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PENCIL-BEAM APPROXIMATION OF STATIONARY FOKKER-PLANCK

GUILLAUME BAL† AND BENJAMIN PALACIOS‡

Abstract. Solutions of stationary Fokker-Planck equations in the narrow beam regime are com-
monly approximated by either ballistic linear transport or by a Fermi pencil-beam equation. We
present a rigorous approximation analysis of these three models in a half-space geometry. Error
estimates are obtained in a 1-Wasserstein sense, which is an adapted metric to quantify beam
spreading. The required well-posedness and regularity results for the stationary Fokker-Planck
equation with singular internal and boundary sources are also presented in detail.

1. Introduction

We consider the stationary (forward) Fokker-Planck equation in the half-space R
n
+ = {x =

(x′, xn) ∈ R
n;xn > 0} in dimension n ≥ 2 given by:

(1.1) − ǫ2σ∆θu+ θ · ∇xu+ λu = f, (x, θ) ∈ Q := R
n
+ × S

n−1,

with ∇x the spatial gradient and ∆θ the Laplace-Beltrami operator on the unit sphere S
n−1. The

coefficients σ(x) and λ(x) are spatially-dependent functions bounded above and below by positive
constants and ǫ > 0 is a scaling parameter. More concretely,

0 < σ0 ≤ σ(x) and 0 < λ0 ≤ λ,

for fixed constants σ0, λ0.
The Fokker-Planck equation (1.1) may be used to model at a macroscopic level the propagation

of high-frequency waves in heterogeneous media in the regime of highly peaked-forward scattering;
see, e.g., [4]. It may also be formally derived from a linear Boltzmann equation, also in the highly
peaked forward scattering regime [26, 2]. In (1.1), f(x, θ), ǫ2σ(x) and λ(x), represent an internal
source/sink of particles at a point x and direction θ, the level of diffusion, and the amount of
absorption, respectively.

Our aim is to analyze the regime of narrow beam propagation. Heuristically, a beam propagating
with a diffusion coefficient of order O(1) changes directions over comparable distances or times with
normalized speed. The narrow beam structure is therefore preserved only over short distances,
which after appropriate rescaling takes the form (1.1) with a small diffusion coefficients of order
O(ǫ2).

The narrow beam will be initiated at the boundary of the domain, which for simplicity we
assume to be a half space in most of the paper.

In a general smooth domain Ω ⊂ R
n, the boundary source of particles generates the following

incoming boundary conditions for (1.1):

(1.2) u = g on Γ− := {(x, θ) ∈ ∂Ω× S
n−1 : θ · ν(x) < 0},
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where ν(x) is the outer unit normal vector at x on the boundary. Similarly, the outgoing boundary
is defined as

Γ+ := {(x, θ) ∈ ∂Ω × S
n−1 : θ · ν(x) > 0}.

Our subsequent analysis will repeatedly use solutions to the backward Fokker-Planck equation,
which is obtained by changing the sign of the transport operator T = θ · ∇x in (1.1) and imposing
boundary conditions on the set Γ+ instead.

We denote by P the Fokker-Planck operator and by P t its adjoint. The parameter ǫ > 0
measures the strength of the rescaled diffusion coefficient. We are interested in the asymptotic
regime ǫ ≪ 1 and σ = O(1), where we use the standard notation O(ǫm) whenever a term is
bounded from above by a constant times the factor ǫm, m ≥ 0, and write O(ǫ∞) when the latter
holds for every m > 0. We use the symbol C as a generic positive constant depending on the
dimension and coefficients of the problems but independent of ǫ, and which may vary from line to
line.

There is a large literature on the analysis of the Fokker-Planck and similar kinetic equations.
Existence and uniqueness questions are addressed in, e.g., [13, 10, 28] and [19, 20] from different
points for view. The question of regularity of solutions can be traced back to the classical works of
hypoelliptic operators [18] and subelliptic estimates [23]. A more specific treatment of regularity
in Fokker-Planck, based on sub-elliptic estimates, is presented in [8]. A different approach to reg-
ularity can be found for instance in [15, 30], where iterative methods of the form of Moser or De
Giorgi techniques are employed to prove Hölder continuity of solutions under sharper conditions on
the coefficients. The results obtained from both strategies, subelliptic estimates (to obtain gains
in regularity) and iterative methods (to gain continuity conditions), will be used in the derivations
of this paper. There has been an increased interest in recent years in the study of the non-local
Fokker-Planck models with fractional angular laplacians. Some references are [1, 16, 21]. Most
of the analysis presented in this work should extend to the fractional case although we do not
consider this issue in detail here. Let us also briefly mention recent work on the reconstruction of
coefficients in the forward-peaked regime of Fokker-Planck in [11].

The regime of small diffusions ǫ ≪ 1 in (1.1) appears, for instance, in the modeling of laser
light propagation in turbulent atmospheres [27, 17, 22, 12]. In the small diffusion scaling, one
may be tempted to completely remove the diffusive part, which yields the following ballistic linear
transport equation,

(1.3) θ · ∇xv + λv = f, (x, θ) ∈ R
n
+ × S

n−1,

whose solutions can be explicitly written in terms of the source functions.
We will consider the accuracy of this simple model. A more interesting and more accurate

asymptotic description is given by the Fermi pencil-beam equation,

(1.4) − σ̃∆V U + V · ∇X′U + ∂XnU + λ̃U = f, (X,V ) ∈ R
n
+ × R

n−1,

with ∆V the Euclidean Laplacian. The above equation may be formally obtained from (1.1)
(rescaled so that σ̃ is O(1)) by replacing the Laplace-Beltrami operator ∆θ by its approximation on
the tangent plane ∆V and assuming that the beam direction along Xn is constant. Such solutions,
unlike ballistic transport, capture beam spreading while completely neglecting backscattering (back
to the boundary of Rn

+). They admit reasonably explicit expressions [14]. For some derivations of
the Fermi pencil-beam equation we refer to [6], while [7] formally investigates the accuracy of this
model with respect to Fokker-Planck and linear transport.



PENCIL-BEAM APPROXIMATION 3

To analyze the accuracy of the model, it is convenient to link the Fermi pencil-beam and
Fokker-Planck equation through a precise choice of local coordinates on the unit sphere and a
rescaling of variables at the level of the diffusion, thus depending on ǫ. This is done by means of
stereographic coordinates (see [24, p.35]) from the south pole S = (0, . . . , 0,−1), given by the map
S : Sn−1\{S} → R

n−1 such that

(1.5) S(θ) :=
( θ1
1 + θn

, . . . ,
θn−1

1 + θn

)
,

and with inverse J := S−1 : Rn−1 → S
n−1\{S},

(1.6) J(v) =
( 2v

〈v〉2 ,
1− |v|2
〈v〉2

)
, 〈v〉 := (1 + |v|2)1/2.

Under these coordinates the local representation of the metric on the sphere is

g̊ = c2(v)dx2, with c(v) :=
2

〈v〉2 ,

while the volume form dθ, the gradient ∇θ and the Laplace-Beltrami operator are respectively
given by

cn−1(v)dv, c−2(v)∇v , and c−(n−1)(v)∇v · cn−3(v)∇v .

The coupling of stereographic coordinates with an ǫ-rescaling of the transversal and angular vari-
ables defines the stretched coordinate system. Namely, given macroscopic coordinates (x′, xn, θ) in
R
n
+ × S

n−1 we denote by

(X ′,Xn, V ) ∈ R
n−1 × R+ × R

n−1

the stretched local coordinates defined by the relation

(x′, xn, θ) = (2ǫX ′,Xn, J(ǫV )).

This map is a diffeomorphism between R
n
+ × (Sn−1\{S}) and R

n
+ × R

n−1 =: Q.
Given the solution u to (1.1)-(1.2) with sources f = 0 and formally g = δ(x)δ(θ − η), for

|η −N | = O(ǫ2) (here N := (0, . . . , 0, 1)), its pencil-beam approximation takes the form

(1.7) u(x, θ) := (2ǫ)−2(n−1)U((2ǫ)−1x′, xn, ǫ−1S(θ)),

for U solution to the Fermi pencil-beam equation (1.4) with null interior source, boundary condition
G(X ′, V ) = δ(X ′)δ(V − ǫ−1S(η)), and coefficients

σ̃ =
1

4
σ(Xnη) and λ̃ = λ(Xnη).

A similar approximation can be constructed by superposing pencil-beams if instead g is a nonneg-
ative and integrable function on Γ−. This will be considered later in the paper.

Our analysis provides a rigorous comparison of solutions of Fokker-Planck, ballistic linear trans-
port and the pencil-beam approximation. We establish error estimates in terms of powers of ǫ.
Since the solutions model narrow beams and are therefore quite singular, we need a metric that
accounts for mass transport at the ǫ−scale. We therefore use a natural setting for comparisons in
such instances that is based on a version of the 1-Wasserstein distance.

For a given relative open and bounded set Ω ⊂ R̄
n
+, we define

BL1,κ(Ω× S
n−1) := {ψ ∈ C(Ω̄× S

n−1) : ‖ψ‖∞ ≤ 1, Lip(ψ) ≤ κ}.
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The 1-Wasserstein distance between two finite Borel measures in Ω× S
n−1, u(x, θ) and v(x, θ), is

defined as

(1.8) W1
κ,Ω(u, v) := sup

{∫
ψ(x, θ)(u − v) : ψ ∈ BL1,κ(Ω× S

n−1)

}
,

and analogously, if u and v are finite Borel measures defined in the whole space R̄n
+×S

n−1, we define
their 1-Wasserstein distance by replacing Ω with R

n
+ above and use the notation W1

κ = W1
κ,Rn

+
.

From the finiteness of the measures it is clear that

lim
Ω→Rn

+

W1
κ,Ω(u, v) = W1

κ(u, v).

The same distance was used in [3] in the context of inverse transport theory to model possible
mis-alignments in the sources used in the probing as well as detector blurring of singular solutions.
Consider two points a 6= b, two distributions δa(x) = δ(x − a) and δb(x) = δ(x − b), an approx-
imation to the identity ϕǫ, and regularizations in L1, ϕǫ

a(x) = ϕǫ(x − a) and ϕǫ
b(x) = ϕǫ(x − b).

For small enough ǫ, ‖ϕǫ
a − ϕǫ

b‖L1 = O(1) independent of the distance between a and b while
W1

κ(δa, ϕ
ǫ
a) = O(ǫκ) and W1

κ(δa, δb) = κ|a − b| when a and b are close enough. Here, κ may be
interpreted as a confidence level in our measurements to distinguish between points a and b, as
well as the resolution we use to differentiate between measures. For the same reasons, this distance
is a natural tool to quantify the spreading of narrowly focused beams.

The approximation by ballistic transport and Fermi pencil beams is interesting only in the
setting of narrow beams. The ǫ−broadening of an already “broad” solution is hardly observable.
We thus need to consider solutions with measure-valued boundary conditions. This poses no
difficulty for the ballistic transport and Fermi pencil beam equations as those are explicitly solved
by means of, e.g., Fourier transforms. We develop in this paper the appropriate theory for the
Fokker-Planck equation to handle singular boundary conditions in the form of Radon measures.
We obtain a unique solution u to (1.1)-(1.2) with internal and boundary sources given by finite
compactly supported measures. In the particular cases of f = 0 and g(x, θ) = δx0(x)δη(θ), for |η+
ν(x0)| = O(ǫ2), or g(x, θ) ∈ L1(∂Rn

+ × S
n−1) such that g ≥ 0 and ‖g‖L1 = 1, compactly supported

around (x0,−ν(x0)) inside ∂Rn
+ × {|θ + ν(x0)| < Cǫ2}, we find a second order approximation

u(x, θ) by superposing delta-generated pencil-beams of the form (1.7). The corresponding ballistic
transport solution of (1.3) is denoted by v(x, θ). In this context, the main result of this paper
reads as follows.

Theorem 1.1. For dimension n ≥ 2, there exist constants C,C ′ > 0 (depending on n, σ and λ)
such that for any κ & 1,

W1
κ(u, v) ≤ Cκǫ and W1

κ(u, u) ≤ C ′ǫ2κ.

In addition, if the resolution parameter is taken such that κ ≈ ǫ−1, then

1

C
≤ W1

κ(u, v) ≤ C, and W1
κ(u, u) ≤ C ′ǫ.

The last statement reflects the reasonable fact that at the ǫ−scale of the beam, the ballistic
transport solution v does not accurately model the beam spreading. The Fermi pencil beam ap-
proximation, however, is still quite accurate for small ǫ.

The rest of the paper is structured as follows. Section 2 studies the well-posedness of the forward
and backward Fokker-Planck equation in the L2-setting based on a representation theorem that



PENCIL-BEAM APPROXIMATION 5

goes back to the work [25]. Continuity of solution with respect to the data is given in the L2 and
L∞ settings. We then consider Hölder and Sobolev regularity, which are obtained by means of a
local normal form of (1.1). The former regularity is a direct consequence of recent developments
in the theory of ultra-parabolic equations, while the latter follows from a well-known commutator
technique introduced in the work on subelliptic estimates [23]. These results are collected in
Section 3 to conclude, following a duality argument, on the existence and uniqueness result for
(1.1) for rough sources and continuous coefficients. All necessary results on the the fundamental
solution of the Fermi pencil-beam equation are presented in Section 4. Section 5 performs the
approximation analysis using the 1-Wasserstein distance and states the main approximation result
of this work, Theorem 1.1.

2. Wellposedness and regularity of time-independent Fokker-Planck

We first establish existence and uniqueness of weak solutions based on a representation theorem
for Hilbert spaces introduced in [25]. Continuity with respect to the boundary and interior sources
is also proven in the L2-setting for general square integrable functions f and g, while for vanishing
boundary sources we also prove continuity with respect to f in the L∞-norm. We then move to the
question of regularity of solutions for which we introduce a (local) normal form for equation (1.1),
and follow two different paths. As a direct application of recent developments on the study of
Kolmogorov-type equations and more generally ultra-parabolic equations, we first deduce Hölder
continuity of solutions under very weak assumptions on the coefficients. We then obtain an interior
regularity result in Sobolev spaces by applying a well-known commutator technique that yields
the necessary subelliptic estimates. Before going into the analysis a few remarks need to be taken
into consideration regarding the results of this section.

Remark 2.1. (1) Everything we present in this section also holds for the backward Fokker-Planck
equation and the proofs are identical but for minor differences such as interchanging the incoming
boundary Γ− with the outgoing one Γ+. (2) In all the results presented in this section, the domain
R
n
+ × S

n−1 may be replaced by any set of the form Ω × S
n−1, for Ω a bounded domain with

sufficiently regular boundary. (3) The assumption of λ0 > 0 is assumed to simplify the analysis
and obtain global and integrable solutions on the whole half space. Such an assumption would not
be necessary on a bounded domain as long as Poincaré-type estimates are provided, something we
do not consider here.

We define Q := R
n
+ × S

n−1 and write Lk(Γ±), k = 1, 2, to denote the space of Lk functions at
the boundary sets Γ± endowed with the measure |θ · ν(x)|dS(x)dθ. Here, dθ stands for the volume
form on S

n−1 while dS(x) = dx′ is the surface measure on ∂Rn
+. We also denote by L2

loc(Q̄) the
space of functions u so that χu ∈ L2(Q̄) for any χ ∈ C∞

c (Rn).

2.1. L2-global theory and other properties. Consider the following Hilbert space

H := {u ∈ L2(Q) : ∇θu ∈ L2(Q)}

with norm ‖u‖2H := ‖u‖2L2 + ǫ2‖∇θu‖2L2 and H′ its dual space. We denote by T the transport
operator Tu = θ · ∇xu. We look for solutions in the sub- Hilbert space

Y := {u ∈ H : Tu ∈ H′} with norm ‖u‖2Y := ‖u‖2H + ‖Tu‖2H′ .
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Definition 2.2. A function u ∈ Y is a weak solution of (1.1)-(1.2) if for all ϕ ∈ C∞(Q̄) such that
ϕ = 0 on Γ+, it satisfies

(2.1)

∫

Q

(
ǫ2σ(x)∇θu · ∇θϕ− u(θ · ∇xϕ) + λuϕ

)
dxdθ

=

∫

Q
fϕdxdθ +

∫

Γ−

gϕ|θ · ν(x)|dS(x)dθ.

Theorem 2.3 (Wellposedness). For any f ∈ L2(Q) and g ∈ L2(Γ−), there exists a unique weak
solution u ∈ Y to (1.1)-(1.2), which for some constant C = C(‖σ‖∞, σ0, λ0) > 0 satisfies

‖u‖Y ≤ C
(
‖f‖L2 + ‖g‖L2

)
.

Furthermore, the traces of u on Γ− and Γ+ are well defined, with u|Γ− = g and u|Γ+ ∈ L2(Γ+).

The main ingredient in the proof of existence is given by the next theorem. The rest of the
proof follows the approach of [13] (see also [10]).

Theorem 2.4 (Lions [25]). Let H be a Hilbert space provided with the inner product (·, ·)H and
the norm ‖ · ‖H. Let F ⊂ H be a subspace provided with a prehilbertian norm | · |, such that the
injection of F into H is continuous. Let us consider a bilinear form a : H × F → R, such that
a(·, ϕ) is continuous on H for any ϕ ∈ F and such that a(ϕ,ϕ) ≥ α|ϕ|2 for any ϕ ∈ F with α > 0.
Then, given a linear form L ∈ F′ continuous with the norm | · |, there exists a solution u ∈ H of
the problem: a(u, ϕ) = L(ϕ) for any ϕ ∈ F.

Proof of Theorem 2.3.
1) Existence. Denote by F the set of test functions ϕ ∈ C∞(Q̄) such that ϕ = 0 on Γ+, and
consider the prehilbertian norm on F,

|ϕ|2F := ‖ϕ‖2H +
1

2
‖ϕ‖2L2(Γ−;|θ·ν(x)|dS(x)dθ).

It is clear that F is a subspace of H whose inclusion is continuous. In order to apply Theorem 2.4,
we define the bilinear form a : H × F → R as the left-hand side of (2.1):

a(u, ϕ) :=

∫

Q

(
ǫ2σ(x)∇θu · ∇θϕ− u(θ · ∇xϕ) + λuϕ

)
dxdθ,

and the bounded linear operator L : F → R as the right-hand side of (2.1):

L(ϕ) =

∫

Q
fϕdxdθ +

∫

Γ−

gϕ|θ · ν(x)|dS(x)dθ.

Under these notation, a weak solution to the FP equation should satisfies the equality

(2.2) a(u, ϕ) = L(ϕ), ∀ϕ ∈ F.

For an arbitrary ϕ ∈ F, a(·, ϕ) is a bounded linear operator in H and moreover a(·, ·) is coercive
when restricted to F × F. Indeed, for any ϕ ∈ F we have

a(ϕ,ϕ) =

∫

Q

(
ǫ2σ(x)∇θϕ · ∇θϕ+ λ(x)ϕ2

)
dxdθ +

1

2

∫

Γ−

ϕ2|θ · ν(x)|dS(x)dθ

≥ min{1, σ0, λ0}|ϕ|2F.
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Here we used standard integration by parts in R
n on the integral of ϕ(θ · ∇xϕ). It follows from

Theorem 2.4 that there exists a weak solution u ∈ H satisfying (2.2). In fact, u ∈ Y because Tu
is a distribution given by

(2.3) 〈Tu, ϕ〉 = −
∫

Q

(
ǫ2σ(x)∇θu · ∇θϕ+ λuϕ− fϕ

)
dxdθ, ∀ϕ ∈ C∞

c (Q),

thus |〈Tu, ϕ〉| ≤ C‖ϕ‖H. By density, the previous holds for all ϕ ∈ H therefore (2.3) defines
Tu ∈ H′ for solutions of (1.1). In addition we have:

(2.4) ‖Tu‖H′ ≤ max{‖σ‖∞, ‖λ‖∞}‖u‖H + ‖f‖L2 .

2) Trace. To show uniqueness, we first need to make sense of the trace of a solution u on Γ− (and

Γ+), and we do so by a density argument. The subset Ỹ = C∞
c (Q̄\Γ0) of Y is known to be dense

[5, 10, 13]. Take an arbitrary ϕ ∈ Ỹ that vanishes on Γ+. Then, Green’s identity implies

‖ϕ‖2L2(Γ−;|θ·ν(x)|dS(x)dθ) = −2

∫

Q
ϕ(Tϕ)dxdθ ≤ 2‖ϕ‖H‖Tϕ‖H′ ≤ ‖ϕ‖2Y.

Analogously, if ϕ ∈ Ỹ vanishes on Γ− instead, we get

‖ϕ‖2L2(Γ+;|θ·ν(x)|dS(x)dθ) ≤ 2‖ϕ‖H‖Tϕ‖H′ ≤ ‖ϕ‖2Y.

Therefore, since any ϕ ∈ Ỹ can be decomposed into ϕ = ϕ+ + ϕ− with ϕ± vanishing on Γ±, we
deduce

‖ϕ‖L2(Γ+∪Γ−;|θ·ν(x)|dS(x)dθ) ≤ ‖ϕ‖Y.
Consequently, the density of Ỹ implies u|Γ± ∈ L2(Γ±; |θ · ν(x)|dS(x)dθ) for all u ∈ Y. In addition,

for any pair ϕ,ψ ∈ Ỹ, we have
∫

Q
ϕ(Tψ)dxdθ +

∫

Q
ψ(Tϕ)dxdθ =

∫

Γ−∪Γ+

ϕψ(θ · ν(x))dS(x)dθ.

By density we can extend the previous identity and write for any u1, u2 ∈ Y,

(2.5) 〈u1, Tu2〉H,H′ + 〈u2, Tu1〉H,H′ =

∫

Γ−∪Γ+

u1u2(θ · ν(x))dS(x)dθ.

In particular, if u1 = u is a weak solution of (1.1) and we take u2 = ϕ ∈ Ỹ such that it vanishes
on Γ+, then we obtain

0 =

∫

Γ−

(u− g)ϕ|θ · ν(x)|dS(x)dθ, ∀ϕ ∈ Ỹ.

This follows by recalling that u satisfies (2.3) for all ϕ ∈ H, thus in particular for all ϕ ∈ Ỹ

vanishing on Γ+, and on the other hand, by definition of weak solution, for the same functions ϕ

(2.6) 〈u, Tϕ〉H,H′ =

∫

Q

(
ǫ2σ(x)∇θu · ∇θϕ+ λuϕ− fϕ

)
dxdθ −

∫

Γ−

gϕ|θ · ν(x)|dS(x)dθ.

3) Uniqueness. Let w1, w2 ∈ Y be two weak solutions of (1.1)-(1.2). Therefore, u = w1 − w2 is a
solution of the same equation replacing (f, g) by (0, 0). We first use the definition of Tu in the
distributional sense (2.3), which also holds if we take ϕ = u ∈ Y ⊂ H. Therefore,

〈u, Tu〉H,H′ = −
∫

Q

(
ǫ2σ(x)∇θu · ∇θu+ λu2

)
dxdθ.
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On the other hand, by plugging u1 = u2 = u into (2.5) we obtain

2〈u, Tu〉H,H′ =

∫

Γ+

u2|θ · ν(x)|dS(x)dθ.

From the previous two equalities, one deduces

−1

2

∫

Γ+

u2|θ · ν(x)|dS(x)dθ =

∫

Q

(
ǫ2σ(x)∇θu · ∇θu+ λu2

)
dxdθ ≥ min{σ0, λ0}‖u‖2H,

and consequently, since the left-hand side is nonpositive, the above is true only for u = 0.
4) Continuous dependence. A weak solution u of (1.1)-(1.2) satisfies Tu ∈ H′ given by (2.3).
Choosing ϕ = u, we get

〈u, Tu〉H,H′ = −
∫

Q

(
ǫ2σ(x)∇θu · ∇θu+ λu2 − fu

)
dxdθ.

This together with (2.5) applied to u1 = u2 = u implies

(2.7) min{σ0, λ0}‖u‖2H ≤
∫

Q
fudxdθ +

1

2

∫

Γ−

g2|θ · ν(x)|dS(x)dθ,

where the first integral in the right-hand side is bounded as follows
∫

Q
fudxdθ ≤ 1

2
δ−2‖f‖2L2(Ω×Sn−1) +

1

2
δ2‖u‖2L2(Ω×Sn−1).

We then choose δ > 0 small enough in order to absorb the last term with the left-hand side of
(2.7). Combining (2.4) with the above inequalities concludes the proof. �

Lemma 2.5 (Non-negative solutions). For f, g as in Theorem 2.3, if f, g ≥ 0 a.e., the unique
solution to (1.1)-(1.2) satisfies that u ≥ 0 a.e. and the same holds for its trace on Γ−.

Proof. Let us denote u± = max{0,±u} and set A = Q\supp(u+). We denote the characteristic
function of A as 1A. Then, u

− ∈ H with ∇θu
− = (∇θu)1A. Moreover, Tu− ∈ H′ is a distribution

given by

〈φ, Tu−〉 = −
∫

A

(
ǫ2σ(x)∇θu

− · ∇θφ+ λ(x)u−φ+ fφ
)
dxdθ, ∀φ ∈ C∞

c (A),

whose definition extends to all φ ∈ H supported in A. On the other hand, identity (2.5) for u−

gives

2〈u−, Tu−〉H,H′ =

∫

Γ−∪Γ+

|u−|2(θ · ν(x))dS(x)dθ.

From the previous two equalities and using that u|Γ− = g ≥ 0, thus u−|Γ− = 0, we deduce that

∫

A
λ|u−|2dxdθ + 1

2

∫

Γ+

|u−|2(θ · ν(x))dS(x)dθ

= −ǫ2
∫

A
σ(x)|∇θu

−|2dxdθ −
∫

A
fu−dxdθ,

where by virtue of f ≥ 0 it leads to

λ0

∫

A
|u−|2dxdθ + 1

2

∫

Γ+

|u−|2(θ · ν(x))dS(x)dθ ≤ 0

In consequence u− = 0. �
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Following [19, Lemma 3.4], we obtain the following continuity in the L∞-norm for vanishing
boundary source.

Lemma 2.6. If f ∈ L∞(Q) compactly supported and g = 0, then, the solution to (1.1) satisfies
the estimate ‖u‖∞ ≤ λ−1

0 ‖f‖∞.

Proof. Let M = ‖f‖∞. Arguing by contradiction, let’s assume there exists α > 0 and a bounded
set A ⊂ Q with positive measure such that, with out lost of generality, u(x, θ) > Mλ−1

0 + α on A.
Notice that u ∈ L2(Q) since f is also square integrable.

For any sufficiently small δ > 0 we can find a ball B ⊂ Q such that

(2.8) meas(B ∩A) > (1− δ)meas(B),

(see for instance [29]). We take h ∈ C∞
c (Q) so that h ≥ 0, supph ⊂ B̄ and

∣∣∣∣
∫ ( χB

meas(B)
− h

)
dxdθ

∣∣∣∣ =
∣∣∣∣1−

∫
hdxdθ

∣∣∣∣ < δ,

and consider ϕ, solution to the backward Fokker-Planck equation

(2.9) − ǫ2σ(x)∆θϕ− θ · ∇xϕ+ λϕ = h, ϕ|Γ+ = 0.

According to lemma 2.5 applied to (2.9) we deduce ϕ ≥ 0. Then, we have
∫

Q
fϕdxdθ ≤M

∫

Q
ϕdxdθ ≤Mλ−1

0 (1 + δ).

The last inequality follows from the fact that ϕ is indeed a strong solution of (2.9) (as we will see
in §2.2.3) and then integrating (2.9) over Q. Indeed,

∫

Q
hdxdθ =

∫

Q

(
− θ · ∇xϕ+ λϕ

)
dxdθ

where we used Green’s identity on the unit sphere:
∫
Sn−1 ∆θϕdθ = 0. Stoke’s theorem and the

lower bound λ0 ≤ λ then yield

λ0

∫

Q
ϕdxdθ ≤

∫

Q
hdxdθ +

∫

Γ−

ϕ(θ · ν(x))dS(x)dθ ≤ ‖h‖L1 ,

where by definition of h, ‖h‖L1 ≤ 1 + δ.
On the other hand, ∫

Q
fϕdxdθ =

∫

Q
uhdxdθ = I1 + I2,

with

I1 =

∫

B∩A
uhdxdθ

≥ (Mλ−1
0 + α)

(∫

B∩A

χB

meas(B)
dxdθ −

∫

B∩A

(
χB

meas(B)
− h

)
dxdθ

)

≥ (Mλ−1
0 + α)

(
meas(B ∩A)
meas(B)

− δ

)
> (Mλ−1

0 + α)(1 − 2δ),

and

I2 =

∫

B\A
uhdxdθ ≤ ‖u‖L2‖h‖∞meas(B\A)1/2 ≤ ‖u‖L2‖h‖∞meas(B)1/2δ1/2.
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Bringing the above together, we obtain that for some C > 0 independent of δ,

(Mλ−1
0 + α)(1 − 2δ) − Cδ1/2 ≤Mλ−1

0 (1 + δ),

which then implies that

Mλ−1
0 + α ≤Mλ−1

0 + Cδ1/2.

It remains to take δ small enough to obtain a contradiction. �

2.2. Regularity. The regularity of solution to Fokker-Planck is obtained by using an appropriate
local representation of the equation. These beam coordinates were already used in [6] to derive the
Fermi pencil-beam equation from an asymptotic expansions of Fokker-Planck and linear Boltzmann
equations.

2.2.1. Beam coordinates. Consider the map B : Sn−1
+ → R

n−1 transforming the upper hemisphere

S
n−1
+ := {θ ∈ R

n−1 : |θ| = 1, θn > 0} and given by

B(θ) :=
( θ1
θn
, . . . ,

θn−1

θn

)
,

and whose inverse is defined as the map B−1 : Rn−1 → S
n−1
+ such that

B−1(v) =
( v

〈v〉 ,
1

〈v〉
)
.

Under such coordinates, we obtain the local representations:

g̊ =
1

〈v〉2
(
Id−

( v

〈v〉
)( v

〈v〉
)T)

, dθ = 〈v〉−ndv,

∇θ = 〈v〉2(Id+ vvT )∇v, and ∆θ = 〈v〉n∇v · 〈v〉2−n(Id+ vvT )∇v.

2.2.2. Normal form and Hölder regularity. The regularity properties for Fokker-Planck solutions
are obtained by assigning to (1.1) a normal form for which regularity issues are well understood.
The same analysis applies to backward Fokker-Planck.

Let us pick an arbitrary θ0 ∈ S
n−1. By embedding the unit sphere in R

n, we consider spatial
coordinates so that θ0 = (0, . . . , 0, 1) =: N . On the unit sphere, we choose beam-coordinates
mapping the hemisphere {θ ∈ S

n−1 : θ · θ0 > 0} onto R
n−1.

Let Ux ⊂ R
n
+ be a neighborhood of an arbitrary point x0 ∈ R

n
+ and Uv a neighborhood of the

origin in R
n−1. For any test function φ̃ = 〈v〉n+1φ ∈ C∞

c (Ux × Uv), in local coordinates, equation
(1.1) takes the form:

(2.10)

∫
−u∂xnφ− uv · ∇x′φ+ 〈ǫ

2σ(x)

〈v〉n−2
(Id+ vvT )∇vu,∇v(〈v〉n+1φ)〉

+ (〈v〉λ)uφ dxdv =

∫
(〈v〉f)φdxdv.

We re-label coordinates by writing (y, t) := (x′, xn), and define

(2.11) A(t, y, v) = ǫ2σ(y, t)〈v〉3(Id+ vvT ), B(t, y, v) = ǫ2(n+ 1)σ(y, t)〈v〉3v;
and c(y, v) = 〈v〉λ(y, t), f̂(t, y, v) = 〈v〉f(t, y, v). Then, assuming enough regularity on u(y, t, v)
one verifies that it satisfies the equation

(2.12) ∂tu+ v · ∇yu = ∇v · (A∇vu)−B · ∇vu− cu+ f̂ , in Ux × Uv,
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in the weak sense, i.e. u,∇vu, ∂tu + v · ∇yu ∈ L2
loc(Ux × Uv). We call this equation the normal

form of (1.1). We point out that the matrix-valued function A is positive semi-definite at every
point while the vector-valued function B and the scalar function c are bounded in Ux × Uv.

If a null boundary source is imposed, that is g = 0, we can also write equation (1.1) in normal
form around (outgoing) boundary point (x0, θ0) ∈ Γ+ by extending the problem across Γ+. Indeed,
let (x0, θ0) ∈ Γ+ and U ⊂ R

n × S
n−1 a sufficiently small neighborhood of (x0, θ0). Denote by uout

the unique solution to the exterior problem

(2.13) − ǫ2σ∆θuout + θ · ∇xuout + λuout = 0 in R
n
− × S

n−1,

with (exterior) incoming boundary conditions

uout = u on Γ+.

Here, σ and λ are any positive extension of the coefficients that preserve the original regularity.
It turns out that uext = u|

R̄n
+
+ uout|Rn

−
satisfies that

∫
ǫ2σ∇θuext · ∇θφ− uext(θ · ∇xφ) + λuextφ dxdθ =

∫
fextφ dxdθ,

for all φ ∈ C∞
c (U), with fext the zero extension of f . We can choose beam coordinates with respect

to (x0, θ0) and deduce that uext satisfies (in a weak sense) an equation of the form (2.12), for all
(y, t, v) in a bounded open set.

A first consequence of the normal form (2.12) is the Hölder continuity of solutions. This issue
has been studied by several authors in the context of equations of the form (2.12) (see for instance
the recent results [15, 30], and the survey [9]). The following is a direct consequence of Theorem
1.1 in [30] (or [Theorem 3 in [15]] in the case c = 0).

Theorem 2.7. Let u be solution to (1.1) for f, σ, λ ∈ L∞(Q̄). Then, there is α ∈ (0, 1) so that
u ∈ C0,α(Q). If in addition g = 0 in (1.1)-(1.2) then u ∈ C0,α(Q ∪ Γ+).

Remark 2.8. In the context of backward Fokker-Planck with null boundary condition g = 0 on
Γ+, the analogous result gives u ∈ C0,α(Q ∪ Γ−).

2.2.3. Sobolev regularity and strong solutions. Let us introduce the operators Ds
x := (I −∆x)

s/2,
with s ∈ R, defined by

Ds
xu =

1

(2π)n/2

∫

Rn

eik·x(1 + |k|2)s/2û(k)dk, ∀u ∈ C∞
c (Rn),

where ˆ stands for the Fourier transform. Following the notation x = (x′, xn), we analogously
define Dx′ for an operator acting only on x′.

Theorem 2.9. Let u be a weak solution to (1.1) with source f ∈ L2(Q). Then,

∆θu, θ · ∇xu, D
2/3
x u ∈ L2

loc(Q),

and in particular u is a strong solution. Moreover, for every compact K and open O such that
K ⊂ O ⊂ Q, there exists a constant C > 0 so that

(2.14)
ǫ2‖∆θu‖L2(K) + ǫ2/3‖D2/3

x u‖L2(K) + ‖θ · ∇xu‖L2(K)

≤ C
(
‖f‖L2(O) + ǫ2‖∇θu‖L2(Q) + ‖u‖L2(Q)

)
.
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Remark 2.10. Estimates of the form (2.14) are usually referred to as subelliptic estimates, in this
case with a gain of 2 derivatives in the angular variable and 2/3 derivatives in the spatial variable.
Assuming smoothness in f , σ and λ, repeated differentiation of (1.1) combined with the subelliptic
estimates lead to the hypoellipticity property.

Remark 2.11. According to §2.2.2, extending the solution near a point (x, θ) ∈ Γ+ across the

boundary implies ∆θu, θ · ∇xu, D
2/3
x u ∈ L2(K) for any compact K ⊂ Q ∪ Γ+.

We give a brief proof of the theorem and we refer the reader to Appendix A for a more detailed
one.

Proof. It is enough to obtain the estimates in a neighborhood U of an interior point (x0, θ0) ∈ Q.
Up to some rotation, we can always assume that θ0 is contained in the span of (1, 0 . . . , 0) and
(0, . . . , 0, 1) = N . We first consider beam coordinates on the upper hemisphere S

n−1
+ = {θn > 0},

thus N = (0, . . . , 0, 1) is identified with 0 ∈ R
n−1.

After standard mollification and localization arguments we reduce the problem to obtaining
the desired estimates for a smooth compactly supported function u, solution to the normal form
equation

(2.15) Tu−∇v · (A∇vu) +B · ∇vu+ cu = f, ∀(x, v) ∈ U,

with f (different from the original one) a smooth and compactly supported function with L2-norm
bounded by the norm of the original source and the H-norm of the Fokker-Planck solution. Here
T stands for the transport operator

T = (∂xn + v · ∇x′),

which satisfies the commutator identity:

(2.16) ∂xj = ∂vjT − T∂vj , j = 1, . . . , n − 1.

The bulk of the proof is analogous to [8] where a central role is played by the (Hörmander-type)
identity (2.16). The main difference is the more general form of the principal term, which is easily
addressed due to the positive-definiteness of the anisotropic coefficient A. The technique consists
in obtaining the estimates

(2.17) ‖∇v ·A∇vu‖L2 ≤ C‖f‖L2 and ‖D2/3
x′ u‖L2 ≤ Cǫ−2/3‖f‖L2 ,

from which one deduces

ǫ2‖∆θu‖L2 ≤ C‖f‖L2 .

On the other hand, by considering instead beam coordinates on the hemisphere {θ ∈ S
n−1 :

θ1 > 0} we can repeat the computations leading to (2.17) but now in terms of the operator
Ds

x′′ = (1−∆x′′)s/2, where we decompose the spatial variables as x = (x1, x′′). We then obtain

‖D2/3
x′′ u‖L2 ≤ Cǫ−2/3‖f‖L2 ,

which implies an analogous inequality for the full derivative D
2/3
x u.

The proof is complete by considering a convergent subsequence with respect to the mollification
parameter, with respective derivatives converging weakly in L2, in a smaller neighborhood V of

(x0, θ0), to ∆θu andD
2/3
x u for u now the Fokker-Planck solution. The estimates for the mollification

yield the following subelliptic estimate for the limit,

ǫ2‖∆θu‖L2(V) + ‖D2/3
x u‖L2(V) ≤ C(‖f‖L2(W) + ‖u‖H),
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where here f is the source term in (1.1) and W ⊂ Q a slightly larger open set containing U. Finally,
it follows directly from the equation that

‖θ · ∇xu‖L2(V) ≤ C(‖f‖L2(W) + ‖u‖H).
�

3. Fokker-Planck with singular sources

Our main motivation to study Fokker-Planck equation is the modeling of narrow beams with
a source represented as a delta distribution. The above well-posedness theory does not allow for
such objects, and hence it is necessary to extend the equation to delta sources or more general
finite compactly supported measures. We achieve this following a duality argument which implies
the need of continuity results for solution to the backward Fokker-Planck equation. These results
follow from §2 and the paragraph at the beginning of that section.

All the measures considered here will be of Borel type. Let f and g be finite measures in Q and
Γ− respectively. Below we denote by P the forward Fokker-Planck operator while P t stands for
the adjoint (or backward) Fokker-Planck operator.

Definition 3.1. A distribution u ∈ D′(Q̄) is said to be a solution of (1.1)-(1.2) whenever

〈Pu,ϕ〉 := 〈u, P tϕ〉 = 〈f, ϕ〉+ 〈g|θ · ν(x)|, ϕ〉Γ− ,

for all ϕ ∈ C∞
0 (Q̄) such that ϕ = 0 on Γ+.

Remark 3.2. (1) The factor |θ · ν(x)| is introduced to agree with the standard definition of weak
solutions for Sobolev spaces in Definition (2.2). (2) Notice that if u is a finite measure, the
above extends to all ϕ solutions to (3.1) for some ψ ∈ Cc(Q̄), the set of all continuous functions
with compact support in Q̄. This is because those solutions belong to C(Q̄) ∩ L2(Q) and can be
approximated (with respect to ‖ · ‖∞) by compactly supported smooth functions.

Theorem 3.3. Let σ, λ ∈ C(R̄n
+) and f and g (positive) finite measures with compact support,

defined respectively on Q and Γ−. Then, there is a unique (positive) finite measure in Q satisfying
(1.1)-(1.2).

Proof. Due to the Hölder-regularity result of Theorem 2.7 and particularly the remark after it,
and Lemma 2.6, the source-to-solution map associated to the backward equation

(3.1) − ǫ2σ(x)∆θϕ− θ · ∇xϕ+ λϕ = ψ, ϕ|Γ+ = 0,

maps Sadj : Cc(Q̄) 7→ C(Q ∪ Γ−) continuously. It is a well defined map due to the inclusion
Cc(Q̄) ⊂ L2(Q).

We claim that u, defined by

(3.2) 〈u, ψ〉 := 〈f, Sadjψ〉Q + 〈g|θ · ν(x)|, Sadjψ〉Γ− , ∀ψ ∈ Cc(Q̄),

is a finite measure and satisfies (1.1)-(1.2) in the distributional sense. It is clearly a bounded linear
map on Cc(Q̄), thus by (Radon-Riesz representation) duality it defines a Radon measure on Q̄,
and it is finite since f and g are. Moreover, since any ϕ ∈ C∞

c (Q̄) satisfying that ϕ|Γ+ = 0 can be
regarded as the unique solution to the backward system for ψ = P tϕ ∈ C∞

c (Q̄), then

〈f, ϕ〉Q + 〈g|θ · ν(x)|, ϕ〉Γ− = 〈u, P tϕ〉Q,
which means u is a weak solution.
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Let v be another finite measure solution to (1.1)-(1.2). For an arbitrary ψ ∈ Cc(Q̄) and denoting
ϕ = Sadjψ we have

〈u− v, ψ〉 = 〈f, ϕ〉+ 〈g|θ · ν(x)|, ϕ〉Γ− − 〈v, P tϕ〉 = 0,

which implies u = v. The positivity is a direct consequence of the definition and the analogous
result of Lemma 2.5 for the backward problem. �

4. Fermi pencil-beam equation

This section collects all the results we need on the Fermi pencil-beam solutions.

For σ̃ and λ̃ continuous functions depending only on Xn ≥ 0 and bounded from below by
positive constants, the Fermi pencil-beam equation is given by

(4.1) P(U) := −σ̃∆V U + V · ∇X′U + ∂XnU + λ̃U = F, (X,V ) ∈ R
n
+ × R

n−1,

and is endowed with boundary condition

(4.2) U |Xn=0 = G(X ′, V ), (X ′, V ) ∈ R
2(n−1).

The following solvability result goes back to work of Eyges [14] on transport theory of charged
particles. Below we write FX′ [·] to denote the Fourier transformation with respect to the variable
X ′, that is

FX′ [F ](ξ) :=
1

(2π)(n−1)/2

∫
e−iX′·ξF (X ′)dX ′.

FV is given analogously for a phase variable η. We also write τY ′ to denote the translation map
on the spatial transversal variables, i.e. [τY ′f ](X ′) := f(X ′ − Y ′).

Proposition 4.1. For any F ∈ C(R+; S
′(R2(n−1))) and G ∈ S′(R2(n−1)), there exists a unique

solution U ∈ C1(R+; S
′(R2(n−1))) to (4.1)-(4.2) given explicitly by

(4.3)

U(X,V ) = e−
∫Xn

0 λ̃(s)dsτXnV (H1 ∗G)

+

∫ Xn

0
e−

∫Xn

t
λ̃(s)dsτXnV (H2(t) ∗ τ−tV F )dt,

for H1(X,V ) and H2(X,V ; t) Gaussian kernels, namely

(4.4) H1(X,V ) :=
e
− 1

4(E2E0−E2
1
)

(
E0|X′|2+2E1X′·V+E2|V |2

)

(4π
√
E2E0 − E2

1)
n−1

with Ek(X
n) :=

∫Xn

0 skσ̃(s)ds, and H2 defined analogously by replacing the terms Ek with Ẽk(X
n; t) :=∫ Xn

t skσ̃(s)ds.

Proof. A solution U to (4.1) should satisfy (formally)

(∂Xn + iV · ξ − σ̃(Xn)∆V + λ̃)FX′ [U ] = FX′ [F ].

Define

U(ξ,Xn, V ) = eiX
n(V ·ξ)+

∫Xn

0 λ̃(t)dtFX′ [U ]

and F(ξ,Xn, V ) = eiX
n(V ·ξ)+

∫Xn

0 λ̃(t)dtFX′ [F ],
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for which the following equality holds

∂XnU− σ̃(Xn)eiX
n(V ·ξ)+

∫Xn

0 λ̃(t)dt∆V

(
e−iXn(V ·ξ)−

∫Xn

0 λ̃(t)dtU
)
= F.

Denoting now Û = FV [U](ξ,Xn, η) and F̂ = FV [F](ξ,X
n, η), and recalling the identity

FV [e
iXn(V ·ξ)h(V )](η) = FV [h(V )](η −Xnξ),

by applying FT with respect to V in the previous equality, we obtain the following equation

∂XnÛ+ σ̃(Xn)|η −Xnξ|2Û = F̂,

which we endow with the boundary condition Û(ξ, 0, η) = FX′,V [G](ξ, η) =: G(ξ, η). Û is then
given by

Û(ξ,Xn, η) = G(ξ, η)e−
∫Xn

0
|η−tξ|2σ̃(t)dt +

∫ Xn

0
e−

∫Xn

t
|η−sξ|2σ̃(s)dsF̂(ξ, t, η)dt,

with F̂(ξ, t, η) = e
∫ t
0 λ̃(s)dsFX′,V [F ](ξ, t, η − tξ). Consequently, the FT of U has the form

FX′,V [U ](ξ,Xn, η) = e−
∫Xn

0
λ̃(t)dtÛ(ξ,Xn, η +Xnξ).

The explicit expression for U follows directly from the previous two equalities. �

Remark 4.2. A quick application of Plancherel’s identity implies the following integration by part
formula that will be used later: if U is a pencil-beam with null interior source and boundary
condition G = δ(X ′−Y ′)δ(V −W ), then for any Φ ∈ C(Rn

+×R
n−1))∩H1(R+;L

2(Rn−1×R
n−1)),

(4.5)

∫

Rn
+×Rn−1

U∂XnΦdX ′dXndV = −
∫

Rn
+×Rn−1

∂XnUΦdX ′dXndV − Φ(Y ′, 0,W ).

The approximation analysis of the next section requires estimates on various derivatives of the
solutions to Fermi pencil-beam equation. This is not an issue for large values of (X,V ) due to
the exponential decay at infinity but becomes more tedious when approaching Xn = 0, where the
pencil-beam solutions are singular. The precise integrals that need to be controlled are summarized
in the following lemma.

Lemma 4.3. Let U be a solution to (4.1)-(4.2) for F = 0 and G = δ(X ′)δ(V − Θ), for some

Θ ∈ R
n−1, and coefficients σ̃ ∈ C3(R̄+), λ̃ ∈ C(R̄+). The integrals

‖|Xi −XnΘi|l|V j |m∂pX′∂
q
V U‖L1 , i, j ∈ {1, . . . , n− 1}

are finite:

(i) in general for any integers l,m ≥ 0 and multi-indices p, q ≥ 0 so that 3l ≥ 3|p|+ |q|;
(ii) and for any l,m ≥ 0 and p, q ≥ 0 so that 3l +m ≥ 3|p|+ |q| if Θ = 0.

Furthermore, the same conclusion holds for a solution U to (4.1)-(4.2) with G = 0 and F =
((X ′ −XnΘ) · ξ(Xn))∂qV U , |q| ≤ 3 and ξ continuous and bounded in R̄+ (this will be used in the
proof of lemma 5.2).

Proof. Let us write η = η(Xn) := e−
∫Xn

0 λ̃(s)ds so that for F = 0 and G = δ(X ′)δ(V − Θ) the
Fermi pencil-beam equation can be written as

(4.6) U(X,V ) = η(Xn)τXnVH1(X,V −Θ).
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For any polynomial p(X ′, V ) and function f(X ′, V ) such that the following quantities are finite,
we have ∫

p(X ′, V )[τXnV f ](X
′, V )dX ′dV =

∫
p(X ′ +XnV, V )f(X ′, V )dX ′dV,

and thus, the previous identity along with a change of variables gives

(4.7)

‖|Xi −XnΘi|l|V j|m∂pX′∂
q
V U‖L1

≤
∑

q̃≤q

(
q

q̃

)
‖η(Xn)|Xi +XnV i)|l|V j +Θj|m(Xn)|q̃|∂p+q̃

X′ ∂
q−q̃
V H1(X,V )‖L1 .

We write the kernel H1(X,V ) as

(4.8) H1(X,V ) =
1

(4π
√
∆)n−1

e−(α|X′|2+2βX′·V+γ|V |2),

where ∆ = ac− b2 > 0,

(4.9) a(Xn) =

∫ Xn

0
σ̃(s)ds, b(Xn) =

∫ Xn

0
sσ̃(s)ds, c(Xn) =

∫ Xn

0
s2σ̃(s)ds,

with σ̃ > 0, and

α =
a

4∆
, β =

b

4∆
and γ =

c

4∆
.

Near Xn = 0 and for any extension of σ̃ ∈ C3([0,∞)) to R, we deduce from Taylor’s theorem that
there is h0 > 0 and a function h : R → R such that

(4.10) ac− b2 = (Xn)4(h0 + h(Xn)),

with h(Xn) → 0 as Xn → 0. In addition, in the limits Xn → 0 and Xn → ∞, the coefficients a, b
and c behave respectively as Xn, (Xn)2 and (Xn)3, and this implies

α ≈ (Xn)−3, β ≈ (Xn)−2, and γ ≈ (Xn)−1.

To estimate the terms on the right hand side of (4.7) we need upper bounds for integrals of the

form Ik :=
∫∞
−∞ |t|ke−αt2+2βtdt, for k ≥ 0. We list a few of them:

Ik =





√
π
αe

β2

α k = 0,

1
α(1 + β

√
π
a erf

( β√
α

)
e

β2

α ) ≤ 1
α(1 + |β|

√
π
αe

β2

α ) k = 1,
√
π(2α+4β2)

4α5/2 e
β2

α k = 2,

1
α2

(
1 + β2

α + (2β
2

α + 3)β2
√

π
αerf

( β√
α

)
e

β2

α

)
k = 3.

≤ 1
α2

(
1 + β2

α + (2β
2

α + 3) |β|2
√

π
αe

β2

α

)

Performing the integrations over X ′ and V and using the values of the integrals above one can see
that each factor |Xi| scales in the estimates as (Xn)3/2 since it bring a division by a factor

√
α,

while each |V j | scales as (Xn)1/2 (division by
√
γ). Symmetrically, every derivative taken with

respect to an Xi bring a factor αXi +βV j to the estimates which after integration translates into
a division by (Xn)3/2, and similarly every derivative with respect to V j brings to the estimates a

factor βXj + γV j which leads to a division by (Xn)1/2. The condition imposed on exponent and
multi-indices in (4.3) then implies that after integrating with respect to X ′ and V , integrals of the
form

‖(Xn)|q̃||Xi|l|V j|m̃∂p+q̃
X′ ∂

q−q̃
V U‖L1 and ‖(Xn)l+|q̃||V j |l+m̃∂p+q̃

X′ ∂
q−q̃
V U‖L1 ,
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with m̃ ∈ {0,m}, are bounded by a constant factor times
∫∞
0 η(Xn)(Xn)sdXn, for some non-

negative rational number s depending on l,m, p and q. The right hand side is finite since s is
nonnegative and the exponential decay at infinity of η.

The two cases in the statement of the lemma derive from the previous estimation by noticing
that for Θ = 0 there is no integral with m̃ = 0, and we just need 3l+m ≥ 3|p|+ |q| instead of the
stronger requirement 3l ≥ 3|p|+ |q|.

The second part of the proof consist in estimating the same integrals with U replaced by the
more intricate function U. We write

U(X,V ) =

∫ Xn

0
ηt(X

n)τXnV (H2(X
n; t) ∗ τ−tV F (t)dt,

for ηt := e−
∫Xn

t
λ̃(s)ds and kernel

(4.11) H2(X,V ; t) =
1

(4π
√
∆t)n−1

e−(αt|X′|2+2βtX′·V+γt|V |2), t ∈ (0,Xn).

Here we use the notation ∆t = atct − b2t for

(4.12) at(X
n) =

∫ Xn

t
σ̃(s)ds, bt(X

n) =

∫ Xn

t
sσ̃(s)ds, ct(X

n) =

∫ Xn

t
s2σ̃(s)ds,

and αt =
at
4∆t

, βt =
bt
4∆t

, γt =
ct
4∆t

.

Let us analyze F (t) = (X ′ − tΘ) · ξ(t)∂rV U(t) (with |r| ≤ 3) first. We see that

τ−tV F (t) = τ−tV [(X
′ − tΘ) · ξ(t)∂rV (η(t)τtV H1(X

′, t, V −Θ))]

= τ−tV [(X
′ − tΘ) · ξ(t)η(t)

∑

r̃≤r

(
r

r̃

)
t|r̃|τtV [∂

r̃
X′∂r−r̃

V H1(X
′, t, V −Θ)]]

=

n−1∑

k=1

∑

r̃≤r

(
r

r̃

)
t|r̃|η(t)ξk(t)(Xk + t(V k −Θk))∂ r̃X′∂r−r̃

V H1(X
′, t, V −Θ).

Denoting by ek the multi-index with a 1 in the kth-position and the rest all zeros, and also writing
r = (r1, . . . , rn−1), then

(Xk + t(V k −Θk))∂ r̃X′∂r−r̃
V H1(X

′, t, V −Θ)

= ∂ r̃X′∂r−r̃
V [(Xk + t(V k −Θk))H1(X

′, t, V −Θ)]

− (1− δ0r̃k)∂
r̃−ek
X′ ∂r−r̃

V H1(X
′, t, V −Θ)

− (1− δ0(rk−r̃k))t∂
r̃
X′∂

r−r̃−ek
V H1(X

′, t, V −Θ),

with δij the Kronecker delta. Convolving τ−tV F (t) with H2 gives several terms of the form

H2 ∗ t|r̃|+|s2|η(t)ξi(t)∂ r̃−s1
X′ ∂r−r̃−s2

V [(Xk + t(V k −Θk))1−|(s1,s2)|H1(X
′, t, V −Θ)]

with |(s1, s2)| ≤ 1. Therefore, the estimation of ‖|Xi−XnΘi|l|V j|m∂pX′∂
q
V U‖L1 reduces to obtain-

ing upper bounds for

(4.13)

∥∥|Xi +Xn(V i −Θi)|l|V j |m(Xn)|q̃|
∫ Xn

0
t|r̃|η(t)ξk(t)ηt(X

n)

× ∂p+q̃
X′ ∂

q−q̃
V

(
H2 ∗ ∂ r̃−s1

X′ ∂r−r̃−s2
V [(Xk + t(V k −Θk))1−|(s1,s2)|H1(X

′, t, V −Θ)]
)
dt
∥∥
L1

with i, j, k ∈ {1, . . . , n− 1}, and multi-indices p̃ ≤ p, q̃ ≤ q, r̃ ≤ r, |(s1, s2)| ≤ 1.
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Notice that

∂p+q̃
X′ ∂

q−q̃
V

(
H2 ∗ ∂ r̃−s1

X′ ∂r−r̃−s2
V [(Xk + t(V k −Θk))1−|(s1,s2)|H1(X

′, t, V −Θ)]
)

= ∂p+q̃+r̃−s1
X′ ∂q−q̃+r−r̃−s2

V

(
H2 ∗ [(Xk + t(V k −Θk))1−|(s1,s2)|H1(X

′, t, V −Θ)]
)
.

On the other hand, denoting by Σ =

(
α β
β γ

)
, then ∇Xk,V kH1 = −2H1Σ

(
Xk

V k

)
and consequently

(Xk + tV k)H1 = −1

2

(
(Σ−1∇Xk,V kH1)1 + t(Σ−1∇Xk,V kH1)2

)
,

where Σ−1 = 4

(
c −b
−b a

)
. This yields

(Xk + t(V k −Θk))H1(X
′, t, V −Θ) = 2(tb(t)− c(t))∂XkH1(X

′, t, V −Θ)

− 2(ta(t)− b(t))∂V kH1(X
′, t, V −Θ).

Therefore,

∂p+q̃
X′ ∂

q−q̃
V

(
H2(X

n; t) ∗ ∂ r̃−s1
X′ ∂r−r̃−s2

V [(Xk + t(V k −Θk))1−|(s1,s2)|H1(X
′, t, V −Θ)]

)

=





∂p+q̃+r̃−s1
X′ ∂q−q̃+r−r̃−s2

V

(
H2 ∗H1(X

′, t, V −Θ)
)
, |(s1, s2)| = 1,

2(tb(t) − c(t))∂p+q̃+r̃+ek
X′ ∂q−q̃+r−r̃

V

(
H2 ∗H1(X

′, t, V −Θ)
)

−2(ta(t)− b(t))∂p+q̃+r̃
X′ ∂q−q̃+r−r̃+ek

V

(
H2 ∗H1(X

′, t, V −Θ)
)
, |(s1, s2)| = 0.

The factors (tb(t)− c(t)) and (ta(t)− b(t)) behave respectively as t3 and t2, in the limit t→ 0.
We now write H = H2 ∗H1, therefore

(4.14) H(X,V ; t) =
1

(4π
√

∆̂)n−1
e−

1
4∆

(â|X′|2+2b̂X′·V+ĉ|V |2), t ∈ (0,Xn),

for ∆̂ = âĉ− b̂2 and

â(Xn; t) = a(Xn) + at(X
n), b̂(Xn; t) = b(Xn) + bt(X

n), ĉ(Xn; t) = c(Xn) + ct(X
n).

Noting that η(Xn) = ηt(X
n)η(t) and recalling that ξ(t) is bounded, we deduce that the estimation

of (4.13) reduces to bounding from above several integrals of the form
∫ ∞

0
η(Xn)(Xn)|q̃|

×
∫ Xn

0
t|r̃|‖|Xi +Xn(V i −Θi)|l|V j |mPX′,V H(X ′,Xn, V −Θ; t)‖L1

X′,V
dtdXn,

with PX′,V any of the following differential operators:

∂p+q̃+r̃−s1
X′ ∂q−q̃+r−r̃−s2

V , |(s1, s2)| = 1

2(tb(t) − c(t))∂p+q̃+r̃+ek
X′ ∂q−q̃+r−r̃

V and 2(ta(t)− b(t))∂p+q̃+r̃
X′ ∂q−q̃+r−r̃+ek

V .

These last expressions are bounded by the same arguments as in the first part of the proof. �

We conclude this section with a few words regarding the adjoint problem associated to (4.1)-
(4.2). Following an analogous argument as in the existence result for equation (4.1), if we are given
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a bounded and compactly supported function Ψ, the solution to the backward Fermi pencil-beam
system

(4.15) − σ̃∆VW − V · ∇X′W − ∂XnW + λ̃W = Ψ, (X,V ) ∈ R
n
+ × R

n−1,

augmented with a vanishing condition at infinity

(4.16) lim
Xn→∞

W = 0,

can be written in the form

W (X,V ) =

∫ ∞

Xn

e−
∫ t
Xn λ̃(s)dsτ−XnV (H3(t) ∗ τtV Ψ(t))dt,

for a given Gaussian kernel H3 defined similarly as H1 in (4.4) but with coefficients Ek replaced

by
∫ t
Xn s

kσ̃(s)ds. Formula (4.18) is derived similarly as in the proof of Proposition 4.1 and the Xn
details of this can be found in Appendix B.

Using this explicit expression we directly obtain Lipschitz continuity of W . For a proof of this
we refer the reader to Appendix C.

Lemma 4.4. Let Ψ ∈ Cc(Q̄) and Lipschitz continuous with respect to the variables Z = (X ′, V ).
There exists C > 0 so that, for W solution to (4.15)-(4.16),

|W (Z1,X
n)−W (Z2,X

n)| ≤ CLip(Ψ)|Z1 − Z2|,
for all Z1, Z2 ∈ R

2(n−1) and Xn > 0.

5. 1-Wasserstein comparison analysis

5.1. Approximation via pencil-beams. We now consider the approximation of narrow beam
solutions to the Fokker-Planck equation by ballistic transport and Fermi pencil-beams, which cor-
respond to the limit ǫ≪ 1. The modeling of narrow beams is best modeled as beams propagating
in a half space with singular boundary sources. Heuristically, each delta source term gives rise to
Fokker-Planck, Fermi pencil-beam, and ballistic transport solutions. More general source terms
may then be modeled as superpositions of such delta sources. We first state our comparison results
for delta source terms and then consider some models of linear superposition. As we mentioned in
the introduction, all comparisons are obtained in the well-adapted notion of 1-Wasserstein distance.

5.1.1. Delta boundary source. We consider first the case of a delta incoming boundary condition

(5.1) g(x, θ) = δ(x)δSn−1(θ − η), for η ∈ S
n−1 such that |N − η| = O(ǫ2),

where N = −ν(0) = (0, . . . , 0, 1) and we let u be the solution to (1.1)-(1.2) from Theorem 3.3.
Associated to η = (η′, ηn), whose stereographic projection with respect to the south pole (see

(1.5)) is given by

S(η) =
η′

1 + ηn
∈ R

n−1,

we set

G(X ′, V ) = δ(X ′)δ(V − ǫ−1S(η)), σ̃ =
1

4
σ(Xnη) and λ̃ = λ(Xnη),

where the coefficients σ̃ and λ̃ have an indirect dependence on ǫ through the direction η. Let-
ting U be the solution to (4.1) with the above choice of parameters, we define the pencil-beam
approximation as

u(x, θ) := (2ǫ)−2(n−1)U((2ǫ)−1x′, xn, ǫ−1S(θ)).
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Throughout this section, we assume σ ∈ C3(R̄n
+) and λ ∈ C2(R̄n

+). The extra regularity of σ is
needed to control the integrals that appear when applying Lemma 4.3.

We then have the following approximation result:

Theorem 5.1. There exists a positive constant C = C(‖σ‖C3 , ‖λ‖C2) such that, for κ & 1,

W1
κ(u, u) ≤ Cǫ2κ.

Proof. Consider an open and bounded set Ω ⊂ R̄
n
+ and let ψ ∈ BL1.κ(Ω× S

n−1) which we extend
to the entire half-space as a continuous and compactly supported function preserving its Lipschitz
constant. Let ϕ the unique (strong) solution to the backward Fokker-Planck system,

(5.2) − ǫ2σ∆θϕ− θ · ∇xϕ+ λϕ = ψ, ϕ|Γ+ = 0,

which is continuous in Q ∪ Γ− due to Theorem 2.7 and the remark after it. The goal is to show
that ∫

Ω×Sn−1

ψ(x, θ)(u − u) = O(ǫ2κ) + o(1),

where the error term goes to zero as Ω → R̄+ since it is bounded by
∫
Ωc×Sn−1(u + u)dxdθ. It

appears due to the fact that we are extending ψ in space. From the definition of weak solutions,
the left hand side of the above expression reads

∫

Q
ψ(x, θ)d(u − u) = 〈g, ϕ|θ · ν(x)|〉Γ− −

∫

Q
u(x, θ)ψ(x, θ)dxdθ

= ϕ(0, η)ηn −
∫

Q
u(x, θ)ψ(x, θ)dxdθ,

and consequently our objective is to show that

(5.3)

∫

Q
uψdxdθ = ϕ(0, η)ηn +O(ǫ2κ).

In order to achieve this we rescale the equation and pass to the stretched coordinates (at the level
of the diffusion), which we recall is defined by the equality

(x′, xn, θ) = (2ǫX ′,Xn, J(ǫV )),

with J = S−1 the inverse of the stereographic projection from the south pole (defined in (1.5)-(1.6)).
We then set Φ and Ψ as the following rescalings of ϕ and ψ, respectively, which preserve the

L∞-norm:

(5.4) ϕ(x, θ) = Φ((2ǫ)−1x′, xn, ǫ−1S(θ)) and ψ(x, θ) = Ψ((2ǫ)−1x′, xn, ǫ−1S(θ)).

By noticing
∫

Q
u(x, θ)ψ(x, θ)dxdθ =

∫

Q
u(−ǫ2σ∆θϕ− θ · ∇xϕ+ λϕ)dxdθ

= −ǫ2
∫

Q
σ(∆θu)ϕdxdθ −

∫

Q
u(θ · ∇xϕ)dxdθ +

∫

Q
λuϕdxdθ,
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we pass to stretched coordinates and analyze individually every term on the right hand side. The
first one gives

− ǫ2
∫

Q
σ(∆θu)ϕdxdθ

= −
∫

Q

σ̃(Xn)(∆V U)ΦdXdV

+

∫

Q

1

4
σ(2ǫX ′,Xn)

(
1− 23−ncn−3(ǫV )

)
(∆V U)ΦdXdV

− ǫ(n− 3)

∫

Q

c−3(ǫV )σ(2ǫX ′,Xn)
(
(∇c)(ǫV ) · ∇V U

)
Φ21−ncn−1(ǫV )dXdV

+
1

4

∫

Q

(
σ(Xnη)− σ(2ǫX ′,Xn)

)
(∆V U)ΦdXdV.

For the second term we have
∫

Q
u(θ · ∇xϕ)dxdθ =

∫

Q

[( V · ∇X′Φ

1 + ǫ2|V |2
)
U +

(1− ǫ2|V |2
1 + ǫ2|V |2

)
(∂XnΦ)U

]cn−1(ǫV )

2n−1
dXdV.

Thus, after integration by parts (where we use (4.5) for the Xn-variable) we obtain

−
∫

Q
u(θ · ∇xϕ)dxdθ

=

∫

Q

[( V · ∇X′U

1 + ǫ2|V |2
)
Φ+

(1− ǫ2|V |2
1 + ǫ2|V |2

)
(∂XnU)Φ

]cn−1(ǫV )

2n−1
dXdV

+Φ(0, 0, ǫ−1S(η))
(1− |S(η)|2
1 + |S(η)|2

)
〈S(η)〉−2(n−1)

︸ ︷︷ ︸
=ηn(1+O(ǫ2)) (due to (5.1))

=

∫

Q

(V · ∇X′U)ΦdXdV +Φ(0, 0, ǫ−1S(η))ηn +O(ǫ2)

+

∫

Q

(21−ncn−1(ǫV )

1 + ǫ2|V |2 − 1
)
(V · ∇X′U)ΦdXdV

+

∫

Q

(1− ǫ2|V |2
1 + ǫ2|V |2 2

1−ncn−1(ǫV )− 1
)
(∂XnU)ΦdXdV.

Finally, the third term gives
∫

Q
λuϕdxdθ =

∫

Q

λ̃UΦdXdV +

∫

Q

λ(2ǫX ′,Xn)(21−ncn−1(ǫV )− 1)UΦdXdV

+

∫

Q

(λ(2ǫX ′,Xn)− λ(Xnη)UΦdXdV.

Summarizing all the above and recalling that U is a solution to the Fermi-equation (i.e. P(U) = 0)
we have ∫

Q
u(x, θ)ψ(x, θ)dxdθ = ϕ(0, η)ηn + J1(Φ) + J2(Φ) +O(ǫ2),
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with

(5.5)

J1(Φ) =

∫

Q

1

4
σ(2ǫX ′,Xn)

(
1− 23−ncn−3(ǫV )

)
(∆V U)ΦdXdV

− ǫ(n− 3)

∫

Q

c−3(ǫV )σ(2ǫX ′,Xn)
(
(∇c)(ǫV ) · ∇V U

)
Φ21−ncn−1(ǫV )dXdV

+

∫

Q

(21−ncn−1(ǫV )

1 + ǫ2|V |2 − 1
)
(V · ∇X′U)ΦdXdV

+

∫

Q

(1− ǫ2|V |2
1 + ǫ2|V |2 2

1−ncn−1(ǫV )− 1
)
(∂XnU)ΦdXdV

+

∫

Q

λ(2ǫX ′,Xn)(21−ncn−1(ǫV )− 1)UΦdXdV

=

5∑

i=1

J1,i,

and

(5.6)

J2(Φ) =
1

4

∫

Q

(σ(Xnη)− σ(2ǫX ′,Xn))(∆V U)ΦdXdV

−
∫

Q

(λ(Xnη)− λ(2ǫX ′,Xn))UΦdXdV.

To estimate |J1| we notice that for m ≥ n− 3 (n ≥ 2),

(5.7) 1− 2−mcm(ǫV ) =





ǫ2
∑m

k=1
|V |2

(1+ǫ2|V |2)k , m > 01

0, m = 0
−ǫ2|V |2, m = −1,

and thus for all m ≥ n− 3,

|1− 2−mcm(ǫV )| ≤ |m|ǫ2|V |2.
Furthermore, (∇c)(ǫV ) = − 4ǫV

(1+ǫ2|V |2)2 and

cn−4(ǫV )

2n−4(1 + ǫ2|V |2)2 =
1

(1 + ǫ2|V |2)n−2
≤ 1.

We then have that

|J1,1|+ |J1,2|+ |J1,5|
≤ Cǫ2‖Φ‖∞

(
|n− 3|‖|V |2∆V U‖L1(Rn

+×Rn−1)

+ ‖V · ∇V U‖L1(Rn
+×Rn−1) + ‖U‖L1(Rn

+×Rn−1)

)
.

The term J1,3 is bounded since

∣∣∣
21−ncn−1(ǫV )

1 + ǫ2|V |2 − 1
∣∣∣ = ǫ2|V |2

n∑

k=1

1

1 + ǫ2|V |2 ≤ nǫ2|V |2,

1The equality follows from the difference of powers formula: xp+1
−yp+1 = (x−y)(xp+xp−1y+ · · ·+xyp−1+yp).
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while the estimate for J1,4 follows from
∣∣∣
1− ǫ2|V |2
1 + ǫ2|V |2 2

1−ncn−1(ǫV )− 1
∣∣∣ ≤

(
1− 1

(1 + ǫ2|V |2)n
)
+

ǫ2|V |2
(1 + ǫ2|V |2)n ≤ (n+ 1)ǫ2|V |2.

We obtain
|J1,3|+ |J1,4| ≤ Cǫ2‖Φ‖∞

(
n‖|V |2V · ∇X′U‖L1(Rn

+×Rn−1)

+ (n+ 1)‖|V |2∂XnU‖L1(Rn
+×Rn−1)

)
,

where we use the Fermi Pencil-beam equation to get

‖|V |2∂XnU‖L1 ≤ ‖|V |2∆V U‖L1 + ‖|V |2V · ∇X′U‖L1 + ‖|V |2U‖L1 .

In summary, and recalling that ‖Φ‖∞ = ‖ϕ‖∞ ≤ λ−1
0 ‖ψ‖∞ (from lemma (2.6)), we have obtained

that
|J1| ≤ Cǫ2

(
‖|V |2∆V U‖L1 + ‖V · ∇V U‖L1

+ ‖|V |2V · ∇X′U‖L1 + ‖|V |2U‖L1 + ‖U‖L1

)
‖ψ‖∞.

All the factors involving integrals of U are finite due to lemma 4.3.
We now estimate J2. When σ and λ are constant, then J2 = 0. Otherwise, we notice first due

to our hypothesis (5.1) we can write η = N − 2ǫ2Θ for some Θ ∈ R
n, |Θ| = O(1), thus by Taylor

expansion and the above we can write

J2(Φ) = −1

2
ǫ

∫

Qǫ

(
X ′ + ǫXnΘ′, ǫXnΘn

)
· ∇σ(Xnη)(∆V U)ΦdXdV

+ 2ǫ

∫

Qǫ

(
X ′ + ǫXnΘ′, ǫXnΘn

)
· ∇λ(Xnη)UΦdXdV + ‖Φ‖∞O(ǫ2)

where ‖Φ‖∞ ≤ λ−1
0 ‖ψ‖∞ and with the remainder depending on integrals of the form

‖σ‖C2‖
(
|X ′ + ǫXnΘ′|2 + ǫ2|XnΘn|2

)
∆V U‖L1

and ‖λ‖C2‖
(
|X ′ + ǫXnΘ′|2 + ǫ2|XnΘn|2

)
U‖L1

which are uniformly bounded for Θ in a bounded region (guaranteed by (5.1)).
To gain the extra factor ǫ on the leading term, we notice that due to the symmetry of U with

respect to the spatial direction S(η) = 2
1+ηn ǫ

2Θ′, for any vector ξ ∈ R
n−1,

∫

Rn−1×Rn−1

((X ′ + ǫXnΘ′) · ξ)UdX ′dV = O(ǫ2)

(this can be obtain for instance by passing to Fourier domain) while
∫

Rn−1×Rn−1

((X ′ + ǫXnΘ′) · ξ)∆V UdX
′dV = 0.

Therefore we write

J2 = −1

4
ǫ

∫

Rn
+×Rn−1

(X ′ + ǫXnΘ′) · ∇X′σ(Xnη)

× (∆V U)(Φ(X ′,Xn, V )− Φ(−ǫXnΘ′,Xn, 0)))dXdV

+ 2ǫ

∫

Rn
+×Rn−1

(X ′ + ǫXnΘ′) · ∇X′λ(Xnη)

× U(Φ(X ′,Xn, V )− Φ(−ǫXnΘ′,Xn, 0))dXdV +O(ǫ2).
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Ideally, we would like to say that Φ is a Lipschitz continuous function with constant bounded by the
W 1,∞-norm of Ψ, and this would give us the extra ǫ we need for the second order approximation.
However, we only have shown Hölder continuity of Φ. A way of bypassing this lack of regularity
is with the aid of the following lemma that allows us to substitute Φ with an O(ǫ)-approximation
W that is indeed Lipschitz continuous. Its demonstration can be found at the end of this proof.

Lemma 5.2. Let Φ, Ψ and U be as above, and consider

f = (X ′ + ǫXnΘ′) · ξ(Xn)U or f = (X ′ + ǫXnΘ′) · ξ(Xn)∆V U,

for some bounded function ξ. Then, for W solution to the backward Fermi pencil-beam system
(4.15)-(4.16), there exists C > 0, depending on σ, λ and ξ, such that

∣∣∣
∫

Q

fΦdXdV −
∫

Q

fWdXdV
∣∣∣ ≤ Cǫ‖Ψ‖∞.

Using this lemma, we replace Φ with W in the last expression of J2 to get

J2 = −1

4
ǫ

∫

Rn
+×Rn−1

(X ′ + ǫXnΘ′) · ∇X′σ(Xnη)

× (∆V U)(W (X ′,Xn, V )−W (−ǫXnΘ′,Xn, 0)))dXdV

+ 2ǫ

∫

Rn
+×Rn−1

(X ′ + ǫXnΘ′) · ∇X′λ(Xnη)

× U(W (X ′,Xn, V )−W (−ǫXnΘ′,Xn, 0))dXdV +O(ǫ2),

which we rewrite more concisely as

J2 = ǫ

∫

Q

h(X,V )(W (X ′,Xn, V )−W (−ǫXnΘ′,Xn, 0))dXdV +O(ǫ2).

Lemma 4.4 implies

|J2| ≤ Cǫ‖|(X ′ + ǫXnΘ′, V )|h(X ′, V )‖L1(Q) sup
Xn>0

LipX′,V (Ψ(Xn)) +O(ǫ2),

where the finiteness of the integral involving h follows from lemma 4.3. Moreover, it follows directly
from (5.4) that

LipX′,V (Ψ(Xn)) ≤ CǫLipx′,v(ψ(X
n)) ≤ Cǫκ,

and thus we deduce the estimate

|J2| ≤ Cǫ2(‖ψ‖∞ + κ),

for a constant C independent of Ω, with the latter present in the estimate only through the support
of ψ. The above estimate then depends only on the supremum norm and the Lipschitz constant
of ψ, which are both uniformly bounded in BL1,κ, thus we can take Ω arbitrary large. By taking
supremum among all ψ ∈ BL1,κ(Ω× S

n−1) we deduce that

W1
κ,Ω ≤ Cǫ2κ+ o(1),

and the proof is completed by letting Ω → R̄
n
+. �

Proof of lemma 5.2. Let U be a solution to the (forward) Fermi pencil-beam problem

−σ̃∆V U+ V · ∇X′U+ ∂XnU+ λ̃U = f, (X,V ) ∈ R
n
+ × R

n−1, U|Xn=0 = 0,
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given explicitly by

U(X,V ) =

∫ Xn

0
e−

∫Xn

t λ̃(s)dsτXnV (H2(t) ∗ τ−tV f)dt.

Denoting

u(x, θ) =
1

(2ǫ)2(n−1)
U((2ǫ)−1x′, xn, ǫ−1S(θ)),

we have ∫

Rn
+×Rn−1

fWdXdV =

∫

Q

UΨdXdV

=

∫

Q
u(x, θ)ψ(x, θ)dxdθ

︸ ︷︷ ︸
I1

+

∫

Q

UΨ(21−ncn−1(ǫV )− 1)dXdV

︸ ︷︷ ︸
I2

.

It is clear from (5.7) and lemma 4.3 that

|I2| ≤ ǫ2‖|V |2U‖L1‖Ψ‖∞ ≤ Cǫ2‖Ψ‖∞.
On the other hand, we use that ϕ is a strong solution of (5.2) and we integrate by parts to get

I1 =

∫

Q

fΦdXdV + J0(Φ) + J1(Φ) + J2(Φ),

where

(5.8) J0(Φ) =

∫

Γ−

uϕ(θ · ν(x))dS(x)dθ = 0,

since U = 0 on Xn = 0, and J1 and J2 defined as in (5.5) and (5.6), respectively. Estimating J1
as in the proof of the previous theorem and using one more time lemma 4.3, we obtain

|J1| ≤ Cǫ2
(
‖|V |2∆V U‖L1 + ‖V · ∇V U‖L1

+ ‖|V |2V · ∇X′U‖L1 + ‖(1 + |V |2)U‖L1 + ‖|V |2f‖L1

)
‖Ψ‖∞ ≤ Cǫ2‖Ψ‖∞,

while |J2| has a straightforward upper bound given by

|J2| ≤ Cǫ‖Φ‖∞(‖|X ′ + ǫXnΘ′|∆V U‖L1 + ‖|X ′ + ǫXnΘ′|U‖L1) ≤ Cǫ‖Ψ‖∞,
for a constant depending on ‖σ‖C1 and ‖λ‖C1 . �

5.1.2. L1-boundary sources. We now consider more general boundary sources such that for some
C > 0 independent of ǫ,

(5.9) g(x, θ) ∈ L1(Γ−), supp(g) ⋐ ∂Rn
+ × {θ ∈ S

n−1 : |θ −N | < Cǫ2} ⊂ Γ−.

Let {Uy,η(X,V )}y,η be a family of pencil-beams with respective boundary conditions G =
δ(X ′)δ(V − ǫ−1S(η)) on ∂Rn

+ and null interior source F = 0. The subscript (y, η) ∈ supp(g)
indicates that each pencil beam is constructed using the coefficients

σ̃(Xn) =
1

4
σ(y +Xnη) and λ̃(Xn) = λ(y +Xnη),

and they are all given by the explicit formula (4.3).
We define u(x, θ; y, η) as the following transformation of Uy,η:

(5.10) u(·, ·; y, η) := (2ǫ)−2(n−1)Uy,η ◦ T ǫ
y , (y, η) ∈ supp(g),
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where

T ǫ
y : Rn × S

n−1 ∋ (x, θ) 7→ (X,V ) ∈ R
n
+ × R

n−1

is the transformation defined as

(X,V ) = ((2ǫ)−1(x′ − y′), xn, ǫ−1S(θ)).

In other words, T ǫ
y defines stretched coordinates after performing a spatial translation x 7→ x− y.

The rescaling is chosen such that it preserves (up to a O(1) factor) the L1 norm of the pencil-beam.
Our superposition of pencil-beam model is the distribution in Q̄ given by

(5.11) u(x, θ) :=

∫

Γ−

g(y, η)u(x, θ; y, η)dS(y)dη,

so that

〈u, φ〉 :=
∫

Γ−

∫

Q
g(y, η)u(x, θ; y, η)φ(x, θ)dxdθdS(y)dη, ∀φ ∈ C∞

0 (Q̄).

We can extend the definition of u to all continuous functions in Q̄ since for all (z, ζ) ∈ supp(g),

‖u(·, ·; z, ζ)‖L1 ≤ sup
(y,η)∈supp(g)

‖Uy,η‖L1(Rn
+×Rn−1) < +∞.

In this setting, we have the following approximation result:

Corollary 5.3. Let u be a distributional solution to (1.1) with incoming boundary condition g as
in (5.9). There exists a constant C = C(‖σ‖C3 , ‖λ‖C2) > 0, independent of ǫ, so that

W1
κ(u, u) ≤ C‖g‖L1ǫ2κ.

Proof. This proof is quite similar to that in the single pencil-beam case. We take an open and
bounded Ω ⊂ R̄

n
+. For any ψ ∈ BL1,κ(Ω × S

n−1), which we extend as a continuous compactly
supported function preserving its Lipschitz constant, let ϕ be the unique solution to the backward
Fokker-Planck equation,

−ǫ2σ∆θϕ− θ · ∇xϕ+ λϕ = ψ, ϕ|Γ+ = 0.

We have ∫

Q
ψ(x, θ)(u− u)dxdθ = 〈g|θ · ν(x)|, ϕ〉Γ−

−
∫

Γ−

∫

Q
g(y, η)u(x, θ; y, η)ψ(x, θ)dxdθdS(y)dη

=

∫

Γ−

g(y, η)ϕ(y, η)|η · ν(y)|dS(y)dη

−
∫

Γ−

g(y, η)

∫

Q
u(x, θ; y, η)ψ(x, θ)dxdθdS(y)dη.

The proof reduces to showing that

(5.12)
∣∣∣
∫

Q
u(x, θ; y, η)ψ(x, θ)dxdθ − ϕ(y, η)ηn

∣∣∣ ≤ Cǫ2κ,

uniformly for (y, η) ∈ supp(g). Notice that applying the translation z = x− y we get
∫

Q
u(x, θ; y, η)ψ(x, θ)dxdθ = (

√
2ǫ)−2(n−1)

∫

Q
Uy,η(ǫ

−1z′, zn, ǫ−1S(θ))ψ̃(z, θ)dzdθ,
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with ψ̃(z, θ) = ψ(z + y, θ). Thus, (5.12) is precisely what we obtained in the proof of Theorem
5.1 (see (5.3)). Going over those computations, one realizes that the constant in the estimate are
uniform in (y, η) and only depend on ‖σ‖C3 , ‖λ‖C2 and the dimension n. We then have

∫

Ω×Sn−1

ψ(x, θ)(u− u)dxdθ ≤ Cǫ2κ‖g‖L1 + o(1),

for all ψ ∈ BL1,κ(Ω × S
n−1), for a constant C > 0 independent of the set Ω, thus we conclude by

taking supremum among all those functions and then letting Ω → R̄
n
+. �

5.2. Comparison with ballistic linear transport. We now compare the Fokker-Planck solu-
tion to the ballistic transport equation in the narrow-beam regime. Narrow beams are by essence
well approximated by a distribution supported on a half line, at least when one considers ap-
proximations in the 1-Wasserstein distance. We consider such an approximation and show that
the Fermi pencil-beam solution is significantly more accurate than the ballistic transport solution.
At the appropriate beam scaling, i.e., at distances from the beam center scaled in ǫ, we show
(using κ ≈ ǫ−1) that the Fermi pencil-beam is still accurate while the ballistic transport solution
(obviously) fails to account for dispersion.

Since diffusion is weak in a narrow beam regime, simply neglecting its effects leads to the ballistic
transport model:

(5.13) θ · ∇xv + λv = 0, (x, θ) ∈ R
n
+ × S

n−1, with v|Γ− = g.

Rather than comparing v with u, we compare v with u instead since we already know how close
u is to u. We obtain the following result.

Lemma 5.4. For σ ∈ C3(R̄n
+) and λ ∈ C(R̄n

+), let g and u be as in §5.1.2, and let v be the solution
to (5.13). There exists a constant C(‖σ‖C3 , λ0) > 0 independent of ǫ such that

W1
κ(v, u) ≤ Cκǫ‖g‖L1 .

Proof. The transport solution v can be written as

v(x, θ) = e−
∫ τ−(x,θ)

0 λ(x−sθ)dsg(x− τ−(x, θ)θ, θ).

Thus, applying the change of variables

(x, θ) = T(y′, t, η) := ((y′ + tη′, tηn), η), |∇T(y′, t, η)| = |ηn|

we get that for any ψ ∈ BL1,κ(R̄
n
+ × S

n−1),
∫
vψdxdθ =

∫

Sn−1

∫

Rn−1

∫ ∞

0
g((y′, 0), η)e−

∫ t
0 λ((y′,0)+sη)dsψ((y′, 0) + tη, η)ηndtdy′dη

=

∫

Sn−1

∫

Rn−1

∫ ∞

0
g((y′, 0), η)e−

∫ t
0 λ((y′,0)+sη)dsψ((y′, 0) + tη, η)dtdy′dη

+O(ǫ2‖g‖L1‖ψ‖∞),

where the last equality is obtained from the fact that for all x ∈ ∂Rn
+, g(x, ·) is supported in a ǫ2-

neighborhood of N . On the other hand, recalling the definition of u in (5.10)-(5.11) and denoting
Ψ(X,V ) = ψ(2ǫX ′,Xn, J(ǫV )) with J the inverse of the stereographic projection with respect to
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the south pole, we have that
∫

Q
uψdxdθ

=

∫

Γ−×Rn−1×R
n−1
+

g((y′, 0), η)Uy,η(X
′ − 1

2ǫy,X
n, V )Ψ(X,V )

cn−1(ǫV )

2n−1
dXdV dy′dη

=

∫

Γ−×Rn−1×R
n−1
+

g((y′, 0), η)Uy,η(X
′ − 1

2ǫy
′,Xn, V )Ψ(X,V )dXdV dy′dη +R(ǫ2),

with remainder |R(ǫ2)| ≤ Cǫ2‖ψ‖∞‖g‖L1 . Combining both integrals above and performing the
dilation Y ′ = 1

2ǫy
′ we obtain

(5.14)

∫

Q
ψ(x, θ)(v − u)dxdθ

=

∫

R2(n−1)

∫ ∞

0
g̃(Y ′,W )e−

∫Xn

0 λ((2ǫY ′,0)+sJ(ǫW ))ds

×Ψ(Y ′,Xn,W )dXndY ′dW

−
∫

R2(n−1)

∫ ∞

0
g̃(Y ′,W )

( ∫

R2(n−1)

U(2ǫY ′,0),J(ǫW )(X
′,Xn, V )

×Ψ(X ′ + Y,Xn, V )dX ′dV
)
dXndY ′dW

+R(ǫ2),

where g̃(Y ′,W ) := (2ǫ)2(n−1)g((2ǫY ′, 0), J(ǫW )), thus its L1-norm is of the order of ‖g‖L1 . We
recall that Uy,η is the solution to the Fermi pencil-beam equation for σ̃(Xn) = 1

4σ(y +Xnη) and

λ̃(Xn) = λ(y +Xnη), and moreover
∫

R2(n−1)

Uy,η(X
′,Xn, V )dX ′dV = e−

∫Xn

0
λ(y+sη)ds.

Consequently,
∫

Q
ψ(x, θ)(v − u)dxdθ

≤
∫

R2(n−1)

∫ ∞

0
g̃(Y ′,W )

∣∣∣
∫

R2(n−1)
U(2ǫY ′,0),J(ǫW )(X

′,Xn, V )Ψ(Y ′,Xn,W )dX ′dV

−
∫

R2(n−1)

U(2ǫY ′,0),J(ǫW )(X
′,Xn, V )Ψ(X ′ + Y ′,Xn, V )dX ′dV

∣∣∣dXndY ′dW

≤
∫

R2(n−1)

∫ ∞

0
g̃(Y ′,W )

∫

R2(n−1)

U(2ǫY ′,0),J(ǫW )(X
′,Xn, V )

×
∣∣Ψ(Y ′,Xn,W )−Ψ(X ′ + Y ′,Xn, V )

∣∣dX ′dV dXndY ′dW

≤ CǫLip(ψ)
(

sup
(y.η)∈supp(g)

‖Uy,η(X,V )|(X ′, V )|‖L1(Q)

)
‖g̃‖L1 .

We conclude by noticing that ‖g̃‖L1 = ‖g‖L1 and

sup
(y,η)∈supp(g)

‖Uy,η(X,V )|(X ′, V )|‖L1(Q) <∞,
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and taking supremum over all ψ ∈ BL1,κ(R̄
n
+ × S

n−1). �

We now obtain a lower bound on the mismatch between ballistic transport and the pencil-beam
model. This shows that spreading is indeed not accounted for by the ballistic transport solution,
and this effect becomes visible once we set a high measuring resolution of order ǫ−1 or higher.

Lemma 5.5. For a resolution parameter κ & ǫ−1 and σ, λ ∈ C(R̄n
+), there exists a constant

C(n, σ0, ‖λ‖∞) > 0 such that
1

C
‖g‖L1 ≤ W1

κ(v, u).

Proof. For any ψ ∈ BL1,κ(R̄
n
+ × S

n−1), we have equality (5.14) for the rescaling Ψ(X,V ) =
ψ(2ǫX ′,Xn, J(ǫV )). We take an specific ψ(x, θ) = ψ1(x

n)ψ2(θ) satisfying that:

1. 0 ≤ ψ1, ψ2 ≤ 1 and ‖ψ‖∞ = 1;
2. ψ2(θ) = 1 in the support of g (i.e. for all |N − θ| ≤ Cǫ2);
3. denoting Ψ2(V ) = ψ2(J(ǫV )), suppΨ2 ⊂ B(η) with η > 0 to be chosen;
4. suppψ1 ⊂ (a, b) ⋐ (0,∞).

For this choice of test function (and recalling g̃(Y ′,W ) = (2ǫ)2(n−1)g(2ǫY ′, 0, J(ǫW ))) we have
∫
ψ(x, θ)(v − u)dxdθ

≥
∫

R2(n−1)

∫ ∞

0
g̃(Y ′,W )e−

∫Xn

0
λ((ǫY ′,0)+s(ǫW,1))ds

×Ψ1(X
n)Ψ2(W )dXndY ′dW

−
∫

R2(n−1)

∫ ∞

0
g̃(Y ′,W )Ψ1(X

n)

×
(∫

R2(n−1)
U(ǫY ′,0),J(ǫW )(X

′,Xn, V )Ψ2(V )dX ′dV
)
dXndY ′dW

− |R(ǫ2)|.
We rewrite this inequality as

(5.15)

∫
ψ(x, θ)(v − u)dxdθ ≥

∫

R2(n−1)

∫ ∞

0
g̃(Y ′,W )e−

∫Xn

0
λ((ǫY ′,0)+s(ǫW,1))ds

× Iη(X
n;Y ′,W )Ψ1(X

n)dXndY ′dW − |R(ǫ2)|,
where Iη(X

n;Y ′,W ) is defined as

Iη(X
n;Y ′,W )

= 1−
∫

Rn−1×B(η)
e
∫Xn

0 λ((ǫY ′,0)+s(ǫW,1))dsU(ǫY ′,0),J(ǫW )(X
′,Xn, V )dX ′dV.

We see that

Iη(X
n;Y ′,W ) = 1−

∫

B(η)

e
− |V |2

4E0(X
n;Y ′,W )

(4πE0(Xn;Y ′,W ))
n−1
2

dV

=

∫

|V |>η

e
− |V |2

4E0(X
n;Y ′,W )

(4πE0(Xn;Y ′,W ))
n−1
2

dV,
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with E0(X
n;Y ′,W ) = 4

∫ Xn

0 σ((ǫY ′, 0) + s(ǫW, 1))dt. By considering spherical coordinates and
noticing that

η√
4E0(Xn;Y ′,W )

≤ η

4
√
aσ0

=: η0, ∀(Y ′,W ) ∈ supp(g̃), Xn ∈ (a, b),

we have

Iη(X
n;Y ′,W ) ≥ cn

∫ ∞

η0

e−r2rn−2dr,

for cn = |Sn−2|
π(n−1)/2 = 2Γ((n − 1)/2)−1. For n = 2, we can choose R > η0 so that

(5.16)

∫ ∞

η0

e−r2dr ≥ 1

R

∫ R

η0

e−r2rdr =
1

2R
(e−η20 − e−R2

).

If now n ≥ 3, it is not hard to verify that

(5.17)

∫ ∞

η0

e−r2rn−2dr ≥ e−η20

n−3∑

k=0

k!

2k
ηn−3−k
0 .

The parameter η imposes a restriction on the size of the support of the (angular) test function
Ψ2(V ), which says that suppΨ2 ⊂ B(η). In order to fulfill this support condition we want our test
function not to decay too slowly, which means we need to have a function Ψ as above and such
that

|Ψ2‖∞ = 1 and LipV (Ψ2) ≥ η−1.

Going back to the original angular variable θ this translates into

CLipθ(ψ2) ≥ (ǫη)−1,

for some constant C > 0 (independent of the parameters), hence, this condition is fulfilled by
choosing η such that

κ & ǫ−1η−1.

In dimension 2, we choose η = O(ǫ−1κ−1) so that η0 = ǫ−1κ−1, and R =
√
2η0, thus we obtain

Iη(X
n;Y ′,W ) ≥ cǫκe−(ǫκ)−2

(1− e−(ǫκ)−2

),

for some constant c independent of ǫ and uniform with respect to Xn, Y ′ and W . According to
our assumption κ & ǫ−1 we deduce that for some c > 0,

Iη(X
n;Y ′,W ) ≥ cǫκ.

Similarly in dimension n ≥ 3, for η as above we get the next uniform lower bound

Iη(X
n;Y ′,W ) ≥ e−(ǫκ)−2

n−3∑

k=0

k!

2k
(ǫκ)−(n−3−k) ≥ c,

for another constant c > 0. Introducing this lower bounds into (5.15) yields that for κ & ǫ−1

‖λ‖−1
∞ ‖g‖L1(1− ǫ2) ≤ C

∫
ψ(x, θ)(v − u)dxdθ ≤ CW1

κ(v, u).

�
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We summarize the previous results of this section in the form of our main theorem which we
rephrase here.

Theorem 1.1. Let u be the solution to Fokker-Planck with boundary source g as in (5.9) and
‖g‖L1 = 1. Let u the superposition of pencil beam in (5.11) and v the ballistic transport solution
of (5.13). For any dimension n ≥ 2 there exists a constant C(n, ‖σ‖C3 , ‖λ‖C2) > 0 such that for
κ & 1,

W1
κ(u, v) ≤ Cκǫ and W1

κ(u, u) ≤ Cǫ2κ.

Moreover, if the resolution parameter is such that κ ≈ ǫ−1, then there is C > 0 so that

C−1 ≤ W1
κ(u, v) ≤ C and W1

κ(u, u) = O(ǫ).

Proof. It follows directly from corollary 5.3 and lemmas 5.4 and 5.5. �
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Appendix A. Complete proof of Theorem 2.9

We follow the method presented in [8] which is based on a Hörmander-type identity for the
commutator of certain operators.
1) Localization and Mollification. Let ηδ be a mollifier and χ a cutoff function supported in a
neighborhood U ⋐ Q of a point (x0, θ0). Let V and W be two open sets containing (x0, θ0) and
such that χ = 1 in V and V ⋐ U ⋐ W. We choose δ > 0 small enough so that U+ supp(ηδ) ⊂ W.
Since we can always rotate the coordinate system in R

n, we lose no generality in assuming that θ0
is contained in the span of (1, 0 . . . , 0) and (0, . . . , 0, 1) = N . We first consider beams coordinates
on S

n−1 with respect to the north pole N . Then N is identified with 0 ∈ R
n−1 and we write

ηδ(x, v) and χ(x, v) for the respective representative function of ηδ and χ in the local coordinates.
We abuse the notation and write U interchangeably for the set considered above and its image
under local coordinates.

Let’s plug

φ(y, ξ) = ηδ(x− y, θ − ξ)χ(x, θ)

into equation (2.10). From the transport part we get

− χ(x, v)

∫
u(y,w)(∂yn + w · ∇y′)[η

δ(x− y, v − w)]dydw

= χ(x, v)

∫
u(y,w)(∂xnηδ(x− y, v − w) + v · ∇x′ηδ(x− y, v − w))dydw

− χ(x, v)

∫
u(y,w)((v −w) · ∇x′ηδ(x− y, v − w))dydw

= (∂xn + v · ∇x′)[χ(u ∗ ηδ)]− (u ∗ ηδ)(∂xnχ+ v · ∇x′χ) + χ(u ∗ (v · ∇x′ηδ))︸ ︷︷ ︸
=:g1

.
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Using the notation in (2.11) the diffusion term gives

χ(x, v)

∫
〈 ǫ

2σ(y)

〈w〉n−2
(Id+ wwT )∇wu,∇w(〈w〉n+1ηδ(x− y, v − w))〉dydw

= −χ(x, v)
∫

∇wu · (A(y,w)∇vη
δ(x− y, v − w)) + u(B(x,w) · ∇vη

δ(x− y, y − w))dydw

= −∇v · (A∇v(χ(u ∗ ηδ)) + (u ∗ ηδ)(∇v · A∇vχ)

+B · ∇v(χ(u ∗ ηδ))− (u ∗ ηδ)(B · ∇vχ)

− χ(x, v)

∫
∇wu ·HA(y,w)[(x − y, v − w),∇vη

δ(x− y, v − w)]dydw

− χ(x, v)

∫
u HB(y,w)[(x − y, v − w),∇vη

δ(x− y, y − w)]dydw

= −∇v · (A∇v(χ(u ∗ ηδ)) +B · ∇v(χ(u ∗ ηδ))− g2,

for some multi-linear operators HA and HB arising from the Taylor expansion of A and B, respec-
tively, around the point (x, v). Finally, the zero order term in (2.10) gives

χ(x, v)

∫
c(y,w)u(y,w)ηδ(x− y, v − w)dydw

= c(χ(u ∗ ηδ))− χ(x, v)

∫
u(y,w)((x − y, v − x) · hc(y,w))ηδ(x− y, v − w)dydx

︸ ︷︷ ︸
=:g3

with hc from the remainder of the first order Taylor expansion of c(x, v). From the previous we
deduce that the function

uδ := (u ∗ ηδ)χ ∈ C∞
c (U),

satisfies

(A.1) −∇v · (A∇vu
δ) + ∂xnuδ + v · ∇x′uδ +B · ∇vu

δ + cuδ = f δ, ∀(x, v) ∈ U,

with

f δ := (f̂ ∗ ηδ)χ+ g1 + g2 + g3 ∈ C∞
c (U).

One verifies that

‖g1 + g2 + g3‖L2(U) ≤ C(‖u‖L2(U) + ǫ2‖∇vu‖L2(U)),

for some constant depending on ‖σ‖C1 , ‖λ‖C1 , ‖ηδ‖L1 and ‖|(x, θ)|∇θη
δ‖L1 .

Since u,∇vu ∈ L2(V) and χ = 1 in V, then uδ → u and ∇vu
δ → ∇vu, as δ → 0, in the L2-sense.

Furthermore we have the following estimate:

(A.2)
‖f δ‖L2(U) ≤ ‖f‖L2(W) + C(ǫ2‖∇θu‖L2(W) + ‖u‖L2(W))

≤ ‖f‖L2(W) + C(ǫ2‖∇θu‖L2(Q) + ‖u‖L2(Q)),

uniformly with respect to δ ≪ 1, and where the constant C > 0 depends on σ and λ through they
C1-norms.

2) Higher regularity estimates for smooth compactly supported solutions. Let’s drop the subindex
δ for a moment and assume u is smooth and compactly supported. Without lost of generality we
assume U = X0 ×Θ0, neighborhood of (x0, θ0) ∈ Q.
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At the core of this proof is the next commutator identity. Denoting the transport operator

T = (∂xn + v · ∇x′),

we have:

∂xj = ∂vjT − T∂vj , j = 1, . . . , n − 1.

Under our new notation (A.1) rewrites as

(A.3) Lu := Tu−∇v · (A∇vu) +B · ∇vu+ cu = f, ∀(x, v) ∈ U.

We abbreviate the above expression as Tu = h with h of the form

h = ∇v · (A∇vu)−B · ∇vu− cu+ f.

Denoting 〈f, g〉 =
∫
fgdxdv the L2-bracket, we have:

‖D−1/3
x′ ∂xju‖2L2 = 〈D−2/3

x′ ∂xj ū, ∂xju〉
= 〈D−2/3

x′ ∂xj ū, ∂vjTu− T∂vju〉
= 〈D−2/3

x′ ∂xj ū, ∂vjh− T∂vju〉
= −〈∂vjD

−2/3
x′ ∂xj ū, h〉+ 〈TD−2/3

x′ ∂xj ū, ∂vju〉
= −〈∂vjD−2/3

x′ ∂xj ū, h〉+ 〈D−2/3
x′ ∂xjT ū, ∂vju〉

= −〈∂vjD−2/3
x′ ∂xj ū, h〉 − 〈h̄,D−2/3

x′ ∂xj∂vju〉
= −〈∂vjD

−2/3
x′ ∂xj ū, h〉 − 〈D−2/3

x′ ∂xj∂vju, h̄〉
= −2Re〈D−2/3

x′ ∂xj∂vj ū, h〉.
We can then bound from above as follows,

‖D−1/3
x′ ∂xju‖2L2 ≤ 2‖D−2/3

x′ ∂xj∂vju‖L2‖h‖L2

≤ C

n∑

i=1

‖D−2/3
x′ ∂xi∇vu‖L2‖h‖L2

≤ C‖D1/3
x′ ∇vu‖L2‖h‖L2 .

therefore,

(A.4) ‖D2/3
x′ u‖2L2 ≤ C‖D1/3

x′ ∇vu‖L2‖h‖L2 .

On the other hand,

LD
1/3
x′ u = D

1/3
x′ f + [L,D

1/3
x′ ]u,

which implies

(T −∇v ·A∇v)D
1/3
x′ u = D

1/3
x′ f +∇v · (D1/3

x′ A)∇vu−D
1/3
x′ (B · ∇vu)−D

1/3
x′ (cu).

Multiplying by D
1/3
x′ ū and integrating gives us

∫

Rn
+×Rn−1

〈A∇vD
1/3
x′ u,∇vD

1/3
x′ u〉dxdv = Re〈D1/3

x′ ū,D
1/3
x′ (f − cu)〉+Re〈D1/3

x′ ū,∇v · (D1/3
x′ A)∇vu〉

= Re〈D2/3
x′ ū, (f − cu)〉 −Re〈D1/3

x′ ∇vū, (D
1/3
x′ A)∇vu〉,
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where some of the term have vanished due to integration by parts. Then, recalling that A is
positive definite, we obtain

ǫ2‖∇vD
1/3
x′ u‖2L2 ≤ C‖D2/3

x′ u‖L2‖f‖L2 + ‖∇vD
1/3
x′ u‖L2‖(D1/3

x′ A)∇vu‖L2

≤ C‖D2/3
x′ u‖L2‖f‖L2 + Cǫ‖∇vD

1/3
x′ u‖L2‖f‖L2 ,

where we used the inequality ǫ‖∇vu‖ + ‖u‖L2 ≤ ‖f‖L2 which is the natural energy estimate of
(A.3). We can directly combine the previous inequality with (A.4) to deduce

ǫ2‖∇vD
1/3
x′ u‖2L2 ≤ C‖D1/3

x ∇vu‖1/2L2 ‖h‖1/2L2 ‖f‖L2 + Cǫ‖∇vD
1/3
x′ u‖L2‖f‖L2 .

Simplifying some terms and applying Young’s inequality: ab ≤ ap

p + bq

q for p−1 + q−1 = 1; we get

‖∇vD
1/3
x′ u‖3/2L2 ≤ Cǫ−2‖h‖1/2

L2 ‖f‖L2 + Cǫ−3/2‖f‖3/2
L2 ,

which can be rewritten as

‖∇vD
1/3
x′ u‖L2 ≤ C

(
ǫ−4/3‖h‖1/3

L2 ‖f‖2/3
L2 + ǫ−1‖f‖L2

)
.

Plugging this into (A.4) gives

(A.5) ‖D2/3
x′ u‖L2 ≤ C

(
ǫ−2/3‖h‖2/3

L2 ‖f‖1/3
L2 + ǫ−1/2‖f‖1/2

L2 ‖h‖1/2L2

)
.

If we now multiply (A.3) by −∇v · A∇vū and integrate, this yields

Re〈−∇v ·A∇vū, Tu〉+
∫

| − ∇v · A∇vu|2dxdv = Re〈−∇v ·A∇vū,−B · ∇vu− cu+ f〉.

However,
∣∣Re〈−∇v · A∇vū, Tu〉

∣∣ ≤
∣∣Re〈A∇vū,∇vTu〉

∣∣

=
∣∣Re〈A∇vū, T∇vu+∇x′u〉

∣∣

=
∣∣Re〈[−T,A]∇vū,∇vu〉

∣∣+
∣∣Re〈A∇vū,∇x′u〉

∣∣

≤ C(ǫ2‖∇vu‖2L2 + ‖D1/3
x′ ∇vu‖L2‖D−1/3

x′ ∇x′u‖L2)

≤ C(ǫ2‖∇vu‖2L2 + ‖D1/3
x′ ∇vu‖L2‖D2/3

x′ u‖L2).

therefore
‖∇v ·A∇vu‖2L2 ≤ C‖∇v · A∇vu‖L2

(
ǫ2‖∇vu‖L2 + ‖u‖L2 + ‖f‖L2

)

+ C(ǫ2‖∇vu‖2L2 + ‖D1/3
x′ ∇vu‖L2‖D2/3

x′ u‖L2).

It follows from Hölder inequality in Fourier domain that

‖D1/3
x′ ∇vu‖L2 ≤ ‖D2/3

x′ u‖1/2L2 ‖∆vu‖1/2L2 ≤ C‖D2/3
x′ u‖1/2L2 ‖∇v · A∇vu‖1/2L2 ,

which plugged into the previous estimate gives

‖∇v ·A∇vu‖2L2 ≤ C‖∇v · A∇vu‖L2

(
ǫ2‖∇vu‖L2 + ‖u‖L2 + ‖f‖L2

)

+ C(ǫ2‖∇vu‖2L2 + ‖∇v ·A∇vu‖1/2L2 ‖D2/3
x′ u‖3/2L2 )

≤ C‖∇v · A∇vu‖L2‖f‖L2 + C‖f‖2L2

+ C‖∇v ·A∇vu‖1/2L2

(
ǫ−1‖h‖L2‖f‖1/2L2 + ǫ−3/4‖f‖3/4

L2 ‖h‖3/4L2

)
,
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which then implies

‖∇v · A∇vu‖2L2 ≤ C‖f‖2L2 + C
(
ǫ−1‖h‖L2‖f‖1/2L2 + ǫ−3/4‖f‖3/4

L2 ‖h‖3/4L2

)4/3

≤ C
(
‖f‖2L2 + ǫ−4/3‖h‖4/3

L2 ‖f‖2/3L2 + ǫ−1‖f‖L2‖h‖L2

)

Young’s inequality yields

‖∇v ·A∇vu‖L2 ≤ C
(
‖f‖L2 + ǫ2‖h‖

)
,

thus, from the estimate ‖h‖L2 ≤ ‖∇v · A∇vu‖L2 + C‖f‖L2 , we finally deduce

‖∇v ·A∇vu‖L2 ≤ C‖f‖L2 .

It follows from the local representation of ∆θ in beam coordinates that

ǫ2‖∆θu‖L2 ≤ C‖f‖L2 .

On the other hand, the previous inequality implies ‖h‖L2 ≤ C‖f‖L2 , therefore (A.5) yields

‖D2/3
x′ u‖L2 ≤ C

(
ǫ−2/3‖f‖L2 + ǫ−1/2‖f‖L2

)
≤ Cǫ−2/3‖f‖L2 .

Considering local coordinates given instead by beam coordinates around (1, 0 . . . , 0) (whose
domain contains θ0), we can repeat the computations above in terms of the pseudodifferential op-

erator Ds
x′′ = (1−∆x′′)s/2, where we decompose the spatial variables as x = (x1, x′′). Consequently,

we obtain an analogous inequality for ‖D2/3
x′′ u‖L2 . It then follows that

‖D2/3
x u‖L2 ≤ Cǫ−2/3‖f‖L2 ,

for Ds
x = (1 −∆x)

s/2, which is obtained by recalling that in Fourier space:

(1 + |ξ|2)s/2 ≤ (1 + |ξ′|2 + 1 + |ξ′′|2)s/2 ≤ (1 + |ξ′|2)s/2 + (1 + |ξ′′|2)s/2.

3) Back to original solution. We now go back to our original notation and write uδ for the smooth
compactly supported solution and u the original solution to (1.1). From the previous, we can

find a sequence {δj} so that ∆θu
δj and D

2/3
x uδj converge weakly in L2(V) to ∆θu,D

2/3
x u ∈ L2(V),

respectively, as j → ∞. Moreover,

‖D2/3
x u‖L2(V) ≤ lim inf ‖D2/3

x uδj‖L2(V) ≤ C‖f δj‖L2(U) ≤ C(‖f‖L2(W) + ‖u‖H),

and similarly for ‖∆θu‖L2(V). We have proven that ∆θu,D
2/3u ∈ L2

loc(Q). Moreover, for every

compact K and open O such that K ⊂ O ⊂ Q, there exist a constant C,C ′ > 0 so that

ǫ2‖∆θu‖L2(K) ≤ C
(
‖f‖L2(O) + ǫ2‖∇θu‖L2 + ‖u‖L2

)
,

and

ǫ2/3‖D2/3
x u‖L2(K) ≤ C ′(‖f‖L2(O) + ǫ2‖∇θu‖L2 + ‖u‖L2

)
.

Using the equation satisfied by u we also deduce θ · ∇xu ∈ L2
loc(Q) and

‖θ · ∇xu‖L2(K) ≤ C
(
‖f‖L2(O) + ǫ2‖∇θu‖L2 + ‖u‖L2

)
,

for some C depending on the compact K.
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Appendix B. Explicit solution to (4.15)

Let W be solution to the backward Fermi pencil-beam equation

−σ̃∆VW − V · ∇X′W − ∂XnW + λ̃W = Ψ, (X,V ) ∈ R
n
+ × R

n−1,

for Ψ compactly supported and with vanishing conditions at infinity

lim
Xn→∞

W = 0.

We solve the equation in the whole space R
n × R

n−1 and claim that W takes the form

W (X,V ) =

∫ ∞

Xn

e−
∫ t
Xn λ̃(s)dsτ−XnV (H3(t) ∗ τtV Ψ(t))dt.

Let’s introduce the following functions:

U(X,V ) :=W (−X,V ) F (X,V ) := Ψ(−X,V ),

defined for Xn ≤ 0. Then U satisfies the equation

−σ̃−∆V U + V · ∇X′U + ∂XnU + λ̃−U = F, (X,V ) ∈ R
n × R

n−1,

with σ̃−(t) = σ̃(−t) and λ̃−(t) = λ̃(−t). Let’s set

U(ξ,Xn, V ) = eiX
n(V ·ξ)+

∫Xn

−∞
λ̃−(s)ds

FX′(U), and F(ξ,Xn, V ) = eiX
n(V ·ξ)+

∫Xn

−∞
λ̃−(s)ds

FX′(F ),

therefore

∂XnU = [i(V · ξ) + λ̃−]U+ eiX
n(V ·ξ)+

∫Xn

−∞ λ̃−(s)ds∂XnFX′(U)

= σ̃−eiX
n(V ·ξ)+

∫Xn

−∞ λ̃−(s)ds∆V (e
−iXn(V ·ξ)−

∫Xn

−∞ λ̃−(s)ds
FX′(U)) + F

= σ̃−eiX
n(V ·ξ)∆V (e

−iXn(V ·ξ)FX′(U)) + F

Denoting

Û(ξ,Xn, η) = FV (U) and F̂(ξ,Xn, η) = FV (F),

then taking Fourier Transform on the equation above and using twice the identity

FV [e
it(V ·ξ)h(V )](η) = FV [h(V )](η − tξ), t ∈ R,

we obtain

∂XnÛ+ σ̃−|η −Xnξ|2Û = F̂.

Recalling the vanishing condition imposed at infinity, limXn→−∞U = 0, an explicit expression for

Û is given by

Û(ξ,Xn, η) =

∫ Xn

−∞
e−

∫Xn

t |η−sξ|2σ̃−(s)dsF̂(ξ, t, η)dt.

Since Û(ξ,Xn, η) = e
∫ Xn

−∞
λ̃−(s)ds

FX′,V [U ](ξ,Xn, η −Xnξ), then

U(X ′,Xn, V ) = e−
∫Xn

−∞ λ̃−(s)ds
F−1
X′,V [Û(ξ,Xn, η +Xnξ)](X,V )

= e−
∫Xn

−∞
λ̃−(s)ds

F
−1
X′ [e

−iXn(V ·ξ)F−1
X′ [Û(ξ,Xn, η)]](X,V )

= e−
∫Xn

−∞ λ̃−(s)ds
F−1
X′,V [Û](X ′ −XnV,Xn, V ).
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Therefore

U(X ′,Xn, V ) = e−
∫Xn

−∞ λ̃−(s)dsτXnV (F
−1
X′,V [Û])

= e−
∫Xn

−∞ λ̃−(s)dsτXnV

( ∫ Xn

−∞
H̃3(t) ∗ F−1

X′,V [F̂(t)]dt
)

with

H̃3(X
′,Xn, V ; t) = F−1

X′,V [e
−

∫Xn

t |η+(Xn−s)ξ|2σ̃−(s)ds].

Analogously as for U , we have

F (X ′, t, V ) = e−
∫ t
−∞ λ̃−(s)ds

F
−1
X′,V [F̂](X

′ − tV, t, V ),

which implies F−1
X′,V [F̂] = e

∫ t
−∞

λ̃−(s)dsτ−tV (F ), and consequently

U(X ′,Xn, V ) =

∫ Xn

−∞
e−

∫Xn

t
λ̃−(s)dsτXnV

(
H̃3(X,V ; t) ∗ τ−tV (F (X

′, t, V ))
)
dt.

Going back to the original function, for Xn > 0 we obtain

W (X ′,Xn, V ) = U(−X ′,−Xn, V )

=

∫ −Xn

−∞
e−

∫−Xn

t
λ̃−(s)dsτ−XnV

(
H̃3(−X,V ; t) ∗ τ−tV (F (−X ′, t, V ))

)
dt

=

∫ ∞

Xn

e−
∫−Xn

−t
λ̃−(s)dsτ−XnV

(
H̃3(−X,V ;−t) ∗ τtV (F (−X ′,−t, V ))

)
dt

=

∫ ∞

Xn

e−
∫ t
Xn λ̃(s)dsτ−XnV

(
H̃3(−X,V ;−t) ∗ τtV (Ψ(X ′, t, V ))

)
dt,

We conclude by writing H3(X,V ; t) = H̃3(−X,V ;−t).

Appendix C. Proof of Lemma 4.4

Let W be the solution to the backward Fermi pencil-beam equation with vanishing condition
at infinity (4.15)-(4.16). It is given explicitly by

W (X,V ) =

∫ ∞

Xn

e−
∫ t
Xn λ̃(s)dsτ−XnV (H3(t) ∗ τtV Ψ(t))dt.
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For (X ′
1,X

n, V1), (X
′
2,X

n, V2) ∈ R
2(n−1) we have

|W (X ′
1,X

n, V1)−W (X ′
2,X

n, V2)|

≤
∫ ∞

Xn

e−
∫ t
Xn λ̃(s)ds

∫ ∫
H3(X̃

′,Xn, Ṽ ; t)

×
∣∣Ψ(X ′

1 − X̃ ′ + (Xn − t)V1 + tṼ , t, V1 − Ṽ )−Ψ(X ′
2 − X̃ ′ + (Xn − t)V2 + tṼ , t, V2 − Ṽ )

∣∣dX̃ ′dṼ dt

≤
∫ ∞

Xn

e−
∫ t
Xn λ̃(s)ds

∫ ∫
H3(X̃

′,Xn, Ṽ ; t)

× |(X ′
1 −X ′

2 + (Xn − t)(V1 − V2), V1 − V2)|Lip(Ψ)dX̃ ′dṼ dt

= Lip(Ψ)

∫ ∞

Xn

e−
∫ t
Xn λ̃(s)ds ‖H3(X

n; t)‖L1(R2(n−1))︸ ︷︷ ︸
=const.

|(X ′
1 −X ′

2 + (Xn − t)(V1 − V2), V1 − V2)|dt

≤ CLip(Ψ)|(X ′
1, V1)− (X ′

2, V2)|
∫ ∞

Xn

e−
∫ t
Xn λ̃(s)ds|t−Xn|dt

= CLip(Ψ)|(X ′
1, V1)− (X ′

2, V2)|
∫ ∞

0
e−

∫ τ+Xn

Xn λ̃(s)dsτdτ

≤ Cλ−2
0 Lip(Ψ)|(X ′

1, V1)− (X ′
2, V2)|.
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