
Trust-Region Newton-CG with Strong Second-Order Complexity

Guarantees for Nonconvex Optimization∗

Frank E. Curtis† Daniel P. Robinson† Clément W. Royer‡ Stephen J. Wright§

November 23, 2020

Abstract

Worst-case complexity guarantees for nonconvex optimization algorithms have been a topic of growing
interest. Multiple frameworks that achieve the best known complexity bounds among a broad class of
first- and second-order strategies have been proposed. These methods have often been designed primarily
with complexity guarantees in mind and, as a result, represent a departure from the algorithms that have
proved to be the most effective in practice. In this paper, we consider trust-region Newton methods, one
of the most popular classes of algorithms for solving nonconvex optimization problems. By introducing
slight modifications to the original scheme, we obtain two methods—one based on exact subproblem
solves and one exploiting inexact subproblem solves as in the popular “trust-region Newton-Conjugate-
Gradient” (trust-region Newton-CG) method—with iteration and operation complexity bounds that
match the best known bounds for the aforementioned class of first- and second-order methods. The
resulting trust-region Newton-CG method also retains the attractive practical behavior of classical trust-
region Newton-CG, which we demonstrate with numerical comparisons on a standard benchmark test
set.

Key words. smooth nonconvex optimization, trust-region methods, Newton’s method, conjugate gradient
method, Lanczos method, worst-case complexity, negative curvature

AMS subject classifications. 49M05, 49M15, 65K05, 90C60

1 Introduction

Consider the unconstrained optimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is twice Lipschitz continuously differentiable and possibly nonconvex. We propose
and analyze the complexity of two trust-region algorithms for solving problem (1). Our main interest is
in an algorithm that, for each subproblem, uses the conjugate gradient (CG) method to minimize an exact
second-order Taylor series approximation of f subject to a trust-region constraint, as in so-called trust-region

∗Version of November 23, 2020.
†Department of Industrial and Systems Engineering, Lehigh University, 200 W. Packer Ave., Bethlehem, PA 18015-1582,

USA. (frank.e.curtis@lehigh.edu, daniel.p.robinson@lehigh.edu). Work of the first author was supported by DOE Award DE-
SC0010615 and NSF Awards CCF-1740796 and CCF-1618717.

‡LAMSADE, CNRS, Université Paris-Dauphine, Université PSL, 75016 PARIS, FRANCE. (clement.royer@dauphine.psl.eu).
Work of this author was partially supported by Award N660011824020 from the DARPA Lagrange Program.

§Computer Sciences Department, University of Wisconsin, 1210 W. Dayton St., Madison, WI 53706, USA.
(swright@cs.wisc.edu). Work of this author was supported by NSF Awards 1628384, 1634597, and 1740707; Subcontract
8F-30039 from Argonne National Laboratory; and Award N660011824020 from the DARPA Lagrange Program.

1

ar
X

iv
:1

91
2.

04
36

5v
3

 [
m

at
h.

O
C

]
 1

9
N

ov
 2

02
0

frank.e.curtis@lehigh.edu
daniel.p.robinson@lehigh.edu
clement.royer@dauphine.psl.eu
swright@cs.wisc.edu

Newton-CG methods. Our complexity analysis for both methods is based on approximate satisfaction of
second-order necessary conditions for stationarity, that is,

∇f(x) = 0 and ∇2f(x) positive semidefinite. (2)

Specifically, given a pair of (small) real positive tolerances (εg, εH), our algorithms terminate when they find
a point xε such that

‖∇f(xε)‖ ≤ εg and λmin(∇2f(xε)) ≥ −εH , (3)

where λmin(·) denotes the minimum eigenvalue of its symmetric matrix argument. Such a point is said to be
(εg, εH)-stationary. By contrast, any point satisfying the approximate first-order condition ‖∇f(x)‖ ≤ εg is
called an εg-stationary point.

Recent interest in complexity bounds for nonconvex optimization stems in part from applications in
machine learning, where for certain interesting classes of problems all local minima are global minima. We
have a particular interest in trust-region Newton-CG algorithms since they have proved to be extremely
effective in practice for a wide range of large-scale applications. We show in this paper that by making fairly
minor modifications to such an algorithm, we can equip it with strong theoretical complexity properties
without significantly degrading important performance measures such as the number of iterations, function
evaluations, and gradient evaluations required until an (εg, εH)-stationary point is reached. This is in contrast
to other recently proposed schemes that achieve good complexity properties, but have not demonstrated such
good performance in practice against a state-of-the-art trust-region Newton-CG algorithm; see, e.g., [1, 6].

We prove results concerning both iteration complexity and operation complexity. The former refers to
a bound on the number of “outer” iterations required to identify a point that satisfies (3). For the latter,
we identify a unit operation and find a bound on the number of such operations required to find a point
satisfying (3). As in earlier works on Newton-CG methods [30, 29], the unit operation is either a gradient
evaluation or a Hessian-vector multiplication. In both types of complexity—iteration and operation—we
focus on the dependence of bounds on the tolerances εg and εH .

Our chief contribution is to show that a trust-region Newton-CG method can be modified to have state-

of-the-art operation complexity properties for locating an (εg, ε
1/2
g)-stationary point, matching recent results

for modified line search Newton methods, cubic regularization methods, and other approaches based on

applying accelerated gradient to nonconvex functions (see Section 1.3). The setting εH = ε
1/2
g is known to

yield the lowest operation complexity bounds for several classes of second-order algorithms.

1.1 Outline

We specify assumptions and notation used throughout the paper in Section 1.2, and discuss relevant literature
briefly in Section 1.3. Section 2 describes a trust-region Newton method in which we assume that the
subproblem is solved exactly at each iteration, and in which the minimum eigenvalue of the Hessian is
calculated as necessary to verify the conditions (3). We prove the iteration complexity of this method, setting
the stage for our investigation of a method using inexact subproblem solves. In Section 3, we describe an
inexact implementation of the solution of the trust-region subproblem by a conjugate gradient method, and
find bounds on the number of matrix-vector multiplications required for this method. We also discuss the
use of iterative methods to obtain approximations to the minimum eigenvalue of the Hessian. Section 4
describes a trust-region Newton-CG method that incorporates the inexact solvers of Section 3, and analyzes
its iteration and operation complexity properties. We describe implementation challenges in Section 5,
then detail our computational experiments in Section 6. Finally, we make some concluding observations in
Section 7.

1.2 Assumptions and notation

We write R for the set of real numbers (that is, scalars), Rn for the set of n-dimensional real vectors, Rm×n
for the set of m-by-n-dimensional real matrices, Sn ⊂ Rn×n for the set of n-by-n-dimensional real symmetric

2

matrices, and N for the set of nonnegative integers. For v ∈ Rn, we use ‖v‖ to denote the `2-norm of v.
Given scalars (a, b) ∈ R× R, we write a ⊥ b to mean ab = 0.

In reference to problem (1), we use g := ∇f : Rn → R and H := ∇2f : Rn → Sn to denote the gradient
and Hessian functions of f , respectively. For each iteration k ∈ N = {0, 1, 2, . . . } of an algorithm for solving
(1), we let xk denote the kth solution estimate (that is, iterate) computed. For brevity, we append k ∈ N as a
subscript to a function to denote its value at the kth iterate, e.g., fk := f(xk), gk := g(xk), and Hk := H(xk).
The subscript j ∈ N is similarly used for the iterates of the subroutines used for computing search directions
for an algorithm for solving (1). Given Hk ∈ Sn, we let λk := λmin(Hk) denote the minimum eigenvalue of
Hk with respect to R.

Given functions φ : R → R and ϕ : R → [0,∞), we write φ(·) = O(ϕ(·)) to indicate that |φ(·)| ≤ Cϕ(·)
for some C ∈ (0,∞). Similarly, we write φ(·) = Õ(ϕ(·)) to indicate that |φ(·)| ≤ Cϕ(·)| logc(·)| for some
C ∈ (0,∞) and c ∈ (0,∞). In this manner, one finds that O(ϕ(·) logc(·)) ≡ Õ(ϕ(·)) for any c ∈ (0,∞).

The following assumption on the objective function in (1) is made throughout.

Assumption 1. The objective function value sequence {fk} is bounded below by flow ∈ R. The sequence
of line segments {[xk, xk + sk]} lies in an open set over which f is twice continuously differentiable and
the gradient and Hessian functions are Lipschitz continuous with constants Lg ∈ (0,∞) and LH ∈ (0,∞),
respectively.

The following bounds are implied by Assumption 1 (see e.g., [26]):

f(xk + sk)− fk − gTk sk − 1
2s
T
kHksk ≤ LH

6 ‖sk‖
3 for all k ∈ N, (4a)

‖g(xk + sk)− gk −Hksk‖ ≤ LH

2 ‖sk‖
2 for all k ∈ N, (4b)

and ‖Hk‖ ≤ Lg for all k ∈ N. (4c)

1.3 Literature review

Complexity results for smooth nonconvex optimization algorithms abound in recent literature. We discuss
these briefly and give some pointers below, with a focus on methods with best known complexity.

Cubic regularization [27, Theorem 1] has iteration complexity O(ε
−3/2
g) to find an (εg, ε

1/2
g)-stationary

point; see also [7, 9]. Algorithms that find such a point with operation complexity Õ(ε
−7/4
g), with high

probability, were proposed in [1, 6]. (The “high probability” is due to the use of randomized iterative methods
for calculating a minimum eigenvalue and/or solving a linear system.) A method that deterministically finds

an εg-stationary point in Õ(ε
−7/4
g) gradient evaluations was described in [5].

Line search methods that make use of Newton-like steps, the conjugate gradient method for inexactly
solving linear systems, and randomized Lanczos for calculating negative curvature directions are described

in [30, 29]. These methods also have operation complexity Õ(ε
−7/4
g) to find a (εg, ε

1/2
g)-stationary point, with

high probability. The method in [29] finds an εg-stationary point deterministically in Õ(ε
−7/4
g) operations,

showing that the conjugate gradient method on nonconvex quadratics shares properties with accelerated
gradient on nonconvex problems as described in [5].

Trust-region methods An early result of [19] shows that standard trust-region methods require O(ε−2
g)

iterations to find an εg-stationary point; this complexity was shown to be sharp in [8]. A trust-region Newton

method with iteration complexity of O(max{ε−3/2
g , ε−3

H }) for finding an (εg, εH)-stationary point is described
in [11]. This complexity matches that of cubic regularization methods [27, 7, 9].

Another method that uses trust regions in conjunction with a cubic model to find an (εg, εH)-stationary
point with guaranteed complexity appears in [23]. This is not a trust-region method in the conventional
sense because it fixes the trust-region radius at a constant value. Other methods that combine trust-region
and cubic-regularization techniques in search of good complexity bounds are described in [12, 14, 15, 2, 3].

3

Solving the trust-region subproblem Efficient solution of the trust-region subproblem is a core aspect
of both the theory and practice of trust-region methods. In the context of this paper, such results are vital
in turning an iteration complexity bound into an operation complexity bound. The fact that the trust-region
subproblem (with a potentially nonconvex objective) can be solved efficiently remains surprising to many.
This is especially true since it has some complicating features, particularly the “hard case” in which, in
iteration k ∈ N, the gradient gk is orthogonal to the eigenspace of the Hessian Hk corresponding to its
minimum eigenvalue.

Approaches for solving trust-region subproblems based on matrix factorizations are described in [24]; see
also [28, Chapter 4]. For large-scale problems, iterative techniques based on the conjugate gradient (CG)
algorithm [31, 32] and the Lanczos method [16, 25] have been described in the literature. Convergence rates
for the method of [16] are presented in [34], though results are weaker in the hard case.

Global convergence rates in terms of the objective function values for the trust-region subproblem are a
recent focus; see for example [20], wherein the authors use an SDP relaxation, and [33], wherein the authors
apply an accelerated gradient method to a convex reformulation of the trust-region subproblem (which
requires an estimate of the minimum eigenvalue of the Hessian). Both solve the trust-region subproblem to
within ε of the optimal subproblem objective value in Õ(ε−1/2) time.

A recent method based on Krylov subspaces is presented in [4]. This method circumvents the hard case
by its use of randomization. Subsequent work in [18] derives a convergence rate for the norm of the residual
vectors in the Krylov-subspace approach.

The hard case does not present a serious challenge to the main algorithm that we propose (Algorithm 4).
When it occurs, either the conjugate gradient procedure (Algorithm 2) returns an acceptable trial step, or
else the minimum-eigenvalue procedure (Algorithm 3) will be invoked to find a negative curvature step.

2 An exact trust-region Newton method

In this section, we propose a trust-region Newton method that uses, during each iteration, the exact solution
of a (regularized) trust-region subproblem. The algorithm is described in Section 2.1 and its complexity
guarantees are analyzed in Section 2.2. Our analysis of this method sets the stage for our subsequent
method that uses inexact subproblem solutions.

2.1 The algorithm

Our trust-region Newton method with exact subproblem solves, which is inspired in part by the line search
method proposed in [30], is written as Algorithm 1. Unlike a traditional trust-region method, the second-order
stationarity tolerance εH ∈ (0,∞) is used to quantify a regularization of the quadratic model mk : Rn → R
of f at xk used in the subproblem, which is given by

mk(x) := fk + gTk (x− xk) + 1
2 (x− xk)THk(x− xk); (5)

see (6). Our choice of regularization makes for a relatively straightforward complexity analysis because
it causes the resulting trial step sk to satisfy certain desirable objective function decrease properties. Of
course, a possible downside is that the practical behavior of the method may be affected by the choice of the
stationarity tolerance εH , which is not the case for a traditional trust-region framework. In any case, the
remainder of Algorithm 1 is identical to a traditional trust-region Newton method.

Before presenting our analysis of Algorithm 1, we remark that the sequence {λk} of minimum eigenvalues
of the Hessians {Hk} does not influence the iterate sequence {xk}. The only use of these values is in the
termination test in line 6 to determine when an (εg, εH)-stationary point has been found.

4

Algorithm 1 Trust-Region Newton Method (exact version)

Require: Tolerances εg ∈ (0,∞) and εH ∈ (0,∞); trust-region adjustment parameters γ1 ∈ (0, 1), γ2 ∈
[1,∞), and ψ ∈ (1/γ2, 1]; initial iterate x0 ∈ Rn; initial trust-region radius δ0 ∈ (0,∞); maximum
trust-region radius δmax ∈ [δ0,∞); and step acceptance parameter η ∈ (0, 1).

1: for k = 0, 1, 2, . . . do
2: Evaluate gk and Hk.
3: Initialize λk ←∞.
4: if ‖gk‖ ≤ εg then
5: Compute λk ← λmin(Hk).
6: if λk ≥ −εH then
7: return xk as an (εg, εH)-stationary point for problem (1).
8: end if
9: end if

10: Compute a trial step sk as a solution to the regularized trust-region subproblem

min
s∈Rn

mk(xk + s) + 1
2εH‖s‖

2 s.t. ‖s‖ ≤ δk. (6)

11: Compute the ratio of actual-to-predicted reduction in f , defined as

ρk ←
fk − f(xk + sk)

mk(xk)−mk(xk + sk)
. (7)

12: if ρk ≥ η then
13: Set xk+1 ← xk + sk.
14: if ‖sk‖ ≥ ψδk then
15: Set δk+1 ← min {γ2δk, δmax}.
16: else
17: Set δk+1 ← δk.
18: end if
19: else
20: Set xk+1 ← xk and δk+1 ← γ1‖sk‖.
21: end if
22: end for

2.2 Iteration complexity

We show that Algorithm 1 reaches an (εg, εH)-stationary point in a number of iterations that is bounded by
a function of εg and εH . To this end, let us define the set of iteration numbers

K := {k ∈ N : iteration k is completed without algorithm termination}

along with the subsets

I := {k ∈ K : ‖sk‖ < δk} and B := {k ∈ K : ‖sk‖ = δk}

and
S := {k ∈ K : ρk ≥ η} and U := {k ∈ K : ρk < η}.

The pairs (I,B) and (S,U) are each partitions of K. The iterations with k ∈ I are those with sk in the
interior of the trust region, and those with k ∈ B are those with sk on the boundary of the trust region. The
iterations with k ∈ S are called the successful iterations and those with k ∈ U are called the unsuccessful

5

iterations. Due to the termination conditions in line 6, it follows for Algorithm 1 that

K = {k ∈ N : iteration k is reached and either ‖gk‖ > εg or λk < −εH}. (8)

It follows that, for a run of Algorithm 1, the cardinalities of all of the index sets K, I, B, S, and U are
functions of the tolerance parameters εg and εH .

Since sk is computed as the global solution of the trust-region subproblem (6), it is well known [24, 28]
that there exists a scalar Lagrange multiplier µk such that

gk + (Hk + εHI + µkI)sk = 0, (9a)

Hk + εHI + µkI � 0, (9b)

and 0 ≤ µk ⊥ (δk − ‖sk‖) ≥ 0. (9c)

Our first result is a lower bound on the model reduction achieved by a trial step.

Lemma 1. For all k ∈ K, the model reduction satisfies

mk(xk)−mk(xk + sk) ≥ 1
2εH‖sk‖

2. (10)

Proof. The definition of mk in (5) and the optimality conditions in (9) give

mk(xk)−mk(xk + sk) = −gTk sk − 1
2s
T
kHksk

= sTk (Hk + εHI + µkI)sk − 1
2s
T
kHksk

= 1
2s
T
k (Hk + εHI + µkI)sk + 1

2εH‖sk‖
2 + 1

2µk‖sk‖
2

≥ 1
2εH‖sk‖

2,

as desired.
Next, we show that all sufficiently small trial steps lead to successful iterations.

Lemma 2. For all k ∈ K, if k ∈ U , then δk > 3(1 − η)εH/LH . Hence, by the trust-region radius update
procedure, it follows that

δk ≥ δmin := min
{
δ0,
(

3γ1(1−η)
LH

)
εH

}
∈ (0,∞) for all k ∈ K.

Proof. We begin by proving the first statement of the lemma. To that end, suppose that k ∈ U (meaning
that ρk < η), which from the definition of ρk means that

η (mk(xk + sk)−mk(xk)) < f(xk + sk)− fk. (11)

Combining (11) with (4a), (6), Lemma 1, and (5) leads to

η (mk(xk + sk)−mk(xk)) < gTk sk + 1
2s
T
kHksk + LH

6 ‖sk‖
3

=⇒ (η − 1) (mk(xk + sk)−mk(xk)) < LH

6 ‖sk‖
3

=⇒ 1−η
2 εH‖sk‖2 < LH

6 ‖sk‖
3

=⇒ 3(1−η)
LH

εH < ‖sk‖.

We have shown that k ∈ U implies δk ≥ ‖sk‖ > 3(1−η)εH/LH , as desired. Using a contraposition argument,
we also have that ‖sk‖ ≤ 3(1− η)εH/LH implies k ∈ S. Combining this with the trust-region radius update
procedure and accounting for the initial radius δ0 completes the proof.

We now establish that each successful step guarantees that a certain amount of decrease in the objective
function value is achieved.

Lemma 3. The following hold for all successful iterations:

6

(i) If k ∈ B ∩ S, then
fk − fk+1 ≥ η

2 εHδ
2
k.

(ii) If k ∈ I ∩ S, then
fk − fk+1 ≥ η

2(1+2LH) min
{
‖gk+1‖2ε−1

H , ε3H
}
.

Proof. Part (i) follows from Lemma 1 and the definition of B, which imply that

fk − fk+1 ≥ η (mk(xk)−mk(xk + sk)) ≥ η
2 εH‖sk‖

2 = η
2 εHδ

2
k.

For part (ii), from k ∈ I we know that ‖sk‖ < δk. This fact along with (9c) and (9a) imply that µk = 0
and gk + (Hk + εHI)sk = 0. Now, with (4b), we have

‖gk+1‖ = ‖gk+1 − gk − (Hk + εHI)sk‖
≤ ‖gk+1 − gk −Hksk‖+ εH‖sk‖ ≤ LH

2 ‖sk‖
2 + εH‖sk‖,

which after rearrangement yields

LH

2 ‖sk‖
2 + εH‖sk‖ − ‖gk+1‖ ≥ 0.

Treating the left-hand side as a quadratic scalar function of ‖sk‖ implies that

‖sk‖ ≥
−εH+

√
ε2H+2LH‖gk+1‖
LH

=
−1+
√

1+2LH‖gk+1‖ε−2
H

LH
εH .

To put this lower bound into a slightly more useful form, we use [30, Lemma 17 in Appendix A], which states
that for scalars (a, b, t) ∈ (0,∞)× (0,∞)× [0,∞), we have

− a+
√
a2 + bt ≥ (−a+

√
a2 + b) min{t, 1}. (12)

By setting a = 1, b = 2LH , and t = ‖gk+1‖ε−2
H , we obtain

‖sk‖ ≥
(
−1+

√
1+2LH

LH

)
min

{
‖gk+1‖ε−2

H , 1
}
εH

=
(

2LH

LH(1+
√

1+2LH)

)
min

{
‖gk+1‖ε−1

H , εH
}

≥
(

1√
1+2LH

)
min

{
‖gk+1‖ε−1

H , εH
}
.

Using this inequality in conjunction with k ∈ S and Lemma 1 proves that

fk − f(xk + sk) ≥ η (mk(xk)−mk(xk + sk)) ≥ η
2 εH‖sk‖

2

≥ η
2(1+2LH) min

{
‖gk+1‖2ε−1

H , ε3H
}
,

which completes the proof for part (ii).
We now bound the number of successful iterations before termination.

Lemma 4. The number of successful iterations performed by Algorithm 1 before an (εg, εH)-stationary point
is reached satisfies

|S| ≤
⌊
CS max{ε−1

H , ε−2
g εH , ε

−3
H }
⌋

+ 1, (13)

where
CS :=

4(f0−flow)

η max
{

1
δ20
,

L2
H

9γ2
1(1−η)2

, 1 + 2LH

}
. (14)

7

Proof. The successful iterations may be written as S = SL ∪ SGG ∪ SGL where

SL := {k ∈ S : ‖gk‖ ≤ εg},
SGG := {k ∈ S : ‖gk‖ > εg and ‖gk+1‖ > εg},

and SGL := {k ∈ S : ‖gk‖ > εg and ‖gk+1‖ ≤ εg}.

We first bound |SL ∪ SGG|, for which we will make use of the constant

c := η
2 min

{
δ2
0 ,

9γ2
1(1−η)2

L2
H

, 1
1+2LH

}
. (15)

For k ∈ SL, the fact that the algorithm has not yet terminated implies (see (8)) that λk < −εH . By (9),
it follows that µk > 0 and ‖sk‖ = δk, and thus k ∈ B. Thus, for k ∈ SL, Lemma 3(i), Lemma 2, and (15)
imply that

fk − fk+1 ≥ η
2 εHδ

2
k ≥

η
2 min

{
δ2
0εH ,

9γ2
1(1−η)2

L2
H

ε3H

}
≥ cmin

{
εH , ε

3
H

}
. (16)

Now consider k ∈ SGG. Since in this case either of the cases in Lemma 3 may apply, one can only conclude
that, for each k ∈ SGG, the following bound holds:

fk − fk+1 ≥ η
2 min

{
δ2
kεH ,

(
‖gk+1‖2
1+2LH

)
ε−1
H ,
(

1
1+2LH

)
ε3H

}
.

Combining this with the definition of SGG, the lower bound on δk in Lemma 2, and the definition of c in
(15), it follows that

fk − fk+1 ≥ cmin
{
εH , ε

2
gε
−1
H , ε3H

}
. (17)

To bound |SL ∪ SGG|, we sum the objective function decreases obtained over all such iterations, which
with Assumption 1 and the monotonicity of {fk} gives

f0 − flow ≥
∑
k∈K

(fk − fk+1) ≥
∑
k∈SL

(fk − fk+1) +
∑

k∈SGG

(fk − fk+1).

Combining this inequality with (16) and (17) shows that

f0 − flow ≥
∑
k∈SL

cmin{εH , ε3H}+
∑

k∈SGG

cmin{εH , ε2gε−1
H , ε3H}

≥ c(|SL|+ |SGG|) min{εH , ε2gε−1
H , ε3H},

from which it follows that

|SL|+ |SGG| ≤
(
f0−flow

c

)
max{ε−1

H , ε−2
g εH , ε

−3
H }. (18)

Next, let us consider the set SGL. Since k ∈ SGL means ‖gk+1‖ ≤ εg, the index corresponding to the next
successful iteration (if one exists) must be an element of the index set SL. This implies that |SGL| ≤ |SL|+1,
where the 1 accounts for the possibility that the last successful iteration (prior to termination) has an index
in SGL. Combining this bound with (18) yields

|S| = |SL|+ |SGG|+ |SGL| ≤
2(f0−flow)

c max{ε−1
H , ε−2

g εH , ε
−3
H }+ 1,

which completes the proof when we substitute for c from (15).
We now bound the number of unsuccessful iterations.

Lemma 5. The number of unsuccessful iterations that occur before an (εg, εH)-stationary point is reached
is either zero or else satisfies

|U| ≤
⌊
1 + logγ1

(
3(1−η)
LHδmax

)
+ logγ1 (εH)

⌋
|S|. (19)

8

Proof. If the number of successful iterations is zero, then the initial point must be (εg, εH)-stationary
and there are no unsuccessful iterations. Hence, let us proceed under the assumption that |S| ≥ 1. Let
us denote the successful iteration indices as {k1, . . . , k|S|} := S. If the number of unsuccessful iterations is
zero, then there is nothing left to prove, so we may proceed under the assumption that there is at least one
unsuccessful iteration. Thus, we may consider arbitrary i ∈ {1, . . . , |S| − 1} such that ki+1 − ki − 1 ≥ 1,
that is, there is at least one unsuccessful iteration between iterations ki and ki+1. We seek a bound on
ki+1 − ki − 1. From the update formulas for the trust-region radius, one finds for all unsuccessful iteration
indices l ∈ {ki + 1, . . . , ki+1 − 1} that δl = γ1‖sl−1‖ ≤ γ1δl−1, so

δl ≤ min{γ2δki , δmax}γl−ki−1
1 ≤ δmaxγ

l−ki−1
1 . (20)

Moreover, for any unsuccessful iteration index l ∈ {ki + 1, . . . , ki+1 − 1} we have from Lemma 2 that
δl > 3(1− η)εH/LH . Thus, for such l, (20) implies that

3(1−η)
LH

εH < δmaxγ
l−ki−1
1 =⇒ l − ki − 1 ≤ logγ1

(
3(1−η)εH
LHδmax

)
.

Consequently, using the specific choice l = ki+1 − 1, one finds that

ki+1 − ki − 1 ≤ 1 + logγ1

(
3(1−η)
LHδmax

)
+ logγ1(εH),

and because the left-hand side is an integer, we have

ki+1 − ki − 1 ≤
⌊
1 + logγ1

(
3(1−η)
LHδmax

)
+ logγ1(εH)

⌋
. (21)

Since i was chosen arbitrarily such that ki+1 − ki − 1 ≥ 1, the right-hand side in (21) is at least 1 if there
are any unsuccessful iterations between iteration k1 and k|S|.

Consider now the first successful iteration k1. We seek a bound on the number of unsuccessful iterations
prior to iteration k1. If there are no such unsuccessful iterations, then there is nothing left to prove; hence,
we may assume k1 ≥ 1. We have that δk1 ≤ γ

k1
1 δ0 ≤ γk11 δmax, and thus from Lemma 2 it follows that

min
{
δ0,

3γ1(1−η)
LH

εH

}
≤ δk1 ≤ γ

k1
1 δ0 ≤ γk11 δmax.

From the first two of these inequalities and the facts that γ1 ∈ (0, 1) and k1 ≥ 1, the “min” on the left-hand
side is not achieved by δ0, so we have

3γ1(1−η)
LH

εH ≤ γk11 δmax,

which, when we take into account that k1 is an integer, leads to

k1 ≤
⌊
1 + logγ1

(
3(1−η)
LHδmax

)
+ logγ1(εH)

⌋
. (22)

Under our assumption that k1 ≥ 1, the right-hand side of (22) is at least 1.
Since the iteration immediately prior to termination is k|S| (except in the trivial case in which termination

occurs at the initial point), we have

|U| = k1 +

|S|−1∑
i=1

(ki+1 − ki − 1). (23)

If U 6= ∅, we have that k1 ≥ 1 and/or at least one of the terms in the summation is at least 1. We can in
this case bound every term on the right-hand side of (23) by the right-hand sides of (21) and (22) to deduce
the result.

The main result for iteration complexity of Algorithm 1 may now be proved.

9

Theorem 1. Under Assumption 1, the number of successful iterations (and objective gradient and Hessian
evaluations) performed by Algorithm 1 before an (εg, εH)-stationary point is obtained satisfies

|S| = O
(
max{ε−3

H , ε−1
H , ε−2

g εH}
)

(24)

and the total number of iterations (and objective function evaluations) performed before such a point is
obtained satisfies

|K| = O
(

log1/γ1(ε−1
H) max{ε−3

H , ε−1
H , ε−2

g εH}
)
. (25)

Proof. Formula (24) follows from Lemma 4. Formula (25) follows from Lemma 4, Lemma 5, and the fact
that logγ1(εH) = log1/γ1(ε−1

H).

If one chooses εH = ε
1/2
g in (24) and (25) as well as any positive scalar ε̄g ∈ R, then Theorem 1 implies

that, for all εg ∈ (0, ε̄g], one has

|S| = O
(
ε−3/2
g

)
and |K| = O

(
ε−3/2
g log1/γ1

(
ε−1/2
g

))
= Õ

(
ε−3/2
g

)
for the numbers of successful and total iterations, respectively. These correspond to the results obtained for
the line search method in [30, Theorem 5, Theorem 6]).

3 Iterative methods for solving the subproblems inexactly

This section describes the algorithms needed to develop an inexact trust-region Newton method, which
will be presented and analyzed in Section 4. A truncated CG method for computing directions of descent is
discussed in Section 3.1 and an iterative algorithm for computing directions of negative curvature is described
in Section 3.2.

3.1 A truncated CG method

We propose Algorithm 2 as an appropriate iterative method for approximately solving the trust-region
subproblem

min
s∈Rn

gT s+ 1
2s
T (H + 2εI)s s.t. ‖s‖ ≤ δ, (26)

where g ∈ Rn is assumed to be a non-zero vector, H ∈ Sn is possibly indefinite, ε ∈ (0,∞) plays the role
of a regularization parameter, and δ ∈ (0,∞). Algorithm 2 is based on the CG method and builds on the
Steihaug-Toint approach [31, 32]. (The factor of 2 in the regularization term in (26) is intentional. For
consistency in the termination condition, the inexact trust-region Newton method in Section 4 employs a
larger regularization term than the exact method analyzed in Section 2.)

For the most part, Algorithm 2 is identical to traditional truncated CG. For example, termination occurs
in line 18 when the next CG iterate yj+1 would lie outside the trust region, and we return s as the largest
feasible step on the line segment connecting yj to yj+1. In this situation, we also set outCG ← bnd-norm
to indicate that s lies on the boundary of the trust-region constraint.

However, there are three key differences between Algorithm 2 and truncated CG. First, the residual
termination criterion in line 21 enforces the condition

‖(H + 2εI)s+ g‖ ≤ ζ
2 min{‖g‖, ε‖s‖}, (27)

which is stronger than the condition traditionally used in truncated CG (which typically has ζ
2‖g‖ for the

right-hand side) and incorporates a criterion typical of Newton-type methods with optimal complexity [10, 30]
(which use ε‖s‖ for the right-hand side). If this criterion is satisfied, then we return the current CG iterate as
the step (that is, we set s← yj+1) and indicate that s lies in the interior of the trust region and satisfies the
residual condition (27) by setting outCG← int-res.

10

Second, traditional truncated CG terminates if a direction of nonpositive curvature is encountered.
Line 10 of Algorithm 2 triggers termination if a direction with curvature less than or equal to ε is found
for H + 2εI, since this condition implies that the curvature of H along the same direction is less than or
equal to −ε. In this case, we return a step s obtained by moving along the direction of negative curvature
to the boundary of the trust-region constraint, and return outCG← bnd-neg to indicate that s lies on the
boundary because a direction of negative curvature was computed.

Third, unlike traditional truncated CG, which (in exact arithmetic) requires up to a maximum of kmax = n
iterations, line 4 allows for an alternative iteration limit to be imposed. Regardless of which limit is used, if
kmax iterations are performed, Algorithm 2 returns s as the current CG iterate and sets outCG← int-max.
This flag indicates that the maximum number of iterations has been reached while remaining in the interior
of the trust region.

The lemma below motivates the alternative choice for kmax in line 4.

Lemma 6. Suppose εI ≺ H + 2εI � (M + 2ε)I for M ∈ [‖H‖,∞) and define

κ(M, ε) := (M + 2ε)/ε and J(M, ε, ζ) := 1
2

√
κ(M, ε) ln

(
4κ(M, ε)3/2/ζ

)
, (28)

where ζ ∈ (0, 1) is input to Algorithm 2. If lines 3–7 were simply to set kmax ←∞, then Algorithm 2 would
terminate at either line 18 or line 22 after a number of iterations (equivalently, matrix-vector products) equal
to at most

min {n, J(M, ε, ζ)} = min
{
n, Õ(ε−1/2)

}
. (29)

Proof. Since H + 2εI � εI by assumption, a direction of curvature less than ε for H + 2εI does not exist,
meaning that termination in line 12 cannot occur. It follows from the fact that εI ≺ H + 2εI � (M + 2ε)I
and [30, proof of Lemma 11] that CG would reach an iterate satisfying (27)—so that termination in line 22
would occur—in at most the number of iterations given by (29). Of course, if termination occurs earlier in
line 18, the bound (29) still holds.

When employing the trust-region method of Section 4 for minimizing f , Algorithm 2 is invoked without
knowing whether or not H + 2εI � εI. Nevertheless, Lemma 6 allows us to make the following crucial
observation.

Lemma 7. If the iteration limit in Algorithm 2 is exceeded (that is, termination occurs at line 28), then
H � −εI.

Proof. If kmax is set to n in line 4 or line 6, then it would follow from standard CG theory that Algorithm 2
cannot reach line 28, because either rj+1 = 0 for some j < n (thus termination would have occurred at line 21)
or else one of the other termination conditions would have been activated before this point. Hence, kmax

must have been set in line 4 to some value less than n. In this case, it follows from Lemma 6, the choice of
M , and the choice of kmax in line 4 that H + 2εI � εI.

When Algorithm 2 returns because the inequality in Line 10 holds, it is possible that the objective function
in (26) evaluated at the returned vector s is larger than its value at s = 0, a situation that is typically not
possible when CG is used as a subproblem solver in trust-region methods. This is because, although the
inequality in Line 10 implies that pj is a direction of negative curvature for H, pj is not necessarily a direction
of negative curvature for the matrix H + 2εI that defines the quadratic model in (26). Since, in this case,
s is obtained by moving to the boundary of the trust-region along the direction pj (similar to the behavior
of Steihaug’s CG method in [31], and needed for our complexity result), we require the following result,
which establishes that any step computed by Algorithm 2 possesses a decrease property with respect to the
non-regularized version of the quadratic model.

Lemma 8. The step s returned by Algorithm 2 satisfies

gT s+ 1
2s
THs ≤ − 1

2ε‖s‖
2.

11

Algorithm 2 Truncated CG Method for the Trust-Region Subproblem

1: Input: Nonzero g ∈ Rn; H ∈ Sn; regularization parameter ε ∈ (0,∞); trust-region radius δ ∈ (0,∞);
accuracy parameter ζ ∈ (0, 1); flag capCG ∈ {true, false}; and (if capCG = true) upper bound
M ∈ [‖H‖,∞).

2: Output: trial step s and flag outCG indicating termination type.

3: if capCG = true then
4: Set kmax ← min

{
n, 1

2

√
κ ln

(
4κ3/2/ζ

)}
where κ← (M + 2ε)/2.

5: else
6: Set kmax ← n.
7: end if
8: Set y0 ← 0, r0 ← g, p0 ← −g, and j ← 0.
9: while j < kmax do

10: if pTj (H + 2εI)pj ≤ ε‖pj‖2 then
11: Compute σ ≥ 0 such that ‖yj + σ pj‖ = δ.
12: return s← yj + σ pj and outCG← bnd-neg.
13: end if
14: Set αj ← ‖rj‖2/(pTj (H + 2εI)pj).
15: Set yj+1 ← yj + αjpj .
16: if ‖yj+1‖ ≥ δ then
17: Compute σ ≥ 0 such that ‖yj + σ pj‖ = δ.
18: return s← yj + σ pj and outCG← bnd-norm.
19: end if
20: Set rj+1 ← rj + αj(H + 2εI)pj .

21: if ‖rj+1‖ ≤ ζ
2 min{‖g‖, ε‖yj+1‖} then

22: return s← yj+1 and outCG← int-res.
23: end if
24: Set βj+1 ← (rTj+1rj+1)/(rTj rj).
25: Set pj+1 ← −rj+1 + βj+1pj .
26: Set j ← j + 1.
27: end while
28: return s← ykmax

and outCG← int-max.

Proof. Basic CG theory ensures that for any j up to termination, the sequence {gT yj + 1
2y
T
j (H + 2εI)yj}

is monotonically decreasing. Since y0 = 0, we thus have

gT yi + 1
2y
T
i (H + 2εI)yi ≤ 0 for all i ∈ {0, 1, . . . , j}. (30)

Suppose outCG ∈ {bnd-norm, int-res, int-max}. From (30) and the fact (by [31, Theorem 2.1]) that
gT s+ 1

2s
T (H + 2εI)s ≤ gT yj + 1

2y
T
j (H + 2εI)yj when outCG← bnd-norm, we have

gT s+ 1
2s
T (H + 2εI)s ≤ 0 ⇔ gT s+ 1

2s
THs ≤ −ε‖s‖2,

which implies the desired result.
Second, suppose that outCG← bnd-neg, meaning that Algorithm 2 terminates because iteration j yields

pTj (H + 2εI)pj ≤ ε‖pj‖2. If j = 0, then the fact that p0 = −g allows us to conclude that s = δ(p0/‖p0‖) =
−δ(g/‖g‖), ‖s‖ = δ, and

1
2s
T (H + 2εI)s = 1

2δ
2(pT0 (H + 2εI)p0)/‖p0‖2 ≤ 1

2εδ
2 = 1

2ε‖s‖
2,

from which it follows that

gT s+ 1
2s
THs = −δ‖g‖+ 1

2s
T (H + 2εI)s− ε‖s‖2 ≤ − 1

2ε‖s‖
2,

12

as desired. On the other hand, if j ≥ 1, then the fact that outCG← bnd-neg means that s← yj +σpj with
σ ≥ 0 such that ‖s‖ = δ. The CG process yields:

yi =

i−1∑
`=0

α`p` ∈ span {p0, . . . , pi−1} for all i ∈ {1, 2, . . . , j}, (31a)

pTi (H + 2εI)p` = 0 for all {i, `} ⊆ {0, 1, . . . , j} with i 6= `, (31b)

rTi pj = −‖rj‖2 for all i ∈ {0, 1, . . . , j}, (31c)

and yTi pi ≥ 0 for all i ∈ {0, 1, . . . , j}. (31d)

(Referring to Algorithm 2, the property (31a) follows from Line 15; (31b) is the well known conjugacy
property; and (31c) is obtained by successively substituting for pj , pj−1, . . . , pi+1 from Line 25, using the
property that rTi rl = 0 for l 6= i, and using the definition of βj from Line 24. For (31d), see [31, eq. (2.13)].)
Together, (31) and s = yj + σpj imply

gT pj = rT0 pj = −‖rj‖2 ≤ 0 (32a)

sT (H + 2εI)s = yTj (H + 2εI)yj + σ2pTj (H + 2εI)pj (32b)

and ‖s‖2 = ‖yj‖2 + 2σyTj pj + σ2‖pj‖2 ≥ σ2‖pj‖2. (32c)

Combining (30), (32), σ ≥ 0, and pTj (H + 2εI)pj ≤ ε‖pj‖2 shows that

gT s+ 1
2s
THs = gT s+ 1

2s
T (H + 2εI)s− ε‖s‖2

= gT yj + 1
2y
T
j (H + 2εI)yj + σgT pj + 1

2σ
2pTj (H + 2εI)pj − ε‖s‖2

≤ 1
2σ

2pTj (H + 2εI)pj − ε‖s‖2 ≤ 1
2σ

2ε‖pj‖2 − ε‖s‖2 ≤ − 1
2ε‖s‖

2,

which completes the proof.
Lemma 8 shows that if ε = εH , then the bound on the model decrease obtained by the truncated CG

step s is the same as the bound guaranteed by the global solution computed for Algorithm 1 (see Lemma 1).
However, we note that this decrease is obtained by using a larger regularization term.

3.2 A minimum eigenvalue oracle

The truncated CG algorithm presented in Section 3.1 is only one of the tools we need for our proposed
inexact trust-region Newton method. Two complicating cases require an additional tool.

The first case is when outCG = int-max is returned by Algorithm 2. In this case, it must hold that the
maximum allowed number of iterations satisfies kmax < n and, as a consequence of Lemma 7, that H � −εI.
Thus, there exists a direction of sufficient negative curvature for H, and we need a means of computing one.
The second case is when Algorithm 2 terminates with outCG = int-res. In this case, we only know that the
curvature is not sufficiently negative along the directions computed by the algorithm. However, it may still
be true that H � −εI.

These two cases motivate the need for a minimum eigenvalue oracle that estimates the minimum eigen-
value of H, or else returns an indication that (with some desired probability) no sufficiently negative eigen-
value exists. The oracle that we employ is given by Algorithm 3.

4 An inexact trust-region Newton method

In this section, we propose a trust-region Newton method that may use, during each iteration, an inexact
solution to the trust-region subproblem computed using the iterative procedures described in Section 3.
The proposed algorithm is described in Section 4.1 and a second-order complexity analysis is presented in
Section 4.2.

13

Algorithm 3 Minimum Eigenvalue Oracle (MEO)

Input: g ∈ Rn; H ∈ Sn; regularization parameter ε ∈ (0,∞); trust-region radius δ ∈ (0,∞); failure
probability tolerance ξ ∈ (0, 1); and M ∈ [‖H‖,∞).
Output: Either (i) a vector s = ±δv satisfying

gT s ≤ 0, sTHs ≤ − 1
2ε‖s‖

2, and ‖s‖ = δ, (33)

where v has been computed to satisfy ‖v‖ = 1 and vTHv ≤ −ε/2, or (ii) an indication that H � −εI
holds. The probability that the indication in case (ii) is made yet H ≺ −εI is at most ξ. (The bound M
may be needed for algorithm termination; see Assumption 2 on page 14.)

4.1 The algorithm

Algorithm 4 can be viewed as an inexact version of Algorithm 1. We aim at remaining close to the traditional
Newton-CG approaches in [31, 32] by having Algorithm 4 compute, when appropriate, a truncated CG step
in line 4. Once such a step is computed (or set to zero since the current iterate is first-order stationary),
Algorithm 4 deviates from traditional Newton-CG in the “else” branch (line 10), which accounts for the two
situations described in Section 3.2, where an additional check for a negative curvature direction is needed.
(There is one minor difference: when outCG = int-res, the MEO need be called only when ‖gk‖ ≤ εg.)

4.2 Complexity

As in [29], we make the following assumption on the MEO in order to obtain complexity results for Algo-
rithm 4.

Assumption 2. When Algorithm 3 is called by Algorithm 4, the number of Hessian-vector products required
is no more than

Nmeo = Nmeo(εH) := min
{
n, 1 +

⌈
Cmeoε

−1/2
H

⌉}
(34)

where the quantity Cmeo depends at most logarithmically on ξ.

The following instances of Algorithm 3 satisfy Assumption 2.

• The Lanczos algorithm applied to H starting with a random vector uniformly distributed on the unit
sphere. For any ξ ∈ (0, 1), this satisfies the conditions in Assumption 2 with Cmeo = ln(2.75n/ξ2)

√
M/2;

see [29, Lemma 2].

• The conjugate gradient algorithm applied to
(
H + εH

2 I
)
s = b, where b is a random vector uniformly

distributed on the unit sphere. For any ξ ∈ (0, 1), this offers Assumption 2 with the same value of Cmeo

as in the Lanczos-based approach; see [29, Theorem 1].

Since for each instance the conditions of Assumption 2 hold with Cmeo equal to the given value, it follows
that throughout a run of Algorithm 4, the conditions hold with Cmeo = ln(2.75n/ξ2)

√
Lg/2. Algorithm 3

could also be implemented by means of an exact (minimum) eigenvalue calculation of the Hessian. In that
case, up to n Hessian-vector products may be required to evaluate the full Hessian.

In the following analysis, we use similar notation as in Section 2, although the analysis here is notably
different due to the randomness of the MEO. For consistency, we use the same definitions of the index sets
K, I, B, S, and U that appear in the beginning of Section 2.2; in particular, we define K as the index set
of iterations completed prior to termination. However, note that for Algorithm 4 these sets are random
variables, in the sense that for the same objective function and algorithm inputs, they may have different
realizations due to the randomness in Algorithm 3. Thus, when we refer, for example, to k ∈ K, we are
referring to k ∈ K for a given realization of a run of Algorithm 4. We also prove bounds on quantities that
are shown to hold for all realizations of a run of the algorithm (for a given objective function and algorithm

14

Algorithm 4 Trust-Region Newton-CG Method (inexact version)

Require: Tolerances εg ∈ (0,∞) and εH ∈ (0,∞); trust-region adjustment parameters γ1 ∈ (0, 1), γ2 ∈
[1,∞), and ψ ∈ (1/γ2, 1]; initial iterate x0 ∈ Rn; initial trust-region radius δ0 ∈ (0,∞); maximum trust-
region radius δmax ∈ [δ0,∞); step acceptance parameter η ∈ (0, 1); truncated CG accuracy parameter
ζ ∈ (0, 1); MEO failure probability tolerance ξ ∈ [0, 1); flag capCG ∈ {true, false}; and upper bound
M ∈ [Lg,∞).

1: for k = 0, 1, 2, . . . do
2: Evaluate gk and Hk.
3: if gk 6= 0 then
4: Call Algorithm 2 with input g = gk, H = Hk, ε = εH , δ = δk, ζ, capCG, and (if capCG = true) M

to compute sCG
k and output flag outCG.

5: else
6: Set sCG

k ← 0 and outCG← int-res.
7: end if
8: if outCG ∈ {bnd-neg,bnd-norm} or (‖gk‖ > εg and outCG = int-res) then
9: Set sk ← sCG

k .
10: else {that is, outCG = int-max or (‖gk‖ ≤ εg and outCG = int-res)}
11: Call Algorithm 3 with inputs g = gk, H = Hk, ε = εH , δ = δk, ξ, and M , obtaining either sk

satisfying (33) or an indication that Hk � −εHI.
12: if Algorithm 3 predicts that Hk � −εHI then
13: return xk.
14: end if
15: end if
16: Compute the ratio of actual to predicted decrease in f defined as

ρk ←
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

17: if ρk ≥ η then
18: Set xk+1 ← xk + sk.
19: if ‖sk‖ ≥ ψδk then
20: Set δk+1 ← min {γ2δk, δmax}.
21: else
22: Set δk+1 ← δk.
23: end if
24: else
25: Set xk+1 ← xk and δk+1 ← γ1‖sk‖.
26: end if
27: end for

inputs). To emphasize that these bounds hold for all realizations, their constants are written with a bar over
the letter in the definition.

Our first result provides a lower bound on the reduction in the quadratic model of the objective function
achieved by each trial step.

Lemma 9. Consider any realization of a run of Algorithm 4. For all k ∈ K,

mk(xk)−mk(xk + sk) ≥ 1
4εH‖sk‖

2.

Proof. If sk = sCG
k , where sCG

k is computed from Algorithm 2, then, it follows by Lemma 8 that the
desired bound holds. Now suppose that sk is computed from Algorithm 3 in line 11. Since k ∈ K, Algorithm 4

15

does not terminate in iteration k, and it follows from (33) that

mk(xk)−mk(xk + sk) = −gTk sk − 1
2s
T
kHksk ≥ − 1

2s
T
kHksk ≥ 1

4εH‖sk‖
2,

as desired.
We can now show that a sufficiently small trust-region radius leads to a successful iteration, and provide

a lower bound on the sequence of trust-region radii.

Lemma 10. Consider any realization of a run of Algorithm 4. For all k ∈ K, if k ∈ U , then δk >
3(1− η)εH/(2LH). Hence, by the trust-region radius update procedure, it follows that for any realization of
a run of Algorithm 4 that

δk ≥ δ̄min := min
{
δ0,
(

3γ1(1−η)
2LH

)
εH

}
∈ (0,∞) for all k ∈ K. (35)

Proof. For any realization of a run of the algorithm, we can follow the proof of Lemma 2, using Lemma 9
in lieu of Lemma 1. Hence, the lower bound in (35) holds, where δ̄min is independent of any particular
realization of a run.

We now establish a bound on the objective reduction for a successful step.

Lemma 11. Consider any realization of a run of Algorithm 4. The following hold for all successful iterations:

(i) If k ∈ B ∩ S, then
fk − fk+1 ≥ η

4 εHδ
2
k.

(ii) If k ∈ I ∩ S, then ‖gk‖ > εg, outCG = int-res, and

fk − fk+1 ≥ η
4(7+2LH) min

{
‖gk+1‖2ε−1

H , ε3H
}
.

Proof. For part (i), we combine k ∈ B ∩ S with Lemma 9 to obtain, as desired,

fk − fk+1 ≥ η (mk(xk)−mk(xk + sk)) ≥ η
4 εH‖sk‖

2 = η
4 εHδ

2
k.

Now consider part (ii). Note that since k ∈ I, sk cannot have been computed from a call to Algorithm 3
in line 11, since such steps always have ‖sk‖ = δk. Thus, sk = sCG

k . Moreover, from line 8 and the fact that
k ∈ I, we have that ‖gk‖ > εg and outCG = int-res, as desired. In turn, the fact that outCG = int-res
implies that (27) holds with H = Hk, g = gk, s = sk, and ε = εH so that

rk := (Hk + 2εH)sk + gk has ‖rk‖ ≤ ζ
2 εH‖sk‖. (36)

Combining this bound with (4b) and ζ ∈ (0, 1), we have

‖gk+1‖ = ‖gk+1 − gk − (Hk + 2εH)sk + rk‖
≤ ‖gk+1 − gk −Hksk‖+ 2εH‖sk‖+ ‖rk‖

≤ LH

2 ‖sk‖
2 +

(
4+ζ

2

)
εH‖sk‖ ≤ LH

2 ‖sk‖
2 + 5

2εH‖sk‖,

which can be rearranged to yield

LH

2 ‖sk‖
2 + 5

2εH‖sk‖ − ‖gk+1‖ ≥ 0.

Reasoning as in the proof of Lemma 3, with 5
2εH replacing εH , we obtain

‖sk‖ ≥
− 5

2 εH+

√(
5
2

)2
ε2H+2LH‖gk+1‖

LH
=

(
−5+
√

25+8LH‖gk+1‖ε−2
H

2LH

)
εH .

16

By setting (a, b, t) = (5, 8LH , ‖gk+1‖ε−2
H) in the inequality (12), we have

‖sk‖ ≥
(
−5+

√
25+8LH

2LH

)
min

{
‖gk+1‖ε−2

H , 1
}
εH

=
(

8LH

2LH(5+
√

25+8LH)

)
min

{
‖gk+1‖ε−1

H , εH
}

=
(

4
5+
√

25+8LH

)
min

{
‖gk+1‖ε−1

H , εH
}

≥
(

2√
25+8LH

)
min

{
‖gk+1‖ε−1

H , εH
}
≥ 1√

7+2LH
min

{
‖gk+1‖ε−1

H , εH
}
,

which may be combined with k ∈ I ∩ S and Lemma 9 to obtain

fk − fk+1 ≥ η(mk(xk)−mk(xk+1)) ≥ 1
4ηεH‖sk‖

2 ≥ η
4(7+2LH) min

{
‖gk+1‖2ε−1

H , ε3H
}
,

which completes the proof.
The next result is analogous to Lemma 4 and takes randomness in the MEO into account.

Lemma 12. For any realization of a run of Algorithm 4, the number of successful iterations performed
before termination occurs satisfies

|S| ≤ K̄S(εg, εH) :=
⌊
C̄S max{ε−1

H , ε−2
g εH , ε

−3
H }
⌋

+ 1, (37)

where
C̄S :=

8(f0−flow)

η max
{

1
δ20
,

4L2
H

9γ2
1(1−η)2

, 7 + 2LH)
}
. (38)

Proof. For a given realization of a run of the algorithm, we can follow the reasoning of the proof for
Lemma 4. In what follows, SL, SGG, and SGL are defined as in the proof of Lemma 4. (As is the case for
K, we note that these index sets are now realizations of random index sets.)

Consider first k ∈ SL, and let us define the constant

c1 := η
4 min

{
δ2
0 ,

9γ2
1(1−η)2

4L2
H

, 1
7+2LH

}
. (39)

We can use Lemma 11 to conclude that k ∈ K∩B, so that ‖sk‖ = δk. By combining Lemma 11(i), Lemma 10,
and (39), we have for k ∈ SL that

fk − fk+1 ≥ η
4 εHδ

2
k ≥

η
4 min

{
δ2
0εH ,

9γ2
1(1−η)2

4L2
H

ε3H

}
≥ c1 min

{
εH , ε

3
H

}
. (40)

For k ∈ SGG, we have from Lemma 11 (either (i) or (ii)) and Lemma 10 that

fk − fk+1 ≥ η
4 min

{
δ2
0εH ,

9γ2
1(1−η)2

4L2
H

ε3H ,
1

7+2LH
ε2gε
−1
H , 1

7+2LH
ε3H

}
≥ c1 min

{
εH , ε

3
H , ε

2
gε
−1
H

}
. (41)

By following the reasoning that led to (18), we obtain from (40) and (41) that

|SL|+ |SGG| ≤
(
f0−flow

c1

)
max{ε−1

H , ε−2
g εH , ε

−3
H }.

As in the proof of Lemma 4, we have that |SGL| ≤ |SL|+ 1, so that

|S| = |SL|+ |SGG|+ |SGL| ≤
2(f0−flow)

c1
max{ε−1

H , ε−2
g εH , ε

−3
H }+ 1.

The desired bound follows by substituting the definition (39) into this bound. To complete the proof, we
note that the right-hand side of (37) is identical for any realization of the algorithm run with the same
inputs.

We now provide a bound on the maximum number of unsuccessful iterations.

17

Lemma 13. For any realization of a run of Algorithm 4, the number of unsuccessful iterations performed
before termination occurs is either zero or else satisfies

|U| ≤
⌊
1 + logγ1

(
3(1−η)

2LHδmax

)
+ logγ1 (εH)

⌋
(|S|+ 1). (42)

Proof. For a given realization of a run of the algorithm, the bound follows from the argument in the proof
of Lemma 5 with two changes. First, Lemma 10 is used in place of Lemma 2. Second, we do not know that
the iteration immediately prior to termination must be a successful iteration for Algorithm 4, as was the
case for Algorithm 1. However, using the argument in the proof of Lemma 5 along with Lemma 10 shows
that if a sequence of consecutive unsuccessful iterations is taken after the final successful iteration, there can
be no more than ⌊

1 + logγ1

(
3(1−η)

2LHδmax

)
+ logγ1(εH)

⌋
such iterations in this sequence, since otherwise an additional successful iteration would be performed. Taking
this fact into account leads to the extra 1 on the right-hand side of (42) as compared to (19).

We assume in our remaining complexity results that the following common-sense rule is used in the
implementation of Algorithm 4.

Implementation Strategy 4.1. For any realization of a run of Algorithm 4, suppose k ∈ K is an index
of an iteration such that (i) Algorithm 3 is called in line 11 and returns a negative curvature direction sk
for Hk and (ii) the step sk is subsequently rejected (that is, k ∈ U). Then, the negative curvature direction
(call it v = vk) used to compute sk is stored and used until the next successful iteration. Until then, every
call to Algorithm 3 is replaced by an access to vk, scaled appropriately to compute sk with norm δk.

This strategy implies that Algorithm 4 cannot terminate following a sequence of unsuccessful iterations if
any one of them yields a direction of sufficiently negative curvature. In practice, this means that Algorithm 4
calls Algorithm 3 at most once between successful iterations. In the next iteration complexity result, this
assumption is used to obtain the probabilistic result for returning an (εg, εH)-stationarity point.

Theorem 2. Under Assumption 1, for any realization of a run, the number of successful iterations (and
objective gradient evaluations) performed by Algorithm 4 before termination occurs satisfies (with K̄S(εg, εH)
defined in (37))

|S| ≤ K̄S(εg, εH) = O
(
max{ε−3

H , ε−1
H , ε−2

g εH}
)

(43)

and the total number of iterations (and objective function evaluations) performed before termination occurs
satisfies

|K| ≤
⌊
1 + logγ1

(
3(1−η)

2LHδmax

)
+ logγ1(εH)

⌋
(K̄S(εg, εH) + 1)

= O
(

log1/γ1(ε−1
H) max{ε−3

H , ε−1
H , ε−2

g εH}
)
.

(44)

If capCG = false, then ‖gk‖ ≤ εg holds at termination. In any case, given Implementation Strategy 4.1, the

vector xk returned by Algorithm 4 is an (εg, εH)-stationary point with probability at least (1− ξ)K̄S(εg,εH).

Proof. The results in (43) and (44) follow from Lemma 12 and Lemma 13. If capCG = false, then the
flag output by Algorithm 2 has outCG 6= int-max. Combining this fact with line 8 of Algorithm 4 allows us
to conclude that ‖gk‖ ≤ εg when termination occurs in this case.

Suppose that Implementation Strategy 4.1 is used. Then, the vector xk returned by Algorithm 4 is
not an (εg, εH)-stationary point only if the MEO (Algorithm 3) makes an inaccurate indication of near-
positive-definiteness, which, each time it is called, can occur with probability at most ξ. Our goal now is to
prove that the vector xk returned by Algorithm 4 is an (εg, εH)-stationary point with probability at least

(1 − ξ)K̄S(εg,εH). To that end, for all k ∈ N, let P̃k be the probability that the algorithm reaches iteration
k and xk is not (εg, εH)-stationary. Similarly, for all k ∈ N, let Pk be the probability that the algorithm
reaches iteration k and xk is not (εg, εH)-stationary, yet the algorithm terminates in iteration k due to an

18

inaccurate indication from the MEO. It follows from the aforementioned property of the MEO in this setting
that Pk ≤ ξP̃k for all k ∈ N. Thus, since it is trivially true that

P̃k +

k−1∑
i=0

Pi ≤ 1 for all k ∈ N,

it follows that

Pk ≤ ξP̃k ≤ ξ

(
1−

k−1∑
i=0

Pi

)
for all k ∈ N. (45)

We now define Mk to be the number of calls to the MEO that have occurred up to and including iteration k,
for any k ∈ N. Let us now prove by induction that

∑k
i=0 Pi ≤ 1 − (1 − ξ)Mk for all k ∈ N. For k = 0, the

claim holds trivially both when M0 = 0 (in which case P0 = 0) and when M0 = 1 (in which case P0 ≤ ξ).
Now suppose that the claim is true for some k ∈ N; we aim to prove that it remains true for k + 1. If
the algorithm reaches iteration k + 1 in which xk+1 is not (εg, εH)-stationary and the MEO is not called in
iteration k + 1, then Mk+1 = Mk and Pk+1 = 0, so by the induction hypothesis it follows that

k+1∑
i=0

Pi =

k∑
i=0

Pi ≤ 1− (1− ξ)Mk = 1− (1− ξ)Mk+1 ,

as desired. On the other hand, if the algorithm reaches iteration k + 1, the iterate xk+1 is not (εg, εH)-
stationary, and the MEO is called in iteration k + 1, then Mk+1 = Mk + 1 and along with (45) and the
induction hypothesis it follows that

k+1∑
i=0

Pi =

k∑
i=0

Pi + Pk+1

≤
k∑
i=0

Pi + ξ

(
1−

k∑
i=0

Pi

)

= ξ + (1− ξ)
k∑
i=0

Pi

≤ ξ + (1− ξ)(1− (1− ξ)Mk)

= 1− (1− ξ)Mk+1 = 1− (1− ξ)Mk+1 ,

as desired, again. Since |S| is an upper bound on the number of successful steps, which in turn bounds the
number of calls to MEO when Implementation Strategy 4.1 is used, we have Mk ≤ |S| ≤ K̄S(εg, εH) for all
k. We conclude that the probability that the algorithm terminates incorrectly due to an incorrect indication
from MEO on any iteration is bounded above by 1 − (1 − ξ)K̄S(εg,εH). Consequently, the probability that
the algorithm outputs an (εg, εH)-stationary point is at least (1− ξ)K̄S(εg,εH), as claimed.

Finally, we state a complexity result for the number of Hessian-vector products. For simplicity, we focus
on the case of a small tolerance εg.

Theorem 3. Let Assumption 1 and Assumption 2 hold, and suppose that Implementation Strategy 4.1 is

used. Suppose that εH = ε
1/2
g with εg ∈ (0, 1). Then, for any realization of a run of Algorithm 4, the total

number of Hessian-vector products performed satisfies:

(i) If capCG = false, then the number of Hessian-vector products is bounded by

n|K|+Nmeo(εH)|K̄S(εg, εH)| = nÕ(ε−3/2
g).

(ii) If capCG = true, then the number of Hessian-vector products is bounded by

min{n, J(Lg, εH , ζ)}|K|+Nmeo(εH)|K̄S(εg, εH)| = min{n, ε−1/4
g }Õ(ε−3/2

g).

19

Proof. First, suppose capCG = false. Then, for any k ∈ K in any realization of a run of the algorithm,
the maximum number of Hessian-vector products computed by the truncated CG algorithm is n. In addition,
over any realization of a run, the maximum number of Hessian-vector products computed by the MEO is
Nmeo(εH) (see (34)) each of the (at most) |K̄S(εg, εH)| times it is called. Since the number of Hessian-vector
products performed by Algorithm 4 is the sum of these two, we have proved the left-hand side of part (i).

For the estimate nÕ(ε
−3/2
g), we use εH = ε

1/2
g , the bound on K from Theorem 2, the estimate of Nmeo from

Assumption 2, and the fact that max{ε−3
H , ε−1

H , ε−2
g εH} = max{ε−3/2

g , ε
−1/2
g } = ε

−3/2
g when εg ∈ (0, 1).

For part (ii), we use the same estimates as well as the estimate of J(Lg, εH , ζ) from Lemma 6 and (4c),

noting that both |K| and K̄S(εg, εH) are Õ(ε
−3/2
g) while J(Lg, εH , ζ) and Nmeo are both min{n, Õ(ε

−1/4
g)}.

Note that for n� ε
−1/4
g , the bound in part (ii) of this theorem is Õ(ε

−7/4
g), which is a familiar quantity

in the literature on the operation complexity required to find an (εg, ε
1/2
g)-stationary point [1, 6, 30].

Theorem 3 illustrates the benefits of using a capped truncated CG routine in terms of attaining good
computational complexity guarantees. As a final remark, we expect the “cap” of Algorithm 2 to be triggered
only in rare cases, due to the conservative nature of the CG convergence bounds that gave rise to this cap.

5 Practical considerations

Having presented an analysis of the theoretical complexity of our inexact trust-region Newton-CG approach,
we consider several practical issues that arise in developing a computational implementation of this method.

The randomness inherent in Algorithm 3 is central to the complexity analysis of Algorithm 4 that was
presented in Section 4. Since the randomness carries with it a small probability of failure of Algorithm 3, two
unsavory situations can occur that lead to “failure modes” for Algorithm 4. First, suppose that Algorithm 3
is called in line 11 because ‖gk‖ ≤ εg and outCG = int-res. In this case, if capCG = true and Algorithm 3
predicts that λmin(Hk) ≥ −εH , then with probability up to ξ this indication is incorrect and a direction
of sufficiently negative curvature actually exists but was not found. Second, suppose that Algorithm 3 is
called because outCG = int-max. Here, it is again possible with probability up to ξ that the indication
λmin(Hk) > −εH will be made, even though we know from Lemma 7 that λmin(Hk) ≤ −εH . This second
case can occur even when ‖gk‖ > εg, meaning that termination can occur at a point that is not even εg-
stationary. Note, however, that in a given iteration the probability of these two situations is bounded by
ξ, which appears only logarithmically in the constant Cmeo of Assumption 2, and thus can be chosen to be
extremely small. We can avoid this second case by replacing Algorithm 2 with the alternative truncated
CG method of [29, Algorithm 1], which computes and returns a negative curvature direction whenever it
detects that one exists. This “implicitly capped” method is more complicated to describe than the “explicitly
capped” version of CG that we consider here, so in this paper we opted for simplicity of description at the
expense of a (small) probability of failure in the subsequent call to Algorithm 3.

Our experiments with the inexact algorithms reported in Section 6 use the randomized Lanczos proce-
dure of [21, 22]. In practice, Algorithm 3 is rarely invoked by Algorithm 4—in the vast majority of test
problems, it is invoked only once on the last iteration of Algorithm 4 as a final check that the Hessian is
approximately positive semidefinite. Rather than explicitly capping the number of iterations to the value
described in Assumption 2 and the comments that follow it, we use an adaptive criterion to decide when
a close approximation to the minimum eigenvalue has been detected. Specifically, we stop at iteration l if
λl−t − λl ≤ 10−5, where t = min{l, n, 10} and λl is the estimate of the minimum eigenvalue at the lth itera-
tion of randomized Lanczos. It makes sense to use such a tight tolerance, since Algorithm 3 is rarely invoked
by Algorithm 4, so that the cost of doing a careful check for approximate semidefiniteness is worthwhile.

In our implementations of the Truncated CG procedure (Algorithm 2), we use the quantity n̄ := min{n+
2, 1.2n} in place of n, in determining the maximum number of iterations kmax. This relaxation can be
beneficial in practice since loss of conjugacy due to numerical rounding can result in a zero residual not
being attained by CG after n steps. Typically, a small number of additional iterations beyond n suffices to
obtain a more accurate solution. Another key parameter in this algorithm, the value ζ used as a convergence

20

threshold for the residual, is set to .25 in our tests. (We discuss the settings of the parameters in Algorithm 4
in the next section.)

6 Computational experiments

We implemented several variants of trust-region Newton methods in Matlab, as follows.

• TR-Newton. An implementation of Algorithm 1 with the trust-region subproblem solved using a
Moré-Sorensen approach [24].

• TR-Newton (no reg.). The same as TR-Newton, except that the regularization term involving εH is
omitted from the subproblem objective (6). This variant demonstrates the effect of this regularization
term on the practical performance of TR-Newton.

• TR-Newton-CG-explicit. An implementation of Algorithm 4 with an explicit cap on the number of CG
iterations (that is, capCG = true).

• TR-Newton-CG-explicit (no reg.). The same as TR-Newton-CG-explicit, except that the regularization
term involving εH is omitted from the subproblem objective, again to illustrate the impact of this
regularization.

• TR-Newton-CG. An implementation of Algorithm 4 without an explicit cap (that is, capCG = false).

• TR-Newton-CG (no reg.). The same as TR-Newton-CG, except that the regularization term involving
εH is omitted from the subproblem objective. This method is the most similar to traditional trust-
region Newton-CG with Steihaug-Toint stopping rules for the CG routine. The only differences with
the latter approach is that, for consistency with the other methods, we use the stopping test on line 21
of Algorithm 2, and still use the MEO (Algorithm 3) to ensure convergence to an (εg, εH)-stationary
point (with high probability).

• TRACE. The trust-region algorithm with guaranteed optimal complexity proposed and analyzed in
[11].

For the six instances of our algorithms, we used a regularization of 2εH while computing the Newton-type
step. We set γ1 = γ−1

2 = 0.5, ψ = 0.75, η = 0.1, ζ = 0.25, δmax = 1020 and δ0 = 10.
Our experiments show that the empirical performance of these methods is similar in terms of the number

of iterations, function evaluations, and gradient evaluations required to locate an (εg, εH)-stationary point.
In particular, the performance of the Newton-CG variants in terms of iterations, function and gradient
evaluations is almost unaffected by the presence of a cap. A second observation is that the regularization
term in the trust-region subproblem objective in Algorithm 4, which is required to ensure optimal iteration
and operation complexity properties for this method, has a noticeable effect on practical performance, mostly
in terms of Hessian-vector products. We discuss this effect further below.

We tested the algorithms using problems from the CUTEst test collection [17]. Many problems in this
benchmark come with different size options. If the default size (according to the sizes that come with the
distribution, downloaded July 1, 2020) was in the range [100,1000], then we used the default size. Otherwise,
we choose the size closest to the range [100,1000] from the default value. This resulted in a test set of 233
problems. In order to focus on the results of experiments for the larger problems in the set, the following
discussion and presentation of results considers only the problems with n ≥ 100; this is a test set of 109
problems.

Figure 1 shows performance profiles for various metrics [13]. The horizontal axis is capped at τ = 10 in
order to distinguish the performance of the methods more clearly. We considered two termination tolerances.
In the first set of experiments, corresponding to the left column of plots in Figure 1, termination was declared
when the algorithm encountered a (10−5, 10−5/2)-stationary point. In the second set of experiments (the
right column of plots in Figure 1) we terminate at (10−5, 10−5)-stationary points. In both sets of runs, we

21

imposed an iteration limit of 104. For the trust-region Newton-CG methods, we also imposed an overall
Hessian-vector product limit of 104n: A run was declared to be unsuccessful if this limit is reached without a
stationary point of the specified precision being found. Although not evident from the performance profiles
due to the cap on τ , all algorithms solved at least 101 test problems out of 109 for both stationarity tolerances,
a reliability of about 93%.

Figure 1 shows the performance of all algorithms to be similar in terms of required iterations and gradient
evaluations. We do however see significant differences in the number of Hessian-vector products required for
the four TR-Newton-CG methods. The variants with no regularization term in the subproblems outperform
the others in this respect; recall that these variants do not possess optimal complexity guarantees. The
practical significance of this difference in performance depends on the cost of computing a gradient relative
to the cost of a Hessian-vector product. If gradient evaluations are significantly more expensive, our results
suggest no substantial difference in computation time between the four Newton-CG methods. On the other
hand, if Hessian-vector products are expensive relative to gradients, there may be a significant increase in run
time as a result of including the regularization term. We remark that the vast majority of the Hessian-vector
products in the Newton-CG variants were computed in Algorithm 2: on all problems but three, Algorithm 3
was only called at the last iteration to assess termination.

7 Conclusion

We have established that, with a few critical modifications, the popular trust-region Newton-CG method can
be equipped with second-order complexity guarantees that match the best known bounds for second-order
methods for solving smooth nonconvex optimization problems. We derived iteration complexity results for
both exact and inexact variants of the approach, and for the inexact variant we leveraged iterative linear
algebra techniques to obtain strong operation complexity guarantees (in terms of gradient computations and
Hessian-vector products) that again match the best known methods in the literature. Finally, we showed
that the practical effects of including these modifications can be relatively minor.

Our results could be modified to obtain alternative complexity results for approximate εg-stationary
points. For instance, we could modify Algorithm 2 by monitoring the decrease rate of the residual norm in
a way that the number of CG iterations is subject to an implicit cap [29], in place of the explicit cap used
here (when capCG = true). With appropriate modifications in Algorithm 4, and under the assumptions

of Theorem 3, one could establish a deterministic operation complexity bound of Õ(ε
−7/4
g) for reaching an

εg-stationary point. However, the resulting method is significantly more delicate to implement, and must be
paired with Algorithm 3 to be endowed with a second-order complexity analysis.

Acknowledgments

We thank Yue Xie for providing most of the proof of Theorem 2. We are grateful to the editor and two
anonymous referees, whose comments led to significant improvements to the paper.

References

[1] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma, Finding approximate local minima
faster than gradient descent, in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing (STOC 2017), PMLR, 2017.

[2] E. Bergou, Y. Diouane, and S. Gratton, On the use of the energy norm in trust-region and
adaptive cubic regularization subproblems, Comput. Optim. Appl., 68 (2017), pp. 533–554.

[3] , A line-search algorithm inspired by the adaptive cubic regularization framework and complexity
analysis, J. Optim. Theory Appl., 178 (2018), pp. 885–913.

22

Figure 1: Performance profiles for iterations (top), gradient evaluations (middle), and Hessian-vector prod-
ucts (bottom). A termination tolerance of (εg, εH) = (10−5, 10−5/2) is used for the left column, and a
termination tolerance of (εg, εH) = (10−5, 10−5) is used for the right column.

23

[4] Y. Carmon and J. C. Duchi, Analysis of Krylov subspace solutions of regularized nonconvex
quadratic problems, in Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds., 2018, pp. 10726–10736.

[5] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford, “Convex until proven guilty”: Dimension-
free acceleration of gradient descent on non-convex functions, in Volume 70: International Conference
on Machine Learning, 6-11 August 2017, International Convention Centre, Sydney, Australia, PMLR,
2017, pp. 654–663.

[6] , Accelerated methods for non-convex optimization, SIAM J. Optim., 28 (2018), pp. 1751–1772.

[7] C. Cartis, N. I. M. Gould, and P. L. Toint, Adaptive cubic regularisation methods for uncon-
strained optimization. Part II: worst-case function- and derivative-evaluation complexity, Math. Pro-
gram., 130 (2011), pp. 295–319.

[8] , Optimal Newton-type methods for nonconvex optimization, Tech. Rep. naXys-17-2011, Dept of
Mathematics, FUNDP, Namur (B), 2011.

[9] , Complexity bounds for second-order optimality in unconstrained optimization, J. Complexity, 28
(2012), pp. 93–108.

[10] , Worst-case evaluation complexity and optimality of second-order methods for nonconvex smooth
optimization, in Proceedings of the International Congress of Mathematicians (ICM 2018), vol. 3, 2019,
pp. 3697–3738.

[11] F. E. Curtis, D. P. Robinson, and M. Samadi, A trust region algorithm with a worst-case iteration
complexity of O

(
ε−3/2

)
for nonconvex optimization, Math. Program., 162 (2017), pp. 1–32.

[12] , An inexact regularized Newton framework with a worst-case iteration complexity of O(ε−3/2) for
nonconvex optimization, IMA J. Numer. Anal., (2018 (available online)).

[13] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math-
ematical Programming, 91 (2002), pp. 201–213.

[14] J.-P. Dussault, Arcq: a new adaptive regularization by cubics, Optim. Methods Softw., 33 (2018),
pp. 322–335.

[15] J.-P. Dussault and D. Orban, Scalable adaptive cubic regularization methods, Tech. Rep. G-2015-
109, GERAD, 2015.

[16] N. I. M. Gould, S. Lucidi, M. Roma, and P. L. Toint, Solving the trust-region subproblem using
the Lanczos method, SIAM J. Optim., 9 (1999), pp. 504–525.

[17] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEst: a Constrained and Unconstrained Testing
Environment with safe threads, Comput. Optim. Appl., 60 (2015), pp. 545–557.

[18] N. I. M. Gould and V. Simoncini, Error estimates for iterative algorithms for minimizing regularized
quadratic subproblems, Tech. Rep. RAL-TR-2019-004, Rutherford Appleton Laboratory, 2019.

[19] S. Gratton, A. Sartenaer, and P. L. Toint, Recursive trust-region methods for multiscale non-
linear optimization, SIAM J. Optim., 19 (2008), pp. 414–444.

[20] E. Hazan and T. Koren, A linear-time algorithm for trust region problems, Math. Program., 158
(2016), pp. 363–381.

[21] J. Kuczyński and H. Woźniakowski, Estimating the largest eigenvalue by the power and Lanczos
algorithms with a random start, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1094–1122.

24

[22] , Probabilistic bounds on the extremal eigenvalues and condition number by the Lanczos algorithm,
SIAM J. Matrix Anal. Appl., 15 (1994), pp. 672–691.

[23] J. M. Mart́ınez and M. Raydan, Cubic-regularization counterpart of a variable-norm trust-region
method for unconstrained minimization, J. Global Optim., 68 (2017), pp. 367–385.

[24] J. J. Moré and D. C. Sorensen, Computing a trust region step, SIAM J. Sci. Comput., 4 (1983),
pp. 553–572.

[25] S. G. Nash, Newton-type minimization via the Lanczos method, SIAM J. Numer. Anal., 21 (1984),
pp. 770–788.

[26] Y. Nesterov, Introductory lectures on convex programming volume i: Basic course, Lecture notes, 3
(1998), p. 5.

[27] Y. Nesterov and B. T. Polyak, Cubic regularization of Newton method and its global performance,
Math. Program., 108 (2006), pp. 177–205.

[28] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Research and
Financial Engineering, Springer-Verlag, New York, second ed., 2006.

[29] C. W. Royer, M. O’Neill, and S. J. Wright, A Newton-CG algorithm with complexity guar-
antees for smooth unconstrained optimization, Math. Program., Series A, 180 (2020), pp. 451–488.
https://doi.org/10.1007/s10107-019-01362-7.

[30] C. W. Royer and S. J. Wright, Complexity analysis of second-order line-search algorithms for
smooth nonconvex optimization, SIAM J. Optim., 28 (2018), pp. 1448–1477.

[31] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization, SIAM J.
Numer. Anal., 20 (1983), pp. 626–637.

[32] P. L. Toint, Towards an efficient sparsity exploiting Newton method for minimization, in Sparse
Matrices and Their Uses, I. S. Duff, ed., Academic Press, London and New York, 1981, pp. 57–88.

[33] J. Wang and Y. Xia, A linear-time algorithm for the trust region subproblem based on hidden convexity,
Optim. Lett., 11 (2017), pp. 1639–1646.

[34] L.-H. Zhang, C. Shen, and R.-C. Li, On the generalized Lanczos trust-region method, SIAM J.
Optim., 27 (2017), pp. 2110–2142.

25

	1 Introduction
	1.1 Outline
	1.2 Assumptions and notation
	1.3 Literature review

	2 An exact trust-region Newton method
	2.1 The algorithm
	2.2 Iteration complexity

	3 Iterative methods for solving the subproblems inexactly
	3.1 A truncated CG method
	3.2 A minimum eigenvalue oracle

	4 An inexact trust-region Newton method
	4.1 The algorithm
	4.2 Complexity

	5 Practical considerations
	6 Computational experiments
	7 Conclusion

