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Abstract. In scientific computing and machine learning applications, matrices and more general multidimensional
arrays (tensors) can often be approximated with the help of low-rank decompositions. Since matrices and tensors of
fixed rank form smooth Riemannian manifolds, one of the popular tools for finding low-rank approximations is to use
Riemannian optimization. Nevertheless, efficient implementation of Riemannian gradients and Hessians, required in
Riemannian optimization algorithms, can be a nontrivial task in practice. Moreover, in some cases, analytic formulas
are not even available. In this paper, we build upon automatic differentiation and propose a method that, given an
implementation of the function to be minimized, efficiently computes Riemannian gradients and matrix-by-vector
products between an approximate Riemannian Hessian and a given vector.

1. Introduction. Automatic differentiation (AD) is a powerful tool for numerically calculating
derivatives of functions specified as computer programs. It significantly simplifies the programming
of derivatives of complicated functions without loss of efficiency, providing better stability properties
compared with classical numerical differentiation using finite differences. AD is commonly used in
applied mathematics, and in particular, it is at the core of deep learning success, allowing researchers
to combine ever more complex neural networks from known modules, and train them without worrying
about efficient gradient computation.

In this paper, we are concerned with applying AD to the minimization problem

min
X∈M

f(X),

where f : Rn1×···×nd → R is a smooth function andM is a subset of Rn1×···×nd of fixed-rank matrices
(d = 2) or fixed-rank tensor-trains (d > 2) [1]. It is known that in both cases,M forms a Riemannian
manifold. One can, therefore, apply Riemannian optimization algorithms [2] that are currently actively
used for the development of state-of-the-art algorithms in numerical mathematics, partial differential
equations and machine learning. A realization of such algorithms requires specific knowledge of
computational aspects of low-rank objects and is especially complicated for tensor decompositions,
where a number of tricks have to be done to reduce rank dependence and ensure the stability of an
algorithm. The AD technique proposed in this work allows for a significant simplification of this
process.

We are concerned with computing Riemannian gradients and matrix-vector products with
approximate Riemannian Hessians, which are the building blocks for Riemannian optimization
algorithms. Note that in the case of low-rank matrix or tensor-train manifolds, the matrix-vector
product with the Hessian can be numerically unstable. It happens due to the presence of terms with
inverted singular values [3]. We, therefore, consider multiplication by the approximate Hessian with
an omitted curvature term [4, 5, 6] (see details in Sec. 3).

In the proposed method, calculating the Riemannian gradient or matrix-vector product with the
approximate Riemannian Hessian of a function has the same asymptotic complexity as evaluation
of the function itself at a single point1. Moreover, thanks to the implementation in TensorFlow (a
Python library with AD support), the algorithms can be run both on CPUs and GPUs.

We numerically evaluate the performance of the proposed algorithms on several functions arising
from solving systems of linear equations, the eigenvalue problem, the tensor completion problem and
in the training of a machine learning model.

Our main contributions are:
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‡Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 121205 Moscow, Russia
i.oseldets@skoltech.ru.

§HSE University, Pokrovsky Boulevard 11, Moscow, 109028 Russian Federation
1This holds under the assumption that the function evaluation is at least as expensive as the cost of the

orthogonalization operation, which is a necessary step in any Riemannian gradient computation. This assumption
holds true for most practical functions (see Propositions 5.2 and 6.2 for more details).
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• We develop automatic differentiation algorithms for computing the Riemannian gradient
and a matrix-vector product with the approximate Riemannian Hessian of a function for
low-rank matrices and TT-tensors. Under mild assumptions, the asymptotic complexity of
the proposed method equals the complexity of evaluating the function at one point.
• We implement the proposed algorithms in TensorFlow and make them available in T3F2 –

an open-source Python library for working with TT decomposition.
Related work. There is a large body of work on creating libraries for working with tensors and

tensor decompositions, which often include automatic differentiation abilities (see, e.g., [7, 8, 9, 10, 11],
tntorch3), but most of these libraries do not target the Riemannian automatic differentiation, which
is the focus of this paper. Typically, researchers compute the Riemannian gradients manually, but
the Riemannian automatic differentiation libraries [12, 13, 14] are gaining traction, empowering the
Riemannian optimization community. However, existing Riemannian AD libraries lack low-rank
tensor support. For low-rank matrices, PyManOpt [12] supports Riemannian gradients, but no library
supports multiplying the Riemannian Hessian by a given vector, which is required for second-order
methods.

Note that in [12], an algorithm to compute the Riemannian gradient for low-rank matrices has
already been proposed and implemented. Nevertheless, in this work, we present an alternative way
of doing it avoiding inversions of singular values, which can be close to machine epsilon if the rank is
overestimated.

A method for automatic second-order Riemannian differentiation for the manifold of low-rank
tensors was proposed in [15]. The authors focus on the curvature term of the Riemannian Hessian
(which we omit as explained in Sec. 3) and assume that the other terms can be computed efficiently
by a two-step procedure: first computing the Euclidean gradient or Hessian-by-vector product and
then projecting it onto the tangent space. This is indeed efficient for some functions, but can be
significantly slower than the approach proposed in this paper for some other function. Thus, the
two papers complement each other: one can use [15] for computing the curvature term, and the
algorithms proposed in this paper for the other terms.

2. Automatic differentiation (AD). In this section, we give a brief introduction to the
automatic differentiation concept. A reader familiar with this topic can skip this section.

AD is a technique for computing the value of the gradient of a smooth function f : RN → R
specified by a computer program. In particular, it is assumed that f can be represented as a sequence
of elementary operations, for example additions, multiplications, trigonometric functions, logarithms,
etc. Evaluation of f can also involve other operations such as matrix decompositions, for which
differentiation formulas are available. Under this assumption, AD allows for computing derivatives
with working precision, and with the number of operations, which is only a small constant factor times
larger than the number of operations to execute the evaluation of f (i.e., with the same asymptotic
complexity).

Let us illustrate the AD concept in a simple example. Let f : R2 → R:

f(x1, x2) = ex1x2 + sinx2,

then it can be written as a sequence of elementary operations and depicted as the following computa-
tional graph:

v−1 = x1

v0 = x2

v1 = v−1 v0

v2 = ev1

v3 = sin v0

v4 = v2 + v3

f(x1, x2) = v4

x2

x1

v0

=

v-1

=

v1

×
v2

exp(·)

v3

sin(·)
v4

+

f(x1, x2).

2https://github.com/Bihaqo/t3f
3https://tntorch.readthedocs.io
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AD uses the chain rule4 to find both components of ∇f in one pass through the computational graph
in reverse order. Let vi ,

∂f
∂vi

for i = −1, . . . , 4. We have,

v4 =
∂f

∂v4
= 1

v3 =
∂f

∂v4

∂v4
∂v3
≡ v4

v2 =
∂f

∂v4

∂v4
∂v2
≡ v4

v1 =
∂f

∂v2

∂v2
∂v1
≡ v2ev1

v0 =
∂f

∂v3

∂v3
∂v0

+
∂f

∂v1

∂v1
∂v0
≡ v3 cos v0 + v1v−1

v−1 =
∂f

∂v1

∂v1
∂v−1

≡ v1v0

where v−1 = ∂f
∂v−1

≡ ∂f
∂x1

and v0 = ∂f
∂v0
≡ ∂f

∂x2
.

Thus, AD allows us to calculate all components of ∇f in one pass with O(F ) complexity, where
F is the number of FLOP to calculate f at a given (x1, . . . , xN ). In general, the computational graph
for computing the gradient of a function has as many nodes as the original graph for evaluating
the function value, and each node is, at most, a small constant times more expensive than the
corresponding node from the original graph.

Let us compare AD with numerical differentiation using finite differences, where components of
a gradient of a function f : RN → R are approximated, e.g., using forward differences

(2.1)
∂f

∂xi
(x1, . . . , xN ) ≈ f(x1, . . . , xi−1, xi + h, xi+1, . . . , xN )− f(x1, . . . , xN )

h
,

where h is chosen so that the approximation error is small enough. First, numerical differentiation
is computationally more expensive than AD. Indeed, (2.1) requires N + 1 function evaluations to
approximate ∇f and, hence, the complexity is O(NF ). Moreover, due to the error amplification
of derivative approximation, (2.1) cannot achieve accuracy better than the square root of machine
precision [16]. At the same time, AD is more robust and can achieve machine precision accuracy [17].

Another alternative to AD and numerical differentiation is symbolic differentiation. In it, one
assembles the final formula for each component of the gradient using a sequence of rules as product
rule, chain rule, etc. Since this constraint of expressing the entire result as a single formula does not
allow introducing intermediate variables, in the worst case the final formula may contain exponentially
many duplicated fragments. By contrast to the symbolic differentiation, in AD one uses intermediate
variables to define those duplicated fragments, allowing one to never evaluate any quantity more
than once and providing efficiency guarantees.

For a more in-depth review of automatic differentiation see e.g. [18].

3. Riemannian optimization. Let us briefly introduce the Riemannian optimization concept.
Let M⊂ Rn1×···×nd be a smooth embedded submanifold. In this paper, we are concerned with the
manifold of fixed-rank matrices (d = 2) and the manifold of tensors of fixed tensor-train rank (d > 2).
The definitions will be given in Section 4.1 and in Section 5.1 respectively. In this section, we only
provide an introductory overview without implementation details.

Our goal is to solve a minimization problem with a smooth function f : Rn1×···×nd → R:

min
X∈Rn1×···×nd

f(X).

4In this paper we focus on reverse-mode autodiff, which is also sometimes called backpropagation. The alternative –
forward-mode autodiff – is typically used for functions f : RM → RN where M < N because of the smaller asymptotic
complexity in this case.
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Assume that the solution to this problem can be approximated by a certain point X∗ ∈M. Then,
we can reformulate the problem as

(3.1) min
X∈M

f(X),

i.e., the search space Rn1×···×nd is restricted to a Riemannian manifoldM. Riemannian optimization
algorithms usually involve computation of Riemannian gradients grad f(X), which for embedded
submanifolds of Rn1×···×nd and functions f defined on the ambient space, may be written as a
projection of the Euclidean gradient ∇f(X) to the tangent plane TXM of M at the point X:

(3.2) grad f(X) = PTXM∇f(X),

where PTXM : Rn1×···×nd → TXM denotes an operator of orthogonal projection to the tangent
plane TXM and depends on X non-linearly. Given the Riemannian gradient notion, we may
solve (3.1) using the Riemannian gradient descent

Xk+1 = RXk
(τk grad f(Xk))),

where RXk
: TXM→ Rn1×···×nd returns a tangent vector back to the manifold (see [19] for different

retraction operations) and the parameter τk is chosen to ensure decay of the functional. More
advanced optimization algorithms, e.g., a Riemannian version of the conjugate gradient method is
also available [2].

One can also utilize second-order methods, which involve computation of the Riemannian Hessian
operator. For the Riemannian Hessian Hess f(X) : TXM→ TXM we can use5 the formula [3, 4]:

(3.3) Hess f(X) = PTXM∇2f(X) + PTXMṖTXM(∇f(X)),

where ∇2f(X) is the Euclidean Hessian and ṖTXM denotes the Fréchet derivative of PTXM. The
second term in (3.3) arises due to the nonlinearity of the manifold. For the manifold of low-rank
matrices, it contains the inverse of a matrix of singular values [3]. If singular values are small, this can
lead to numerical instabilities. To avoid this problem, the second term in (3.3) can be omitted [4, 20].
In this case, the optimization procedure can be interpreted as a constrained Gauss-Newton method.
We, therefore, consider only linearized Hessians and are interested in an efficient matrix-vector
product by the first term of (3.3):

(3.4) HX[Z] ≡ PTXM∇2f(X) Z, X ∈M, Z ∈ TXM.

Note that first computing∇f(X) as in (3.2) and then applying PTXM can be inefficient. Therefore,
PTXM∇f(X) should be calculated at once. For example, for the manifold of low-rank matrices, the
Riemannian gradient PTXM∇f(X) can always be represented as a low-rank matrix (see Sec. 4.1 for
details), while the Euclidean gradient ∇f(X) can have an arbitrary large rank. Thus, using the
Euclidean gradient in the intermediate calculations can lead to an inefficient algorithm. Similarly,
first computing ∇2f(X) Z as in (3.4) and then applying PTXM can be significantly less efficient
than calculating PTXM∇2f(X) Z at once. The goal of this paper is, thus, to develop an efficient
tool to calculate (3.2) and (3.4) – the building block operations of Riemannian optimization. The
key assumption we make is that we can efficiently evaluate f at any point X + TXM, X ∈ M.
Then, under mild conditions (see Propositions 5.2 and 6.2 and below), the overall complexity of the
presented algorithm is only constant times larger than the complexity of the function evaluation.

Let us introduce the scalar product and the associated norm

〈X,Y〉 =

n1,...,nd∑
i1,...,id=1

Xi1,...,idYi1,...,id , ‖X‖ = 〈X,X〉1/2 .

Using this notation, possible choices of f(X) are, for example:

5Note that both grad and Hess operations depend on the particular choice of a manifold. Nevertheless, we do not
use the subscript M as it will be clear from context and to not overcomplicate the notation.
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• f(X) = ‖AX − F‖2 or f(X) = 〈AX,X〉 − 2 〈F,X〉 for given A: Rn1×···×nd → Rn1×···×nd

and F ∈ Rn1×···×nd that arise when solving linear systems;
• f(X) = 〈A[X],X〉/〈X,X〉 with possibly nonlinear A: Rn1×···×nd → Rn1×···×nd , which arises

when solving (nonlinear) eigenvalue problems;
• f(X) = ‖PΩ(X−A)‖2 where PΩ denotes projection on the index set Ω such that

PΩX =

{
Xi1...id (i1, . . . , id) ∈ Ω,
0 otherwise.

This type of problem is referred to as matrix or tensor completion problems.
• f(X) is a neural network loss function, which arises when using TT-decomposition to

parametrize a recurrent neural network and applying Riemannian optimization for training
(for more details see Section 7.1).

In Section 5.3, we will also discuss how our approach can be used for operations that are not directly
related to a minimization of a function, e.g., how to efficiently compute the preconditioned residual
PTXMB−1(AX− F) for non-commuting A and B.

4. Automatic differentiation for the Riemannian gradient: fixed-rank matrices. In
this section, we propose an approach to automatically compute Riemannian gradients for the manifold
of fixed-rank matrices.

4.1. The manifold of fixed-rank matrices. Let us briefly recall the concepts related to the
manifold of fixed-rank matrices. The set of matrices of fixed rank r: Mr = {X ∈ Rm×n : rank(X) =
r} forms a smooth submanifold of Rm×n [21, Example 8.14]. Using SVD, any point X ∈ Mr of
the manifold can be represented as X = USVᵀ, where U ∈ Rm×r and V ∈ Rn×r are matrices with
orthonormal columns –– singular vectors (UᵀU = Ir, VᵀV = Ir) and S ∈ Rr×r is the diagonal
matrix of singular values. The tangent space TXMr of the manifoldMr at a point X = USVᵀ ∈Mr

can be written as

(4.1) TXMr = {U̇Vᵀ + UV̇ᵀ | U̇ ∈ Rm×r, V̇ ∈ Rn×r : VᵀV̇ = Or×r},

where Or×r denotes a zero matrix of size r × r. In what follows, we refer to the matrices U̇ and U̇
that define an element of the tangent space as delta-matrices. The orthogonal projection of Z ∈ Rm×n
to the tangent space TXMr can, thus, be obtained as follows:

(4.2) PTXMr
Z = ZVVᵀ + UUᵀZ(I−VVᵀ).

We refer the reader to, e.g., [22, Sec. 2.1] for a more detailed discussion of the manifold of low-rank
matrices, including the derivation of (4.2).

Finally, to simplify the notation, we denote the projection operator as

PX , PTXMr
.

We also introduce TX that maps parametrization matrices to an element of the tangent plane at the
point X

(4.3) TX : Rm×r × Rn×r → TXMr,

namely,

(4.4) T = TX(U̇, V̇) = U̇Vᵀ + UV̇ᵀ.

This mapping will be used later in Sec. 4.2 to simplify the presentation of the algorithm.

4.2. Automatic differentiation approach. In this section, we propose an efficient way of
computing the Riemannian gradient

grad f(X) = PX∇f ∈ TXMr ⊂ Rm×n.
5



The Riemannian gradient grad f(X) is an m× n matrix, but as noted in the previous section it can
be defined via the delta matrices U̇ and V̇ using just (m+ n)r parameters ((m+ n)r − r2 if gauge
condition VᵀV̇ = Or×r are taken into account). Thus, if we can avoid using full m × n matrices
in intermediate calculations, we can potentially compute the Riemannian gradient with a better
asymptotic complexity than O(mn).

A naive approach of computing the Riemannian gradient is to first compute ∂f/∂X with AD
and then project the result to the tangent plane by using formula (4.2):

(4.5) PX∇f = ∇fVVᵀ + UUᵀ∇f (I−VVᵀ).

The problem with this approach is that it requires finding the full matrix of the Euclidean gradient
∂f/∂X of the size m×n, which we want to avoid. Alternatively, we may find the Riemannian gradient
without explicitly forming ∂f/∂X. In particular, we notice that the Riemannian gradient (4.5) involves
computing the following multiplication of matrices

(4.6) (∇fV) ∈ Rm×r, (Uᵀ∇f) ∈ Rr×n.

We may find these two quantities by using the classical AD as follows:

∇fV = ∇Ef(EVᵀ)|E=US, Uᵀ∇f = ∇Ff(UF)|F=SVᵀ .

So, one can use classic AD on the function f twice (each time with the complexity equal to evaluating
the function f at a single point due to AD properties) to compute all the pieces that depend on f .

However, in the rest of this section we propose an alternative way of computing quantities (4.6)
by using classic AD a single time on a specially introduced auxiliary function. This alternative
approach is introduced because it naturally generalizes into an efficient algorithm for the tensor case
(see Sec. 5.2).

Quantities (4.6) can be computed at once by differentiating (using AD) the following auxiliary
function defined using mapping (4.4)

g
def
= f ◦ TX.

We have

(4.7) g(A,B) = f(TX(A,B)) = f(AVᵀ + UBᵀ).

Indeed, X = USVᵀ can be represented as

TX(US,On×r) = (US) ·Vᵀ + U ·Oᵀ
n×r = X,

and, hence, the partial derivatives of T = TX(U̇, V̇) at (A,B) = (US,On×r) are

∂Tij
∂Apq

=
∂(AVᵀ + UBᵀ)ij

∂Apq
= δipVjq,

∂Tij
∂Bpq

=
∂(AVᵀ + UBᵀ)ij

∂Bpq
= δjpUiq.

where δip is the Kronecker delta. Applying the chain rule to (4.7), we get

∂g

∂Apq

∣∣∣∣A=US,
B=On×r

=
∑
i,j

∂f

∂Tij

∣∣∣∣
T=X

∂Tij
∂Apq

∣∣∣∣A=US,
B=On×r

=
∑
i,j

∂f

∂Xij
δipVjq = (∇fV)pq ,

∂g

∂Bpq

∣∣∣∣A=US,
B=On×r

=
∑
i,j

∂f

∂Tij

∣∣∣∣
T=X

∂Tij
∂Bpq

∣∣∣∣A=US,
B=On×r

=
∑
i,j

∂f

∂Xij
δjpUiq = (Uᵀ∇f)qp .

Thus, a low-rank representation of the Riemannian gradient can be written as

PX∇f =
[
U U̇

] [
V̇ V

]ᵀ
,
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Algorithm 4.1 Computing the Riemannian gradient for low-rank matrices via AD.

Require: X = USVᵀ ∈ Rm×n, p(L,R) – implementation of evaluating f at LRᵀ for any L ∈ Rm×2r
and R ∈ Rn×2r.

Ensure: U̇, V̇ such that PX∇f = U̇Vᵀ + UV̇ᵀ

1: function g(A,B)
2: return p([U A], [B V])

3: Using AD, compute U̇ := ∂g
∂A |A=US,

B=On×r

4: Using AD, compute V̇ := ∂g
∂B |A=US,

B=On×r

5: V̇ᵀ := V̇ᵀ − (V̇ᵀV)Vᵀ

with

(4.8)

U̇ =
∂g

∂A

∣∣∣∣A=US,
B=On×r

V̇ᵀ =
∂g

∂Bᵀ

∣∣∣∣A=US,
B=On×r

(I−VVᵀ) .

The algorithm to compute the Riemannian gradient is summarized in Algorithm 4.1.

4.3. Complexity of the approach. Let us estimate the complexity of computing U̇ and V̇
by the proposed approach, i.e., by defining the auxiliary function g and differentiating it with respect
to A and B.

Proposition 4.1. Let f : Rm×n → R be a smooth function defined by a program p, which
takes as input SVD decomposition of a matrix X = USVᵀ ∈ Rm×n and outputs the value f(X) in
F = F (m,n, r) floating point operations (FLOP), which is polynomial with respect to the rank of the
matrix X (i.e., the program p belongs to the P complexity class). Then, the complexity of using Alg. 4.1
for computing delta terms U̇ and V̇ which define the Riemannian gradient PX∇f = U̇Vᵀ + UV̇ᵀ is
O(F + nr2).

As an example, computing

f(X) = 〈X,X〉 , X = UVᵀ, U ∈ Rm×r,V ∈ Rn×r,

leads to F = O
(
(n+m)r2

)
FLOP, since

〈X,X〉 = trace(UVᵀVUᵀ) = trace ((UᵀU)(VᵀV)) .

Proof of Prop. 4.1. The auxiliary function g(A,B) can be constructed by feeding to p the factors
of the matrix

AVᵀ + UBᵀ =
[
A U

] [
V B

]ᵀ
which is represented with the rank 2r — twice larger than the rank r of the original matrix. As a
result, the asymptotic complexity (as a function of n and r) of evaluating the function on such a
matrix is still O(F ). Thanks to the properties of AD, computing the derivatives of g with respect to
the factors A and B has the same complexity O(F ). Finally, computing the factor V̇ using (4.8)
can be done in O(r2n), yielding the total complexity O(F + nr2).

For most functions used in practice, the asymptotic complexity F of executing the function at
one point exceeds O(nr2) and the total complexity of the proposed algorithm (as a function of n
and r) equals to O(F + nr2) = O(F ).
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4.4. More general view of the proposed algorithm. In this section, we look at the proposed
algorithm from a more general perspective, trying to avoid specifics of the fixed-rank manifold. The
main idea of the proposed algorithm is to introduce the auxiliary function (5.13) and express the
desired Riemannian gradient grad f(X) in terms of its derivatives (4.7). Note that we could have
used an alternative auxiliary function6

h(C,D) = f(X + CVᵀ + UDᵀ) = f((US + C)Vᵀ + UDᵀ) = g(C + US,D).

If one combines both arguments of the mapping TX(A,B) (see (4.3)) into a single (n+m)r dimensional

vector v, you can define an equivalent mapping T̂X : R(n+m)r → TXMr

and an alternative representation of the auxiliary function

(4.9) ĥ(v) = f(X + T̂X(v)).

Thus, the proposed approach is equivalent to defining a mapping T̂X from the parametrization of
the tangent space onto the tangent space itself, defining an auxiliary function ĥ(v) (4.9), computing
its gradient using classical AD, and finally doing certain post processing of this gradient: reshaping,
enforcing the gauge conditions as in (4.8). It is not surprising that we obtain a Riemannian gradient
using these formulas, as informally the gradient of the auxiliary function (4.9) is the fastest ascent

direction of ĥ(v) at v = 0 and, hence, of f at X in the direction of all possible vectors from TXMr.

5. Automatic differentiation for the Riemannian gradient: fixed-rank tensors. In this
section, we extend the results of Sec. 4.2 to fixed-rank tensor-train tensors, which is a generalization
of fixed-rank matrices to multidimensional arrays.

5.1. The manifold of TT-tensors of fixed rank. A tensor A ∈ Rn1×...×nd is said to be
represented in the tensor-train format [23] (TT-format) if each of its elements Ai1...id is a product of
d matrices:

(5.1) Ai1...id = G1[i1] . . .Gd[id],

where for fixed ik = 1, . . . , nk, Gk[ik] is an rk−1 × rk matrix for any value of k = 1, . . . , d. We
require r0 = rd = 1 such that G1[i1] is 1× r1 row vector and Gd[id] is rd−1 × 1 column vector. The
three-dimensional arrays Gk of sizes rk−1 × nk × rk, k = 1, . . . , d are called TT-cores and the vector

rTT(A) = (r1, . . . , rd−1),

is called the TT-rank of A. For a more detailed discussion on the properties of the TT-format
see [23].

Like in the matrix case (Sec. 4), the set of tensors

Mr = {A ∈ Rn1×...×nd | rTT(A) = r}.

forms a smooth manifold. To parametrize its tangent spaces, we need the notion of orthogonalization
of the TT-cores. A TT-representation (5.1) is called µ-orthogonal, µ = 2, . . . , d− 1 if

(5.2)

nk∑
ik=1

Gk[ik]ᵀGk[ik] = Irk ,

for k = 1, . . . , µ− 1, and

(5.3)

nk∑
ik=1

Gk[ik]Gk[ik]ᵀ = Irk−1

6One can use the same derivation as in Sec. 4.2 to prove that differentiating the alternative auxiliary function ĥ
yields the same results.
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for k = µ + 1, . . . , d. If µ = 1 or µ = d, we only require (5.3) or (5.2) respectively. The cores
satisfying (5.2) and (5.3) are called, respectively, left- and right-orthogonal cores. TT-decomposition
of a tensor is not unique, and for any µ = 1, . . . , d there exists a µ-orthogonal representation of
a given tensor [24, Sec. 4.2.1]. Moreover, for any 1 ≤ µ1 ≤ µ2 ≤ d, the µ1-orthogonal and µ2-
orthogonal decompositions can be constructed to share the left-orthogonal TT-cores G1, . . . ,Gµ1−1
satisfying (5.2) and the right-orthogonal TT-cores Gµ2+1, . . . ,Gd satisfying (5.3).

For a given tensor X, one can define a set of left-orthogonal TT-cores U1, . . . ,Ud−1, right-
orthogonal TT-cores V2, . . . ,Vd, and unrestricted TT-cores S1, . . . ,Sd such that for any µ = 1, . . . , d,
there exists the following µ-orthogonal decomposition of the tensor

(5.4) Xi1...id = U1[i1] . . .Uµ−1[iµ−1]Sµ[iµ]Vµ+1[iµ+1] . . .Vd[id].

Using the left-orthogonal TT-cores U1, . . . ,Ud−1 and the right-orthogonal TT-cores V2, . . . ,Vd of
tensor X ∈Mr, one may parametrize the tangent space TXMr as follows

TXMr =
{

T ∈ Rn1×···×nd : Ti1...id = Ṡ1[i1] V2[i2] . . .Vd[id] + U1[i1]Ṡ2[i2] V3[i3] . . .Vd[id]

+ · · ·+ U1[i1] . . .Ud−1[id−1] Ṡd[id], Ṡk ∈ Rrk−1×nk×rk , k = 1, . . . , d, r0 = rd = 1
}
.

(5.5)

In what follows, we refer to the tensors Ṡ1, . . . , Ṡd that define an element of the tangent space as
delta-terms.

Additional gauge conditions are usually introduced7 to uniquely parametrize elements of the
tangent space:

(5.6)

nk∑
ik=1

Uk[ik]ᵀ Ṡk[ik] = 0, k = 1, . . . , d− 1.

In what follows, we always assume that the deltas Ṡ1, Ṡ2, . . . , Ṡd that define an element of the tangent
space obey the gauge conditions (5.6).

Note that in (5.5), the expression for an element of the tangent space is formally represented as
a sum of d TT-tensors, each of TT-rank r, and, hence, can be represented as a single TT tensor with
the TT-rank r + · · · + r = dr [23, Sec. 4.1]. Nevertheless, thanks to the common cores, it can be
represented with the TT-rank equal to 2r. Indeed, by directly multiplying the block matrices, one
can verify that

(5.7) Ti1...id =
[
Ṡ1[i1] U1[i1]

] [V2[i2]

Ṡ2[i2] U2[i2]

]
. . .

[
Vd−1[id−1]

Ṡd−1[id−1] Ud−1[id−1]

] [
Vd[id]

Ṡd[id]

]
.

For convenience, we also introduce a function that maps the delta terms Ṡk to an element of the
tangent space

TX : R1×n1×r1 × Rr1×n2×r2 × · · · × Rrd−2×nd−1×rd−1 × Rrd−1×nd×1 → TXMr,

namely

(5.8) T = TX(Ṡ1, . . . , Ṡd),

as is defined in (5.7). The following proposition gives the explicit representation of a general tensor
projected onto the tangent plane of Mr.

7These gauge conditions generalize the orthogonality constraint VᵀV̇ = Or×r in the definition of the matrix
tangent space (4.1) to the tensor case.
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Proposition 5.1. [24, equation (4.17)] The orthogonal projection PXZ of a given tensor Z ∈
Rn1×···×nd onto the tangent space TXMr is defined as an element of the tangent space (5.5) with Ṡk:

(5.9)

Ṡk[jk]︸ ︷︷ ︸
rk−1×rk

=
∑

i1,...,id

U1[i1] . . .Uk−1[ik−1]
(
Irk−1

δjkik −Uk[jk]Uk[ik]ᵀ
)︸ ︷︷ ︸

1×rk−1


ᵀ

Zi1...id

Vk+1[ik+1] . . .Vd[id]︸ ︷︷ ︸
rk×1

ᵀ

, k = 1, . . . , d− 1

and Ṡd as

S[id] =
∑

i1,...,id−1

U1[i1] . . .Ud−1[id−1]Zi1...id .

For a more detailed discussion of the manifold of fixed tensor-train rank tensors (including derivations
of the above equations) see, e.g., Sec. 4.3-4.4 of [24].

5.2. Automatic differentiation. Let us find the Riemannian gradient of a function f :
Rn1×···×nd → R at a point X. Similarly to the matrix case, we consider an auxiliary function
using (5.8):

g
def
= f ◦ TX.

Note that the intuitive explanation of the proposed method provided in Sec. 4.4 still applies in this
case.

In particular, we have
T = TX(S1,O2, . . . ,Od) = X,

where Ok, k = 2, . . . , d are zero tensors of appropriate sizes and S1 is defined in (5.4) for µ = 1. As
a result,

g(S1,O2, . . . ,Od) = f (X) .

Consider the derivative of g(R1, . . . ,Rd) with respect to Rk at a point R0 = (S1,O2, . . . ,Od):

(5.10)

∂g

∂Rk[ik]
(R0) =

∑
i1,...,ik−1,ik+1,...,id

∂f

∂Ti1...id
(X)

∂Ti1...id
∂Rk[ik]

(R0)

=
∑

i1,...,ik−1,ik+1,...,id

(U1[i1] . . .Uk−1[ik−1])
ᵀ ∂f

∂Xi1...id
(Vk+1[ik+1] . . .Vd[id])

ᵀ
.

By comparing expressions (5.9) and (5.10), it is easy to see that the Ṡk that defines the Riemannian
gradient PX∇f can be computed as

(5.11)

Ṡk[ik] =
∂g

∂Rk[ik]
(R0)−Uk[ik]

∑
jk

Uᵀ
k[jk]

∂g

∂Rk[jk]
(R0) k = 1, . . . , d− 1,

Ṡd[id] =
∂g

∂Rd[id]
(R0).

The algorithm for computing the Riemannian gradient in the tensor-train case is listed in Alg. 5.2.
Hereinafter we use a reshape [25] function that changes the shape of an array, preserving the values
and the order of elements, where by the order of elements of X ∈ Rn1×···×nd we imply the following
ordering:

(i1, . . . , id) 7→ 1 +

d∑
α=1

(iα − 1)

d∏
β=α+1

nβ .

Let us estimate the complexity of Alg. 5.2
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Algorithm 5.1 Converting delta notation to TT-cores (implementation of (5.8)).

Require: TT-tensor X defined by the TT-cores Gk, tensors Ṡk that define the tangent space element
T ∈ TXMr (see (5.7))

Ensure: Ĝk, k = 1, . . . , d –– TT-cores of T = TX(Ṡ1, . . . , Ṡd)
1: Compute resp. left- and right-orthogonal {Uk}d−1k=1 and {Vk}dk=2, and tensors {Sk}dk=1 as in (5.4)
2: for i1 = 1 to n1 do
3: Ĝ1[i1] =

[
Ṡ1[i1] U1[i1]

]
4: for k = 2 to d− 1 do
5: for ik = 1 to nk do

6: Ĝk[ik] =

[
Vk[ik]

Ṡk[ik] Uk[ik]

]
7: for id = 1 to nd do

8: Ĝd[id] =

[
Vd[id]

Ṡd[id]

]

Algorithm 5.2 Computing the Riemannian gradient for low-rank tensors via AD.

Require: {Gk}dk=1 – TT-cores of X, p(Ĝ1, . . . , Ĝd) – Python implementation of f(X̂) for a point

X̂ given by TT-cores Ĝ1, . . . , Ĝd.
Ensure: The TT-cores {Jk}dk=1 of the Riemannian gradient grad f(X)

1: For X, compute resp. left- and right-orthogonal {Uk}d−1k=1, {Vk}dk=2 and {Sk}dk=1 as in (5.4).
2: function g(R1, . . . ,Rd)

3: Run Alg. 5.1 passing as input {Gk}dk=1, {Rk}dk=1 and write the output into {Ĝk}dk=1

4: return p(Ĝ1, . . . , Ĝd)

5: Using AD, compute Ṡk := ∂g
∂Rk

∣∣∣
(R1,R2,...,Rd)=(S1,O2,...,Od)

for k = 1, . . . , d

6: for k ← 1 to d− 1 do
7: Dk := reshape(Ṡk, (rk−1nk, rk))
8: UL

k := reshape(Uk, (rk−1nk, rk))
9: Dk := Dk + UL

k

((
UL
k

)ᵀ
Dk

)
. See (5.11). Parentheses indicate the order of operations

10: Ṡk := reshape(Dk, (rk−1, nk, rk))

11: Run Alg. 5.1 passing as input {Gk}dk=1 and {Ṡk}dk=1 and write the output TT-cores into {Jk}dk=1

Proposition 5.2. Let f : Rn1×...×nd → R be a smooth function defined by a program p, which
takes as input TT-cores of the tensor X and outputs the value f(X) in F FLOP, which is polynomial
with respect to the TT-ranks of the tensor X (i.e., the program p belongs to the P complexity class).
Then, the complexity of using Alg. 5.2 for computing the TT-cores of the Riemannian gradient PX∇f
is O(F + dnr3), where n = maxk=1,...,d nk, r = maxk=1,...,d−1 rk.

Proof. Let us estimate the complexity of each step of Alg. 5.2.
Step 1 consists in orthogonalizing the cores of the tensor X and can be done in O(dnr3) FLOP [23,

end of Sec. 3].
Steps 3 and 11 are running Alg. 5.1 which consist of copying and rearranging some of the arrays

which already exist in the memory. Therefore, it has linear complexity with respect to the sizes of
the arrays, i.e., at most O(dnr2).

Step 4 computes the output of the program p on TT-cores Ĝ1, . . . , Ĝd. Under the assumptions
of the statement, the complexity F of the function evaluation is polynomial with respect to the
TT-rank r. Let q be the degree of this polynomial. Since the TT-cores Ĝ1, . . . , Ĝd define a TT-tensor
with TT-ranks 2r — twice larger when compared to the original TT-rank r, the program p will be
executed on these TT-cores with the complexity O(2qF ) = O(F ). Thus, the complexity of evaluating
the function g at a given point is at most O(F ).

Step 5 uses classic automatic differentiation to compute the gradient of the function g with
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respect to its arguments. Since the asymptotic complexity of the classical automatic differentiation
equals the asymptotic complexity of computing the function at one point [26], this sub-step can also
be done in O(F ) FLOP.

Steps 7, 8 and 10 consists in repeating the reshape operation d− 1 times. The reshape operation
can be done with constant complexity and in the worst case (when doing this operation in-place is
not available) has the complexity equal to the size of arrays, i.e., O(nr2) per iteration.

Step 9 consists in evaluating the following expression d− 1 times: Dk := Dk + UL
k

((
UL
k

)ᵀ
Dk

)
.

The multiplication
(
UL
k

)ᵀ
Dk of a rk×rk−1nk matrix times a rk−1nk×rk matrix results into a rk×rk

matrix and costs O(rk−1r
2
knk). The remaining operations are of the same or smaller asymptotic

complexity. Thus, updating all Dk can be done in O(dnr3) FLOP.
Summing the complexity across all steps yields the total complexity O(F + dnr3).

For most functions used in practice, the asymptotic complexity F of executing the function at
one point exceeds O(dnr3) and the total complexity (as a function of n, d and r) of the proposed
algorithm equals to O(F + dnr3) = O(F ). For example, the functions listed at the end of Sec. 3
(except for the recurrent neural network example) and their combinations such as

f(X) = ‖PΩ(X−A)‖2 + λ‖X‖2,

are at least as expensive to evaluate as O(dnr3).

5.3. Stop-gradient and a wider class of functionals. Suppose that we want to calculate
projection to a tangent plane that cannot be easily associated with a Riemannian gradient of a
functional. As an example, in [4], to solve a linear system AX = F, a preconditioned version of the
Riemannian gradient descent was considered:

(5.12) Xk+1 = Xk − τkPXk
B (AXk − F) ,

where B is a preconditioner and τk ∈ R is an iteration parameter. If B is an identity operator and A
is symmetric positive-definite, then the iteration (5.12) is a Riemannian gradient descent associated
with the function

(5.13) fA(X) =
1

2
〈AX,X〉 − 〈F,X〉 .

The problem is that to obtain PXk
B (AXk − F), we cannot simply calculate the Riemannian gradient

of (5.13) with BA instead of A, and BF instead of F, since BA is, in general, not symmetric even
if both A and B are. A similar problem arises for preconditioned eigensolvers. To overcome it, we
will use the notion of the stop-gradient operator which is available in most automatic differentiation
frameworks.

The stop-gradient operator c(X) is formally defined by the following two properties c(X) = X
and ∇c(X) = O — zero tensor of the same size as X. It allows avoiding differentiating some parts
of an expression when applying automatic differentiation. For example, for x ∈ R the derivative of
g(x) ≡ f(xc(x)) is g′(x) = f ′(x2) instead of f ′(x2)2x.

We, thus, can (in the code) replace the function fA with hA,B:

hA,B(X) = 〈BA c(X),X〉 − 〈BF,X〉 .

As a result, we obtain

(5.14) PX∇hA,B(X) = PXB (AX− F) ,

so we can simply apply the proposed AD approach to hA,B(X). Note that

〈BA c(X),X〉 = 〈Ac(X),BᵀX〉

and it can be implemented in O(dnRARBr
3 + dn2(RA + RB)RARBr

2) FLOP. Hence, using the
proposed AD, we can calculate the Riemannian gradient (5.14) with the same asymptotic complexity.
If B is a sum of ρB rank-1 terms, for example, for a preconditioner based on exponential sums [27, 28],
then the complexity can be additionally reduced to O(dnRAρBr

3 + dn2ρBR
2
Ar

2).
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6. Approximate Hessian-by-vector product. In this section, we show how to compute the
product between the approximate Riemannian Hessian and a vector from the tangent space (3.4).

In the classical autodiff, there are two main ways of implementing Hessian-by-vector products
given first-order autodiff implementation. The first approach consists in computing the gradient
∇f(x), then defining an auxiliary function w : Rn → R, w(x) = 〈∇f(x), z〉 and finally using first-
order autodiff on the auxiliary function ∇2f(x) z = ∇w(x). The second approach consists in defining
an auxiliary function h : R→ Rn, h(t) = ∇xf(x + tz) by using first-order autodiff at the point x + tz,
and then using forward mode autodiff8 on the auxiliary function h at the point t = 0 to get the
Hessian-by-vector product ∇2f(x) z = h′(t)|t=0 (see e.g. [29] for more details).

Both of these classical approaches can be generalized to the Riemannian case. Here we focus
on the first approach, as the second approach requires forward mode autodiff which is not natively
supported by the autodiff library we use for numerical experiments (TensorFlow). In the generalization
of the first approach we additionally use the fact that when computing the auxiliary scalar-product
function w, we are working with two vectors from the same tangent space. This allows us to compute
their inner product more efficiently than in the general case.

Recall the definition of the approximate Riemannian Hessian by vector product

(6.1) HX[Z] = PX∇2f(X) Z, Z ∈ TXM.

Note that the exact (non-approximate) Riemannian Hessian (3.3) also includes the term for the
derivative of the projection operator PX with respect to the tensor X, which we ignore in (6.1).

Let us transform (6.1) using the fact that Z ∈ TXM, which implies Z = Pc(X)Z. Note that
we use the stop-gradient operator c defined in Sec. 5.3 to make sure that we are computing the
approximate Riemannian Hessian, i.e., that we are not differentiating the projection operator Pc(X).
In this case,

HX[Z] = PX∇2f(X) Z = PX
∂

∂X

〈
∇f,Pc(X)Z

〉
Using the symmetry of the orthogonal projection Pc(X), we may write

HX[Z] = PX
∂

∂X

〈
∇f,Pc(X)Z

〉
= PX

∂

∂X

〈
Pc(X)∇f,Z

〉
.

Assume that we have access to the Riemannian gradient with the stop-gradient operator applied to
the projection Pc(X)∇f (see below on how to obtain it). Then, we can compute

(6.2) w(X) =
〈
Pc(X)∇f,Z

〉
and use the first-order Riemannian autodiff to find HX[Z] = PX∇w(X) – the desired approximate
Riemannian Hessian-by-vector product.

Note that (6.2) is a scalar product of two vectors belonging to the same tangent plane. Let
us consider this operation in more detail. Suppose we are given two tensors Y,Z ∈ TXM. If M
is a manifold of fixed-rank matrices, we can parametrize Y and Z with the matrices U̇Y, V̇Y and
U̇Z, V̇Z (see (4.1)). Hence,

(6.3) 〈Y,Z〉 =
〈
U̇YVᵀ + UV̇ᵀ

Y, U̇ZVᵀ + UV̇ᵀ
Z

〉
=
〈
U̇Z, U̇Y

〉
+
〈
V̇Z, V̇Y

〉
.

Similarly, if M is the manifold of fixed-rank TT tensors and Y,Z ∈ TXM are parametrized as
in (5.5) by {ṠY

k }dk=1 and {ṠZ
k }dk=1 respectively then

(6.4) 〈Y,Z〉 =

d∑
k=1

〈
ṠY
k , Ṡ

Z
k

〉
.

8Using reverse mode autodiff would not be efficient in this case as the function h has non-scalar output.
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Algorithm 6.1 Computing the approximate Riemannian Hessian by vector product for low-rank
matrices via AD.

Require: X = USVᵀ ∈ Rm×n, matrices U̇Z, V̇Z that define Z = U̇ZVᵀ + U(V̇Z)ᵀ ∈ TXMr (see
(4.1)), p(L,R) – implementation of evaluating f at LRᵀ for any L ∈ Rm×2r and R ∈ Rn×2r.

Ensure: U̇, V̇ such that HX[Z] = PX∇2f(X) Z = U̇Vᵀ + UV̇ᵀ

1: function g(A,B)
2: return p([U A], [B V])

3: function w(Â, B̂)

4: U̇ := ∂g
∂A

∣∣∣
(A,B)=(Â,B̂)

using AD

5: V̇ := ∂g
∂B

∣∣∣
(A,B)=(Â,B̂)

using AD

6: V̇ᵀ := V̇ᵀ − (V̇ᵀV)Vᵀ

7: return
〈
U̇Z, U̇

〉
+
〈
V̇Z, V̇

〉
8: U̇ := ∂w

∂A

∣∣
(A,B)=(US,O)

using AD

9: V̇ := ∂w
∂B

∣∣
(A,B)=(US,O)

using AD

10: V̇ᵀ := V̇ᵀ − (V̇ᵀV)Vᵀ

Note that equations (6.3) and (6.4) for matrices and tensors from the same tangent plane lead to
faster computation of scalar products than for two general tensors of the same rank (see [24, Sec.
4.4.4]).

One might think that the first-order Riemannian autodiff described in Sec. 4.2 and 5.2 yields
PX∇f instead of Pc(X)∇f and thus can not be utilized here. However, since first-order Riemannian
autodiff works by differentiating at X the auxiliary function g defined on a linear space TXMr, a
Riemannian gradient obtained this way lacks any information about the nonlinearity of the manifold.
So, the method for computing the Riemannian gradient (Sec. 4.2 and 5.2) actually yields Pc(X)∇f .
This nuance is irrelevant when computing the first-order Riemannian gradient because the two
quantities coincide in value, but it becomes important when differentiating through this operation.
Thus, we can reuse the proposed first-order Riemannian gradient to compute the product between
the approximate Riemannian Hessian and a given vector with the method described above.

The algorithms to compute the multiplication of the approximate Riemannian Hessian by a
vector are summarized in Alg. 6.1 for the matrix case, and in Alg. 6.2 for the tensor case. Note
that they require only a few additional operations compared to the algorithm for computing the
Riemannian gradient.

Let us estimate the complexity of the proposed algorithm.

Proposition 6.1. Let f : Rm×n → R be a smooth function defined by a program p, which
takes as input SVD decomposition of a matrix X = USVᵀ ∈ Rm×n and outputs the value f(X) in
F = F (m,n, r) floating point operations (FLOP), which is polynomial with respect to the rank of the
matrix X (i.e., the program p belongs to the P complexity class). Then, the complexity of using Alg. 6.1
for computing delta terms U̇ and V̇ which define the product of the approximate Riemannian Hessian
by a given vector (for the manifold of fixed-rank matrices) HX[Z] = PX∇2f(X) Z = U̇Vᵀ + UV̇ᵀ is
O(F + nr2).

Proof. The algorithm for computing the approximate Riemannian Hessian by vector product
in the matrix case (Alg. 6.1) is similar to the algorithm for computing the Riemannian gradient
(Alg. 4.1): subfunctions g are identical in both algorithms, steps 4–6 and 8–10 in Alg. 6.1 are identical
to steps 3–5 Alg. 4.1 (so it at most doubles the work and does not affect the asymptotic complexity).
The only new operation is computing the dot product between the tangent space elements (step 7)
which takes O(nr2) arithmetic operations. Thus, computing the approximate Riemannian Hessian
by vector product asymptotic complexity is still O(F + nr2).

As is noted at the end of Sec. 4.3, for most practical functions f(X) the complexity F of evaluating
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Algorithm 6.2 Computing the approximate Riemannian Hessian by vector product for low-rank
tensors via AD.

Require: {Gk}dk=1 – TT-cores of X, the delta terms ṠZ
1 , . . . , Ṡ

Z
d that define the projection (onto

the tangent space) of the tensor Z which has to be multiplied by the approximate Riemannian

Hessian, p(Ĝ1, . . . , Ĝd) – Python implementation of f(X̂) for a point X̂ given by TT-cores

Ĝ1, . . . , Ĝd.
Ensure: The TT-cores {Hk}dk=1 of the approximate Riemannian Hessian by vector product (6.1)

1: For X, compute left- and right-orthogonal TT-cores {Uk}d−1k=1, {Vk}dk=2 respectively and {Sk}dk=1

as in (5.4).
2: function g(R1, . . . ,Rd)
3: Run Alg. 5.1 passing as input {Gk}dk=1 and {Rk}dk=1 and write the output TT-cores

into {Ĝk}dk=1

4: return p(Ĝ1, . . . , Ĝd)

5: function w(R̂1, . . . , R̂d)

6: Using AD compute Ṡk := ∂g
∂Rk

∣∣∣
(R1,R2,...,Rd)=(R̂1,...,R̂d)

for k = 1, . . . , d

7: for k ← 1 to d− 1 do
8: Dk := reshape(Ṡk, (rk−1nk, rk))
9: UL

k := reshape(Uk, (rk−1nk, rk))
10: Dk := Dk + UL

k

((
UL
k

)ᵀ
Dk

)
. See (5.11)

11: Ṡk := reshape(Dk, (rk−1, nk, rk))

12: return
∑d
k=1

〈
Ṡk, Ṡ

Z
k

〉
13: Using AD compute Ṡk := ∂w

∂Rk

∣∣∣
(R1,R2,...,Rd)=(S1,O2,...,Od)

for k = 1, . . . , d

14: for k ← 1 to d− 1 do
15: Dk := reshape(Ṡk, (rk−1nk, rk))
16: UL

k := reshape(Uk, (rk−1nk, rk))
17: Dk := Dk + UL

k

((
UL
k

)ᵀ
Dk

)
. See (5.11)

18: Ṡk := reshape(Dk, (rk−1, nk, rk))

19: Run Alg. 5.1 passing as input {Gk}dk=1 and {Ṡk}dk=1 and write the output TT-cores into {Hk}dk=1

the function at a single point dominates the added complexity O(nr2) of the proposed algorithm,
making the total complexity of the algorithm coincide with the complexity of evaluating the function:
O(F + nr2) = O(F ).

Proposition 6.2. Let f : Rn1×...×nd → R be a smooth function defined by a program p, which
takes as input TT-cores of the tensor X and outputs the value f(X) in F FLOP, which is polynomial
w.r.t. the TT-ranks of the tensor X (i.e., the program p belongs to the P complexity class). Then,
the complexity of Algorithm 6.2 for computing the product of the approximate Riemannian Hessian
by a given vector (for the manifold of tensors of fixed TT-rank) PX∇2f(X) Z is O(F + dnr3), where
n = maxk=1,...,d nk, r = maxk=1,...,d−1 rk.

Proof. Similarly to the first-order case, let us estimate the complexity of each step of Alg. 6.2.
Steps 1, 2, 3, 4 define the function g(R1, . . . ,Rd) that can be evaluated at a given point in

O(F + dnr3) FLOP (equivalently to the first-order case, see proof of Statement 5.2 for details).
Steps 6-11 use classic automatic differentiation to compute the gradient of the function g with

respect to its arguments and then project the resulting gradients onto the gauge conditions. These
steps are equivalent to steps 5-10 of Alg. 5.2 and can be done in O(F + dnr3) (again, see proof of
Statement 5.2 for details).

Step 12 computes the dot product between two elements of the same tangent space, which (as
noted above) can be computed with the complexity that equals to the number of elements in the

delta-terms, i.e., O(ndr2). So the total complexity of evaluating the function w(R̂1, . . . , R̂d) at a
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point is O(F + ndr3) FLOP.

Step 13 uses classic automatic differentiation to compute the gradient of w(R̂1, . . . , R̂d) with
respect to its arguments, which can be done in O(F + dnr3) FLOP.

Steps 14-19 are equivalent to steps 6–11 of Alg. 5.2 and (as discussed in the proof of Statement 5.2)
take at most O(dnr3) FLOP.

Combining the complexity from all the steps yields O(F + dnr3).

Similarly to the matrix case, for most practical functions f(X), the total complexity of the
algorithm is O(F + dnr3) = O(F ).

7. Numerical experiments. In this section, we compare three ways of computing Riemannian
gradients and approximate Riemannian Hessian-by-vector products: ‘naive’ – by deriving the
expression for the TT-format of the Euclidean gradient and then projecting the Euclidean gradient
onto the tangent space9; ‘improved’ – similar to the ‘naive’ approach, but with additional tricks to
speed up the computations using optimized primitives10 implemented in [30]; ‘AD’ – by using the
proposed automatic differentiation method. All methods give the same answer (as verified by tests
for all the functions described below), so we only consider speed and memory usage when comparing
the methods.

We ran the experiments on a machine with 240 Gb of RAM and an NVIDIA V100 GPU which
has 16 Gb of video memory available. For each problem, we tried to choose a realistic problem
size (specified separately for each particular function below) and ran all the experiments with three
different tiers of TT-ranks: Small, Medium and Large. We choose the Large ranks for each problem
to be the largest TT-rank that fits RAM of the machine we ran the experiments on (240 Gb), Medium
to be the largest TT-rank that fits the GPU memory (16 Gb), and Small TT-ranks to be twice
smaller than the Medium TT-ranks. See Table 1 for the TT-ranks for each function.

7.1. Functions. Below we talk in detail about the five functions considered in numerical
experiments.

Quadratic form. The first function we consider is quadratic form f(X) = 〈AX,X〉 with symmetric
A, which is relevant for solving systems of linear equations. Its Euclidean gradient equals 2AX,
and the product of its Hessian by a given vector Z equals 2AZ. ‘Naive’ method for computing the
projection of the matrix-by-vector product (e.g., the product of the approximate Riemannian Hessian
by a given vector PX2AZ) consist in first computing the matrix-by-vector product AZ and then
projecting the result. The combined complexity of the ‘naive’ approach is O(dnrxr

2
zR

2), where the
TT-rank of the tensor X is rx = (rx, rx, . . . , rx), TT-rank of tensor Z is rz = (rz, rz, . . . , rz), and
TT-rank of the operator A is R = (R,R, . . . , R). An ‘improved’ version of this operation combines
the matrix-by-vector multiplication and the projection onto the tangent space into a single step
PXAZ and exploits the structure of arising operations to decrease complexity to O(dn2rxrzR

2) (for
details of implementation of this operation see section 4.1 of [31]).

In the experiments below, we consider a 40-dimensional tensor X ∈ R20×...×20 and represent the
operator A by a TT-matrix of size 2040 × 2040. We use TT-ranks rA = 10, rX = 10, rZ = 20 for
the Small TT-rank experiment and rA = 20, rX = 20, rZ = 40 for the Medium and Large TT-rank
experiments.

Quadratic form with a Gram matrix. The second function is quadratic form f(X) = 〈AᵀAX,X〉
(operator factored into the product of two TT-matrices AᵀA arised, e.g., in [32]). The Euclidean
gradient equals to 2AᵀAX and the product of its Hessian by a given vector Z equals to 2AᵀAZ. We
use the same trick to optimize the projection of the product of two matrices by a vector as in the
quadratic form case. Note that it takes significant effort to derive and implement the ‘improved’
version here.

In the experiments below, we consider a 10-dimensional tensor X ∈ R20×...×20 and represent the
operator A by a TT-matrix of size 2010 × 2010. We use TT-ranks rA = 10, rX = 5, rZ = 10 for the

9Note that in this process we never materialize the dense representation of any tensor and always work with
TT-representations.

10Examples of additional tricks used: implementing projection of matrix-by-vector multiplication PxAb as a single
operation, instead of a doing them one-by-one allows to speed things up; using the fact that projection is a linear
operation and thus PX

∑
i Ai =

∑
i PXAi.
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Function Small Medium Large

tensor X operator A tensor X operator A tensor X operator A

〈AX,X〉 10 10 20 20 20 20
〈AᵀAX,X〉 10 5 20 10 20 20
RayleighQuotient 10 10 20 20 20 20
completion 5 - 10 - 20 -
ExpMachines 5 - 10 - 20 -

Table 1: Ranks of tensors, matrices and vectors involved in different tiers of experiments. See Sec. 7.1
for more details.

Small TT-rank experiment, rA = 20, rX = 10, rZ = 20 for the Medium TT-rank experiments, and
rA = 20, rX = 20, rZ = 40 for the Large TT-rank experiments.

Rayleigh quotient. The Rayleigh quotient f(X) = 〈A[X],X〉/〈X,X〉 with symmetric A is relevant
for solving eigenvalue problems. The Euclidean gradient is 2

〈X,X〉 (A[X]− f(X)X), and the product

of its Hessian by a given vector Z is

∇2f(X) Z =
2

〈X,X〉
AZ− 2

f(X)

〈X,X〉
Z− 4

〈AX,Z〉
〈X,X〉2

X

− 4
〈X,Z〉
〈X,X〉2

AX + 8f(X)
〈X,Z〉
〈X,X〉2

X

The ‘improved’ version of the Riemannian gradient and approximate-Riemannian-Hessian-by-
vector product is computed by representing the projection of a sum of terms as a sum of projections
and using the optimized projection of matrix-by-vector multiplication where appropriate, e.g., for
the Riemannian gradient we get

PX∇f =
2

〈X,X〉
PX AX− 2f(X)

〈X,X〉
X,

where we use the fact that PX X = X.
In the experiments below we consider a 40-dimensional tensor X ∈ R20×...×20 and represent the

operator A by a TT-matrix of size 2040 × 2040. We use TT-ranks rA = 10, rX = 10, rZ = 20 for
the Small TT-rank experiment and rA = 20, rX = 20, rZ = 40 for the Medium and Large TT-rank
experiments.

Completion problem. The following function is used when solving low-rank matrix and tensor
completion problems: f(X) = ‖PΩ(X−A)‖2 where PΩ denotes projection on the index set Ω such
that

PΩX =

{
Xi1···d (i1, . . . , id) ∈ Ω,
0 otherwise.

Its Euclidean gradient is 2PΩ(X−A), and the product of its Euclidean Hessian by a given vector Z
is PΩZ. For the ‘improved’ implementation, we represent the projection of a tensor on the index
set as the sum of its non-zero entries PΩX =

∑
(i1,...,id)∈Ω Xi1...idEi1...id where by Ei1...id we denote

the tensor with value 1 in the position (i1, . . . , id) and zero everywhere else. Tensor Ei1...id has
TT-rank 1. Then, we use the fact that the projection of a sum of terms is the sum of projections and,
thus, instead of projecting the tensor PΩX which has high TT-rank, we project TT-rank-1 tensors
E, which leads to a significant speed-up.

In the experiments below we consider a 10-dimensional tensor X ∈ R20×...×20 and the index set
Ω consisting of 10dnr2X elements (i.e., the TT-rank of PΩX equals to 10dnr2X and does not fit to
memory for the ‘naive’ implementation even in the Small TT-rank case). The values of the target
tensor A at the randomly chosen 10dnr2X elements are sampled from the standard normal distribution.
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Function Naive Improved AD

(s) (Gb) (s) (Gb) (s) (Gb)

〈AX,X〉 2.4 6.4 3.3 2.8 1 0.62
〈AᵀAX,X〉 2 10 - - 0.54 0.3
RayleighQuotient 3.1 6.9 3.4 2.8 1.1 0.62
completion - - 3.4 13 0.98 6.2
ExpMachines 0.18 0.082 0.12 0.042 0.078 0.03

(a) Comparison of computing Riemannian gradient by three methods on CPU for Medium TT-ranks.

Function Naive Improved AD

(s) (Gb) (s) (Gb) (s) (Gb)

〈AX,X〉 0.17 11 0.057 0.56 0.085 0.62
〈AᵀAX,X〉 - - - - 0.032 0.28
RayleighQuotient 0.22 12 0.07 0.57 0.1 0.63
completion - - - - 0.25 5.6
ExpMachines 0.034 0.11 0.027 0.04 0.027 0.017

(b) Comparison of computing Riemannian gradient by three methods on GPU for Medium TT-ranks.

Table 2: Comparison of three methods for Medium TT-rank setting (see Table 1) for computing the
Riemannian gradient of various functions in terms of execution time and memory used on CPU and
GPU. A dash means that the respective method ran out of memory.

For the Small TT-rank experiment, we use rX = 5, rZ = 10 and 10dnr2X = 50, 000 observed elements;
for Medium TT-rank experiment, we use rX = 10, rZ = 20 and 10dnr2X = 200, 000 observed elements;
for Large TT-rank experiment, we use rX = 20, rZ = 40 and 10dnr2X = 800, 000 observed elements;.

Exponential machines. For a machine learning related function, we used the empirical risk of the
exponential machines model (see [33] for details and justification):

f(X) =

N∑
i=1

h(〈X,W(i)〉, y(i)),

where h(x, y) is the loss function h(x, y) = log(1 + exp(−yx))11, tensors W(i) have TT-rank 1, and
y(i) are binary numbers.

As argued in [33], this model corresponds to a type of recurrent neural network, so we refer to
this example as a neural network loss in the rest of the paper.

The gradient of this function is

∇f = −
N∑
i=1

exp(−y(i)〈X,W(i)〉)
1 + exp(−y(i)〈X,W(i)〉)

W(i)

and the product of the Hessian of this function by a given vector is

∇2f(X)Z =

N∑
i=1

exp(−y(i)〈X,W(i)〉)
(1 + exp(−y(i)〈X,W(i)〉)2

〈Z,W(i)〉W(i).

11This loss adapted from [33] is equivalent to the cross-entropy loss when the label y takes values from {−1, 1}
instead of the more common {0, 1}.
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Function Naive Improved AD

(s) (Gb) (s) (Gb) (s) (Gb)

〈AX,X〉 6.9 28 3.6 3.2 2.2 1.1
〈AᵀAX,X〉 5 36 - - 1.1 0.49
RayleighQuotient 18 56 4.9 4 2.4 1.1
completion - - 3.5 22 2.6 12
ExpMachines 0.21 0.075 0.12 0.053 0.13 0.079

(a) Comparison of computing the approximate Riemannian Hessian by vector product by three methods on
CPU for Medium TT-ranks.

Function Naive Improved AD

(s) (Gb) (s) (Gb) (s) (Gb)

〈AX,X〉 - - 0.067 0.66 0.16 1
〈AᵀAX,X〉 - - - - 0.06 0.54
RayleighQuotient - - 0.14 0.73 0.19 1.1
completion - - - - 0.64 11
ExpMachines 0.036 0.11 0.028 0.04 0.03 0.043

(b) Comparison of computing the approximate Riemannian Hessian by vector product by three methods on
GPU for Medium TT-ranks.

Table 3: Comparison of three methods for Medium TT-rank setting (see Table 1) for computing the
approximate Riemannian Hessian by vector product of various functions in terms of execution time
and memory used on CPU and GPU. A dash means that the respective method ran out of memory.

Again, by using linearity of the projection, to implement the ‘improved’ version we can independently
compute the cheap projections PX W(i) and sum them up.

In the experiments below we consider a 10-dimensional tensor X ∈ R500×...×500 (which corresponds
to a machine learning problem with 10 categorical features each of which can take 500 different
values) and number of objects (in the minibatch) N = 32. We use TT-ranks rX = 5, rZ = 10 for the
Small TT-rank experiment, rX = 10, rZ = 20 for the Medium TT-rank experiments, and rX = 20,
rZ = 40 for the Large TT-rank experiments.

7.2. Results. We used the T3F library [30] for implementing all three algorithms for the
five functions described above. The T3F library provides the primitives used above such as the
optimized projection of a matrix by vector product and also supports GPU execution (thanks to the
underlying use of TensorFlow library [7]). We implemented the Riemannian automatic differentiation
functionality as a part of the T3F library as well.

Results of the main numerical experiments are presented in Table 3, plus additional results on
Small and Large ranks are presented in Appendix. The proposed automatic differentiation method
outperformed both the ‘naive’ and the ‘improved’ implementations for computing the Riemannian
gradient on CPU both in terms of runtime and memory usage (Tables 4a,2a and 5a).

Note that sometimes the ‘improved’ implementation runs slower than the ‘naive’ implementation.
After profiling our implementation of the methods we believe that this happens because the ‘improved’
implementation operates with tensors of larger dimensionality (e.g., when the ‘naive’ version operates
with a tensor of size 1024× 1024× 1024, the ‘improved’ implementation may operate with the same
tensor, but reshaped to 32× 32× 32× 32× 32× 32 for better flexibility), which causes an additional
overhead when permuting dimensions. This overhead is typically neglectable when executing on
GPU, because GPUs have the required flops to compute all the necessary permute operations in
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parallel.
In some cases, the proposed automatic differentiation method is outperformed in terms of the

runtime by the ‘improved’ implementation. This happens due to the (constant) overhead that
arises when performing automatic differentiation. For example, when computing the approximate
Riemannian Hessian-by-vector product of the quadratic form, the ‘improved’ implementation can
directly compute the desired quantity PXAZ, while the automatic differentiation is forced to first
compute the function 〈AX,X〉, then perform the classic automatic differentiation twice, each time
doubling the computational graph, making the computational graph four times larger than the
original one.

However, we believe that despite some overheads compared to the ‘improved’ implementation
which appears in individual cases, the proposed method is still valuable since it significantly simplifies
the implementation of Riemannian optimization algorithms while getting reasonable (and in many
cases superior) performance.

8. Conclusion. In this paper, we propose a way of exactly computing the Riemannian gradient
and the approximate Riemannian Hessian-by-vector product of a function for low-rank matrices and
tensors in time proportional to the time it takes to compute the value of the function at one point.
In experiments, the proposed approach in many cases shows superior performance compared to both
considered baselines in terms of memory and time, while being significantly easier to use. The code
of the proposed algorithms is published online in the open-source library T3F.
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Appendix A. Additional experimental results. Here we provide additional experimental
results. If in the main text, only the Medium TT-rank experiments were provided, here we also
provide results on input tensors of Small and Large TT-ranks (see Sec. 7.1 for a detailed explanation
of the setup and of the TT-ranks chosen for all experiments).

Function Naive Improved AD

(s) (Gb) (s) (Gb) (s) (Gb)

〈AX,X〉 0.32 0.42 0.43 0.26 0.2 0.1
〈AᵀAX,X〉 0.098 0.15 - - 0.085 0.033
RayleighQuotient 0.52 0.48 0.49 0.22 0.23 0.11
completion - - 0.46 0.88 0.074 0.41
ExpMachines 0.14 0.061 0.034 0.013 0.026 0.0097

(a) Comparison of computing Riemannian gradient by three methods on CPU for Small TT-ranks.

Function Naive Improved AD

(s) (Gb) (s) (Gb) (s) (Gb)

〈AX,X〉 0.029 0.69 0.029 0.14 0.036 0.1
〈AᵀAX,X〉 0.0083 0.23 - - 0.01 0.031
RayleighQuotient 0.038 0.76 0.039 0.14 0.042 0.11
completion - - 0.092 1.2 0.062 0.37
ExpMachines 0.031 0.1 0.011 0.013 0.011 0.0048

(b) Comparison of computing Riemannian gradient by three methods on GPU for Small TT-ranks.

Table 4: Comparison of three methods for Small TT-rank setting (see Table 1) for computing the
Riemannian gradient of various functions in terms of execution time and memory used on CPU and
GPU. A dash means that the respective method ran out of memory.
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Function Naive Improved AD

(s) (Gb) (s) (Gb) (s) (Gb)

〈AX,X〉 2.4 6.4 3.3 2.8 1 0.62
〈AᵀAX,X〉 17 162 - - 1.9 1.1
RayleighQuotient 3.1 6.9 3.4 2.8 1.1 0.62
completion - - - - 13 98
ExpMachines 0.35 0.12 1 0.15 0.33 0.11

(a) Comparison of computing Riemannian gradient by three methods on CPU for Large TT-ranks.

Function Naive Improved AD

(s) (Gb) (s) (Gb) (s) (Gb)

〈AX,X〉 0.17 11 0.057 0.56 0.085 0.62
〈AᵀAX,X〉 - - - - 0.15 0.94
RayleighQuotient 0.22 12 0.07 0.57 0.1 0.63
completion - - - - - -
ExpMachines 0.15 0.12 0.15 0.14 0.15 0.067

(b) Comparison of computing Riemannian gradient by three methods on GPU for Large TT-ranks.

Table 5: Comparison of three methods for Large TT-rank setting (see Table 1) for computing the
Riemannian gradient of various functions in terms of execution time and memory used on CPU and
GPU. A dash means that the respective method ran out of memory.
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Function Naive Improved AD

(s) (Gb) (s) (Gb) (s) (Gb)

〈AX,X〉 0.71 1.7 0.43 0.33 0.48 0.17
〈AᵀAX,X〉 0.32 0.56 - - 0.14 0.058
RayleighQuotient 1.8 4.2 0.8 0.55 0.52 0.17
completion - - 0.47 0.91 0.19 0.9
ExpMachines 0.22 0.056 0.047 0.032 0.057 0.03

(a) Comparison of computing the approximate Riemannian Hessian by vector product by three methods on
CPU for Small TT-ranks.

Function Naive Improved AD

(s) (Gb) (s) (Gb) (s) (Gb)

〈AX,X〉 0.053 2.7 0.035 0.21 0.066 0.16
〈AᵀAX,X〉 0.018 0.67 - - 0.019 0.058
RayleighQuotient 0.16 7 0.093 0.58 0.079 0.2
completion - - 0.1 1.8 0.15 0.72
ExpMachines 0.031 0.1 0.011 0.013 0.014 0.012

(b) Comparison of computing the approximate Riemannian Hessian by vector product by three methods on
GPU for Small TT-ranks.

Table 6: Comparison of three methods for Small TT-rank setting (see Table 1) for computing the
approximate Riemannian Hessian by vector product of various functions in terms of execution time
and memory used on CPU and GPU. A dash means that the respective method ran out of memory.
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Function Naive Improved AD

(s) (Gb) (s) (Gb) (s) (Gb)

〈AX,X〉 6.9 28 3.6 3.2 2.2 1.1
〈AᵀAX,X〉 - - - - 4.2 2
RayleighQuotient 18 56 4.9 4 2.4 1.1
completion - - - - - -
ExpMachines 0.38 0.11 1 0.14 0.52 0.23

(a) Comparison of computing the approximate Riemannian Hessian by vector product by three methods on
CPU for Large TT-ranks.

Function Naive Improved AD

(s) (Gb) (s) (Gb) (s) (Gb)

〈AX,X〉 - - 0.067 0.66 0.16 1
〈AᵀAX,X〉 - - - - 0.31 2
RayleighQuotient - - 0.14 0.73 0.19 1.1
completion - - - - - -
ExpMachines 0.16 0.12 0.15 0.14 0.15 0.17

(b) Comparison of computing the approximate Riemannian Hessian by vector product by three methods on
GPU for Large TT-ranks.

Table 7: Comparison of three methods for Large TT-rank setting (see Table 1) for computing the
approximate Riemannian Hessian by vector product of various functions in terms of execution time
and memory used on CPU and GPU. A dash means that the respective method ran out of memory.
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