necessary to write the BSSNOK formu-
lation in symbolic Python can be found in GR/rhs scripts/bssn/dendro.py and the
symbolic BSSNOK code can be found in GR/rhs scripts/bssn/bssn.py. This could
be modified for more advanced uses of the code such as including new equations to
describe additional physics or for introducing a different formulation of the Einstein
equations.

B.4. Profiling the code. Dendro contains built-in profiler code which enables
one to profile the code extensively. On configuration, a user can enable/disable the
internal profiling flags using ENABLE DENDRO PROFILE COUNTERS and the profile output
can be changed between a human readable version and a tab separated format using
the flag BSSN PROFILE HUMAN READABLE. Note that in order to profile communication,
internal profile flags need to be enabled. The following is an example of profiling
output for the first 10 time steps.

ac t i v e npes : 16
g l oba l npes : 16
current step : 10
pa r t i t i o n t o l : 0 .1
wavelet t o l : 0 .0001
maxdepth : 12
Elements : 4656
DOF(z ip) : 279521
DOF(unzip) : 2078609
============ MESH =================
step min(#) mean(#) max(#)
ghost Elements 634 824.062 1065
l o c a l Elements 263 291 319
ghost Nodes 43781 55671.7 71693
l o c a l Nodes 14292 17470.1 20705
send Nodes 18760 24872.9 36861
recv Nodes 18113 24872.9 33777
========== RUNTIME =================
step min (s) mean(s) max(s)
++2:1 balance 0 0 0
++mesh 1.9753 1.98299 1.98946
++rkstep 20.159 20.1856 20.1996
++ghostExchge . 1 .81442 3.15703 4.49568
++unzip sync 8.27839 9.67293 11.0991
++unzip async 0 0 0
++isReMesh 0.04642 0.117357 0.207305
++gr idTrans f e r 1 .53709 1.54899 1.56531
++der iv 1.98942 2.34851 2.76695
++compute rhs 4.00119 4.61547 5.11566
−−compute rhs a 0.0137962 0.0245449 0.0351532
−−compute rhs b 0.0296426 0.0503471 0.069537
−−compute rhs gt 0.111898 0.12846 0.15463
−−compute rhs ch i 0.0170642 0.0315392 0.044856
−−compute rhs At 2.40738 2.72922 3.05622
−−compute rhs K 0.358215 0.39879 0.457139

6

derivative grid points ‖.‖2 ‖.‖∞
∂x 4913 0.0201773 0.00144632
∂x 99221 0.000849063 2.74672e-05

Table 3: Normed difference in numerical derivative and analytical derivative evalu-
ated at grid points for the function f(x, y, z) = sin(2πx)sin(2πy)sin(2πz))where in
both cases wavelet tolerance of 10−8 but increasing maximum level of refinement (i.e.
maxDepth) from 4 to 6. Note that when maxDepth increases number of grid points
increase hence normed difference between numerical and analytical derivatives goes
down significantly.

−−compute rhs Gt 0.774211 0.933581 1.05702
−−compute rhs B 0.0575426 0.071209 0.0855094
++boundary con 0 0.0421986 0.134712
++zip 0.23529 0.260862 0.291513
++vtu 0.0872362 0.101362 0.128246
++checkpoint 3 .27 e−06 3 .85 e−06 5.7469 e−06

B.5. Visualizing the data. Dendro can be configured to output parallel un-
structured grid files in binary file format (.pvtu). These files can be visualized using
any visualization tool which supports VTK file formats. All the images presented
in this paper used Paraview due to its robustness and scalability. Paraview allows
Python based scripting to perform pvbatch visualization, an example pvpython script
can be found in scripts/bssnVis.py

B.6. BSSNOK: Verification Tests. In this section, we present experimental
evaluations that we performed to ensure the accuracy of the simulation code.

B.7. Accuracy of stencil operators. In order to test the accuracy and con-
vergence of WAMR and the derivative stencils, we used a known function to generate
adaptive octree grid based on the wavelet expansion. Then we compute numerical
derivatives using finite difference stencils which are compared against the analytical
derivatives of f(x, y, z). l2 and l∞ norms of the comparison is given in the Table 3.

B.8. Accuracy of symbolic interface and code generation. Given the com-
plexity of the BSSNOK equations, writing code to evaluate these equations can be
an error-prone and tedious task. For example, to evaluate the equations we need to
calculate more than 300 finite derivatives. Hence Dendro provides a symbolic frame-
work written in SymPy for automatically generating C++ code for the equations. The
user writes equations in a high-level representation that more closely resembles their
symbolic form. We can then use the computational graph of the equations to generate
optimized C++ code. The accuracy of the symbolic framework and code generation is
certified by comparing results from the generated C++ code to those from the HAD
code, an established and tested code for numerical relativity.

This table shows a comparison of BSSNOK equations (i.e. all 24 equations),
evaluated over a grid of 1283 points by arbitrary, non-zero functions by both the
Dendro and HAD codes. All spatial derivatives in the equations are evaluated using
finite differences, for both the Dendro and HAD codes. The table reports the L2

norm of the difference in the equations as evaluated in both codes, as well as the
L2 norms of the functions used to evaluate the equations. Equations with residual
norms of order 10−15 are clearly at machine zero, but this low level is reached for only
the simplest equations. Residuals with norms of order 10−12 arise in complicated
equations, where finite precision errors can accumulate in hundreds of floating point

7

operations. The optimized equations require about 4500 floating point operations to
evaluate at a single point.

L2 Norms d i f f e r e n c e s in the HAD and DENDRO equat ions on 128ˆ3 po int s .
−−
| | d i f f 0 | | = 1.18413 e−15, | | rhs HAD | | = 1.28114 , | | rhs DENDRO | | = 1.28114
| | d i f f 1 | | = 7.53412 e−16, | | rhs HAD | | = 2.18877 , | | rhs DENDRO | | = 2.18877
| | d i f f 2 | | = 4.98271 e−16, | | rhs HAD | | = 1.66315 , | | rhs DENDRO | | = 1.66315
| | d i f f 3 | | = 1.03346 e−15, | | rhs HAD | | = 0 .720477 , | | rhs DENDRO | | = 0.720477
| | d i f f 4 | | = 5.82489 e−16, | | rhs HAD | | = 1.40142 , | | rhs DENDRO | | = 1.40142
| | d i f f 5 | | = 4.93128 e−16, | | rhs HAD | | = 0 .797567 , | | rhs DENDRO | | = 0.797567
| | d i f f 6 | | = 1.94194 e−11, | | rhs HAD | | = 19.0107 , | | rhs DENDRO | | = 19.0107
| | d i f f 7 | | = 2.14958 e−11, | | rhs HAD | | = 19.5221 , | | rhs DENDRO | | = 19.5221
| | d i f f 8 | | = 4.0673 e−12, | | rhs HAD | | = 8.96364 , | | rhs DENDRO | | = 8.96364
| | d i f f 9 | | = 1.58532 e−11, | | rhs HAD | | = 10.1459 , | | rhs DENDRO | | = 10.1459
| | d i f f 10 | | = 4.31184 e−12, | | rhs HAD | | = 8.70053 , | | rhs DENDRO | | = 8.70053
| | d i f f 11 | | = 4.95696 e−12, | | rhs HAD | | = 10.8644 , | | rhs DENDRO | | = 10.8644
| | d i f f 12 | | = 4.27211 e−15, | | rhs HAD | | = 19.3546 , | | rhs DENDRO | | = 19.3546
| | d i f f 13 | | = 2.29542 e−10, | | rhs HAD | | = 93.4829 , | | rhs DENDRO | | = 93.4829
| | d i f f 14 | | = 1.7484 e−11, | | rhs HAD | | = 40.0804 , | | rhs DENDRO | | = 40.0804
| | d i f f 15 | | = 4.79216 e−11, | | rhs HAD | | = 30.9279 , | | rhs DENDRO | | = 30.9279
| | d i f f 16 | | = 2.03434 e−11, | | rhs HAD | | = 26.0603 , | | rhs DENDRO | | = 26.0603
| | d i f f 17 | | = 1.07479 e−15, | | rhs HAD | | = 15.5765 , | | rhs DENDRO | | = 15.5765
| | d i f f 18 | | = 3.00151 e−15, | | rhs HAD | | = 32.9891 , | | rhs DENDRO | | = 32.9891
| | d i f f 19 | | = 7.79103 e−16, | | rhs HAD | | = 8.10107 , | | rhs DENDRO | | = 8.10107
| | d i f f 20 | | = 7.77113 e−16, | | rhs HAD | | = 9.01369 , | | rhs DENDRO | | = 9.01369
| | d i f f 21 | | = 1.74839 e−11, | | rhs HAD | | = 46.3141 , | | rhs DENDRO | | = 46.3141
| | d i f f 22 | | = 4.79217 e−11, | | rhs HAD | | = 32.7981 , | | rhs DENDRO | | = 32.7981
| | d i f f 23 | | = 2.03434 e−11, | | rhs HAD | | = 32.7256 , | | rhs DENDRO | | = 32.7256

B.9. Single black hole. Prior to simulating binary inspirals, we perform sim-
ple experiments with a single black hole to ensure the accuracy of the simulation
code. While a single black hole is a stable, static solution of the Einstein equa-
tions, although there is some transient time dependence with:w our particular co-
ordinate conditions. The black hole parameters (parameter file can be found in
SC18 AE/par/single bh1.par in the repository) for this test is given below. Note
that to generate initial data for a single black hole, we place one of the black holes in
the binary far from the computational domain and set its mass to zero.

”BSSN BH1” : { ”MASS” : 1 . 0 , ”X” : 0 . 0 , ”Y” : 0 . 0 ,
”Z” : 0 .00123 e−6, ”V X” : 0 . 0 , ”V Y” : 0 . 0 ,
”V Z ” : 0 . 0 , ”SPIN ” : 0 ,
”SPIN THETA” : 0 , ”SPIN PHI ” : 0 } ,

”BSSN BH2” : { ”MASS” :1 e−15 ,”X” :1 e15 , ”Y” : 0 . 0 ,
”Z” : 0 . 00123 e−6, ”V X” : 0 . 0 , ”V Y” : 0 . 0 ,
”V Z ” : 0 . 0 , ”SPIN ” : 0 ,
”SPIN THETA” : 0 , ”SPIN PHI ” : 0 }

B.10. Boosted Single Black Hole. The next experiment is an extension of
the single BH test; it “boosts” the BH with constant velocity in x-direction. The
constant velocity of the BH should be apparent in the evolution. The parameter file
for this test can be found in the repository at SC18 AE/par/single bh1 boost.par.
The black hole parameters are given below (note that BSSN BH1 has a momentum
of 0.114 in x-direction).

”BSSN BH1” : { ”MASS” : 1 . 0 , ”X” : 0 . 0 , ”Y” : 0 . 0 ,
”Z” : 0 .00123 e−6, ”V X” : 0 .114 , ”V Y” : 0 . 0 ,
”V Z ” : 0 . 0 , ”SPIN ” : 0 ,
”SPIN THETA” : 0 , ”SPIN PHI ” : 0 } ,

”BSSN BH2” : { ”MASS” :1 e−15 ,”X” :1 e15 , ”Y” : 0 . 0 ,
”Z” : 0 . 00123 e−6, ”V X” : 0 . 0 , ”V Y” : 0 . 0 ,
”V Z ” : 0 . 0 , ”SPIN ” : 0 ,
”SPIN THETA” : 0 , ”SPIN PHI ” : 0 }

8

(a) step = 0, time = 0 M
(b) step = 500, time =
21.97 M

(c) step = 1000, time =
43.94 M

(d) step = 1500, time =
65.91 M

(e) step = 2000, time =
87.88 M

(f) step = 2500, time =
109.85 M

(g) step = 3000, time =
131.82 M

(h) step = 3500, time =
153.79 M

(i) step = 4000, time =
175.76 M

(j) step = 4500, time =
197.73 M

(k) step = 5000, time =
219.70 M

(l) step = 5500, time =
241.67 M

(m) step = 6000, time =
263.64 M

(n) step = 6500, time =
285.61 M

Fig. 18: A single black hole boosted in the x-direction, with maxdepth=12 and
wavelet tolerance of 10−3. Time is given in terms of the black hole mass, M .

9

Time (M) ‖Hr>a‖2 ‖M1r>a‖2 ‖M2r>a‖2 ‖M3r>a‖2
0 0.000777861 1.01855e-05 1.23443e-05 7.17572e-06

0.976562 0.000808294 3.05681e-05 2.91217e-05 2.79631e-05
1.95312 0.000793783 5.03912e-05 3.93872e-05 4.06693e-05
2.92969 0.00079551 7.54643e-05 5.068e-05 5.42466e-05
3.90625 0.000956987 0.000102901 7.38208e-05 7.47156e-05
4.88281 0.00247348 0.000200055 0.000140583 0.000139008

Table 4: Violation of constraint equations with time for an equal mass ratio binary
merger simulation done using OT. Note that H, M1,M2,M3 denotes the Hamilto-
nian and 3 momentum component constraints that is being monitored through the
evolution.

B.11. Constraint equations. Similar to the Maxwell equations of electrody-
namics, the Einstein equations contain both hyperbolic evolution equations and ellip-
tic constraint equations, which must be satisfied at all times. Following the common
practice in numerical relativity, we evolve the hyperbolic equations and monitor the
quality of the solution by checking that the constraint equations are satisfied. The
choice of coordinates for the BBH evolution (the puncture gauge) does induce con-
straint violations in the vicinity of each black hole. The violations of the constraint
equations in our runs are consistent with the discretization error expected for the
numerical derivatives in the constraint equations and the constraint violations near
the black holes (punctures). An example of monitored constraint violations are listed
in the Table 4.

B.12. Binary black holes with mass ratio q = 1. We performed a series of
short-term binary BH evolutions with different mass ratios. This run was used to
validate the code by comparing the trajectories of the BHs calculated using Dendro
to the trajectories calculated by HAD. Frames from the evolution are shown in the
Figure 20, and the BH parameters used for this run are listed below.

”BSSN BH1” : {
”MASS” : 0 . 4 8 5 ,
”X” : 4 .00 e+00, ”Y” : 0 . 0 , ”Z” : 1.41−05 ,
”V X” : −0.00133 , ”V Y” : 0 .112 , ”V Z ” : 0 ,
”SPIN ” : 0 , ”SPIN THETA” : 0 , ”SPIN PHI ” : 0 } ,
”BSSN BH2” : {
”MASS” : 0 . 4 8 5 ,
”X”:−4.00+00 , ”Y” : 0 . 0 , ”Z”:1.41−05 ,
”V X” : 0 .00132 , ”V Y” : −0.112 , ”V Z ” : 0 ,
”SPIN ” : 0 , ”SPIN THETA” : 0 , ”SPIN PHI ” : 0 }

10

0 1 2 3 4 5 6

·104

0

0.2

0.4

0.6

0.8

timestep→

||.
|| 2
→

||H||2
||P1||2
||P2||2
||P3||2

Fig. 19: l2 norm of the Hamiltonian and momentum constraint violation as hyperbolic
equations are evolved in time for equal mass ratio binary black hole configuration test
run performed using Dendro-GR. Note that the final spike in constraint violation is
happens during the merging even of binary black holes.

B.13. Binary black holes with mass ratio q = 10. We performed a short
simulation with a mass ratio q = 10 This is a short demonstration run to show that
Dendro easily handles large mass ratios and gives consistent results for the binary
evolution. Frames from the evolution are shown in figure, and the BH parameters
used for this run are listed below.

”BSSN BH1” : {
”MASS” : 0 . 9 0 3 ,
”X”:5.45−01 , ”Y” : 0 . 0 , ”Z” : 1.41−05 ,
”V X” : −3.90e−04, ”V Y” : 0 .0470 , ”V Z ” : 0 ,
”SPIN ” : 0 , ”SPIN THETA” : 0 , ”SPIN PHI ” : 0 } ,
”BSSN BH2” : {
”MASS” : 0 . 0 8 4 5 ,
”X”:−5.45+00 , ”Y” : 0 . 0 , ”Z”:1.41−05 ,
”V X” : 3 .90 e−04, ”V Y” : −0.0470 , ”V Z ” : 0 ,
”SPIN ” : 0 , ”SPIN THETA” : 0 , ”SPIN PHI ” : 0 }

B.14. Binary black holes with mass ratio q = 100. We performed a short
simulation with a mass ratio q = 100 This is a short demonstration run to show that
Dendro produces the proper grid structure for this system and reasonable results for
a very challenging binary configuration. Frames from the evolution are shown in the
figure and the BH parameters used for this run are listed below.

”BSSN BH1” : {
”MASS” : 0 . 9 8 9 ,
”X”:5.94−02 , ”Y” : 0 . 0 , ”Z” : 1.41−05 ,
”V X” : −5.60−06 , ”V Y” : 5.61−03 , ”V Z ” : 0 ,
”SPIN ” : 0 , ”SPIN THETA” : 0 , ”SPIN PHI ” : 0 } ,
”BSSN BH2” : {
”MASS” : 0 . 0 0 91 4 ,

11

(a) step = 0, time = 0 M
(b) step = 500, time =
21.97 M

(c) step = 1000, time =
43.94 M

(d) step = 1500, time =
65.91 M

(e) step = 2000, time =
87.88 M

(f) step = 2500, time =
109.85 M

(g) step = 3000, time =
131.82 M

(h) step = 3500, time =
153.79 M

(i) step = 4000, time =
175.76 M

(j) step = 4500, time =
197.73 M

(k) step = 5000, time =
219.70 M

(l) step = 5500, time =
241.67 M

Fig. 20: This figure shows frames from the evolution of a black hole binary with an
equal mass ratio, q = 1. Time is measured in terms of the total black hole mass M .

”X”:−5.94+00 , ”Y” : 0 . 0 , ”Z” :1 .41421356 e−05,
”V X” : 5.60−06 , ”V Y” : −5.61−03 , ”V Z ” : 0 ,
”SPIN ” : 0 , ”SPIN THETA” : 0 , ”SPIN PHI ” : 0 }

12

(a) step = 0, time = 0 M
(b) step = 500, time =
21.97 M

(c) step = 1000, time =
43.94 M

(d) step = 1500, time =
65.91 M

(e) step = 2000, time =
87.88 M

(f) step = 2500, time =
109.85 M

(g) step = 3000, time =
131.82 M

(h) step = 3500, time =
153.79 M

(i) step = 4000, time =
175.76 M

(j) step = 4500, time =
197.73 M

(k) step = 5000, time =
219.70 M

(l) step = 5500, time =
241.67 M

Fig. 21: This figure shows frames from the evolution of a black hole binary with mass
ratio q = 10. Time is measured in terms of the total black hole mass M .

13

(a) step = 0, time = 0 M
(b) step = 500, time =
21.97 M

(c) step = 1000, time =
43.94 M

(d) step = 1500, time =
65.91 M

(e) step = 2000, time =
87.88 M

(f) step = 2500, time =
109.85 M

(g) step = 3000, time =
131.82 M

(h) step = 3500, time =
153.79 M

(i) step = 4000, time =
175.76 M

(j) step = 4500, time =
197.73 M

(k) step = 5000, time =
219.70 M

(l) step = 5500, time =
241.67 M

Fig. 22: This figure shows frames from the evolution of a black hole binary with mass
ratio q = 100. Time is given in terms of the total mass M .

14

	1 Introduction
	2 Background
	3 Methodology
	3.1 Numerical Methods
	3.2 Wavelet Adaptive Multiresolution
	3.3 Computational Framework
	3.3.1 Preliminaries
	3.3.2 Octree partitioning
	3.3.3 Octree Construction and Refinement
	3.3.4 2:1 Balancing
	3.3.5 Meshing
	3.3.6 unzip and zip Operations:
	3.3.7 re-mesh and inter-grid transfer operations

	3.4 Symbolic interface and code generation
	3.5 Putting everything together

	4 Results
	4.1 Meshing Performance
	4.2 Correctness of Code
	4.3 Comparison with Einstein Toolkit
	4.4 Parallel Scalability
	4.5 Large Mass Ratios

	5 Conclusion
	References
	Appendix A. Overview of BSSNOK Equations
	A.1 NLSM: Non-linear Sigma Model

	Appendix B. Code Evaluation and Verification
	B.1 Getting and Compiling Dendro
	B.2 Getting Started: Running bssnSolver
	B.2.1 Generating your own parameters

	B.3 Symbolic interface and code generation
	B.4 Profiling the code
	B.5 Visualizing the data
	B.6 BSSNOK: Verification Tests
	B.7 Accuracy of stencil operators
	B.8 Accuracy of symbolic interface and code generation
	B.9 Single black hole
	B.10 Boosted Single Black Hole
	B.11 Constraint equations
	B.12 Binary black holes with mass ratio q=1
	B.13 Binary black holes with mass ratio q=10
	B.14 Binary black holes with mass ratio q=100

