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ON LIPSCHITZ-LIKE PROPERTY FOR POLYHEDRAL MOVING SETS

EWA M. BEDNARCZUK1 AND KRZYSZTOF E. RUTKOWSKI2

Abstract. We give sufficient conditions for Lipschitz-likeness of a class of poly-
hedral set-valued mappings in Hilbert spaces based on Relaxed Constant Rank Con-
straint Qualification (RCRCQ) proposed recently by Minchenko and Stakhovsky.
To this aim we prove the R-regularity of the considered set-valued mapping and
correct the respective proof given by these authors.

1. Introduction

Let H,G be a Hilbert space and D ⊂ G be a nonempty set. Let C : D ⇒ H be a
multifunction defined as C(p) := C(p), where

C(p) =

{

x ∈ H
∣

∣

∣

∣

〈x | gi(p)〉 = fi(p), i ∈ I1,
〈x | gi(p)〉 ≤ fi(p), i ∈ I2

}

, (1.1)

and fi : D → R, gi : D → H, i ∈ I1 ∪ I2, I1 = {1, . . . ,m}, I2 = {m+ 1, . . . , n} are
Lipschitz on D with Lipschitz constants ℓfi , ℓgi , respectively.

In finite dimensional case (H = Rn1 , G = Rn2) the sufficient conditions for R-
regularity of multifunction C and more general set-valued mappings have been proposed
in [8, Theorem 4]. R-regularity of the multifunction C at (p̄, x̄) ∈ gphC is defined as
follows.

Definition 1. Multifunction C : D ⇒ H given by (1.1) is said to be R-regular at a
point (p̄, x̄), if for all (p, x) in a neighbourhood of (p̄, x̄),

dist (x,C(p)) ≤ αmax{0, |〈x | gi(p)〉 − fi(p)|, i ∈ I1, 〈x | gi(p)〉 − fi(p), i ∈ I2}
for some α > 0.

The aim of the paper is to investigate the Lipschitz-like property of the multifunction
C at (p̄, x̄) ∈ gphC defined as follows.

Definition 2. Multifunction C is Lipschitz-like at a point (p̄, x̄), if there exist a constant
ℓ > 0, a neighbourhood U(p̄) and a neighbourhood V (x̄) such that for all p1, p2 ∈ U(p̄)

C(p1) ∩ V (x̄) ⊂ C(p2) + ℓ‖p1 − p2‖B,
where B denotes the open unit ball in the space H.
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To this aim we provide Proposition 1 which is the infinite-dimensional version of
Lemma 3 of [8] applied to our set-valued mapping (1.1). However, the proof of [8,
Lemma 3] which is important for the proof of [8, Theorem 4] is incorrect. It is also our
aim to provide the correct proof of [8, Lemma 3] in our case.

2. Preliminaries

Let p ∈ D, w ∈ H, w /∈ C(p). Projection of w onto C(p) is defined as

PC(p)(w) = arg min
x∈C(p)

‖w − x‖, (2.1)

or equivalently

PC(p)(w) = arg min
x∈C(p)

1

2
‖w − x‖2. (2.2)

Put fw(x) = ‖x− w‖ and

f∗
PC(p)(w)(x) = ‖x− w‖ + 〈x− w | x− PC(p)(w)〉

‖PC(p)(w)− w‖ .

Denote Gi(x, p) = 〈x | gi(p)〉−fi(p), i ∈ I1∪I2 and Ḡi(x, p) = Gi(x, p) for gi(p) = ai,
ai ∈ H, i ∈ I1 ∪ I2, i.e., gi, i ∈ I1 ∪ I2 does not depend on p. Let G(x, p) and Ḡ(x, p)
be defined as

G(x, p) = [Gi(x, p)]i=1,...,n , Ḡ(x, p) =
[

Ḡi(x, p)
]

i=1,...,n
.

Let λ ∈ Rn and

Lw(p, x, λ) := fw(x) + 〈λ | G(x, p)〉,
L∗
w(p, x, λ) := f∗

PC(p)(w)(x) + 〈λ | G(x, p)〉.
The sets of Lagrange multipliers corresponding to (2.1) are defined as

Λw(p, x) := {λ ∈ R
n | ∇xLw(p, x, λ) = 0, λi ≥ 0, and λiGi(x, p) = 0, i ∈ I2},

Λ∗
w(p, x) := {λ ∈ R

n | ∇xL
∗
w(p, x, λ) = 0, λi ≥ 0, and λiGi(x, p) = 0, i ∈ I2}.

Then

∇xLw(p, PC(p)(w), λ) =
PC(p)(w) − w

‖PC(p)(w) − w‖ +

n
∑

i=1

λigi(p),

∇xL
∗
w(p, PC(p)(w), λ) = 2

PC(p)(w)− w

‖PC(p)(w)− w‖ +

n
∑

i=1

λigi(p).

(2.3)

Let us note that when w /∈ C(p) condition ∇xLw(p, PC(p)(w), λ) = 0 is equivalent to
the following

w − PC(p)(w)

‖PC(p)(w) − w‖ =

n
∑

i=1

λigi(p) ⇔ w − PC(p)(w) =

n
∑

i=1

λ̂igi(p), (2.4)

where λ̂i = λi‖PC(p)(w)− w‖, i = 1, . . . , n.
Let us recall that the Kuratowski limit of C at p̄ is given as

lim inf
p→p̄

C(p) = {y ∈ H | ∀ pk → p̄ ∃ yk ∈ C(pk) yk → y}.

Equivalently, x̄ ∈ lim inf
p→p̄

C(p) if and only if

∀ V (x̄) ∃ U(p̄) s.t. C(p) ∩ V (x̄) 6= ∅ for p ∈ U(p̄). (2.5)
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For any (p, x) ∈ D ×H let Ip(x) := {i ∈ I1 ∪ I2 | 〈x− fi(p) | gi(p)〉 = 0} denote the
active index set for p ∈ D at x ∈ H.

Definition 3 (Relaxed Constant Rank Constraint Qualification). The relaxed constant
rank constraint qualification (RCRCQ) holds for multifunction C : D ⇒ H given by
(1.1) at (p̄, x̄), x̄ ∈ C(p̄), if there exists a neighbourhood U(p̄) of p̄ such that, for any
index set J , I1 ⊂ J ⊂ Ip̄(x̄), for every p ∈ U(p̄) the system of vectors {gi(p), i ∈ J}
has constant rank. Precisely, for any J , I1 ⊂ J ⊂ Ip̄(x̄)

rank (gi(p), i ∈ J) = rank (gi(p̄), i ∈ J) for all p ∈ U(p̄.)

For more general constraint sets this definition has been introduced in [8, Definition
1]. In [6] several kinds of relations between constraint qualifications (for C(p̄)) has
been established including RCRCQ and the classical Mangasarian Fromovitz Constraint
Qualification (MFCQ).

The following diagram provides the summary of the existing results concerning R-
regularity, calmness, metrical subregularity, metric regularity of sets and multifunctions
C(p). Let us note however that it also applies to more general forms of sets and
multifunctions.

set C(p̄) is RCRCQ-
regular at x̄ ∈ F (p̄)

set C(p̄) is R-regular at
x̄ ∈ F (p̄)

multifunction C is calm at
(p̄, x̄)

multifunction C−1 is met-
rically subregular at (x̄, p̄)

multifunction C is RCRCQ-regular
at (p̄, x̄) ∈ gphF ;

multifunction C is R-regular at
(p̄, x̄) ∈ gphF

MFCQ at x̄

mutifunction G is metrically regular at (0, x̄)

Henrion, Outrata
[5, Lemma 1]

Dontchev, Rockafellar
[4, Theorem 3H.3]

Dontchev,
Quincampoix,
Zlateva
[3, Theorem 4.1]

Minchenko, Stakhovski
[9, Theorem 3]

Minchenko, Stakhovski
[8, Theorem 4]

6 Bonnans, Shapiro
[1, Theorem 2.87]

In the diagram multifunction G is defined as G = Ḡ+K, where K = {0}m × R
n−m
+ .

Implication given as dotted line under additional assumption has been proposed in [8,
Theorem 4]. However, as mentioned in Introduction the proof of [8, Theorem 4] is
incorrect. In the next section we present a counterexample to the proof of [8, Lemma
3] and propose a new proof in our settings.

3. Main result

We start with the proposition which relates RCRCQ condition to the boundedness
(with respect to p, w) of Lagrange multiplier set

ΛM
w (p, PC(p)(w)) := {λ ∈ Λw(p, PC(p)(w)) |

n
∑

i=1

|λi| ≤ M}.
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Proposition 1. Let multifunction C given by (1.1) satisfy RCRCQ at (x̄, p̄) ∈ gphC.
Assume that x̄ ∈ lim inf

p→p̄
C(p). Then there exist numbers M > 0, δ > 0, δ0 > 0 such

that

ΛM
w (p, PC(p)(w)) 6= ∅ for p ∈ p̄+ δ0B, w ∈ x̄+ δB, w /∈ C(p).

The content of Proposition 1 coincides with the content of [8, Lemma 3]. The proof
of Proposition 1 we present below is essentially different from the proof of Lemma 3 of
[8]. The proof of [8, Lemma 3] is incorrect which can be shown by the the following
example.

Example 1. Let C : R2 → R2 be defined as follows

C(p) :=







x ∈ R
2

∣

∣

∣

∣

〈x | (1, 0)〉 = 0
〈x | (0, 1)〉 = 0
〈x | p〉 ≤ 0







(3.1)

and p̄ = x̄ = (0, 0). We have C(p) = {(0, 0)} for all p = (r1, r2) ∈ R2 and

(1) RCRCQ holds for multifunction C at z0 = ((0, 0), (0, 0)) ∈ gph (C),
(2) (0, 0) ∈ lim inf

p→(0,0)
C(p).

We have g1(p) = (1, 0), g2(p) = (0, 1), g3(p) = p for all p ∈ R2 and G1(p, x) =
〈x | (1, 0)〉, G2(p, x) = 〈x | (0, 1)〉, G3(p, x) = 〈x | p〉 and the assumptions of [8,
Lemma 3] are satisfied.

The proof of [8, Lemma 3] relies on showing that for any sequences pk → p̄, wk → x̄,
wk /∈ C(pk) there exist

λk ∈ ΛM
wk

(pk, PC(pk)(wk)) for some M ≥ 0 and all k ∈ N.

Below we show that the way of choosing λk which are to satisfy the above property
is incorrect in general. More precisely, we show that for C defined by (3.1) there are
sequences pk → p̄, wk → x̄ and λk ∈ Λwk

(pk, PC(pk)(wk)) chosen as in the proof of
[8, Lemma 3] with ‖λk‖ → +∞.

Let pk = ( 1
k2 ,

1
k2 ) → (0, 0), wk = ( 1

k
, 2
k
). We have that xk = (0, 0) = ΠC(pk)(wk)

and in the notation of the proof of [8, Lemma 3], zk =
(

( 1
k2 ,

1
k2 ), (0, 0)

)

. We have
Ipk

(xk) = I∗ = {1, 2, 3} and

0 =
PC(pk)(wk) − wk

‖PC(pk)(wk) − wk‖
+

∑

i∈Ipk (xk)

λigi(pk)

⇔
(

1√
5
,
2√
5

)

= λ1(1, 0) + λ2(0, 1) + λ3

(

1

k2
,
1

k2

)

.

There exists a maximal linearly independent subfamily {gi(pk), i ∈ {2, 3}} in the family

{gi(pk), i ∈ {1, 2, 3}} such that (0, 1√
5
, k2
√
5
) ∈ Λ( 1

k2 , 2
k2 )((

1
k2 ,

1
k2 ), (0, 0)) for all k ∈ N.

In the notation of the proof of [8, Lemma 3] we have J(zk) = J0 = {2, 3}. RCRCQ
at the point z0 implies that

2 = rank {gi(p̄), i ∈ {1, 2, 3}} = rank {gi(p), i ∈ {1, 2, 3}}
for all points z ∈ R2. Moreover for all zk, k = 1, 2, . . . we have

2 = rank {gi(pk), i ∈ {1, 2, 3}} = rank {gi(p), i ∈ {2, 3}}.
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Observe that rank {g1(p), g2(p)} = 2 for all p ∈ U((0, 0)). Hence, in the notation of
the proof of [8, Lemma 3], J00 = {1, 2} and the function Φ takes the form

G1(p, x) = Φ(G1(p, x), G2(p, x)),
G2(p, x) = Φ(G1(p, x), G2(p, x)),
G3(p, x) = Φ(G1(p, x), G2(p, x)) = r1G1(p, x) + r2G2(p, x)
(since 〈x | p〉 = 〈x | 〈p | (1, 0)〉 · (1, 0)〉+ 〈x | 〈p | (0, 1)〉 · (0, 1)〉).

On the other hand,

g3(pk) = ∇xΦ(G1(pk, xk), G2(pk, xk)) =
1

k
(1, 0) +

1

k
(0, 1),

g3(p̄) = ∇xΦ(G1(p̄, x̄), G2(p̄, x̄)) = 0 · (1, 0) + 0 · (0, 1),

and vectors g2((0, 0)) = (1, 0), g3((0, 0)) = (0, 0) are linearly dependent. Moreover,

‖(0, 1√
5
, k2
√
5
)‖ =

√

1
5 + k4

5 → +∞ and

(0, 0) = lim
k→+∞

1
√

1
5 + k4

5

(
1

k
,
2

k
) = lim

k→+∞

√
5

k2
√

1
k4 + 1

(
1

k
,
2

k
)

= lim
k→+∞

√
5

k3
√

1
k4 + 1

(0, 1) +

√
5

k
√

1
k4 + 1

(
1

k2
,
1

k2
) = 0(0, 1) + 0(0, 0).

The example shows that the construction proposed in the proof of [8, Lemma 3] may
lead to the contradiction of the conclusion. The reason is that in the proof of [8,
Lemma 3] the set J0 is chosen in an incorrect way and function Φ does not depend on
p directly.

Proof of Proposition 1. On the contrary suppose, that there exist sequences pk → p̄,
wk → x̄ such that wk /∈ C(pk) and

dist (0,Λwk
(pk, PC(pk)(wk)) → +∞. (3.2)

Due to the fact that x̄ ∈ lim inf
p→p̄

C(p), we may assume without loss of generality that

C(pk) 6= ∅ for each pk, and there exists x̂k ∈ C(pk) such that x̂k → x̄.
RCRCQ at (p̄, x̄) implies that RCRCQ holds also at all the points near the point

(p̄, x̄). Without loss of generality one may assume that RCRCQ holds at all (pk, PC(pk)(wk)),
k ∈ N. Consequently, Λwk

(pk, PC(pk)(wk)) 6= ∅ for all k = 1, 2, . . . .
Passing to subsequences, if necessary, we may assume that (pk, wk) ∈ V (p̄, w̄),

where by RCRCQ, V (p̄, w̄) is such that for any J , I1 ⊂ J ⊂ I1 ∪ I2

rank {gi(pk), i ∈ J} = rank {gi(p̄), i ∈ J}. (3.3)

By Theorem 2,

wk − PC(pk)(wk) =
∑

i∈Ipk (PC(pk)(wk))

λ̂k
i gi(pk), k = 1, . . . (3.4)

where λ̂k
i ≥ 0, i ∈ I2 ∩ Ipk

(PC(pk)(wk)). Recall that Ip(PC(p)(w)) := {i ∈ I1 ∪
I2 | 〈PC(p)(w) | gi(p)〉 − fi(p) = 0} and λ̂k

i , i ∈ I2 ∩ Ipk
(PC(pk)(wk)) are related to
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the set Λwk
(pk, PC(pk)(wk)) via equivalence (2.4). Then (3.4) takes the form

wk − PC(pk)(wk) =
∑

I1

λ̂k
i gi(pk) +

∑

Ipk (PC(pk)(wk)\I1

λ̂k
i gi(pk),

λ̂k
i ≥ 0, i ∈ Ipk

(PC(pk)(wk) \ I1 k = 1, . . .

(3.5)

By Lemma 3, there exists I01 ⊂ I1, I02 (wk, pk) ⊂ I2, and λ̃i(wk, pk) ∈ R, i ∈ I01 ,

λ̃i(wk, pk) > 0, i ∈ I02 (wk, pk) such that

wk − PC(pk)(wk) =
∑

i∈I0
1

λ̃i(wk, pk)gi(p) +
∑

I0
2 (wk,pk)

λ̃i(wk, pk)gi(pk), (3.6)

where gi(pk), i ∈ I01 ∪ I02 (wk, pk) are linearly independent.
Passing to a subsequence, if necessary, we may assume that for all k ∈ N, I02 (wk, pk)

is a fixed set, i.e., I02 (wk, pk) = I02 .
By RCRCQ, there exists k0 such that for all k ≥ k0

rank {gi(pk), i ∈ I01 ∪ I02} = rank {gi(p̄), i ∈ I01 ∪ I02}.

Put λk
i =

λ̃k
i

‖wk−PC(pk)(wk)‖ . For every k ≥ k0 we have λk(wk, pk) ∈ Λwk
(pk, PC(pk)(wk))

and by (3.2), ‖λk(wk, pk)‖ → +∞. Without loss of generality we may assume that
λk(wk, pk)‖λk(wk, pk)‖−1 → λ̄. Then by (3.6) we obtain

0 =
∑

i∈I0
1∪I0

2

λ̄igi(p̄), λ̄i ≥ 0, i ∈ I02 ,

where ‖λ̄‖ = 1. This contradicts the fact that gi(p̄), i ∈ I01∪I02 are linearly independent.
�

In the next proposition we relate the boundedness of the Lagrange multiplier set
ΛM
w (p, PC(p)(w)) to the R-regularity of C at (p̄, x̄). For sets C(p) given as solution

sets to parametric systems of nonlinear equations and inequalities in finite dimensional
spaces this fact has been already proved in [8, Theorem 2]. The proof we give below is
based on the proof of Theorem 2 of [8].

Proposition 2. Let p̄ ∈ D, x̄ ∈ C(p̄) and x̄ ∈ lim inf
p→p̄

C(p). Assume that there exist

numbers M > 0, δ1 > 0, δ2 > 0 such that

ΛM
w (p, PC(p)(w)) := {λ ∈ Λw(p, PC(p)(v)) |

n
∑

i=1

|λi| ≤ M} 6= ∅

for all p ∈ (p̄+ δ1B) ∩ S and for all w ∈ (x̄+ δ2B), w /∈ C(p). Then the multifuction
C is R-regular at (x̄, p̄).

Proof. Since x̄ ∈ lim inf
p→p̄

C(p) one can find δ3 > 0 such that C(p)∩{x̄+4−1δ3B} 6= ∅
for all p ∈ p̄ + δ3B. Let p ∈ p̄ + 2−1δ3B, w ∈ x̄ + 4−1δ3B. If w ∈ C(p) then
dist (w,C(p)) = 0.

Let w /∈ C(p) and w ∈ x̄ + 4−1δ3B. Since C(p) ∩ {x̄+ 4−1δ3B} 6= ∅ there exists
x1 ∈ C(p) ∩ {x̄+ 4−1δ3B}. Then

‖PC(p)(w) − w‖ ≤ ‖w − x1‖ ≤ ‖w − x̄‖+ ‖x1 − x̄‖ < 2−1δ3
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It follows that PC(p)(w) ∈ x̄+ δ3B. Let

λ ∈
{

λ ∈ R
n |

n
∑

i=1

|λi| ≤ 2M

}

.

Introduce a function

h(p, x) = h(p, x, w, λ, PC(p)(w)) =
〈x− w | x− PC(p)(w)〉

‖PC(p)(w) − w‖ +
n
∑

i=1

λiGi(p, x)

The function h(p, x) is convex with respect to x on H.
Let λ ∈ ΛM

w (p, PC(p)(w)), p ∈ p̄ + 2−1δ3B, w ∈ x̄ + 4−1δ3B such that w /∈
C(p). Since Λ∗

w(x, PC(p)(w)) = 2Λw(x, PC(p)w)) 6= ∅ by (2.3) we have λ∗ := 2λ ∈
Λ∗
w(x, PC(p)(w)).
The equality ∇xL

∗
x(p, PC(p)(w), λ

∗) = 0 can be written in the form

w − PC(p)(w)

‖w − PC(p)(w)‖
=

PC(p)(w) − v

‖PC(p)(w) − w‖ +

n
∑

i=1

λ∗
i gi(p),

where the right side coincides with the gradient ∇xh(p, x) of the function

h(p, x) = h(p, x, w, λ∗, PC(p)(w)) =
〈x− w | x− PC(p)(w)〉

‖PC(p)(w)− w‖ +

n
∑

i=1

λ∗
iGi(p, x)

at the point y = PC(p)(w).
Since

〈∇xh(p, PC(p)(w)) | w − PC(p)(w)〉 ≤ h(p, w)− h(p, PC(p)(w))

due to convexity of the function h(p, x) with

λ∗ ∈ Λ∗
w(x, PC(p)(w)) ∩

{

λ ∈ R
n |

n
∑

i=1

|λi| ≤ 2M

}

,

from the last inequality it follows that

‖w − PC(p)(w)‖ =
〈w − PC(p)(w) | w − PC(p)(w)〉

‖PC(p)(w)− w‖

=

〈

PC(p)(w) − w

‖PC(p)(w) − w‖ +

n
∑

i=1

λ∗
i gi(p) | w − PC(p)(w)

〉

≤ 〈w − w | w − PC(p)(w)〉
‖PC(p)(w) − w‖ +

n
∑

i=1

λ∗
iGi(p, w)

− 〈PC(p)(w) − w | PC(p)(w) − PC(p)(w)〉
‖PC(p)(w) − w‖ −

n
∑

i=1

λ∗
iGi(p, PC(p)(w))

=

n
∑

i=1

λ∗
i (Gi(p, w)−Gi(p, PC(p)(w))) =

n
∑

i=1

λ∗
iGi(p, w) = 2

n
∑

i=1

λiGi(p, w).

This inequality implies

dist (w,C(p)) = ‖w − PC(p)(w)‖ ≤ 2‖λ‖1max{0, Gi(p, w), i ∈ I2, |Gi(p, w)|, i ∈ I1}
≤ 2M max{0, Gi(p, w), i ∈ I2, |Gi(p, w)|, i ∈ I1}.

�
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Now we show that if the multifunction C is R-regular at (p̄, x̄) then C is Lipschitz
like at (p̄, x̄).

Proposition 3. Let H, G be a Hilbert spaces and fi : D → R, gi : D → H are
Lipschitz on D ⊂ G. If the set-valued mapping C : D ⇒ H given by (1.1) is R-regular
at (p̄, x̄), p̄ ∈ D, x̄ ∈ C(p̄) then C is Lipschitz-like at (p̄, x̄)

Proof. By the R-regularity of C there exists a constant α and a neighbourhood U(p̄)
and a neighbourhood V (x̄) such that

dist(x,C(p)) ≤ αmax{0, |〈x | gi(p)〉 − fi(p)|, i ∈ I1, 〈x | gi(p)〉 − fi(p), i ∈ I2}
for all (p, x) in neighbourhood U(p̄)×V (x̄). Let (p1, x1), x1 ∈ C(p1) in neighbourhood
U(p̄)×V (x̄) and p2 ∈ U(p̄). Since C(p2) is closed and convex there exists x2 ∈ C(p2)
such that dist(x1, C(p2)) = ‖x1 − x2‖. Then by R-regularity

dist(x1, C(p2)) = ‖x1 − x2‖

≤ αmax

{

0,max
i∈I1

|〈x1 | gi(p2)〉 − fi(p2)|,max
i∈I2

〈x1 | gi(p2)〉 − fi(p2)

}

≤ αmax

{

0,max
i∈I1

|〈x1 | gi(p2)〉 − fi(p2)− (|〈x1 | gi(p1)〉 − fi(p1))|,

max
i∈I2

〈x1 | gi(p2)〉 − fi(p2)− (|〈x1 | gi(p1)〉 − fi(p1))

}

= αmax

{

0,max
i∈I1

|〈x1 | gi(p2)− gi(p1)〉 − (fi(p2)− fi(p1))|,

max
i∈I2

〈x1 | gi(p2)− gi(p1)〉 − (fi(p2)− fi(p1))

}

≤ αmax

{

max
i∈I1

‖x1‖‖gi(p2)− gi(p1)‖+ ‖fi(p2)− fi(p1)‖,

max
i∈I2

‖x1‖‖gi(p2)− gi(p1)‖+ ‖fi(p2)− fi(p1)‖
}

= α max
i∈I1∪I2

‖x1‖‖gi(p2)− gi(p1)‖+ ‖fi(p2)− fi(p1)‖

≤ α max
i∈I1∪I2

(‖x1‖ℓgi + ℓfi)‖p1 − p2‖,

hence C is Lipschitz-like at (x̄, p̄). �

The following theorem is our main result.

Theorem 1. Let multifunction C : D ⇒ H given by (1.1) satisfy RCRCQ at (x̄, p̄) ∈
gphC. Assume that x̄ ∈ lim inf

p→p̄
C(p). Then C is Lipschitz-like at (p̄, x̄)

Proof. The proof follows immediately from Proposition 1, Proposition 2, Proposition
3. �

4. Conclusions

In this paper we used RCRCQ to investigate Lipschitz-likeness of set valued mapping
C given by (1.1). In many existing papers (e.g. [1, 4, 3, 5]) the continuity properties of
set-valued mappings are related to the Mangasarian-Fromovitz constraint qualification
MFCQ. In general, there is no direct relationship between RCRCQ and MFCQ (see [6]).
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It depends upon the problem considered which of the two constraint qualifications is
more useful.

5. Appendix

Lemma 1. Let J = {1, . . . , k}. Let gi : G → H, i ∈ J be continuous operators and let
p̄ be such that gi(p̄), i ∈ J are linearly independent. Then there exists a neighbourhood
U(p̄) such that for all p ∈ U(p̄), gi(p), i ∈ J are linearly independent.

Proof. The fact that gi(p̄), i ∈ J are linearly independent is equivalent to the fact that
the Gram determinant of gi(p̄), i ∈ J is nonzero (see for example [2, Lemma 7.5]), i.e

Gram(g1(p̄), . . . , gk(p̄)) :=
∣

∣

∣

∣

∣

∣

∣

∣

〈g1(p̄) | g1(p̄)〉 〈g1(p̄) | g2(p̄)〉 . . . 〈g1(p̄) | gk(p̄)〉
〈g2(p̄) | g1(p̄)〉 〈g2(p̄) | g2(p̄)〉 . . . 〈g2(p̄) | gk(p̄)〉

. . .
〈gk(p̄) | g1(p̄)〉 〈gk(p̄) | g2(p̄)〉 . . . 〈gk(p̄) | gk(p̄)〉

∣

∣

∣

∣

∣

∣

∣

∣

6= 0.

For any p let

F(p) := Gram(g1(p), . . . , gk(p)) :=
∣

∣

∣

∣

∣

∣

∣

∣

〈g1(p) | g1(p)〉 〈g1(p) | g2(p)〉 . . . 〈g1(p) | gk(p)〉
〈g2(p) | g1(p)〉 〈g2(p) | g2(p)〉 . . . 〈g2(p) | gk(p)〉

. . .
〈gk(p) | g1(p)〉 〈gk(p) | g2(p)〉 . . . 〈gk(p) | gk(p)〉

∣

∣

∣

∣

∣

∣

∣

∣

Since inner product is a continuous function of arguments and F : G → R is a
combination of continuous functions, there exists a neighbourhood U(p̄) such that
F(p) 6= 0 for all p ∈ U(p̄). Hence, for all p ∈ U(p̄) vectors gi(p), i ∈ J are linearly
independent. �

Proposition 4. Let p̄ ∈ D. Assume that RCRCQ holds at p̄ for multifunction C given
by (1.1) and C(p) 6= ∅ for p ∈ U0(p̄). Then there exists a neighbourhood U(p̄) such
that for all p ∈ U(p̄)

{x | 〈x | gi(p)〉 = fi(p), i ∈ I1, 〈x | gi(p)〉 ≤ fi(p), i ∈ I2}
= {x | 〈x | gi(p)〉 = fi(p), i ∈ I ′1, 〈x | gi(p)〉 ≤ fi(p), i ∈ I2},

where I ′1 ⊂ I1 and gi(p), i ∈ I ′1 are linearly independent.

Proof. It is enough to consider the case gi(p̄), i ∈ I1 are linearly dependent. By RCRCQ
there exists a neighbourhood U1(p̄) such that for all p ∈ U(p̄)

rank {gi(p̄), i ∈ I1} = rank {gi(p), i ∈ I1} = α.

Let I ′1 be such that |I ′1| = α and gi(p̄), i ∈ I ′1 are linearly independent. By Lemma
1, there exists a neighbourhood U2(p̄) such that for all p ∈ U2(p̄), gi(p), i ∈ I ′1 are
linearly independent. Let p ∈ U0(p̄) ∩ U1(p̄) ∩ U2(p̄) x be such that

〈x | gi(p)〉 = fi(p), i ∈ I1, 〈x | gi(p)〉 ≤ fi(p), i ∈ I2. (5.1)
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Since rank {gi(p), i ∈ I1} = |I ′1|, C(p) 6= ∅ and gi(p), i ∈ I ′1 are linearly independent
we have

〈x | gi(p)〉 = fi(p), i ∈ I1

⇐⇒ 〈x | gi(p)〉 = fi(p), i ∈ I ′1 ∧ 〈x | gi(p)〉 = fi(p), i ∈ I1 \ I ′1
⇐⇒ 〈x | gi(p)〉 = fi(p), i ∈ I ′1 ∧ 〈x |

∑

j∈I′

1

αi
jgj(p)〉 = fi(p), i ∈ I1 \ I ′1

⇐⇒ 〈x | gi(p)〉 = fi(p), i ∈ I ′1 ∧
∑

j∈I′

1

αi
j〈x | gj(p)〉 =

∑

j∈I′

1

αi
jfj(p), i ∈ I1 \ I ′1

⇐⇒ 〈x | gi(p)〉 = fi(p), i ∈ I ′1,

where gi(p) =
∑

j∈I′

1
αi
jgj(p), fi(p) =

∑

j∈I′

1
αi
jfj(p), i ∈ I1 \ I ′1 and αi

j ∈ R, j ∈ I ′1,

i ∈ I1 \ I ′1, not all αi
j , j ∈ I ′1 equal to zero for any i ∈ I1 \ I ′1. �

Lemma 2. Let x =
∑

i∈J1
λiai +

∑

i∈J2
λiai, J1 ∩ J2 = ∅, J1, J2 finite sets, λi ∈ R,

i ∈ J1, λi ≥ 0, i ∈ J2 and ai, i ∈ J1 ∪ J2 are non-zero vectors. Assume that ai,
i ∈ J1 are linearly independent. Then there exists J ′

2 ⊂ J2 and λ′
i, i ∈ J1∪J ′

2, λ
′
i ∈ R,

i ∈ J1, λ
′
i > 0, i ∈ J ′

2 such that
∑

i∈J1

λiai +
∑

i∈J2

λiai =
∑

i∈J1

λ′
iai +

∑

i∈J′

2

λ′
iai

and ai, i ∈ J1 ∪ J ′
2 are linearly independent.

Proof. Without loss of generality we may assume that λi > 0, i ∈ J2. If ai, i ∈ J1∪J2
are linearly independent, then the assertion is obvious. Suppose that ai, i ∈ J1 ∪ J2
are linearly dependent. Then there exists Ĵ1 ⊂ J1 and Ĵ2 ⊂ J2, Ĵ2 6= ∅ such that

∑

i∈Ĵ1

βiai +
∑

i∈Ĵ2

βiai = 0, rank {ai, i ∈ Ĵ1 ∪ Ĵ2} = |Ĵ1 ∪ Ĵ2| − 1 (5.2)

for some βi 6= 0, i ∈ Ĵ1 ∪ Ĵ2. Then by multiplying both sides of equality equality (5.2)

by λk

βk
, k ∈ Ĵ2 we get

∑

i∈Ĵ1

λk

βk

βiai +
∑

i∈Ĵ2

λk

βk

βiai = 0.

Therefore for any k ∈ Ĵ2 we have

x =
∑

i∈J1

λiai +
∑

i∈J2

λiai −
∑

i∈Ĵ1

λk

βk

βiai −
∑

i∈Ĵ2

λk

βk

βiai

=
∑

i∈J1\J′

1

λiai +
∑

i∈J2\J′

2

λiai +
∑

i∈Ĵ1

(λi −
λk

βk

βi)ai +
∑

i∈Ĵ2\{k}

(λi −
λk

βk

βi)ai.

We will show that there exists k ∈ Ĵ2 such that for any i ∈ Ĵ2 \ {k} we have

λi −
λk

βk

βi ≥ 0.

Suppose by contrary that for all k ∈ Ĵ2 there exists ik ∈ Ĵ2 \ {k} such that

λik <
βik

βk

λk.
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Let us note that fact λi > 0 for all i ∈ Ĵ2 implies that for all k ∈ Ĵ2 we have

βik

βk

>
λik

λk

> 0.

Then there exist real numbers λi1 , . . . , λiq , where i1, . . . , iq ⊂ Ĵ2, q ≤ |Ĵ2| and

λi1 <
βi1

βi2

λi2 , . . . , λiq−1 <
βiq−1

βiq

λiq , λiq <
βiq

βi1

λi1 .

However, this implies that

λi1 <
βi1

βi2

λi2 <
βi1

βi2

βi2

βi3

λi3 =
βi1

βi3

λi3 < · · · < βi1

βiq

λiq <
βi1

βiq

βiq

βi1

λi1 = λi1 ,

which leads to a contradiction. Hence, we can represent x as

x =
∑

i∈J1

λ′
iai +

∑

i∈J′

2

λ′
iai

where J ′
2 ⊂ J2, λ

′
i > 0, i ∈ J ′

2 and ai, i ∈ J1 ∪ J ′
2 are linearly independent. �

The following theorem is particular case of [7, Theorem 11.4] applied to the problem
(2.2).

Theorem 2. Let p ∈ D and w /∈ C(p). Then there exist numbers λi, i = I1 ∪ I2, not
all zero, λi ≥ 0, i ∈ I2, λiGi(PC(p)(w), p) = 0, i ∈ I2 such that

w − PC(p)(w) =
∑

I1∪I2

λigi(p).

Lemma 3. Let multifunction C given by (1.1) satisfy RCRCQ at p̄ ∈ D and x̄ ∈ C(p̄).
Assume that C(p) 6= ∅ for p ∈ U0(p̄). Then there exists a neighbourhood U(p̄) such
that for all p ∈ U(p̄), w /∈ C(p̄) we have

w − PC(p)(w) =
∑

i∈I0
1

λ̃i(w, p)gi(p) +
∑

I0
2 (w,p)

λ̃i(w, p)gi(p),

where λ̃i(w, p) ∈ R, i ∈ I01 , λ̃i(w, p) > 0, i ∈ I02 (w, p), I
0
1 ⊂ I1, I

0
2 (w, p) ⊂ I2, gi(p),

i ∈ I01 ∪ I02 (w, p), p ∈ U(p̄) are linearly independent.

Proof. By Proposition 4, there exists a neighbourhood U(p̄) such that for all p ∈ U(p̄)
we have

{x | 〈x | gi(p)〉 = fi(p), i ∈ I1, 〈x | gi(p)〉 ≤ fi(p), i ∈ I2}
= {x | 〈x | gi(p)〉 = fi(p), i ∈ I01 , 〈x | gi(p)〉 ≤ fi(p), i ∈ I2},

where I01 ⊂ I1 and gi(p), i ∈ I01 are linearly independent. Take p ∈ U(p̄), w /∈ C(p).
By Theorem 2,

w − PC(p)(w) =
∑

i∈I0
1

λigi(p) +
∑

I2

λigi(p),

where λi ∈ R, i ∈ I01 and λi ≥ 0, i ∈ I2. By Lemma 2, there exists I02 (w, p) ⊂ I2 and

λ̃i(w, p) ∈ R, i ∈ I01 and λ̃i(w, p) > 0, i ∈ I02 (w, p) such that

w − PC(p)(w) =
∑

i∈I0
1

λ̃i(w, p)gi(p) +
∑

I0
2 (w,p)

λ̃i(w, p)gi(p).

and gi(p), i ∈ I01 ∪ I02 (w, p) are linearly independent. �
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