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IS THERE MORE THAN ONE DIRICHLET--NEUMANN
ALGORITHM FOR THE BIHARMONIC PROBLEM?\ast 

MARTIN J. GANDER\dagger AND YONGXIANG LIU\ddagger 

Abstract. The biharmonic problem is a fourth order partial differential equation and thus
requires two boundary conditions, and not just one like in the Laplace case, where the notion of
Dirichlet and Neumann boundary conditions comes from. A variational formulation gives an indica-
tion of which two conditions one could consider as Neumann, and which two as Dirichlet, and this
choice was made in the literature to define Dirichlet--Neumann (and other) domain decomposition
algorithms for the biharmonic equation. We show here that if one chooses other sets of two boundary
conditions as Dirichlet and Neumann, one can obtain other Dirichlet--Neumann algorithms, and we
prove that the classical choice leads to an algorithm with much less favorable convergence characteris-
tics than our new choice. Our proof is based on showing that even optimizing the relaxation matrices
(not just scalars) arising in the Dirichlet--Neumann algorithm running on two boundary conditions,
the classical choice of Dirichlet and Neumann cannot achieve contraction rates comparable to our
new choice, even though mesh independent convergence is achieved. We illustrate our results with
numerical experiments, also exploring situations not covered by our analysis, and a simulation of the
Golden Gate Bridge.

Key words. Dirichlet--Neumann algorithms, biharmonic problem, definition of Dirichlet and
Neumann conditions

AMS subject classification. 65N55

DOI. 10.1137/19M1297956

1. Introduction. We are interested in understanding Dirichlet--Neumann do-
main decomposition algorithms for the biharmonic equation, and thus consider as our
model problem

\Delta 2u = f in \Omega ,

u = 0 on \partial \Omega ,

\partial nu = 0 on \partial \Omega ,

(1.1)

where \Omega is a bounded domain in \BbbR 2, f is the source term, and \partial n denotes the normal
derivative along the boundary. Since the operator has four derivatives, we need two
boundary conditions, which is quite different from the classical Laplace operator,
where it suffices to impose one. We have chosen in (1.1) to impose homogeneous
boundary conditions both on the traces and the normal derivatives, which in the
Laplace case notation would mean to impose homogeneous Dirichlet and Neumann
conditions simultaneously. So the notion of Dirichlet and Neumann conditions for the
biharmonic equation is different from the Laplace case.

The biharmonic equation (1.1) is important for modeling vibrations, and the
first successful numerical methods were the groundbreaking variational methods of
Ritz [30, 31] (see also [21] for a historical introduction). In addition to modeling
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A1882 MARTIN J. GANDER AND YONGXIANG LIU

thin plate bending problems and vibrations, there is, however, another mathematical
interpretation of the biharmonic problem (1.1): one can relate it to the Stokes problem
for an incompressible viscous fluid in two dimensions. More precisely, we have the
following two meaningful mathematical interpretations of (1.1):

1. There exists a unique function u \in H2
0 (\Omega ) that solves the minimization prob-

lem

(1.2) min
v\in H2

0 (\Omega )
J1(v), J1(v) :=

1

2

\int 
\Omega 

| \Delta v| 2d\Omega  - 
\int 
\Omega 

fvd\Omega .

The corresponding variational problem is finding u \in H2
0 (\Omega ), s.t.

(1.3)

\int 
\Omega 

\Delta u\Delta vd\Omega =

\int 
\Omega 

fvd\Omega \forall v \in H2
0 (\Omega ).

According to Green's formula,
\int 
\Omega 
\Delta 2uvd\Omega =

\int 
\Omega 
\Delta u\Delta vd\Omega +

\int 
\partial \Omega 

\partial n\Delta uvds  - \int 
\partial \Omega 

\Delta u\partial nvds, which shows that u is a weak solution of (1.1). This problem is
related to the Stokes problem in two spatial dimensions by setting the velocity
of the fluid to be \phi = [\partial yu, - \partial xu]

T (see [4, p. 282] for more details).
2. There also exists a unique function u \in H2

0 (\Omega ) that solves the minimization
problem

min
v\in H2

0 (\Omega )
J2(v),

(1.4)

J2(v) :=
1

2

\int 
\Omega 

| \Delta v| 2 + 2(1 - \sigma )((\partial xyv)
2  - \partial xxv\partial yyv)d\Omega  - 

\int 
\Omega 

fvd\Omega .

Here J2 is the total potential energy of a thin plate (see, e.g., [31, 17]) and
\sigma is a material constant called the Poisson's ratio, which lies in [0, 1

2 ]. For
example, the value for rubber is 0.4999, for copper it is 0.33, for clay it lies in
[0.30, 0.45], steel is in [0.27, 0.30], concrete is in [0.1, 0.2], glass is in [0.18, 0.3],
and for cork it is 0. The equivalent variational problem to (1.4) is finding
u \in H2

0 (\Omega ), s.t.\int 
\Omega 

\Delta u\Delta v + (1 - \sigma )(2\partial xyu\partial xyv  - \partial xxu\partial yyv  - \partial yyu\partial xxv)d\Omega (1.5)

=

\int 
\Omega 

fvd\Omega \forall v \in H2
0 (\Omega ).

Using Green's formula\int 
\Omega 

2\partial xyu\partial xyv  - \partial xxu\partial yyv  - \partial yyu\partial xxvd\Omega =

\int 
\partial \Omega 

 - \partial \tau \tau u\partial nv + \partial n\tau u\partial \tau vds,

where \partial \tau is the tangential derivative along the boundary, we see that u also
solves problem (1.1).

If v \in H2
0 (\Omega ), then J1(v) = J2(v), because the additional term 2(1  - \sigma )((\partial xyv)

2  - 
\partial xxv\partial yyv) in J2(v) then vanishes when using Green's formula, which also implies that
in that case J2(v) is independent of \sigma . However, for v \in H2(\Omega ), J1(v) and J2(v) may
not be equivalent any more. For the functional J2(v), one can enlarge the range of \sigma 
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DN ALGORITHMS FOR THE BIHARMONIC PROBLEM A1883

to \sigma \in ( - 1, 1), and the variational form remains well posed, so we will consider this
larger range in our analysis.

The classical Dirichlet boundary condition for problem (1.1) is imposing the value
and normal derivative at the boundary, as we did in (1.1), and we thus introduce our
first Dirichlet trace operator

(1.6) \scrD 1(u) :=

\biggl[ 
u
\partial u
\partial n

\biggr] 
.

In contrast to Dirichlet--Neumann domain decomposition algorithms, for Schwarz do-
main decomposition algorithms, only the Dirichlet traces are needed, and there are
many studies of Schwarz algorithms where the classical Dirichlet condition (1.6) is
imposed between subdomains: Zhang analyzed in [35] a two level additive Schwarz
method for conforming C1 finite elements, and if the overlap size \delta = O(H), where
H corresponds to the diameter of the subdomains, then the condition number is in-
dependent of the subdomain size H and mesh size h. Later, Brenner analyzed in [3]
the additive Schwarz preconditioner for nonconforming elements and gave a condition
number bound C(1 + H

\delta )
4 for large overlap and C(1 + H

\delta )
3 for small overlap. Simi-

larly, Feng and Rahman proposed an additive average Schwarz method with Morley
finite element discretizations in [12], and its condition number is also estimated to be
O(1 + H

h )
3. A nonoverlapping Schwarz preconditioner for a discontinuous Galerkin

discretization was introduced by Feng and Karakashian in [11], with a condition num-
ber estimate O(1 + H

h )
3. We note that in contrast to condition number estimates

for Schwarz methods applied to Laplace problems, there is an additional exponent
3 present for the biharmonic equation, and it was shown in [20] that choosing two
different traces as Dirichlet condition leads to Schwarz methods for the biharmonic
problem with a performance like when applied to Laplace's equation.

For the Neumann boundary conditions corresponding to the classical Dirichlet
condition (1.6), there are two possibilities, depending on which of the functionals J1
or J2 we consider: for J1 defined in (1.2), the corresponding Neumann condition would
be

(1.7) \scrN 1(u) :=

\biggl[ 
\Delta u

 - \partial n\Delta u

\biggr] 
,

and for J2(v) defined in (1.4), it would be

(1.8) \scrN 2(u) :=

\biggl[ 
\Delta u - (1 - \sigma )\partial \tau \tau u

 - \partial n\Delta u - (1 - \sigma )\partial \tau (\partial n\tau u)

\biggr] 
.

Now condition (1.7) does not always lead to a well posed problem for the biharmonic
equation, which can be checked by setting w :=  - \Delta u: then the biharmonic problem
is equivalent to a Poisson equation  - \Delta w = f with both Dirichlet and Neumann
boundary conditions imposed, e.g., w = g1 and \partial nw = g2 on the boundary, which is
overdetermined. However, condition (1.8) can be interpreted as the freely supported
boundary condition for the thin plate problem, and this is always well posed up to a
linear function.

For solving the thin plate problem, there are many domain decomposition meth-
ods in the literature that use the Neumann condition (1.8): Tallec, Mandel, and
Vidrascu presented a Neumann--Neumann-type preconditioner in [32], where they
proved the condition number of the preconditioned system to be O(1 + log H

h )
2 by
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A1884 MARTIN J. GANDER AND YONGXIANG LIU

using the abstract Schwarz framework. Then Dohrmann presented a substructuring
method in [6] with some constraints on the substructure boundary. The corresponding
condition number was proved to be O(1 + log H

h )
2 by Mandel and Dohrmann in [26].

The FETI method was proposed and studied by Farhat and Mandel in [10] and also by
Mandel, Tezaur and Farhat in [27], where continuity of the transverse displacements is
enforced at the substructure corners, and the condition number is O(1+log H

h )
3. Ger-

vasio proposed in [23] a Dirichlet--Neumann algorithm for a biharmonic problem with
two lower order terms, where the original problem was transformed into an equivalent
system of two Poisson equations, and \scrD 1 was used as the Dirichlet condition and a
condition similar to \scrN 2 was used as the Neumann condition; a contraction estimate
was also derived, but without any optimization.

The classical clamped Dirichlet condition (1.6) is, however, not the only possible
choice for a Dirichlet condition. Instead of (1.6) and (1.7), one could also consider

(1.9) \scrD 3(u) :=

\biggl[ 
u
\Delta u

\biggr] 
as the Dirichlet condition, and then naturally the corresponding Neumann condition
would be

(1.10) \scrN 3(u) :=

\biggl[ 
\partial nu

 - \partial n\Delta u

\biggr] 
(see, for example, [8]). Similarly, in the thin plate case, instead of (1.6) and (1.8),
another choice for the Dirichlet condition would be

(1.11) \scrD 4(u) :=

\biggl[ 
u

\Delta u - (1 - \sigma )\partial \tau \tau u

\biggr] 
,

and then the corresponding Neumann condition would be

(1.12) \scrN 4(u) :=

\biggl[ 
\partial nu

 - \partial n\Delta u - (1 - \sigma )\partial \tau (\partial n\tau u)

\biggr] 
.

When the boundary is flat, conditions (1.9) and (1.11) are essentially equivalent, since
imposing u also imposes \partial \tau \tau . Similarly also conditions (1.10) and (1.12) are equivalent
for flat boundaries. For curved boundaries, however, and as transmission conditions
in domain decomposition methods, these conditions are different.

In addition to the domain decomposition methods we have mentioned above,
there are also other iterative methods for solving the biharmonic equation (1.1), such
as multigrid methods [29, 33], multilevel method [28, 34], and meshless methods
[25]. We are interested here, however, specifically in the Dirichlet--Neumann domain
decomposition method, because this method depends on what one chooses as the
Dirichlet and then the corresponding Neumann condition. In section 2, we present
several such Dirichlet--Neumann methods, of which only one has so far been studied
in the literature. We then give a precise convergence analysis for these methods in
section 3, which reveals that there are better choices than the classical one for the
Dirichlet--Neumann method. In section 4, we show numerical results to illustrate our
analysis.

2. Four Dirichlet--Neumann algorithms. To simplify the description of the
various Dirichlet--Neumann algorithms and the analysis that follows, we consider the
biharmonic equation on an unbounded domain,

(2.1) \Delta 2u = f in \Omega := \BbbR 2,
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DN ALGORITHMS FOR THE BIHARMONIC PROBLEM A1885

and impose that the solution u decays at infinity. We assume that \Omega is divided into
two nonoverlapping subdomains \Omega 1 = ( - \infty , 0) \times \BbbR and \Omega 2 = (0,+\infty ) \times \BbbR with the
interface at x = 0 denoted by \Gamma := \Omega 1 \cap \Omega 2. Let ni, i = 1, 2 be the unit outward
normal vector of \Omega i on \Gamma , and \tau i be the corresponding tangential vector along \Gamma , which
implies that n1 =  - n2 and \tau 1 =  - \tau 2. Let f1 := f | \Omega 1 , f2 := f | \Omega 2 . To simplify the
presentation of the Dirichlet--Neumann algorithms, we also introduce the redundant
operator \scrD 2 := \scrD 1. We can then define four different Dirichlet--Neumann algorithms
by just using the indices j = 1, 2, 3, 4:

Dirichlet--Neumann algorithm DNj : for a given initial guess

g0
1 =

\biggl[ 
g01A
g01B

\biggr] 
,

perform for iteration index n = 0, 1, 2, . . . the following steps:1

1. Compute in \Omega 1 an approximate solution un
1 by solving the Dirichlet problem

\Delta 2un
1 = f1 in \Omega 1,

\scrD j(u
n
1 ) = gn

1 on \Gamma .
(2.2)

2. Update the transmission condition for \Omega 2 by setting

gn
2 = \scrN j(u

n
1 ).

3. Compute in \Omega 2 an approximate solution un
2 by solving the Neumann problem

\Delta 2un
2 = f2 in \Omega 2,

\scrN j(u
n
2 ) = gn

2 on \Gamma .
(2.3)

4. Update the transmission condition for \Omega 1 by setting

g\ast 
1 = \scrN j(u

n
2 ).

5. Relax the transmission condition\biggl[ 
gn+1
1A

gn+1
1B

\biggr] 
=

\biggl[ 
\theta 11 \theta 12
\theta 21 \theta 22

\biggr] 
\underbrace{}  \underbrace{}  

\Theta :=

\biggl[ 
g\ast 1A
g\ast 1B

\biggr] 
+

\biggl[ 
1 - \theta 11  - \theta 12
 - \theta 21 1 - \theta 22

\biggr] \biggl[ 
gn1A
gn1B

\biggr] 
.

A first important observation is that for DN1, the subproblem (2.3) is not always
well posed, as we explained in the introduction, and so the Dirichlet--Neumann algo-
rithm DN1 cannot be used in practice. We therefore only study the remaining three
Dirichlet--Neumann algorithmsDNj , j = 2, 3, 4, in what follows. Note that since there
are two traces for the fourth order biharmonic problem, we have an entire relaxation
matrix \Theta containing four adjustable parameters to improve the convergence rate.
In [23] only a scalar value \theta was used for relaxation, like in the Dirichlet--Neumann
method applied to Laplace's equation. We will prove in the next section that even
though the relaxation matrix \Theta seems more powerful, the scalar \theta , i.e., \Theta = \theta I, where
I denotes the identity matrix, is structurally already optimal. We next want to de-
termine which of the Dirichlet--Neumann algorithms DNj , j = 2, 3, 4, has the most
favorable convergence properties.

1This iteration index n is not related to the notation \partial n for the normal derivative.
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A1886 MARTIN J. GANDER AND YONGXIANG LIU

3. Convergence behavior of the Dirichlet--Neumann methods. To com-
pare the different Dirichlet--Neumann methods, we need to study their contraction
properties, which we need to optimize using the four parameters in the relaxation
matrix \Theta , to obtain a fair comparison. From the algorithm definition, we see that
the solution u of the model problem (2.1) is a fixed point in each case, and by lin-
earity, it suffices to consider the error equations, i.e., f = 0, and to analyze conver-
gence to zero. We use Fourier analysis to study the contraction properties of the
Dirichlet--Neumann methods as was done in [5] for Dirichlet--Neumann applied to
Laplace problems. Fourier analysis has become mainstream for the study of opti-
mized Schwarz methods (see, for example, [16, 13, 15]) and proved useful also in the
form of Laplace transforms for studying waveform relaxation variants of the Dirichlet--
Neumann method [18, 19]. We thus take a Fourier transform in the y direction, and
then the functions ui(x, y), giA(y), giB(y) become \widehat ui = \widehat ui(x, k), \widehat giA = \widehat giA(k), and\widehat giB = \widehat giB(k). For each k \not = 0, we obtain an ordinary differential equation (ODE) on
each subdomain,2

(3.1)
\partial 4\widehat u1

\partial x4
 - 2k2

\partial 2\widehat u1

\partial x2
+k4\widehat u1 = 0, x \leqslant 0,

\partial 4\widehat u2

\partial x4
 - 2k2

\partial 2\widehat u2

\partial x2
+k4\widehat u2 = 0, x \geqslant 0.

In order to solve these ODEs, we need to solve the characteristic equation \lambda 4 - 2k2\lambda 2+
k4 = 0, from which we obtain \lambda = \pm k. The general solution on subdomain \Omega i, i = 1, 2,
is thus given by \widehat ui(x, k) = C1e

| k| x + C
\prime 

1xe
| k| x + C2e

 - | k| x + C
\prime 

2xe
 - | k| x.

Since by assumption ui decays at infinity, the constants corresponding to the growing
solutions must be zero, and we obtain
(3.2)\widehat u1(x, k) = C1e

| k| x + C
\prime 

1xe
| k| x, x \leqslant 0, \widehat u2(x, k) = C2e

 - | k| x + C
\prime 

2xe
 - | k| x, x \geqslant 0.

This form of the subdomain solutions is the same for these Dirichlet--Neumann algo-
rithms DNj , j = 2, 3, 4; the convergence of each algorithm is only determined by how
the constants C1, C

\prime 
1, C2, and C \prime 

2 are affected by the iteration of DNj .

3.1. Analysis of \bfitD \bfitN \bftwo . Introducing the subdomain solution (3.2) at iteration n
into the Dirichlet condition of step 1 of DN2 in (2.2), and recalling that the interface
\Gamma is at x = 0, we obtain

(3.3)

\biggl[ \widehat un
1 (0, k)

\partial n1\widehat un
1 (0, k)

\biggr] 
=

\biggl[ 
Cn

1

Cn
1 | k| + C

\prime n
1

\biggr] 
=

\biggl[ \widehat gn1A\widehat gn1B
\biggr] 

on \Gamma .

This leads using step 2 to the transmission condition for \Omega 2,\biggl[ \widehat gn2A\widehat gn2B
\biggr] 
=

\biggl[ 
\partial xx\widehat un

1 (0, k) - | k| 2\widehat un
1 (0, k) + (1 - \sigma )| k| 2\widehat un

1 (0, k)
 - \partial n2(\partial xx\widehat un

1 (0, k) - | k| 2\widehat un
1 (0, k)) + \partial n2((1 - \sigma )| k| 2\widehat un

1 (0, k))

\biggr] 
=

\biggl[ 
Cn

1 (1 - \sigma )| k| 2 + C
\prime n
1 \cdot 2| k| 

 - Cn
1 (1 - \sigma )| k| 3  - C

\prime n
1 ((1 - \sigma )| k| 2  - 2| k| 2)

\biggr] 
on \Gamma .

(3.4)

To simplify the notation, we now introduce the vectors

\widetilde Cn
i :=

\biggl[ 
Cn

i

C
\prime n
i

\biggr] 
, \widetilde gn

i :=

\biggl[ \widehat gniA\widehat gniB
\biggr] 

2The case of the constant mode k = 0 is excluded because of our assumption that solutions decay
to zero at infinity.
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and the matrices

A1 :=

\biggl[ 
1 0
| k| 1

\biggr] 
,

T1 :=

\biggl[ 
(1 - \sigma )| k| 2 2| k| 
 - (1 - \sigma )| k| 3  - (1 - \sigma )| k| 2 + 2| k| 2

\biggr] 
.

We can then write (3.3) and (3.4) in compact form,

A1
\widetilde Cn
1 = \widetilde gn

1 , and T1
\widetilde Cn
1 = \widetilde gn

2 .

Similarly, we obtain for the subproblem in \Omega 2 the matrices

A2 :=

\biggl[ 
(1 - \sigma )| k| 2  - 2| k| 
(1 - \sigma )| k| 3  - (1 - \sigma )| k| 2 + 2| k| 2

\biggr] 
,

T2 :=

\biggl[ 
1 0

 - | k| 1

\biggr] 
.

The Dirichlet--Neumann algorithm DN2 can thus be written in Fourier in the compact
form

A1
\widetilde Cn
1 = \widetilde gn

1 , T1
\widetilde Cn
1 = \widetilde gn

2 ,

A2
\widetilde Cn
2 = \widetilde gn

2 , T2
\widetilde Cn
2 = \widetilde g\ast 

1,\widetilde gn+1
1 =\Theta \widetilde g\ast 

1 + (I  - \Theta )\widetilde gn
1 ,

where I denotes the identity matrix. By eliminating the intermediate variables \widetilde gn
2

and \widetilde g\ast 
1, we obtain on the interface \Gamma the iteration

(3.5) \widetilde gn+1
1 = [I  - \Theta (I  - T2A

 - 1
2 T1A

 - 1
1 )]\widetilde gn

1 .

To analyze the convergence factor of the DN2 algorithm, we need to study for each
Fourier mode k \not = 0 the spectrum of the iteration matrix I - \Theta (I - T2A

 - 1
2 T1A

 - 1
1 ) and

determine the best choice of the relaxation matrix \Theta over all k \not = 0 to see how fast
DN2 can converge. By a direct calculation, we obtain

T2A
 - 1
2 T1A

 - 1
1 =  - 1

(1 - \sigma )(\sigma + 3)

\biggl[ 
| k| 0
0 1

\biggr]  - 1 \biggl[ 
1 + \sigma  - 2
 - 2 1 + \sigma 

\biggr] 2 \biggl[ | k| 0
0 1

\biggr] 
.(3.6)

We start with the simplest choice of using only a scalar relaxation parameter, \Theta := \theta I.

Theorem 3.1. If \Theta = \theta I, then the convergence factor of the corresponding DN2

method is for all Fourier modes k bounded by

(3.7) \rho = max
\Bigl\{ \bigm| \bigm| \bigm| \sigma + 3 - 4\theta 

\sigma + 3

\bigm| \bigm| \bigm| , \bigm| \bigm| \bigm| 1 - \sigma  - 4\theta 

1 - \sigma 

\bigm| \bigm| \bigm| \Bigr\} .
The optimal choice for \sigma \in ( - 1, 1) of the scalar relaxation parameter and resulting
convergence factor are

(3.8) \theta =
(1 - \sigma )(\sigma + 3)

8
=\Rightarrow \rho 1DN2

=
1 + \sigma 

2
,

where we use the superscript 1 in \rho 1DN2
to denote the first variant of DN2 with a

scalar relaxation parameter.
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Proof. Using (3.6), we obtain by a direct computation for the iteration matrix

I  - \Theta (I  - T2A
 - 1
2 T1A

 - 1
1 )

=

\biggl[ 
| k| 0
0 1

\biggr]  - 1
1

(1 - \sigma )(\sigma + 3)

\biggl[ 
(1 - \sigma )(\sigma + 3) - 8\theta 4(1 + \sigma )\theta 

4(1 + \sigma )\theta (1 - \sigma )(\sigma + 3) - 8\theta 

\biggr] \biggl[ 
| k| 0
0 1

\biggr] 
.

The corresponding characteristic polynomial is

\lambda 2  - 2
(1 - \sigma )(\sigma + 3) - 8\theta 

(1 - \sigma )(\sigma + 3)
+

16\theta 2  - 16\theta + (1 - \sigma )(\sigma + 3)

(1 - \sigma )(\sigma + 3)
,

where the dependence on the Fourier mode k cancels, and we obtain for all k \not = 0

\lambda =
\Bigl\{ \sigma + 3 - 4\theta 

\sigma + 3
,
1 - \sigma  - 4\theta 

1 - \sigma 

\Bigr\} 
.

Since \sigma \in ( - 1, 1), the optimal choice of \theta is obtained by equioscillation, i.e.,

\sigma + 3 - 4\theta 

\sigma + 3
=  - 1 - \sigma  - 4\theta 

1 - \sigma 
.

The solution of this equation gives the result of the theorem.

Theorem 3.1 shows that the Dirichlet--Neumann algorithm DN2 converges inde-
pendently of the frequency k, which implies mesh independent convergence of DN2:
no matter how fine the mesh is, and how high the frequency signals it can carry, are
the convergence factor does not depend on this. Theorem 3.1 also shows that for \sigma 
close to  - 1, the convergence is very fast, and for \sigma close to 1, it is very slow. For
the physically relevant range of \sigma \in [0, 1

2 ] the convergence factor lies in [ 12 ,
3
4 ], which

gives quite robust convergence, but in contrast to the Dirichlet--Neumann algorithm
applied to Laplace's equation in this symmetric geometry (see, for example, [5, 9, 7]3,
there is no parameter choice that gives convergence in two iterations, so DN2 for the
fourth order problem is missing an essential feature of Dirichlet--Neumann methods
for second order problems, but maybe this is due only to our simplified choice of just
a scalar relaxation parameter we used, so we need to investigate more general relax-
ation matrices. We prove in the next theorem that introducing a general diagonal
relaxation matrix does not improve the situation.

Theorem 3.2. If \Theta = diag(\theta 11, \theta 22), a general diagonal matrix, then the opti-
mized convergence factor of DN2 is for \sigma \in ( - 1, 1)

\rho 2DN2
= min

\theta 11,\theta 22
max

\biggl\{ 
| (1 - \sigma )(\sigma + 3) - 4(\theta 11 + \theta 22) + 4

\sqrt{} 
(1 + \sigma )2\theta 11\theta 22 + (\theta 11  - \theta 22)2| 

(1 - \sigma )(\sigma + 3)
,

| (1 - \sigma )(\sigma + 3) - 4(\theta 11 + \theta 22) - 4
\sqrt{} 
(1 + \sigma )2\theta 11\theta 22 + (\theta 11  - \theta 22)2| 

(1 - \sigma )(\sigma + 3)

\biggr\} 
,

and the minimum is obtained when \theta 11 = \theta 22. (We use the superscript 2 in \rho 2DN2
to

denote the second variant of DN2 with a diagonal relaxation matrix.)

3This important property is well known in the domain decomposition community and was already
mentioned by the inventors of the algorithm in [2], who stated the following for when the method
is used as a preconditioner: ``It is also interesting to note that if a symmetric region is cut in half,
and treated fully symmetrically, then S = 2S(1) and the conjugate gradient iteration converges in
one step."" In order to obtain this property for a nonsymmetric problem, one needs to use Robin
transmission conditions (see [1, 22]).
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Proof. Using (3.6), we compute again the iteration matrix

I  - \Theta (I  - T2A
 - 1
2 T1A

 - 1
1 )

=

\biggl[ 
| k| 0
0 1

\biggr]  - 1
1

(1 - \sigma )(\sigma + 3)

\biggl[ 
(1 - \sigma )(\sigma + 3) - 8\theta 11 4(1 + \sigma )\theta 11

4(1 + \sigma )\theta 22 (1 - \sigma )(\sigma + 3) - 8\theta 22

\biggr] \biggl[ 
| k| 0
0 1

\biggr] 
and the corresponding characteristic polynomial

\lambda 2  - 2
(1 - \sigma )(\sigma + 3) - 4(\theta 11 + \theta 22)

(1 - \sigma )(\sigma + 3)
+

16\theta 11\theta 22  - 8(\theta 11 + \theta 22) + (1 - \sigma )(\sigma + 3)

(1 - \sigma )(\sigma + 3)
.

Then the eigenvalues are

\lambda =
(1 - \sigma )(\sigma + 3) - 4(\theta 11 + \theta 22)\pm 4

\sqrt{} 
(1 + \sigma )2\theta 11\theta 22 + (\theta 11  - \theta 22)2

(1 - \sigma )(\sigma + 3)
,

so the corresponding convergence factor is

\rho = max

\biggl\{ 
| (1 - \sigma )(\sigma + 3) - 4(\theta 11 + \theta 22) + 4

\sqrt{} 
(1 + \sigma )2\theta 11\theta 22 + (\theta 11  - \theta 22)2| 

(1 - \sigma )(\sigma + 3)
,

| (1 - \sigma )(\sigma + 3) - 4(\theta 11 + \theta 22) - 4
\sqrt{} 
(1 + \sigma )2\theta 11\theta 22 + (\theta 11  - \theta 22)2| 

(1 - \sigma )(\sigma + 3)

\biggr\} 
.

(3.9)

To study this convergence factor, we introduce the two quantities x1 := \theta 11 + \theta 22 and
x2 := \theta 11  - \theta 22 and the auxiliary function

q(x1, x2) :=

\sqrt{} 
1

4
(1 + \sigma )2x2

1 + (1 - 1

4
(1 + \sigma )2)x2

2.

Then q(x1, x2) is always real since \sigma \in ( - 1, 1). We can thus rewrite the convergence
factor \rho in (3.9) as

(3.10) \rho (x1, x2) =
| (1 - \sigma )(\sigma + 3) - 4x1| + 4q(x1, x2)

(1 - \sigma )(\sigma + 3)
.

A direct calculation shows that

(1 - \sigma )(\sigma + 3)

4
\cdot \partial \rho 

\partial x2
=

\partial q

\partial x2
=

(1 - 1
4 (1 + \sigma )2)x2\sqrt{} 

1
4 (1 + \sigma )2x2

1 + (1 - 1
4 (1 + \sigma )2)x2

2

.

Furthermore,

(1 - \sigma )(\sigma + 3)

4
\cdot \partial 

2\rho 

\partial x2
2

=
\partial 2q

\partial x2
2

=
(1 - 1

4 (1 + \sigma )2)

( 14 (1 + \sigma )2x2
1 + (1 - 1

4 (1 + \sigma )2)x2
2)

1
2

 - 
(1 - 1

4 (1 + \sigma )2)2x2
2

( 14 (1 + \sigma )2x2
1 + (1 - 1

4 (1 + \sigma )2)x2
2)

3
2

=
(1 - 1

4 (1 + \sigma )2) \cdot 1
4 (1 + \sigma )2x2

1

( 14 (1 + \sigma )2x2
1 + (1 - 1

4 (1 + \sigma )2)x2
2)

3
2

> 0,

so \rho attains its minimum at x2 = 0, which implies \theta 11 = \theta 22.
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So a diagonal relaxation matrix does not improve DN2. We show in the next
theorem that not even a fully general relaxation matrix \Theta can recover the fundamental
convergence property the Dirichlet--Neumann algorithm has for Laplace's equation.
The proof of this result is technical and quite involved, but it is very important to know
that DN2 does not have the fundamental property Dirichlet--Neumann algorithms
have for Laplace's equation, in view of what we will show for our new Dirichlet--
Neumann algorithms DN3 and DN4 for the biharmonic problem.

To prove this technical result, we need some preparation. We define the function

(3.11) l0(y, a, b) := 2(1 + \sigma )

\biggl( 
ya+

1

y
b

\biggr) 
,

where y \in [ymin, ymax] (ymin, ymax > 0), a, b \in \BbbR , and \sigma \in ( - 1, 1) is a constant. The
function l0 will be important in a term in the representation of the eigenvalues of the
iteration matrix. If we fix the value of a, b, then l0(y, a, b) is a continuous bounded
function in y. For the following analysis, we also introduce the two quantities

(3.12) m :=
1

2
(l0(y, a, b)max+ l0(y, a, b)min), d :=

1

2
(l0(y, a, b)max - l0(y, a, b)min),

where l0(y, a, b)max, l0(y, a, b)min are the maximum and minimum of l0(y, a, b) for
y \in [ymin, ymax]. Herem represents the mean value of l0(y, a, b) and d is the oscillation
amplitude. According to this definition, we have

l0(y, a, b)max = m+ d, and l0(y, a, b)min = m - d.

Taking a derivative of l0 with respect to y, we get

\partial l0(y, a, b)

\partial y
:= 2(1 + \sigma )

\biggl( 
a - 1

y2
b

\biggr) 
.

To study how the bounds of l0(y, a, b), depend on the values of a, b, and \sigma , we need
to consider the following four cases, where we assume that ab \not = 0:

1. \partial l0(y,a,b)
\partial y | y=ymin

< 0, \partial l0(y,a,b)
\partial y | y=ymax

< 0. Then b > y2a for \forall y \in [ymin, ymax],
and we obtain

l0(y, a, b)min = l0(ymax, a, b) = 2

\biggl( 
1 + \sigma )(ymaxa+

1

ymax
b

\biggr) 
,(3.13)

l0(y, a, b)max = l0(ymin, a, b) = 2(1 + \sigma )

\biggl( 
ymina+

1

ymin
b

\biggr) 
.(3.14)

2. \partial l0(y,a,b)
\partial y | y=ymin

> 0, \partial l0(y,a,b)
\partial y | y=ymax

> 0. Then b < y2a for \forall y \in [ymin, ymax],
which yields

l0(y, a, b)min = l0(ymin, a, b) = 2

\biggl( 
1 + \sigma )(ymina+

1

ymin
b

\biggr) 
,(3.15)

l0(y, a, b)max = l0(ymax, a, b) = 2

\biggl( 
1 + \sigma )(ymaxa+

1

ymax
b

\biggr) 
.(3.16)

3. \partial l0(y,a,b)
\partial y | y=ymin

< 0, \partial l0(y,a,b)
\partial y | y=ymax

> 0. This implies that a > 0 and b > 0.

So y0 :=
\sqrt{} 

b
a \in [ymin, ymax], and we get

l0(y, a, b)min = l0(y0, a, b) = 4(1 + \sigma )
\surd 
ab,(3.17)

l0(y, a, b)max = max\{ l0(ymin, a, b), l0(ymax, a, b)\} .(3.18)
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4. \partial l0(y,a,b)
\partial y | y=ymin > 0, \partial l0(y,a,b)

\partial y | y=ymax < 0. This implies that a < 0 and b < 0.

So y0 :=
\sqrt{} 

b
a \in [ymin, ymax], and we have

l0(y, a, b)min = min\{ l0(ymin, a, b), l0(ymax, a, b)\} ,(3.19)

l0(y, a, b)max = l0(y0, a, b) =  - 4(1 + \sigma )
\surd 
ab.(3.20)

These four cases cover all possible choices of a, b, except when the derivative of l0
vanishes. We will also need more detailed information about the mean value m and
the oscillation amplitude d. Our goal is to find the best choice of a and b, which make
l0(y, a, b) have the smallest oscillation amplitude d for the same mean value m.

For case (1) and (2), l0(y, a, b) is a monotonic function of y, so the mean value
and the oscillation amplitude for both cases can be written in the same form, namely,
(3.21)

m12 =
1

2
(l0(y, a, b)max + l0(y, a, b)min) = (1 + \sigma )(ymax + ymin)

\biggl( 
a+

1

ymaxymin
b

\biggr) 
,

(3.22)

d12 =
1

2
(l0(y, a, b)max  - l0(y, a, b)min) = (1 + \sigma )(ymax  - ymin)

\bigm| \bigm| \bigm| \bigm| a - 1

ymaxymin
b

\bigm| \bigm| \bigm| \bigm| .
By a direct verification, we see that the range of m12 covers \BbbR when a and b are
varying. For case (3) and (4), we need the next lemma.

Lemma 3.3. If the mean value m34 is fixed in case (3) or (4), the best choice of

y0 =
\sqrt{} 

b
a is y20\ast = ymaxymin, which makes the oscillation as small as possible, i.e.,

d34 = min
ymin\leqslant y0\leqslant ymax

\biggl\{ 
1

2
(l0(y, a, b)max  - l0(y, a, b)min)

\biggr\} 
.

Proof. We only prove case (3) here. The other case can be proved similarly. First,
we obtain by a direct calculation for y20\ast = b

a = ymaxymin that

l0(ymin, a, b) = l0(ymax, a, b).

Assume there exists another choice \widetilde a and \widetilde b, which leads to the same mean value m34.
By (3.12), and (3.17), (3.18), and a direct computation, we obtain

m34 = (1 + \sigma )
(y0\ast + ymin)

2

ymin
a = (1 + \sigma )

(y0\ast + ymax)
2

ymax
a

= max

\biggl\{ 
(1 + \sigma )

(\widetilde y0 + ymin)
2

ymin
\widetilde a, (1 + \sigma )

(\widetilde y0 + ymax)
2

ymax
\widetilde a\biggr\} ,(3.23)

where \widetilde y0 :=
\widetilde b\widetilde a . For simplicity, we assume that

(1 + \sigma )
(\widetilde y0 + ymin)

2

ymin
\widetilde a > (1 + \sigma )

(\widetilde y0 + ymax)
2

ymax
\widetilde a,

which means \widetilde y20 > ymaxymin; the case where the reverse inequality holds can be
treated similarly. Then from (3.23), we obtain

\widetilde a =
(y0\ast + ymin)

2

(\widetilde y0 + ymin)2
a,
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and thus

d34 =
1

2
(l0(ymin, a, b) - l0(y0\ast , a, b)) = (1 + \sigma )

(y0\ast  - ymin)
2

ymin
a,

\widetilde d34 =
1

2
(l0(ymin, a, b) - l0(\widetilde y0, a, b)) = (1 + \sigma )

(\widetilde y0  - ymin)
2

ymin
\widetilde a

= (1 + \sigma )
(\widetilde y0  - ymin)

2

ymin

(y0\ast + ymin)
2

(\widetilde y0 + ymin)2
a.

The proof of the lemma is now obtained by concluding that d34 < \widetilde d34 from the fact
that \widetilde y0 > y0\ast .

According to Lemma 3.3, the best choice is y0\ast =
\surd 
ymaxymin with smallest

oscillation

(3.24) d34 = (1 + \sigma )(
\surd 
ymax  - \surd 

ymin)
2| a| ,

and its corresponding mean value is

(3.25) m34 = (1 + \sigma )(
\surd 
ymax +

\surd 
ymin)

2a.

By a direct verification, we see that the range of m34 covers \BbbR except 0, when a is
varying. Furthermore, it is also necessary to compare d12 and d34 for the same mean
value m, and we need the following.

Lemma 3.4. If m12(a, b) = m34(\widetilde a) for some a, b, and \widetilde a, then d12(a, b) > d34(\widetilde a).
Proof. If a \not = 0, since m12(a, b) = m34(\widetilde a), from (3.21) and (3.25), we have

\widetilde a =
ymax + ymin

(
\surd 
ymax +

\surd 
ymin)2

\biggl( 
1 +

1

ymaxymin

b

a

\biggr) 
a.

Then by (3.24),

d34(\widetilde a) = (1 + \sigma )
(ymax + ymin)(

\surd 
ymax  - \surd 

ymin)
2

(
\surd 
ymax +

\surd 
ymin)2

\bigm| \bigm| \bigm| \bigm| 1 + 1

ymaxymin

b

a

\bigm| \bigm| \bigm| \bigm| | a| ,
and therefore we have

d12
d34

=
(
\surd 
ymax +

\surd 
ymin)

3

(
\surd 
ymax  - \surd 

ymin)(ymax + ymin)

\bigm| \bigm| \bigm| \bigm| \bigm| ymaxymin  - b
a

ymaxymin + b
a

\bigm| \bigm| \bigm| \bigm| \bigm| .
Notice that for the cases (1) and (2), a and b satisfy b

a < y2min or b
a > y2max, which

leads to d12

d34
> 1.

If a = 0, by a direct calculation, we still have

d12
d34

=
(
\surd 
ymax +

\surd 
ymin)

3

(
\surd 
ymax  - \surd 

ymin)(ymax + ymin)
> 1.

We are now ready to prove the main technical result on the relaxation matrix in
DN2.
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Theorem 3.5. If \Theta is a fully general 2\times 2 relaxation matrix, then the optimized
convergence factor for DN2,

(3.26) \rho 3DN2
= min

\theta 11,\theta 12,\theta 21,\theta 22
\rho , \Theta =

\biggl[ 
\theta 11 \theta 12
\theta 21 \theta 22

\biggr] 
,

attains its minimum when \theta 12 = \theta 21 = 0, up to higher order terms O( 1\surd 
| k| max

).4 (We

use the superscript 3 in \rho 3DN2
to denote the third variant of DN2 with a full general

relaxation matrix.)

Proof. Following the same approach as in Theorems 3.1 and 3.2, we obtain the
iteration matrix

I  - \Theta (I  - T2A
 - 1
2 T1A

 - 1
1 ) =

1

(1 - \sigma )(\sigma + 3)

\cdot 

\Biggl[ 
(1 - \sigma )(\sigma + 3) - 8\theta 11 + 4(1 + \sigma )| k| \theta 12 4(1 + \sigma ) 1

| k| \theta 11  - 8\theta 12
 - 8\theta 21 + 4(1 + \sigma )| k| \theta 22 (1 - \sigma )(\sigma + 3) + 4(1 + \sigma ) 1

| k| \theta 21  - 8\theta 22

\Biggr] 

and the corresponding characteristic polynomial

\lambda 2  - 2
(1 - \sigma )(\sigma + 3) - 4(\theta 11 + \theta 22) + 2(1 + \sigma )(| k| \theta 12 + 1

| k| \theta 21)

(1 - \sigma )(\sigma + 3)

+
16\theta 11\theta 22  - 8(\theta 11 + \theta 22) + (1 - \sigma )(\sigma + 3) - 16\theta 12\theta 21 + 4(1 + \sigma )(| k| \theta 12 + 1

| k| \theta 21)

(1 - \sigma )(\sigma + 3)
.

Then the eigenvalues are

\lambda =
1

(1 - \sigma )(\sigma + 3)

\biggl( 
2(1 + \sigma )(| k| \theta 12 +

1

| k| 
\theta 21

\biggr) 
 - 4(\theta 11 + \theta 22) + (1 - \sigma )(\sigma + 3)

\pm 2

\sqrt{} 
((1 + \sigma )

\biggl( 
| k| \theta 12 +

1

| k| 
\theta 21

\biggr) 
 - 2(\theta 11 + \theta 22))2 + 4(1 - \sigma )(\sigma + 3)(\theta 12\theta 21  - \theta 11\theta 22)

\Biggr) 
.

(3.27)

In contrast, however, to Theorem 3.2, the eigenvalues \lambda may be complex now. So
for proving Theorem 3.5, we need to estimate the bounds of each term in (3.27). To
simplify the notation, let y = | k| , a = \theta 12, b = \theta 21 in the function l0(y, a, b) we defined
in (3.11), and then we define

l(| k| ) := 2(1 + \sigma )

\biggl( 
| k| \theta 12 +

1

| k| 
\theta 21

\biggr) 
= l0(| k| , \theta 12, \theta 21),

which is a function of k for fixed \theta 12, \theta 21 and \sigma . The range of k is | k| \in [| k| min, | k| max],
where | k| min and | k| max > 0.

4Such terms correspond to terms of O(h
1
2 ), where h represents the mesh size along the interface,

so the theorem holds when the mesh size becomes small.
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Note that by (3.27), we have

max
| k| min\leqslant | k| \leqslant | k| max

| \lambda | 

\geqslant max
| k| min\leqslant | k| \leqslant | k| max

1

(1 - \sigma )(\sigma + 3)
| 2(1 + \sigma )

\biggl( 
| k| \theta 12 +

1

| k| 
\theta 21

\biggr) 
 - 4(\theta 11 + \theta 22) + (1 - \sigma )(\sigma + 3)| 

= max
| k| min\leqslant | k| \leqslant | k| max

1

(1 - \sigma )(\sigma + 3)
| l(| k| ) - 4(\theta 11 + \theta 22) + (1 - \sigma )(\sigma + 3)| .

Because | k| max is usually of order O(h - 1) in the discrete situation and | k| min is a
small constant (see [13]), to preserve | \lambda | < 1 for the convergence, \theta 12 and \theta 21 need to
be small enough, i.e., \theta 12 = O( 1

| k| max
) and \theta 21 = O(| k| min), which leads to the term

\theta 12\theta 21 in (3.27) to be very small.
Based on this observation, we obtain that l(| k| ) is the main element of \lambda compared

to the other terms in (3.27). For \theta 11, \theta 22, and \sigma fixed, to optimize \lambda through controlling
l(| k| ), we should choose the best values of \theta 12 and \theta 21, which make l(| k| ) have the
smallest oscillation amplitude d for the same mean value m.

Combining Lemmas 3.3 and 3.4, to get the smallest oscillation for the same

mean value, the parameters \theta 12, \theta 21 should be chosen such that | k| 0\ast =
\sqrt{} 

\theta 21
\theta 12

=\sqrt{} 
| k| max| k| min, which leads to m = m34, d = d34. Denoting by \alpha := 4(\theta 11 + \theta 22), the

eigenvalues (3.27) can be simplified to

\lambda =
(1 - \sigma )(\sigma + 3) + l(| k| ) - \alpha \pm 

\sqrt{} 
(l(| k| ) - \alpha )2 + 16(1 - \sigma )(\sigma + 3)(\theta 12\theta 21  - \theta 11\theta 22)

(1 - \sigma )(\sigma + 3)
.

The convergence factor \rho is then the larger of the two eigenvalues, i.e.,
(3.28)

\rho =

\left\{                       

1

(1 - \sigma )(\sigma + 3)

\Bigl( 
| (1 - \sigma )(\sigma + 3) + l(| k| ) - \alpha | 

if \lambda is real,

+
\sqrt{} 
(l(| k| ) - \alpha )2 + 16(1 - \sigma )(\sigma + 3)(\theta 12\theta 21  - \theta 11\theta 22)

\Bigr) 
1

(1 - \sigma )(\sigma + 3)

\Bigl( 
| (1 - \sigma )(\sigma + 3) + l(| k| ) - \alpha | 2 + | (l(| k| ) - \alpha )2

if \lambda is complex.

+ 16(1 - \sigma )(\sigma + 3)(\theta 12\theta 21  - \theta 11\theta 22)| 
\Bigr) 1/2

To finish the proof, we need to solve the min-max problem

(3.29) min
\theta 11,\theta 12,\theta 21\theta 22

max
| k| min\leqslant | k| \leqslant | k| max

\rho (\theta 11, \theta 12, \theta 21, \theta 22, k).

According to the definitions of m and d, we have m - d \leqslant l(| k| ) \leqslant m+ d, so by (3.28)

max
| k| min\leqslant | k| \leqslant | k| max

\rho \geqslant max
| k| min\leqslant | k| \leqslant | k| max

\biggl\{ 
| (1 - \sigma )(\sigma + 3) + l(| k| ) - \alpha | 

(1 - \sigma )(\sigma + 3)

\biggr\} 
=

| (1 - \sigma )(\sigma + 3) +m - \alpha | + d

(1 - \sigma )(\sigma + 3)

\geqslant 
d

(1 - \sigma )(\sigma + 3)
.
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DN ALGORITHMS FOR THE BIHARMONIC PROBLEM A1895

In order to have convergence, we need that

max
| k| min\leqslant | k| \leqslant | k| max

\rho < 1,

which implies the necessary condition

d

(1 - \sigma )(\sigma + 3)
< 1.

Noting that m = m34 and d = d34, by (3.24), we obtain

\theta 12 = O

\Biggl( 
1

(
\sqrt{} 

| k| max  - 
\sqrt{} 
| k| min)2

\Biggr) 
= O

\biggl( 
1

| k| max

\biggr) 
,

and thus we have \theta 21 = | k| 20\ast \theta 12 = O(1). So

\theta 12\theta 21 = O

\biggl( 
1

| k| max

\biggr) 
is a small value compared to the other terms, and we can thus ignore it in the following.

Next, since \theta 12\theta 21 = | k| 20\ast \theta 212 \geqslant 0, if \theta 11\theta 22 \leqslant 0, then we have 16(1  - \sigma )(\sigma +
3)(\theta 12\theta 21  - \theta 11\theta 22) \geqslant 0. The eigenvalue \lambda is then real and by (3.28), this results in

\rho \geqslant 
| (1 - \sigma )(\sigma + 3) + l(| k| ) - \alpha | + | l(| k| ) - \alpha | 

(1 - \sigma )(\sigma + 3)
\geqslant 1,

which means the method does not converge. So we obtain as another necessary
condition that \theta 11\theta 22 > 0 for convergence.

Third, through direct manipulation, we find that

| m|  - d = | m34|  - d34 = 4(1 + \sigma )
\sqrt{} 

| k| max

\sqrt{} 
| k| min| \theta 12| = O

\Biggl( 
1\sqrt{} 

| k| max

\Biggr) 
,

which indicates that | m| and d are nearly the same, and we can replace one by the
other when ignoring higher order terms.

From (3.28), in order to analyze the convergence factor \rho for all | k| \in [| k| min, | k| max],
we analyze l(| k| ) \in [l(| k| )min, l(| k| )max], which is equivalent to m - d \leqslant l(| k| ) \leqslant m+d,
s.t.

(3.30) l(| k| ) \in 

\Biggl\{ 
[0, 2m] if m \geqslant 0,

[2m, 0] if m \leqslant 0.

Based on this observation, we see that 0 \in [l(| k| )min, l(| k| )max].

Because 0 \leqslant \theta 11\theta 22 \leqslant (\theta 11+\theta 22)
2

4 = \alpha 2

64 and \sigma \in ( - 1, 1), we have \alpha 2 - 16(1 - \sigma )(\sigma +
3)\theta 11\theta 22 \geqslant 0. By taking l(| k| ) = 0 in (3.28) and omitting the small terms, we define

(3.31) \rho 1(\alpha , \theta 11, \theta 22) =
| (1 - \sigma )(\sigma + 3) - \alpha | +

\sqrt{} 
\alpha 2  - 16(1 - \sigma )(\sigma + 3)\theta 11\theta 22

(1 - \sigma )(\sigma + 3)
.

Then we have
(3.32)

max
| k| min\leqslant | k| \leqslant | k| max

\rho \geqslant max
| k| min \leqslant | k| \leqslant | k| max,

l(| k| ) = 0

\rho +O

\Biggl( 
1\sqrt{} 

| k| max

\Biggr) 
= \rho 1 +O

\Biggl( 
1\sqrt{} 

| k| max

\Biggr) D
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for any fixed \theta 11, \theta 22, \theta 12, \theta 21. Notice that \rho 1(\alpha , \theta 11, \theta 22) = \rho (x1, x2), where \rho (x1, x2)
is defined in (3.10), which we already analyzed for proving Theorem 3.2. So by (3.31)
and (3.32), we know that the matrix \Theta in Theorem 3.2 is a solution of (3.29), which
finishes our proof.

Remark 3.6. The solution to problem (3.29) is not unique. The choice of \Theta in
Theorem 3.5 is only one particular solution. According to Theorems 3.1, 3.2, and 3.5,

one of the optimal choices is \theta \ast 11 = \theta \ast 22 = (1 - \sigma )(\sigma +3)
8 and \theta \ast 12 = \theta \ast 21 = 0. Then we have

m\ast = 0, and \alpha \ast = (1 - \sigma )(\sigma + 3). To find the other solutions, we assume that there
is another choice of the relaxation matrix \Theta , say, \theta \prime 11, \theta 

\prime 
22, \theta 

\prime 
12, \theta 

\prime 
21, which leads to new

values m\prime , \alpha \prime that also solve the problem (3.29), and we thus have
(3.33)

max
| k| min\leqslant | k| \leqslant | k| max

\rho (\theta \ast 11, \theta 
\ast 
12, \theta 

\ast 
21, \theta 

\ast 
22, k) = max

| k| min\leqslant | k| \leqslant | k| max

\rho (\theta \prime 11, \theta 
\prime 
12, \theta 

\prime 
21, \theta 

\prime 
22, k).

However, by (3.31) and (3.32), we could have

max
| k| min\leqslant | k| \leqslant | k| max

\rho (\theta \prime 11, \theta 
\prime 
12, \theta 

\prime 
21, \theta 

\prime 
22, k) \geqslant \rho 1(\alpha 

\prime , \theta \prime 11, \theta 
\prime 
22) +O

\Biggl( 
1\sqrt{} 

| k| max

\Biggr) 
,

where the right part of this inequality only depends on \theta \prime 11, \theta 
\prime 
22. As in the above

discussion, \rho 1(\alpha 
\prime , \theta \prime 11, \theta 

\prime 
22) = \rho (x1, x2), and also according to Theorem 3.2, the optimal

choice of \theta \prime 11, \theta 
\prime 
22 should satisfy (this solution is unique) \theta \prime 11 = \theta \prime 22 = (1 - \sigma )(\sigma +3)

8 =
\theta \ast 11 = \theta \ast 22, which leads to \alpha \prime = \alpha \ast . So the other solution to (3.29) should satisfy \theta \prime 11 =
\theta \ast 11, \theta 

\prime 
22 = \theta \ast 22, which means that the difference only lies in \theta \prime 12 or \theta \prime 21. Substituting

these into (3.28), we obtain

(3.34) \rho 2(l0(| k| , \theta \prime 12, \theta \prime 21), \alpha \ast , \theta \ast 11, \theta 
\ast 
22) :=

\left\{       
| l0(| k| , \theta \prime 12, \theta \prime 21)| +

\surd 
t

\alpha \ast , t \geqslant 0,\bigl( 
| l0(| k| , \theta \prime 12, \theta \prime 21)| 2 + | t| 

\bigr) 1/2
\alpha \ast , t < 0,

where t := (l0(| k| , \theta \prime 12, \theta \prime 21))2  - 2\alpha \ast l0(| k| , \theta \prime 12, \theta \prime 21) + 1
4 (1 + \sigma )2\alpha \ast 2. Furthermore, in

order to find \theta \prime 12, \theta 
\prime 
21, by (3.33) and the above discussion, we have

\rho 1(\alpha 
\prime , \theta \prime 11, \theta 

\prime 
22) = \rho 1(\alpha 

\ast , \theta \ast 11, \theta 
\ast 
22)

= max
| k| min\leqslant | k| \leqslant | k| max

\rho (\theta \ast 11, \theta 
\ast 
12, \theta 

\ast 
21, \theta 

\ast 
22, | k| )

= max
| k| min\leqslant | k| \leqslant | k| max

\rho (\theta \prime 11, \theta 
\prime 
12, \theta 

\prime 
21, \theta 

\prime 
22, | k| )

= max
| k| min\leqslant | k| \leqslant | k| max

\rho 2(l0(| k| , \theta \prime 12, \theta \prime 21), \alpha \prime , \theta \prime 11, \theta 
\prime 
22),

which shows that

max
min\{ 0, 2m\prime \} \leqslant l0(| k| , \theta \prime 12, \theta \prime 21) \leqslant max\{ 0, 2m\prime \} 

\rho 2(l0(| k| , \theta \prime 12, \theta \prime 21), \alpha \prime , \theta \prime 11, \theta 
\prime 
22)

= \rho 1(\alpha 
\prime , \theta \prime 11, \theta 

\prime 
22) = \rho 1(\alpha 

\ast , \theta \ast 11, \theta 
\ast 
22).

Here, we also denote l\prime := l0(| k| , \theta \prime 12, \theta \prime 21) for simplicity. Solving this equation, we
obtain 0 \leqslant m\prime \leqslant 1

8 (1+\sigma )2\alpha \ast . So when l\prime lies in the region [0, 2m\prime ] = [0, 1
4 (1+\sigma )2\alpha \ast ],

then we have \rho 1(\alpha 
\ast , \theta \ast 11, \theta 

\ast 
22) \geqslant \rho 2(l

\prime , \alpha \ast , \theta \ast 11, \theta 
\ast 
22), where the equality only holds at the

points l\prime = 0 and l\prime = 1
4 (1 + \sigma )2\alpha \ast (see Figure 1).
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l
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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0.4

0.5

0.6

0.7

l=0 l=1/4(1+<)2
,

*

Fig. 1. The two functions \rho 1 and \rho 2 of l. The solid line is \rho 1(\alpha \ast , \theta \ast 11, \theta 
\ast 
22) = 1+\sigma 

2
and the

dashed line is \rho 2(l, \alpha \ast , \theta \ast 11, \theta 
\ast 
22), where \sigma =  - 1

8
.

Having the range of m\prime , together with (3.25), we obtain

0 \leqslant \theta \prime 12 \leqslant 
(1 + \sigma )\alpha \ast 

8(
\sqrt{} 
| k| max +

\sqrt{} 
| k| min)2

= O

\biggl( 
1

| k| max

\biggr) 
,

and \theta \prime 21 = | k| max| k| min\theta 
\prime 
12, which implies

0 \leqslant \theta \prime 21 \leqslant 
(1 + \sigma )\alpha \ast | k| max| k| min

8(
\sqrt{} 
| k| max +

\sqrt{} 
| k| min)2

= O(1).

3.2. Analysis of \bfitD \bfitN \bfthree and \bfitD \bfitN \bffour . We study now the two Dirichlet--Neumann
algorithmsDN3 andDN4 and show that they become direct solvers for an appropriate
choice of the relaxation matrix \Theta , i.e., they have the same fundamental convergence
property as the Dirichlet--Neumann algorithm when applied to Laplace's equation
[5, 9, 7]. To obtain their error propagation equation similar to (3.5), we find after a
short calculation the matrices

\=A1 :=

\biggl[ 
1 0

(1 - \sigma )| k| 2 2| k| 

\biggr] 
\=T1 :=

\biggl[ 
 - | k|  - 1

 - (1 - \sigma )| k| 3  - (1 - \sigma )| k| 2 + 2| k| 2
\biggr] 

and

\=A2 :=

\biggl[ 
| k|  - 1

(1 - \sigma )| k| 3  - (1 - \sigma )| k| 2 + 2| k| 2
\biggr] 
, \=T2 :=

\biggl[ 
1 0

(1 - \sigma )| k| 2  - 2| k| 

\biggr] 
.

We thus obtain for DN3 and DN4 on the interface \Gamma the error iteration

(3.35) \widetilde gn+1
1 = [I  - \Theta (I  - \=T2

\=A - 1
2

\=T1
\=A - 1
1 )]\widetilde gn

1 ,

for which we can prove the following convergence estimate.
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Theorem 3.7. For a general relaxation matrix \Theta as in (3.26) of Theorem 3.5,
the convergence factor \rho of DN3 and DN4 is

\rho = max\{ | 1 - \theta 11 - \theta 22+
\sqrt{} 
(\theta 11  - \theta 22)2 + 4\theta 12\theta 21| , | 1 - \theta 11 - \theta 22 - 

\sqrt{} 
(\theta 11  - \theta 22)2 + 4\theta 12\theta 21| \} .

The optimal choice of \theta 11, \theta 12, \theta 21, and \theta 22 must satisfy the system of equations

\theta 11 + \theta 22 = 1,

(\theta 11  - \theta 22)
2 + 4\theta 12\theta 21 = 0,

(3.36)

and the corresponding convergence factor vanishes identically,

\rho DN3,4
= 0.

In particular, the symmetric choice \theta 11 = \theta 22 = 1
2 and \theta 12 = \theta 21 = 0 satisfies the

optimality condition system (3.36) and makes the convergence factor vanish.

Proof. By a direct computation, we find that \=T2
\=A - 1
2

\=T1
\=A - 1
1 =  - I, and therefore

the interface iteration matrix of DN3 and DN4 becomes independent of k \not = 0,

I  - \Theta (I  - \=T2
\=A - 1
2

\=T1
\=A - 1
1 ) =

\biggl[ 
1 - 2\theta 11  - 2\theta 12
 - 2\theta 21 1 - 2\theta 22

\biggr] 
.

The corresponding eigenvalues are \lambda 1 = 1 - \theta 11  - \theta 22 +
\sqrt{} 
(\theta 11  - \theta 22)2 + 4\theta 12\theta 21, and

\lambda 2 = 1  - \theta 11  - \theta 22  - 
\sqrt{} 
(\theta 11  - \theta 22)2 + 4\theta 12\theta 21, and the result follows by equioscilla-

tion.

Remark 3.8. We see that DN3 and DN4 for the biharmonic problem have for this
symmetric configuration the same good convergence property as when the Dirichlet--
Neumann algorithm is applied to Laplace's equation: we obtain a direct solver. Con-
vergence is also independent of the frequency parameter k, and thus mesh indepen-
dent, and in addition also independent of the problem parameter, in contrast to DN2,
which indicates that the Dirichlet--Neumann methods DN3 and DN4 are fundamen-
tally better than DN2, which we will next test numerically.

4. Numerical results. We now present a numerical study of the Dirichlet--
Neumann algorithms DNj , j = 2, 3, 4, for the biharmonic equation in the rectangular
domain \Omega = (0, 2)\times (0, 1), i.e.,

\Delta 2u = f in \Omega ,

u = 0 on x = 0 and x = 2,

\partial nu = 0 on x = 0 and x = 2,

u = 0 on y = 0 and y = 1,

\Delta u - (1 - \sigma )\partial \tau \tau u = 0 on y = 0 and y = 1,

(4.1)

i.e., we impose the condition \scrD 1(u) = 0 on the left and right boundary, and the
condition \scrD 4(u) = 0 on bottom and top boundary. We do not test DN1 since one of
the subproblems is not well posed in general (see the last paragraph before subsection
3.1). We choose for the right-hand side f = 24y3(1  - y)3  - 72x2(2  - x)2(5y2  - 5y +
1) - 48(3x2  - 6x+ 2)(5y4  - 10y3 + 6y2  - y), so that the solution is u = (1 + x)2(1 - 
x)2y3(1 - y)3. We discretize (4.1) with the standard 13-point finite difference scheme
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(see, e.g., [17]). We then divide the domain into two subdomains \Omega 1 and \Omega 2 at x = x0.
We stop the Dirichlet--Neumann iterations when

(4.2) max
i

\| un
i  - u\| l2
\| u\| l2

\leqslant 10 - 6,

where un
i is the discrete subdomain solution on \Omega i at iteration n, and u is the discrete

mono-domain solution which we compute by a direct solver. We also stop the itera-
tion if the norm of the error vector becomes larger and larger in the first 50 iteration
steps, and then we say it diverges, indicated by ``div"" in the tables below. We use a
random initial guess to start the iteration; for the importance of this in testing, see
[14, Figure 5.2].

4.1. Subdomains of the same size. We start with subdomains of the same
size, the interface being at x0 = 1, and thus work is perfectly load balanced. We test
our Dirichlet--Neumann algorithms for the physical values of the parameter \sigma = 0.4999
(rubber), \sigma = 0.225 (glass), \sigma = 0 (cork), and also for the unphysical value \sigma =  - 0.5.
In Table 1, we show a comparison of the iteration numbers needed by DNj , j = 2, 3, 4,
when the mesh size h is refined. We used the optimized choice \theta 12 = \theta 21 = 0 and

\theta 11 = \theta 22 = (1 - \sigma )(\sigma +3)
8 predicted by Theorem 3.1 for DN2, and \theta 11 = \theta 22 = 1

2 and
\theta 12 = \theta 21 = 0 from Theorem 3.7 for DN3 and DN4. From Table 1, we see that
while all three Dirichlet--Neumann algorithms have a mesh independent convergence
behavior, DN3 and DN4 converge much faster than DN2, which confirms that the
new Dirichlet--Neumann algorithms DN3 and DN4 are much better solvers than DN2,
as expected from our analysis. We also show in parentheses the number of iterations
when the algorithms are used as preconditioners for GMRES. We see that even when
DN2 is used as a preconditioner, which improves the iteration numbers, they still
remain much larger than for DN3 and DN4, for which GMRES acceleration is clearly
not needed in this symmetric case.

We next study numerically the behavior of the Dirichlet--Neumann algorithms for
a fixed parameter \sigma and varying the relaxation matrix \Theta . We first set \theta 12 = \theta 21 = 0
and vary the value \theta 11 = \theta 22, which leads to the results shown in Table 2.

We see that the numerical results follow well the prediction in Theorem 3.1, with

the best parameter choice close to \theta 11 = \theta 22 = (1 - \sigma )(\sigma +3)
8 . We see, however, also

Table 1
Iteration number comparison for the three Dirichlet--Neumann methods (in parentheses with

GMRES acceleration) for different values of the parameter \sigma .

h 1
16

1
32

1
64

1
128

1
256

1
512

1
1024

DN2

\sigma = 0.4999 111(14) 123(16) 126(16) 128(17) 128(17) 128(17) 129(17)

\sigma = 0.225 52(14) 56(15) 57(15) 58(15) 57(16) 57(16) 57(17)

\sigma = 0 34(13) 36(14) 37(14) 36(14) 37(15) 37(15) 37(15)

\sigma =  - 0.5 17(10) 17(10) 17(10) 17(11) 17(11) 17(11) 17(11)

DN3 and DN4

\sigma = 0.4999 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2)

\sigma = 0.225 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2)

\sigma = 0 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2)

\sigma =  - 0.5 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2)
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Table 2
Iteration numbers for DN2 (in parentheses with GMRES acceleration) with different choices of

\theta 11 = \theta 22 =
(1 - \sigma )(\sigma +3)

m
, where \theta 12 = \theta 21 = 0 (``div"" means divergence).

m 2 4 8 10 12 16 32 64

\sigma = 0.225
div(16) div(16) 57(16) 47(16) 58(16) 80(16) 167(16) 340(16)

h = 1
256

\sigma = 0
div(14) div(14) 36(14) 35(14) 43(14) 61(14) 129(14) 265(14)

h = 1
128

\sigma =  - 0.5
div(11) div(11) 17(11) 21(11) 27(11) 39(11) 86(11) 180(11)

h = 1
512

Table 3
Iteration numbers for DN2 (in parentheses with GMRES acceleration) with different choices of

\theta 11 =
(1 - \sigma )(\sigma +3)

n
, \theta 22 =

(1 - \sigma )(\sigma +3)
m

, where n = 8 for the first table and m = 8 for the second table,
and \theta 12 = \theta 21 = 0 (``div"" means divergence).

m 2 4 8 12 16 32 64

\sigma = 0.225 div(16) div(16) 57(16) 47(16) 58(16) 106(16) 203(15)

\sigma = 0 div(15) div(15) 36(15) 35(15) 44(15) 83(15) 162(15)

\sigma =  - 0.5 div(10) div(11) 17(11) 22(11) 29(11) 60(11) 122(10)

n 2 4 8 12 16 32 64

\sigma = 0.225 div(16) div(16) 57(16) 48(16) 61(16) 116(16) 226(15)

\sigma = 0 div(15) div(15) 36(15) 36(15) 47(15) 93(15) 185(14)

\sigma =  - 0.5 div(11) div(11) 17(11) 23(11) 32(11) 69(11) 144(10)

that with GMRES, the parameter choice becomes much more robust. This is not
difficult to understand: for an iteration of the form (3.5) corresponding to DN2 used
as an iterative solver, GMRES solves when using DN2 as preconditioner systems with
the system matrix of the form \theta (I  - T2A

 - 1
2 T1A

 - 1
1 ), and the coefficient \theta thus does

not affect the Krylov space; this holds for any domain decomposition method using
a scalar relaxation step [24], and the scalar relaxation step is irrelevant when using
Krylov acceleration!

We next vary \theta 11 \not = \theta 22 to illustrate Theorem 3.2, which shows that for optimal
performance of DN2 with a diagonal relaxation matrix, the two parameters should
be the same. The results are shown in Table 3, where we see that indeed the best
performance is obtained when the two parameters are nearly the same. The slight
difference is due to the fact that our analysis is based on unbounded domains, while
our numerical simulation is using bounded domains, and we checked that it disappears
when we run the simulation on the larger domain \Omega = (0, 4)\times (0, 1) divided into two
equal subdomains. We see also that when using DN2 as a preconditioner then even
with a diagonal relaxation matrix, not just a scalar, the iteration numbers depend
only very little on the values chosen on the diagonal.

We finally vary now the off diagonal elements in the relaxation matrix \Theta : we fix

\theta 11 = \theta 22 = (1 - \sigma )(\sigma +3)
8 and vary the parameters \theta 12 and \theta 21. We show in Table 4

the results when we keep one of the two off diagonal parameters zero and vary the
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Table 4
Iteration numbers for DN2 with \theta 11 = \theta 22 =

(1 - \sigma )(\sigma +3)
8

and in the first table \theta 12 = h
m

and

\theta 21 = 0, h = 1
256

(m = \infty means \theta 12 = 0); in the second table we set \theta 12 = 0 and \theta 21 = s.

m 1 2 4 8 16 32 64 128 \infty 

\sigma = 0.225 div div 62 56 56 57 57 57 57

\sigma = 0 div 89 36 36 36 37 36 36 36

\sigma =  - 0.5 div 46 19 17 17 17 17 17 17

s 4 2 1 1
2

1
4

1
8

1
16

1
32

1
64

1
128

0

\sigma = 0.225 div 299 28 30 32 38 46 51 54 55 57

\sigma = 0 div 71 20 22 22 28 32 34 35 36 36

\sigma =  - 0.5 111 30 17 12 12 15 16 17 17 17 17

Table 5
Iteration numbers for DN3 and DN4 with different choices of the entries in the relaxation

matrix \Theta . We set \theta 22 = 1  - \theta 11, and \theta 12\theta 21 =  - (1 - 2\theta 11)
2

4
, and change \theta 11, for h = 1

256
and

\sigma = 0.225.

\theta 11 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

\theta 12 =  - \theta 21 =  - (1 - 2\theta 11)
2

3 3 3 3 3 2 3 3 3 3 3

 - \theta 12 = \theta 21 =  - (1 - 2\theta 11)
2

3 3 3 3 3 2 3 3 3 3 3

\theta 12 = 1 - 2\theta 11, \theta 21 =  - (1 - 2\theta 11)
4

3 3 3 3 3 2 3 3 3 3 3

\theta 12 =  - (1 - 2\theta 11)
4

, \theta 21 = 1 - 2\theta 11 3 3 3 3 3 2 3 3 3 3 3

other. According to Remark 3.6, the order of \theta 12 should be O( 1
| k| max

) = O(h) and the

order of \theta 21 should be O(1), which is what we chose here. We see that when we keep
\theta 21 = 0, then numerically indeed the choice \theta 12 = 0 works best as predicted by our
unbounded domain analysis in Theorem 3.5. If we fix, however, \theta 12 = 0 and vary \theta 21,
then there seems to be a small benefit for a nonzero \theta 21, which is visibly not captured
by our unbounded domain analysis.

In contrast to DN2 the situation for DN3 and DN4 is much simpler: Table 5
illustrates that the diagonal choice from Theorem 3.7 is indeed the best one.

4.2. Numerical study of the influence of boundary conditions. Both our
original problem (1.1) and the numerical model problem (4.1) contain boundary con-
ditions, while we performed our analysis on unbounded domains. Our results for DN3

and DN4 on unbounded domains predicted well the performance of these algorithms
in our numerical experiments on bounded domains. This is further illustrated in Ta-
ble 6, which shows the iteration numbers for the original problem (1.1), and these
iteration numbers are the same as the ones shown in Table 5 for problem (4.1), but
for DN2 we observed slight differences, which we now investigate further. If we choose
for the material parameter \sigma = 0.225, 0, - 0.5, and use the Dirichlet boundary condi-
tion \scrD 1 on top and bottom as in our original problem (1.1), we see in Figure 2 that
there is a small but systematic difference between our theoretical results obtained for
unbounded domains and numerical results measured on bounded domains, when \sigma 
diminishes. From some numerical tests of this difference, we estimate the numerically
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Table 6
Iteration numbers for DN3 and DN4 with \scrD 1 on top and bottom boundary and different choices

of the entries in the relaxation matrix \Theta . We set \theta 22 = 1  - \theta 11, and \theta 12\theta 21 =  - (1 - 2\theta 11)
2

4
, and

change \theta 11, for h = 1
256

and \sigma = 0.225.

\theta 11 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

\theta 12 =  - \theta 21 =  - (1 - 2\theta 11)
2

3 3 3 3 3 2 3 3 3 3 3

 - \theta 12 = \theta 21 =  - (1 - 2\theta 11)
2

3 3 3 3 3 2 3 3 3 3 3

\theta 12 = 1 - 2\theta 11, \theta 21 =  - (1 - 2\theta 11)
4

3 3 3 3 3 2 3 3 3 3 3

\theta 12 =  - (1 - 2\theta 11)
4

, \theta 21 = 1 - 2\theta 11 3 3 3 3 3 2 3 3 3 3 3

3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

;

0.5

1

1.5

2

2.5

3

numerical
estimate
;=1

3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

;

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

numerical
estimate
;=1

3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

;
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

numerical
estimate
;=1

Fig. 2. Theoretical and numerical contraction factors of DN2 compared for scalar relaxation
\theta 11 = \theta 22 = \theta with Dirichlet boundary conditions \scrD 1 on top and bottom using 50 iterations for
\sigma = 0.225, 0, - 0.5.

3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

;

0.5

1

1.5

2

2.5

3

numerical
estimate
;=1

3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

;

0.5

1

1.5

2

numerical
estimate
;=1

3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

;

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

numerical
estimate
;=1

Fig. 3. Results corresponding to Figure 2 but now with Dirichlet boundary conditions \scrD 4 on
top and bottom.

optimal \theta on bounded domains to be (1 - \sigma )(\sigma +3)
12 rather than (1 - \sigma )(\sigma +3)

8 . If we use,
however, the Dirichlet condition \scrD 4 on top and bottom, for which the biharmonic
operator is separable, and our Fourier analysis on the unbounded domain could thus
also be performed on the bounded domain, we see in Figure 3 that indeed our theory
from the unbounded domain analysis captures quite well the numerical behavior of

the DN2 method also on the bounded domain with the optimal \theta close to (1 - \sigma )(\sigma +3)
8 .

4.3. Nonrectangular subdomains and subdomains of different size. We
next test two cases with nonrectangular subdomains (see Figure 4). Case 1 is a
parallelogram divided into two triangular subdomains, and Case 2 is a rectangle with
a rectangular hole in it, which is divided into two symmetric subdomains. We use the
Dirichlet condition \scrD 1 on the boundary. The results are shown in Table 7, and we
see for both cases that DN3 and DN4 perform always better than DN2 even in cases
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\Omega 1

\Omega 2

\Omega 1 \Omega 2

Fig. 4. Two cases with nonrectangular subdomains. Left: Case 1. Right: Case 2.

Table 7
Iteration numbers (in parentheses with GMRES acceleration) for different Dirichlet--Neumann

methods with nonrectangular domain decomposition and mesh size h. First table: Case 1. For

convergence, we set \theta 11 = \theta 22 =
(1 - \sigma )(\sigma +3)

32
, \theta 12 = \theta 21 = 0, and \sigma = 0.225 for the DN2 method,

and \theta 11 = \theta 22 = 1
4
, \theta 12 = \theta 21 = 0 for the DN3 and DN4 methods. Second table: Case 2. We set

\theta 11 = \theta 22 =
(1 - \sigma )(\sigma +3)

12
, \theta 12 = \theta 21 = 0, and \sigma = 0.225 for the DN2 method, and \theta 11 = \theta 22 = 1

2
,

\theta 12 = \theta 21 = 0 for the DN3 and DN4 methods.

h 1
32

1
64

1
128

1
256

1
512

1
1024

DN2 176(11) 184(12) 186(12) 187(13) 187(14) 188(15)

DN3 and DN4 34(6) 39(7) 42(8) 43(8) 45(9) 48(10)

h 1
32

1
64

1
128

1
256

1
512

1
1024

DN2 57(10) 59(10) 60(11) 58(11) 58(10) 60(10)

DN3 and DN4 2(2) 2(2) 2(2) 2(2) 2(2) 2(2)

.
Table 8

Left: preconditioned GMRES iteration numbers for DN2 with different asymmetric domain

decomposition and mesh size h. We set \theta 11 = \theta 22 =
(1 - \sigma )(\sigma +3)

8
, \theta 12 = \theta 21 = 0, and \sigma = 0.225.

Right: corresponding results for DN3 and DN4 with \theta 11 = \theta 22 = 1
2
, \theta 12 = \theta 21 = 0.

h 1
32

1
64

1
128

1
256

1
512

1
1024

1
32

1
64

1
128

1
256

1
512

1
1024

x0 = 1
4

12 13 13 13 14 13 7 7 6 6 7 6

x0 = 1
2

11 11 12 12 12 13 5 5 5 5 5 4

x0 = 1 10 10 11 11 11 11 2 2 2 2 2 2

x0 = 3
2

10 11 11 11 11 11 5 5 5 5 5 5

x0 = 7
4

12 12 13 13 13 13 7 7 6 7 6 5

not covered by our analysis. In addition, for Case 2, DN3 and DN4 is still optimal
with convergence in two steps.

We also test cases which are not well load balanced, and thus less relevant in
practice, to see if DN2 could at least then have an advantage over DN3 and DN4.
The results are shown in Table 8, and we see that load balancing is better for all the
methods, but onlyDN3 andDN4 can take full advantage of this with fast convergence,
while DN2 cannot. In addition DN3 and DN4 perform always better than DN2 even
if the load is very unbalanced, so DN2 should not be used for the biharmonic problem,
since it never has any advantage over DN3 and DN4 and is much slower in the load
balanced case.
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Fig. 5. Top: illustration of the six-lane bridge interval [600, 750] with different weights of cars,
trucks, and vans randomly placed on it. Middle: corresponding displacement of the bridge under
this load in the same interval [600, 750]. Bottom: displacement of the entire bridge under this load
shown scaled 4 to 1 for better visibility.

4.4. A many subdomain example. In this section, we show a numerical sim-
ulation for the Golden Gate Bridge with many subdomains. The Golden Gate Bridge
is a typical suspension bridge supported by two towers. The entire bridge is about
2737 meters long, while the body between the two towers which we simulate is about
1280 meters. Since two sides of the body are supported by the towers and the two
other sides are supported by the suspension cables, the boundary conditions for this
example are \scrD 4. The width of bridge is 27.4 meters, and it is thus suitable to divide
the domain into a sequence of 50 subdomains, where the size of each subdomain is
25.6\times 27.4. Because the bridge is made of steel, we set \sigma = 0.28. For the source terms
of this problem, we randomly place cars, trucks, and vans on the bridge, as shown at
the top of Figure 5.

We then simulate the displacement, which is the solution of our biharmonic prob-
lem. We see at the bottom of Figure 5 that the bridge is very stable under this load,
with only a small displacement. We also use (4.2) as the iteration termination condi-
tion here. The iteration numbers (in parentheses with GMRES acceleration) used by
our Dirichlet--Neumann algorithms to compute this solution are 44(29) for DN2 and
7(6) for DN3 and DN4. This clearly shows that DN3 and DN4 are much better al-
gorithms than DN2 for solving the biharmonic problem also in this many subdomain
application, and GMRES acceleration is not important for DN3 and DN4, similar to
the two subdomain case.

5. Conclusions. We showed that in contrast to the classical Dirichlet--Neumann
method, which was already well studied in the literature for the biharmonic problem,
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there are other quite natural Dirichlet--Neumann methods, and we proved that the
convergence properties of two of them are very much superior for two subdomain
decompositions and have the same convergence properties as Dirichlet--Neumann for
Laplace's equation, while the classical one does not. We proved that there is indeed no
relaxation matrix that could give the classical Dirichlet--Neumann method for the bi-
harmonic problem such good convergence properties. It is therefore important when
solving biharmonic problems with Dirichlet--Neumann methods to choose the good
two traces for the Dirichlet step and the good remaining ones for the Neumann step;
using clamped conditions for the Dirichlet step does not lead to a fast domain de-
composition method, even though its convergence is still independent of the mesh
size. Our work opens up a new direction for other domain decomposition methods for
biharmonic problems, since they also use Dirichlet conditions, like the Schwarz meth-
ods, or Dirichlet and Neumann conditions, like the FETI and Neumann--Neumann
methods. For all these cases, we expect the choice of what is Dirichlet and what is
Neumann to have an important influence on the convergence behavior, and the clas-
sical clamped condition for Dirichlet seems to be less favorable, as we have already
discovered for Schwarz methods in [20]. Corresponding results for optimized Schwarz
methods and Neumann--Neumann and FETI methods will appear elsewhere.
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