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HIGH-DIMENSIONAL DYNAMIC STOCHASTIC MODEL
REPRESENTATION *

ARYAN EFTEKHARI  AND SIMON SCHEIDEGGER ¥

Abstract. We propose a scalable method for computing global solutions of nonlinear, high-
dimensional dynamic stochastic economic models. First, within a time iteration framework, we
approximate economic policy functions using an adaptive, high-dimensional model representation
scheme, combined with adaptive sparse grids to address the ubiquitous challenge of the curse of di-
mensionality. Moreover, the adaptivity within the individual component functions increases sparsity
since grid points are added only where they are most needed, that is, in regions with steep gradients
or at nondifferentiabilities. Second, we introduce a performant vectorization scheme for the interpo-
lation compute kernel. Third, the algorithm is hybrid parallelized, leveraging both distributed- and
shared-memory architectures. We observe significant speedups over the state-of-the-art techniques,
and almost ideal strong scaling up to at least 1,000 compute nodes of a Cray XC50 system at the
Swiss National Supercomputing Center. Finally, to demonstrate our method’s broad applicability,
we compute global solutions to two variates of a high-dimensional international real business cycle
model up to 300 continuous state variables. In addition, we highlight a complementary advantage of
the framework, which allows for a priori analysis of the model complexity.

Key words. High-Dimensional Model Representation, Sparse Grids, High-Performance Com-
puting, International Real Business Cycles
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1. Introduction. Motivated by empirical observations, features such as hetero-
geneity, interconnectedness, and uncertainty have become vital ingredients for cap-
turing the salient features in contemporary dynamic economic models. In macroeco-
nomics for instance, heterogeneity between types of agents, such as hand-to-mouth
and non-hand-to-mouth consumers (see, e.g., [23]), financial frictions such as collat-
eral constraints (see, e.g., [29]), or distributional channels (see, e.g., [27]) have become
widely recognized as essential components for modern macroeconomic models. The
need for heterogeneity has recently become even more evident during the current
COVID-19 pandemic, where unprecedented policy actions have to be taken to miti-
gate this once-in-a-century event (see,e.g., [19]).

To address today’s key questions in economics quantitatively, one quickly ends
up with an intricate formal structure that relies on considering so-called recursive
equilibria [50, 33]. In such equilibria, a potentially high-dimensional state variable
x € X C R? represents the state of the economy, d is the dimensionality of the state
space, and a time-invariant optimal policy function p : X — Y C R™, the desired
unknown, captures the model dynamics and can be characterized as the solution to a
functional equation that reads [14]:

(1.1) H(p) = 0.
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This abstract description nests various characterizations of recursive equilibria, and
in particular, the widespread case where the operator H captures discrete-time first-
order equilibrium conditions, the focal point of this paper.

A standard method for solving such dynamic stochastic economic models is the
so-called time iteration algorithm [9], which computes the recursive equilibrium of a
dynamic economic model by guessing a policy function and iteratively updating it
using the first-order equilibrium conditions of the model. However, solving for global
solutions' to models with substantial heterogeneity and highly nonlinear policy func-
tions is very costly for two key reasons. First, no matter which model characterization
is used, the curse of dimensionality [2] imposes a roadblock as soon as X is of a higher
dimension (say d > 3), and a global solution has to be computed, where the equilib-
rium conditions need to be satisfied throughout the entire computational domain. A
grid-based solution technique that relies on a naive tensor-product construction will
require O(M9) points when M points are needed in each dimension. This exponen-
tial growth makes tensor-product grids infeasible as soon as M and d reach moderate
levels. Second, at each grid point, a system of nonlinear equations must be solved.
When solving the system of equations at a given grid point, one needs to frequently
interpolate from the function computed in the previous iteration step. These interpo-
lation operations can account for up to 99% of the overall compute time for solving
the system of equations [47]. These two impediments make it difficult to achieve
an acceptable time-to-solution which can quickly reach the order of days on modern
supercomputing facilities. As a result, present methods frequently fall well short of
including as much heterogeneity as a reasonable modeling choice would imply.?

To deal with the ever-increasing complexity of state-of-the-art dynamic stochas-
tic economic models, we propose in this work a generic, scalable, and flexible com-
putational framework which can efficiently address the previously noted bottlenecks.
Building on [47, 6, 5] and [12], we specifically contribute (i) an adaptive high-dimensionall]
model representation scheme that is coupled with an adaptive sparse grid algorithm
applicable for recursively formulated economic models that significantly reduces the
number of grid points in the approximation and the time needed for each function
evaluation, (ii) adaptivity criteria which can be used as an on-the-fly analysis tool
elucidating the complexity of the model under consideration, (iii) a vectorized imple-
mentation for performant interpolation, and (iv) a hybrid parallelized time iteration
solution framework fit for virtually any dynamic stochastic economic model. Finally
(v), we deploy our solution framework at the Swiss National Supercomputing Center
(CSCS) to solve highly nonlinear dynamic stochastic economic models of up to 300
dimensions globally.

The grid point reduction is achieved by combining adaptive sparse grids (adaptive
SGs; see, e.g., [7, 42, 34]) with a dimensional decomposition (DD) framework that is

LA global solution adheres to the model equilibrium conditions throughout the entire state
space—that is, the computational domain, whereas a local solution is only concerned with the local
approximation around a steady state.

2For example, [26] examined the welfare implications of social security reforms using a model
in which one period amounted to six years rather than one, thus lowering the number of adult
cohorts and therefore the problem’s dimensionality by a factor of six. Similarly, international real
business cycle models often incorporate only a small number of countries. For instance, [3] studied
cross-country risk-sharing at the business cycle frequency using a two-country model with one focus
country and the rest of the world. By reducing the problem’s dimensionality in this way, valuable
qualitative insights can be gained. However, in order to obtain reliable quantitative results or simply
to assess the robustness of qualitative findings, it is frequently necessary to consider problems of
larger dimensions.
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based on high-dimensional model representation (see, e.g., [32, 35, 53]). Finally, the
time-to-solution is substantially accelerated by using a hybrid parallelization scheme
(i.e., using both distributed- and shared-memory hardware) combined with a novel
vectorization approach for fast interpolation on the policy functions.

SGs can alleviate the curse of dimensionality to some extent, allowing one to tackle
models that incorporate rich economic settings, including international real business
cycle (IRBC) models of up to 50 countries, that is, 100 dimensions [6]. Furthermore,
adaptive SGs can resolve steep gradients or nondifferentiabilities efficiently, making
them useful in the context of solving a broad range of mid-scale economic models (say
d < 20) with non-smooth policy functions that arise, for example, in the presence of
collateral constraints on borrowing (see [4] for a review on the use of adaptive SGs in
economics and finance).

However, the limitations of adaptive SGs become evident when one considers
highly nonlinear economic models of much more heterogeneity, for example, IRBC
models that consist of dozens of countries that face irreversible investment constraints.
In such situations, adaptive SGs are no longer an applicable solution method, as
the number of grid points increases substantially with the approximation quality or,
equivalently, with the resolution of the grid. Furthermore, in high-dimensional SGs,
access times of the data structures become computationally expensive (see, e.g., [40]).

The noted issues can be surpassed by combining DD (see, e.g., [31, 44, 17]) with
adaptive SGs, which we refer to as DDSG. The core idea of DD is to approximate a
function by decomposing it into a series of lower-dimensional functions. This decom-
position gives a way to represent, for example, in the simplest case, a 300-dimensional
function as a summation 300 one-dimensional functions. We will focus on one vari-
ate of DD referred to in the literature as High-Dimensional Model Representation
(HDMR). The HDMR technique has been applied to multiple fields including chem-
istry (see, e.g., [53]), physics (see, e.g., [35]), and machine-learning (see, e.g., [39]).
With this said, and to the best of our knowledge, HDMR so far seems to have gone
unrecognized in the field of economics until now.

The remainder of this paper is organized as follows. In Section 2, we provide a very
brief review of the related literature on global solution techniques for high-dimensional
dynamic economic models. In Section 3, we describe the abstract structure of the
models we aim to solve with our proposed method and specify a conceptually simple
yet computationally demanding economic test case—the IRBC model. The latter
has become the de-facto workhorse for studying methods for solving high-dimensional
economic models, as its dimensionality can be scaled up in a straightforward and
meaningful way, as it just depends linearly on the number of countries considered. In
Section 4, we detail the proposed DDSG method. Next, in Section 5, we embed DDSG
in a time iteration algorithm and discuss the hybrid parallelization scheme of the
complete method. In Section 6, we support the performance claims and applicability of
the proposed solution framework by providing a series of unit tests and global solution
results in two different configurations of high-dimensional IRBC models. Finally, in
Section 7 we conclude.

2. A brief literature review on global solution methods. Over the past
two decades, there have been significant advancements in the development of algo-
rithms and numerical tools to compute global solutions for high-dimensional dynamic
stochastic economic models (see [36, 14] for recent reviews). To overcome the in-
herent curse of dimensionality, the computational economics community has pursued
two main strands of research: i) SG-based solution algorithms and ii) grid-free meth-
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ods. SG methods [8] are a mathematically well-studied, systematic way to tackle
the numerical difficulties that arise in dynamic economic models due to the high-
dimensional state spaces. However, they typically fail in real applications if the
dimensionality of a highly nonlinear model exceeds about 20 (see [4] for a recent
review). However, such problem sizes are often required from a theoretical point of
view, for instance, in annually calibrated multi-country overlapping generation models
with borrowing constraints—a 240-dimensional problem in its minimal formulation.
In contrast, DDSG can, as we show below, handle problem sizes of at least 300
continuous state variables. Grid-free approaches have been proposed, for example,
by [11] and have lately become more powerful by leveraging the rapid developments
in machine learning. In [45, 25] and [46, 28], the authors combine Gaussian processes
with reinforcement learning and active subspaces, respectively. However, the com-
bination of these methods typically cannot deal in a straightforward manner with
frictions such as irreversible investments and the related nonlinearities (as presented
in the IRBC model in Section 3.1.2), whereas DDSG can. Other research in com-
putational economics has recently applied deep neural networks to compute global
solutions to high-dimensional dynamic stochastic models (see, e.g., [1, 37, 13]). How-
ever, while these methods could be considered an alternative to the work presented
here, they nowadays still suffer from several drawbacks that limit their general ap-
plicability. Their convergence properties, for example, with respect to the network
architecture, are still poorly understood, thus often requiring a substantial amount of
hyper-parameter tuning for a successful model solution. In contrast, DDSGs provide
a transparent way to handle high-dimensional models. Finally, nesting the DD ap-
proach with the time iteration algorithm is not restricted to SGs. Thus, alternative
solution methods for low-dimensional economic models could also be scaled up in a
relatively straightforward way if embedded in DD, in turn providing a simple means
to extend the boundaries for research.

3. Large-scale dynamic stochastic economic models. This section out-
lines the types of models and the recursive solution techniques that we use below to
demonstrate the versatility, accuracy, and computational scalability of the method
introduced in this paper. To do so, we proceed in two main steps. First, we begin
in Section 3.1 by briefly describing smooth and non-smooth variants of the IRBC
model as concrete test cases®, thereby closely following [5]. The latter has recently
become a workhorse model for studying methods for solving high-dimensional dy-
namic stochastic models (see, e.g., [22, 10], and references therein). The IRBC model
is straightforward to explain, has a unique solution [50], and its dimensionality can be
scaled up in a meaningful way as it just depends linearly on the number of countries
considered. This property of the model allows us to concentrate on the computational
issues of handling high-dimensional state spaces. To demonstrate that we can also
handle non-smooth problems, we also consider a version of the IRBC model where
investment is irreversible. Second, we present in Section 3.2—based on the example
of the IRBC models—how a recursive equilibrium can be computed by applying the
time iteration algorithm and discuss the computational challenges associated with
solving for global solutions of large-scale dynamic stochastic economic models, and
which motivate the development of our proposed DDSG method.

3 As custom in the literature, we denote an IRBC model with no kinks in the policies as smooth,
whereas we name it non-smooth if there exist non-differentiabilities in the latter functions.
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3.1. A scalable test case: the international real business cycle model.
In the IRBC model we are considering as test case, time ¢ is discrete, there are
N countries, j = 1,..., N, each using its accumulated capital stock, k;; € Ry, to
produce an output good, which can be used for investment, I;;, and for consumption,
¢;i € Ry, generating utility, u;(c;.). In the model formulation we follow, complete
markets are assumed [24]. Thus, a social planner solves the following (infinite-horizon)
optimization problem:

N [eS)
Eq ZT] Zﬂtuj 4, *

{CJ o5kj, t+1} e —

N
subject to: ZR ajt, ki kjiv1,¢54) =0, Vi
j=1

(31) (2) Ij,t(kj,t’ kj,t"rl) P 07 V{t,j},

where a;; denotes productivity, 7; are the welfare weights, 3 is the discount factor,
Eq is the expectation conditional on the information available at ¢ = 0, and where
the initial capital stocks ko € Rf and productivity levels ag € Rf are assumed to
be given. The parameterization for both the smooth and non-smooth IRBC model
follows [22, 6] and is reported in Table 1. The first constraint (1) is the so-called
aggregate resource constraint, while the second constraint (2) enforces irreversible
investments." We refer to the smooth IRBC model where only constraint (1) is used.
In contrast, the non-smooth IRBC model requires the solution of (3.1) with both

constraints (1) and (2). Furthermore, we assume an additive separable per-period
L

1—=
utility function that is given by u;(cj¢) = ¢, - %) The aggregate resource

constraint is a function of the production function Y, investment I;,, the capital
adjustment costs I', and consumption ¢; ;:

Rlaj e, kjes kjevscin) = Y(age, ki) — T(kjes kjorr) =1(kjes kjer1) — ¢t
Y(aj, kji) = A-aj- kS

ot
(3.2) Lie(kje, kjee1) = kjes1 — (1 —6) - kjz, and
¢ kjit1 ?
(33) F(k’j’t, kj,t—‘rl) = 5 M kj,t N T - 1 .
7,t

The law of motion of productivity is the sole source of stochasticity in the model and
is given by:

(3.4) Ina;; =p-lnaj—1+0-(ejr+er),

where e;; ~ N(0,1) and e; ~ N(0,1) denote the country-specific, and the global
shocks, respectively. Both are assumed to be independent from each other and across
time. Thus far, we have considered an infinite horizon problem. However, as indicated
previously, economics frequently focuses on recursive equilibria [50, 33], in which the
state of the economy is represented by a state variable and the economy’s dynamics are
given by a time-invariant function of this state (cf. (1.1)). We now briefly describe the
recursive structure, that is, the two IRBC model formulations’ first-order optimality
conditions (FOCs). We direct the reader to [6] for the derivations.

4Investment is irreversible in the sense that it cannot be consumed or used for production in
another country—an assumption that is more realistic than perfect reversibility, which is usually
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TABLE 1
Parameterization of the smooth and non-smooth IRBC model.

Parameter Symbol Value
Discount factor B 0.99
Elasticity of intertemporal substitution of country j o7 a+0.75(j = 1)/(N — 1)
Capital share @ 0.36
Depreciation 1 0.01

Std. of log-productivity shocks o 0.01
Autocorrelation of log-productivity p 0.95

Intensity of capital adjustment costs 0] 0.50
Aggregate productivity A (1-8(1-19)/(a-B)
Welfare weights Tj AV

3.1.1. Smooth IRBC model - recursive structure. In order to obtain FOCs
of the optimization problem stated in equation (3.1), we need to differentiate the La-
grangian with respect to ¢;; and k;;41. Denoting A; as the multiplier on the resource
constraint at time ¢, and defining the growth rate of capital by g, = k;/kj -1 — 1,
we obtain a system of N equilibrium conditions that have to hold at each ¢ and for
all countries j:

(3.5) A (1+ ¢gjev1) —

BE [)‘m <ajyt+1A04(kj,t+1)a1 +(1-0)+ ggj’t” (gj2 2)>} -

where E; is the expectation conditional on the information available at ¢. Furthermore,
the aggregate resource constraint (holding with equality due to strictly increasing per-
period utility assumed) reads as follows:

(3.6) i (aj,tA(kj,t)a + Kt ((1 —0) — g(gj,t+1)2) — kjar1 — </\t) ﬂj) =0,

Tj

where we use the fact that c; ; = (\;/7;)~" holds at an optimal choice [6]. To explic-
itly point out the link to the abstract definition of a recursive equilibrium (1.1) (and
the time iteration Algorithm 3.1 described in section 3.2 below), note that the smooth
IRBC model presented here has a (d = 2N)-dimensional state space. As a reminder,
the state variables are given by x; = (a;, k;) € R?*", where a; = (a1 4,...,axn,) and
k; = (k1,t,...,kn,), are the productivity and capital stock of country j. Further-
more, the optimal, time-invariant policy p : R?N — RN+l the desired unknown—
maps the current state into policies as p(x;) = (kyy1,A¢). Note that the investment
choices determine the capital stock of the next period (i.e., t + 1) in a deterministic
way through (3.2). In contrast, the law of motion of productivity, (3.4), is stochastic.
Taken together, (3.2) and (3.4) specify the distribution of x;41.”

3.1.2. Non-smooth TRBC model - recursive structure. To demonstrate
the strength of our proposed algorithm to deal with high-dimensional and highly
nonlinear models, we consider next a variant of the IRBC model where investment
is irreversible, which in turn leads to non-smooth optimal policies. More precisely,

assumed to keep the model tractable.
5Throughout this paper, we compute the expectations by a simple yet fast monomial quadrature
rule (see, e.g., [20], Sec. 7.5).
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Algorithm 3.1 Time iteration algorithm.

Require: 7, e.

1: repeat

2: P ﬁ/

3 for all x; C X do

4: P'(xt) < solve {FOC (kit1, py, Ae)|xe, D) },
ki1, 0¢t

5 end for

6: until EulerEquationErrors(p’) < e
7: return P’

we assume that investment cannot be negative (cf. constraint (2) in equation (3.1)).
As a direct consequence, we have to solve a system of 2N + 1 equilibrium conditions.
These conditions now include the Karush-Kuhn-Tucker (KKT) multiplier, 4, ¢, for
the irreversibility constraint. The optimality conditions for investment in capital
as well as the irreversibility assumption for investment in each country j, and the
associated complementary conditions, read as:

(3.7) A1+ dgjet1) — Hj—

BE; |:)‘t+1 (aj.,t+1Aa(kj,t+1)a_l +1-46+ ggj,tw (9j,t42 + 2)) - (1- 5)Mj,t+1:| =0,

0 S Hjt 1 (k;j,t-&-l — k‘j7t(1 — 5)) Z 0.

In addition, the aggregate resource constraint holds again. The state variables of
this non-smooth IRBC model are again given by x; = (a;, k;). The optimal, time-
invariant policy p : R?V — R2N+! now maps the current state into policies as p(x;) =
(Kit1, 4, Ae) where p, = (pa,4,-..,pn,). As in the previous Section 3.1.1, all the
policies will have to be determined by iterating on (3.7) and the aggregate resource
constraint.

3.2. The time iteration algorithm and its computational challenges.
In this section, we briefly introduce the time iteration algorithm [9]. The latter
solves for a recursive equilibrium of a dynamic economic model by guessing a policy
function and iteratively updating it using the first-order equilibrium conditions of
a given model such as those presented in Sections 3.1.1 and 3.1.2). For the sake
of brevity, the discussion that follows only considers the non-smooth IRBC model.
However, the algorithmic logic carries over to any model formulated analogously. Let
x; € X C R? denote again the state of the economy at discrete time ¢.° Recall
that in the model under consideration, the economy is represented as a (d = 2N)-
dimensional state variable x; = (a;, k), and that the optimal policy function p :
X — R2N*! maps the state variable to the capital choice, the KKT multipliers for
the irreversible investments constraint, and the Lagrange multiplier for the aggregate
resource constraint, that is,

(3.8) p(xt) = (Ke1, phg; At)y and p(xeq1) = (Kego, g1, Aet1)-

The goal of the time iteration algorithm is to determine an approximate optimal
policy function on the entire domain X, that is, to find a global solution to the
problem stated in expression (3.1) (see, e.g., [21], Section 17.8 for further details).

6In practical applications, we restrict ourselves to the canonical domain, that is, x; € [0, l]d.



8 ARYAN EFTEKHARI, SIMON SCHEIDEGGER

Approximation Interpolation

solve{FOC(...)
Vxs CX

hS]

Fic. 1. This figure is a visual representation of one step of the time iteration algorithm. We
solve the first-order conditions (FOC) of the model for the state variable x¢ in the updated policy
function p' (left), using the policy function from the previous time iteration step p (right).

Such a policy function must satisfy the FOCs throughout the state space, that is,
(3.9 p(x;) = solve {FOC (kei1, py, A\e|xe,p) }, V¢ € X.

kijp1,p,Ae

The time iteration procedure presented in Algorithm 3.1 iteratively computes the
approximate optimal policy function p’—as a numerical proxy to the true p—by using
the previous policy iterate (or initial guess) p to interpolate the values k;yo, fts 1,
and A1 (cf. expression (3.8)). The main components of the algorithm can be found
in steps (3-5). In contrast to equation (3.9), we approximate p’ here; thus, the FOCs
hold exactly (up to numerical precision) for the discrete grid points x; C X. At
each grid point where we solve (3.9), we require the solution for a system of 2N + 1
nonlinear equations, that is, for the FOCs presented in section 3.1.2. In order to
solve this nonlinear set of equations, a large number of interpolated values from p are
required, as illustrated in Figure 1. Finally, in step (6), the time iteration algorithm is
stopped conditional on satisfying that the so-called Euler Equation Errors are smaller
than a given accuracy threshold. In economics, the latter criterion is a commonly
used, unit-free measure of how accurately the equilibrium conditions are numerically
satisfied (see, e.g., [6] Appendix C, or [14] Section 7.2 for further details). This process
is repeated by swapping the policy function until the threshold e is satisfied. The
fundamental operations of Algorithm 3.1, which become computationally restrictive
in a high-dimensional setting, are (i) generating the approximate policy function and
(ii) costly interpolations from a policy function p for solving the system of nonlinear
equations. Notice that the policy function we are interested in is high-dimensional and
multivariate. In addition, due to the concavity assumptions on utility and production
functions, the optimal policy p will also be nonlinear (cf. Section 3.1.2). Hence,
approximating it only locally might provide misleading results. For such applications,
we need a global solution and a performant interpolation method that approximates
p over the entire state space X. To do this efficiently, we will employ DDSG in
combination with a hybrid parallelization scheme in Sections 4 and 5, respectively.

4. Function approximation. The time iteration algorithm outlined in the pre-
vious section poses multiple computational challenges as it requires repeated function
approximations and interpolation of a potentially high-dimensional policy function.
This section outlines a function approximation method that addresses these concerns
by using adaptive SGs and DD, which we discuss in Sections 4.1 and 4.2, respectively.
With this background, we then combine the two numerical techniques in Section 4.3
resulting in the DDSG approximation scheme for high-dimensional functions. We note
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that various forms of SG and DD exist; we will outline each method’s key underlying
concepts in a condensed fashion. For thorough introductions to SGs and DD, we refer
to [8] and [32, 44, 35], respectively.

4.1. Adaptive sparse grids. Let f : x — R” where x € [0,1]¢, and d in our
case is the number of continuous state variables in the economic model of interest, a
potentially large number. For the sake of brevity, we assume that the function value
is zero on the domain’s boundary. This is not a necessary condition, and it can be
easily changed by augmenting the basis function (see, e.g., [47]). First, consider a
one-dimensional domain, discretized with grid spacing h; = 2=!. The grid points are
located at x;; =i-hy, where i € {1,..., 2l} and [ € Ny are the grid point indices and
refinement level, respectively. Using the standard hat function, we define a family of
univariate basis functions as

1
(4.1) ¢1,i(z) = max (1 - h—l|x - :I:l’i|,0> ,
with support [x;; — ki, 21+ hi]. The one-dimensional basis functions can be extended
to a d-dimensional domain by introducing the multi-indices i = (i1,...,4q) and 1 =
(lh,...,1la) € Ni. The grid points are now denoted as x1,; = (21, 4,, - .., Zi1,,i,), and the

corresponding d-linear hierarchical basis function is constructed by a tensor product,
that is,

d
(42) D) = I [ 61,6, ().

Next, we introduce the hierarchical index-set I} and corresponding hierarchical sub-
space Wj, which are given by:

(4.3) L={i:0<ij<2Yi;0dd,1<j<d}, Wiy=span{¢;:ich}.

Notice that the odd increments of #; result in the mutually disjoint support of the basis
functions that cover the entire domain. For the space of piecewise linear functions,

(4.4) Vo= @ w,

Ml <€

we can construct a corresponding equidistant Cartesian grid, also called a full grid,
with M, = 2¢ number of grid points in each dimension, where ¢ denotes the mazimum
refinement level. Approximations using the full grid will have an L, interpolation
error of O(M, ?) and number of grid points are of O(Mg) [8]. Tt is clear that the full
grid suffers from the curse of dimensionality and, thus, is not a scalable approach for
high-dimensional function approximation.

SGs can alleviate this issue; their underlying construction principle is to system-
atically eliminate those hierarchical increment spaces, which contribute only little to
the overall quality of the approximation [8]. It can be shown that the SG space is
given by

(4.5) V= m
Iy, <€+d-1
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In contrast to the full grid space in (4.4), where the maximum grid refinement levels
in any dimension are restricted to ¢, now the sum is restricted. The SG-based inter-
polation of a function f at point x, for a maximum refinement level £, can be uniquely
expressed as

(4.6) Lfx)= > Y andux),

)], <é+d—1i€l

where the coefficients o ; € R, commonly referred to as the hierarchical surpluses, can

be readily computed (see, e.g., [7] for details). Under certain technical assumptions—

the function to be approximated needs to exhibit bounded second-order mixed derivatives—i
the SG approximation error is O(M, ?(log M;)?~1), whereas the number of grid points
grows as O(M; log(M,)?1). Thus, the number of grid points in an SG is significantly
reduced, whereas the error has only slightly deteriorated. Finally, quadrature on SGs

can be performed very effectively, that is,

(4.7) Uf= > Zal,i/¢1,i(x)dx7

)], <l+d—1 i€l

can be readily evaluated by integrating the basis functions in (4.2)—a key of SGs
that we will leverage in the sections to come. In summary, the SG approximation
method is a computationally efficient method for interpolation and or quadrature of
sufficiently smooth functions on moderately high-dimensional domains.

However, in situations where f are highly nonlinear and show distinct local fea-
tures, a high resolution level is required, but only in particular locations of the domain,
which renders the ordinary SG inefficient. Adaptive SGs can cope with this issue to
some extend. Unlike the ordinary SG, which has an a priori selection of grid points,
adaptive SGs utilize an a posteriori refinement, which, based on a local error estima-
tor, selects which grid points in the SG structure to be refined further [41, 34]. For a
predefined threshold €, € R} and

(4.8) v = |l

we deem a grid point to be significant if v > €¢,. The refinement choice is governed
by (4.8); however, depending on the application, more sophisticated criteria may need
to be imposed for an efficient refinement [48]. If a grid point is not accepted, all grid
points that fall in its support will be excluded in the higher refinement level.

A parallel implementation of adaptive SGs is a computationally efficient technique
to tackle nonlinear economic models of moderately high dimensions, say d < 100
in case the smooth IRBC models, or d < 20 in the non-smooth IRBC models [6].
However, when working with models of significantly higher complexity, such as those
with state-space dimensions > 100 or policy functions that exhibit high gradients,
SGs, adaptive or not, are no longer a practical tool for function approximation. In
particular, the data structure becomes computationally demanding to operate on (see,
e.g., [40]). Furthermore, increasing refinement levels to resolve non-smooth features
in high-dimensional settings significantly increases the number of grid points, thus
quickly rendering the approximation uncomputable [6].

4.2. Dimensional decomposition. In this section, we outline the DD ap-
proach that directly targets the curse of dimensionality by attempting to model the
input-output behavior of a high-dimensional function as a sum of low-dimensional
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Exact
Approximation

F1G. 2. A plot of f(x) = x1y/X2 (left), and the corresponding first-order cut-HDMR approzi-
mation with its one-dimensional component functions shown with thick black lines (right).

functions. As in the previous sections, we consider f : x — R, where x € [0,1]%.
Denote u C § = {1,2,...,d} as the component indez, and f, : x4, — R as the com-
ponent function, where x, is the vector comprising of the values x; for ¢ € u. The
function f(x) can be expressed as the hierarchical expansion

(4.9)  f(x)=fo+ Z filxs) + Z Jij(xi ) + ..o+ frooa(zy, @2, ..., 2q)

1<i<d 1<i<j<d

where fp is a constant, f;(x;) models the independent contribution, f;;(x;,x;) the
pairwise dependent contribution, and so on, up to the last term fis  g(21,22,...,2q),
which accounts for the residual contributions. In its complete form, the summation
in (4.9) is exact, as the last term accounts for all contributions of all the input vari-
ables. This representation is referred to as High-Dimensional Model Representation
(HDMR) and is a general method for a function decomposition that captures high-
dimensional input-output system behavior [44, 32, 18, 31]. The summation in (4.9)
can be compactly written as

(4.10) F69= Y fulxa).

uCs

The terms in the summation in (4.10) are categorized by the expansion order k = |u]
or equivalently by the dimension of x,. Suppose this summation can be truncated
to some maximum expansion order K < d without significant degradation in the
approximation quality. In that case, one can reduce the overall dimensionality of
the function. For example, if we consider a 100-dimensional function, its first-order
expansion k = 1, will result in 100 1-dimensional functions. With this said, selecting
the appropriate K for the decomposition will undoubtedly depend on f.

Two popular versions of HDMR are cut- and ANOVA-HDMR [43, 32].7 We will
define the component function for both types of HDMR, but our focus will be on cut-
HDMR. As we will see, the cut-HDMR approach is a more fitting approach for our
application due to its reliance on function evaluations as opposed to ANOVA-HDMR,
which requires high-dimensional numerical integration. Let w(x) = H?:l w;(z;) be
a product measure, with w;(x;) having a unit volume. By sequentially ascending
through the expansion orders, starting from the zeroth-order, the optimally and

"See [31] for a high-level review of variations of cut-HDMR, such RS-HDMR, mp-cut-HDMR,
Mulitcut-HDMR, and lp-RS-hDMR.
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uniquely defined HDMR component function
2

(4.11) fu(a) =argmin / S gulxa) = 1) | w(x)dx,

Gu ucCs

subject to /gu(xu)wi(xi)da:i =0, Vi€ u,

will only be dependent on lower-order component functions fy(xx) for v.C u. This
is particularly important, as the contrary would eliminate any reduction in dimen-
sionality. This attribute is a result of the imposed orthogonality condition in (4.11)
[44, 18]. The cut-HDMR component functions are based on the Dirac measure,

d
(4.12) w(x)dx = H 6(x; — ZT;)dw;.
i=1
where X = (Z1,...,Zq) is a reference point in space, referred to as the anchor point.

Several techniques exist for the selection of the anchor point [15]. A straightforward
approach is to simply choose the anchor point randomly in the high-dimensional space.
However, this can affect the approximation (i.e., for K < d), and a careless selection
may result in large errors (see, e.g., [52] for details on HDMR error analysis). As
noted in [49] a suitable anchor point should satisfy

(4.13) min || f (%) = E[f(x)][]; -

An appropriate anchor point can be selected via sampling x such that f(X) approxi-
mates the mean of the function over the domain (see, e.g., [35] for further details). It
is important to highlight that X is not unique since a given function value could attain
the mean value in several parts of the domain. The cut-HDMR component functions
can be explicitly evaluated from (4.11) as a telescopic summation [30]

(4.14) F () = D> (=DM F () [emrin, . With fy = f(R).

vCu

We use the notation x = X\x, to refer to assigning x the values of X but excluding
the indices of v. For example, given x = (x1,22,23), then X\x12 = (21,2, T3).
In Figure 2, we depict an example 2-dimensional function on the left panel and the
first-order cut-HDMR approximation on the right panel.

Using the Lebesgue measure, in place of the Dirac in (4.12) the ANOVA-HDMR
decomposition is recovered [16], with the component function

(415)  fANOVA(x,) = 37 (1)l / f(x)dxs\a,  with fy = / f(x)dx.

vCu

Notice that on the k-th expansion order, (4.15) requires quadrature across (d — k)
dimensions. Computationally, high-dimensional quadrature is a prohibitive operation
subject to the same computational challenges we wish to address: the curse of di-
mensionality. In contrast, the cut-HDMR component functions are easily computed,
requiring only function evaluation, which in turn for an arbitrary input x, necessi-
tates interpolation of f(x)|x—x\x,- As such, we proceed with adopting the cut-HDMR
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decomposition for which we will simply refer to as fu(xu). In principle, representing
the cut-HDMR component functions is independent of the underlying numerical ap-
proach. In practice, however, we will need a very efficient numerical approach since
the component functions with high DD expansion orders will, to some extent, be
exposed to the curse of dimensionality.

4.3. Dimensional decomposition using adaptive sparse grids. To approx-
imate an economic policy function globally, we follow [35] and [53], and embed adap-
tive SGs within DD to form the DDSG method.® Utilizing adaptive SGs for the
underlying numerical method has two desirable properties: (i) they can be applied
to moderately high-dimensional component functions with non-smooth features, and
(ii) quadrature operations can be carried out efficiently on them. Using the combined
DDSG numerical approach, we can approximate the function f as

(4.16) FeO = Y > EDMTMI () e,

uCS vCu
[ul<K

which is a summation of |v|-dimensional adaptive SGs, where here we truncate the
DD maximum expansion order K < d. The accuracy of the DDSG approximation is
dependent on the underlying function, SG approximation, maximum expansion order
K, and in turn, the number of component functions.”

At a given expansion order, the DDSG component functions increase combina-
torially. The number of grid points in the approximation is the summation over the
grid points of lower-dimensional SGs,

K N K d!
4.17 435 = WVl

where |Vf,§| = O(M;log(M,)¥~1) denotes the number of grid points for k-dimensional
SG with maximum refinement level ¢ (see, e.g., Section 4.1 for further details).”
For K < d, the number grid points for DDSG is given by O(M;log(M,)*—1d*).
In comparison to SG, we have removed the exponential dependence on d, but now
instead, the problem is exponentially dependant on K. Even for moderately sized
problems, the number of component functions corresponding to an adaptive SG can
pose a computational challenge for values of K > 1.

To address this shortcoming, we outline two criteria that will efficiently truncate
the expansion by ignoring its insignificant component functions. Specifically, we will
outline two DDSG adaptivity criteria for the relevance of (i) the proceeding expan-
sion order and (ii) of each component function within an expansion order. With these
criteria, we can generate an adaptive variate of (4.16) by only proceeding to higher
expansion orders when required and eliminating insignificant component functions
within an expansion order. We emphasize that the expansion criterion, or the ac-
tive dimension selection for that matter, is not a measure of convergence of the DD
expansion. These criteria provide an assessment of the importance of the current

8The so-called SG combination technique (see, e.g., [8, 16], and references therein) provides an
alternative construction of the basic DDSG method. However, we follow in our work the description
of [35], where adaptive SGs are embedded within DD.

9For details on the approximation error of the DDSG method, see [35].

10The exact number of grid points for SG will depend on the type of SG used (see, e.g., [41] for
a comparison of different variations of SGs).
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Fic. 3. A plot of the DDSG expansion criterion (left) and the relative absolute error of the
DDSG approzimation (right) with respect to the erpansion order k are displayed. For both cases,
the test function is a 4-dimensional polynomial of degree ¢; i.e., f(x)= (x1+...+%x4)¢. The
component functions are represented using SGs, the absolute relative error is evaluated using 103
random samples, and x = [0.5,0.5,0.5,0.5].

expansion or component function with respect to the previously computed values. As
such, the usage of the criteria, in particular with an aggressively high tolerance may
lead to might lead to excessive truncation or pruning of the component functions. As
discussed in more detail in Section 6.2, these criteria can also be used as an analysis
tool to understand the impact of the different component functions and or expansion
orders on the overall approximation.

4.3.1. Expansion criterion. The expansion criterion is the relative residual
between two consecutive expansion orders k and k — 1. Given the current expansion
order k, a predefined convergence threshold ¢, € R, and a coefficient

D Qfulxa)dx— Y Qufulxu)dx
(4.18) pP= s s :

Z Qqu(Xu)dx

lul<h—1

2

we justify the progression to the next expansion order k41 if p > ¢,. The SG quadra-
ture operation Qy is given by (4.7). With the assumption that X < d, we can expect
that the component function will not be high-dimensional, and thus, quadrature will
not pose a computational bottleneck here.

It is important to highlight that a truncation of (4.16) is not necessarily an ap-
proximation. Indeed, the truncation can be error-free as long as the underlying func-
tion is additively separable up to the KC-th expansion order. This feature is shown in
Figure 3, where we display the value of p and relative absolute error regarding the
expansion order k for a 4-dimensional polynomial of varying degree c. Both p and
the relative absolute error reach machine precision when the expansion order is k > c.
We note that the expansion criterion is not a measure of convergence, as an increase
in the expansion order does not necessarily translate into a decrease in the error.

4.3.2. Active dimension selection criterion. We look to identify insignifi-
cant component functions within an expansion order by using the active dimension
selection criterion. Here, we assume that the underlying function is not constant
with respect to a single variable. Thus, we only focus on component function in-
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Fic. 4. A sketch of the component indices of a 3-dimensional function (left), and the same
with active dimension coefficient n1,2 < €, (right) are shown. All component function indices which
form a superset of {1,2} are ignored—that is, {1,2} and {1,2,3}. In both cases, arrows signify the
computational dependence, for example, f1,3 is dependent on the values of f1, f3 and fp.

dices |u| > 2. Given a predefined active component function threshold ¢, € R4 and
coefficient

(4.19) e = Qe fu(xu)dx]|, 7

Z Q@fv(xv)dx

VS, |vI</ul-1

2

we deem the component function index u as important if 7, > €n~” Component in-
dices that do not satisfy this condition and any superset of these indices are not com-
puted. In Figure 4, we schematically depict the active dimension selection criterion on
a three-dimensional function and the resulting “pruning” effect on the combinatorial
tree of component functions. In the left panel, we can see the component functions
resulting from a full expansion. In the right panel, we display a scenario for which
€n > 11,2 holds. In this case, the corresponding component index is removed from the
computation, but also {1,2,3} as {2,3} C {1,2,3}. Notice that the values from the
quadrature operations in (4.19) can also be shared with (4.18), and vice versa.

5. High-dimensional parallel time iteration framework. This section in-
troduces a performant framework for high-dimensional DDSG function interpolation
and approximation, leveraging an optimized adaptive SG framework [47]. In Sec-
tion 5.1, we describe a vectorized approach to DDSG interpolation, which allows for a
performant, cache-efficient execution of function calls. Next, we outline in Section 5.2
the parallelized DDSG time iteration framework for solving large-scale dynamic sto-
chastic economic models.

5.1. Vectorized DDSG interpolation. In solving the system of nonlinear
equations at a given point, the time iteration algorithm requires frequent interpo-
lation on the policy functions p from the previous iteration (see Section 4.3 for fur-
ther details). These interpolations typically take up the majority—often far beyond
90% [47]—of the computation time needed to solve the nonlinear set of equations.
Therefore, the time-to-solution of the time iteration algorithm is highly sensitive to
the performance of the DDSG interpolation function call. Direct implementation
of (4.16) results in a massive number of repeated computations as many of the SG
interpolants are identical. Consider for example, the component functions f; 2 and
f1,2,3 both require the interpolation values of Zy f (x)[x—g\x, and Zy f(X)|x—x\x,- No-
tice that the number of repeated computations increases nonlinearly with respect to
the function’s dimensionality and DDSG expansion order. Furthermore, a simple

HNote that different criteria for (4.19) have been proposed in the literature so far (see, e.g., [53]).
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lookup-table approach would result in an erratic memory access pattern on a large
array; thus, the computation would be plagued with cache misses.

We can eliminate all redundant SG interpolation and achieve an ideal access pat-
tern without significant overhead in the memory footprint. This is achieved by sepa-
rating telescopic summation in (4.16) and storing the SG interpolation and coefficient
values in two separate arrays

ai(x) = Zof(X)|lx=x\x:»
(5.1) by =) > (- {(vic §:i| <k}

uCs Ygu
1=V
In addition, b, as it is independent of x, will only need to be computed once.'?
Notice that for notation clarity, the formulation above does not consider the two
DDSG adaptivity criteria described in Section 4.3 and asserts the full expansion up
to the maximum expansion order K. The following section will provide an explicit
algorithm describing how each component function is selected with the respective
DDSG adaptivity criteria. The DDSG interpolation function call now reduces to a
desirable dot product f(x) ~ a(x) b with a contiguous data access pattern.

5.2. Parallel DDSG time iteration algorithm. We begin with the general
description of the generic parallelized DDSG Algorithm 5.1 and proceed to outline
the inclusion of DDSG in the time iteration Algorithm 3.1.

The parallelized DDSG algorithm takes as input: the function f to be approxi-
mated, maximum expansion order K, expansion criterion tolerance ¢,, active dimen-
sion selection tolerance ¢,, anchor point X, maximum refinement level ¢, and adaptiv-
ity SG tolerance e,. We begin in step (1) with all compute instances initializing the
empty, vectorized DDSG arrays defined in (5.1), the zeroth-order component function
fo = f(X), and the reject indez-set Z = (). The reject index-set collects all component
function indices excluded from the DDSG expansion as per the active dimension se-
lection criterion. We sequentially progress through the expansion orders in the body
of the algorithm in steps (2-20). At expansion order k, the current order index-set
C is defined as the component indices of order k, which are not a superset of any of
the indices in Z. Expanding on the example in Figure 4 with expansion order k = 3,
values of the reject and current order index set will be Z = {{1,2}} and C = {{}} as
{1,2,3} D {1,2}, respectively. Subsequently, at step(4), we rebalance the compute
resources evenly based on the current order index set, and the computation is carried
out in parallel in steps (5-14). For each parallel SG interpolant, the quadrature value,
and the active dimension selection coefficient 7; are computed for component index
i. Next, in steps (9-13), we employ the active dimension selection criterion for each
component index. If the component function is accepted, we assign the DDSG vector
arrays as defined in (5.1). If not, the component index i is added to the rejected in-
dex set, and the SG interpolant and its quadrature values are discarded. Notice that
each compute instance has a local or partial version of the computed variables within
the parallel section of the algorithm. We perform the global synchronization upon
exiting the parallel region at step(15). In steps (16-19), with the globally available
quadrature values available, we apply the DDSG expansion criterion (4.19). If the
threshold is reached, the routine terminates. Otherwise, we proceed to the next ex-

12While the vectorized strategy is similar to the memoization technique [38], we are also concerned
with data contiguity for increased cache performance.
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Algorithm 5.1 Generic Parallel Adaptive DDSG Algorithm.
Require: f,K,¢,,€y,%,4, €,

1: initialize: {a,b, fp, Z}

2: for k=1 to K do

3 C+{CCS8:VceC,VzeZ, |c|=k cpz}

4:  load_balance given C

5 for all i € C parallel do

6: compute : Zy f(X)|x=x\x; > Using SG adaptivity tolerance € .
7 compute : Qp f(X)|x=x\x; > Using SG adaptivity tolerance €.
8 compute : 7;

9: if n; > €, then
10: compute : {a;(x), b;} > As defined in (5.1).
11: else
12: Z +— {Z Ui}
13: end if

14: end for

15:  synchronize: {Z,Q,f. .,a.,b..}
16:  compute : {p}

17: if p < ¢, then

18: break
19: end if
20: end for

21: return a,b

pansion order. The return values of the routine at step(21) are the vectorized DDSG
interpolation arrays.

In Figure 5 we show the schematic for the parallel DDSG time iteration al-
gorithm. In particular, we display two levels of parallelism: the first is based on
distributed-memory (dashed blue lines), whereas the second relies on mainly share-
memory'?(dotted red lines)'*. Starting in step(1), we assign the newly computed
policy function p’ as the current policy function p, or in the case of the initial step,
we assign a random (guessed) policy function. Next in step(2), we begin the HDMR
decomposition starting from expansion order k = 1 and evenly assign the component
functions amongst groups of distributed-memory processes, referred to as a process-
groups. For each process group in step(3), the respective SGs of the component
functions are computed in parallel using a shared-memory approach. At a given re-
finement level, first, the SG grid points are evenly partitioned amongst the compute
resources (threads), and second, at each grid point, we solve the first-order condi-
tions'® noted in Section 3.2. We incrementally ascend through the SG refinement
levels based on the adaptivity criterion described in Section 4.1. Next in step(4),
having computed the SG, we evaluate its quadrature for use in the DDSG adaptivity
criteria noted in Section 4.3. In step(5),corresponding to step(15) in Algorithm 5.1, we
globally synchronize the distributed computations. We proceed in step(6) by checking
the expansion criterion noted in (4.18) and move to the next HDMR expansion order
if required, that is, back to step (2). Finally, in step (7), we reconstruct the DDSG
policy function for the next iteration in step(1). With this parallelization approach,
we expect that the parallel efficiency would be higher in the DD component, the pri-

13Both distributed- and shared-memory parallelization can be used in adaptive SG, though it is
more effective to allocated distributed memory processes to the DD portion of the code [12].

14MPT and Intel(R) TBB are used for distributed- and shared-memory parallelism, respectively.

15We use IPOPT [51] for solving the FOCs.
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Fic. 5. The primary layer of parallelization (dashed blue lines) occurs in computing the HDMR
component functions from steps (2-5). The secondary layer of parallelism (dotted red line) takes
place while solving the system of the monlinear equations at each SG grid point and carrying out
quadrature operations, as shown in steps (3) and (4), respectively.

mary layer, compared to the SG component, the secondary layer of the algorithm. As
highlighted in [12], this is due to the unutilized computing resources in the SG algo-
rithm at low refinement levels and also because of the repeated synchronization on
increasing refinement levels. For example, in a one-dimensional SG with a maximum
refinement level of ¢/ = 4, we would have 1,2,4, and 8 grid points at each refinement
level. Thus allocating 8 cores for this computation would only achieve full utilization
on the last refinement level. Furthermore, at each refinement level, we would require
synchronization.

6. Results. This section demonstrates the capabilities of the parallelized DDSG
time iteration framework introduced in Section 5. We begin in Section 6.1 with a
set of basic performance tests for grid point reduction, vectorization performance,
scalability, and speedup. In Section 6.2, we utilize DDSG as a tool to analyze both
variates of the IRBC model described in Section 3.1. Using conclusions drawn from
this analysis, in Section 6.3, we deploy the parallel DDSG time iteration framework
to solve a set of large-scale smooth and non-smooth IRBC models. We introduce the
following naming standard for the parameterization of the DDSG routine:

DD’SG,".

It should be assumed that €, = €, (see Section 4.3 for definitions of €, and ¢,) unless
otherwise noted. If a nonadaptive variate of the DDSG method is used, the values of
€n and €, are omitted. To measure our scheme’s convergence, we follow the previous
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Fic. 6. A plot of the ratio of SG to DDSG grid points for a mazimum refinement level £ = 4
(left), and 10 (right) with respect to the maximum expansion order K at varying dimension. In both
figures, the thicker lines represent data points for which the number of DDSG grid points is < 10°.

literature and report the Euler Equation Errors (see [6], Appendix C for details). A
total of 10,000 error samples are gathered for which the maximum (Maximum Euler
Error) and average (Average Euler Error) are reported in log;, scale. In all test
cases, the reported targeted Average and Maximum Euler errors in our approximate
solutions align with the current literature. All experiments were conducted on the
Piz Daint supercomputer at CSCS (Cray XC50 with 12-cores and 64GB of memory
per node).

6.1. Unit Tests. We now outline a set of unit test results to highlight the re-
duction in the number of grid points, the performance of the vectorized interpolation,
the parallel scalability, and the speedup of the framework with respect to the state-
of-the-art SG framework.

6.1.1. Grid point reduction. In Figure 6, we show the SG to DDSG grid
point ratios with respect to the maximum expansion order X for various function
dimensionalities. We refer the reader to Section 6 for further details on the adopted
notation standard DD;C" SG?. The red line in each graph denotes a ratio of one—that
is to say, where the number of grid points for DDSG and SG are equivalent. The plot
lines not marked with thick lines are where using DDSG would result in a number of
grid points > 10°. In these conditions, memory issues would render DDSG, or even
SG, inoperable. The two plots presented correspond to two scenarios, one where the
underlying function exhibits relatively smooth dynamics (lower maximum refinement
levels) and the other where one wishes to resolve non-smooth futures (higher maximum
refinement levels). For a lower refinement level £ = 4, shown in the left panel, DDSG
provides a reduction in grid points up to a maximum expansion order K = 2. At a
maximum expansion order of L = 1, we can see orders of magnitude in grid point
reduction. This trend is further exaggerated when we require higher SG refinement
levels. We show the same test in the right panel but with ¢ = 10. Here there is a
reduction in grid points up to an expansion order of K = 5. However, at such high
expansion orders and refinement levels, the overall number of grid points is much too
high for practical usage.

6.1.2. Function call performance. The solution time for the first-order con-
ditions of the IRBC models outlined in Sections 3.1.1 and 3.1.2 is heavily dependent
on both the number of optimizer function invocations per grid point and the time
required for the function invocation. In Figure 7, we present the results for one step
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Fic. 7. A plot of the number of function calls per grid point for SGa and DD2SGs (left),
and relative function call time of the DDSG naive and vectorized DDSG interpolation (right), with
respect to varying dimensions for the smooth IRBC model.
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Fi1Gc. 8. Normalized compute time of a 20- (left), and a 50-dimensional model (right) taking
one time iteration step using DDSG with expansion orders 1 and 2, and mazimum refinement levels
4 and 5, respectively.

of the time iteration using SG4 and DD5SGy. In all tests, the optimizer is set with
a termination tolerance of 10~%. In the left panel, we can see that DDSG provides
roughly 30% reduction in the number of function calls compared to SG. In the right
panel, we see the relative compute times of the naive and vectorized approach (see
Section 5.1) for DDSG interpolation. Here the naive approach is the evaluation of
(4.16) directly. We can see that the vectorized approach provides a speedup of roughly
2.8 times that of the naive implementation.

6.1.3. Scalability. In Figure 8, we show the normalized compute time for one
step of the time iteration for a 20 and 50-dimensional IRBC model. As noted in 5.2
and described in detail in [12], we expect the primary layer of parallelization, the
DD component of the DDSG algorithm, to have better parallel efficacy than the SG
component, that is, the secondary layer. The left panel shows numerical results for
a 20-dimensional model with a fixed maximum refinement level of 10 and a varying
maximum expansion order 1 and 2. Here, we have 20 and 210 component functions
for the respective maximum expansion orders. We can see almost ideal strong scaling
up to a number of nodes equal to the number of component functions for both tests.
After this point, additional parallelism is taken from the secondary, less efficient layer
of parallelism in the SG algorithm. In the right panel, we use a 50-dimensional model
with a fixed maximum expansion order of 2 and varying maximum refinement levels
of 4 and 5. In contrast to previous test cases, we have 1,275 component functions for
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Fi1c. 9. The plot of the speedup of DDSG over SG for a 8-dimensional smooth and non-smooth
IRBC model with respect to mazimum refinement levels (left), and varying dimensionality (right).
The non-smooth IRBC model represents the green dashed line for which we used K = 2.

both tests, which is larger than the maximum number of nodes. Here we can observe
almost ideal strong scaling up to 1,000 nodes, which is the same for both tests.
Furthermore, we see that the difference in the SG maximum refinement level slightly
affects the parallel performance, with higher maximum refinement levels providing a
marginal advantage in scalability.

6.1.4. Speedup. In Figure 9, we display the speedup of the parallelized DDSG
time iteration framework with respect to an SG version. We show a single time
iteration step of an 8-dimensional model for DDSG at maximum expansion order 1
and 2 at varying refinement levels in the left panel. This test is done on a single node
using shared-memory parallelism, and both DDSG and SG approximation methods
use the same adaptive coefficient. At refinement level 7, for the respective tests, we
can see that the DDSG approach provides 240 and 10 times faster runtimes than the
SG approach. In the right panel, we show the time-to-solution for a single DDSG
time iteration step at a maximum expansion order of 1, maximum refinement level
3, and varying dimensions for the smooth IRBC model. The tests are deployed on a
number of nodes equal to that of the dimensionality of the model. The DDSG routine
provides a speedup of up to 10 times over SG implementation. The reason for this
speedup is primarily due to DDSG operating on 100 one-dimensional SGs while the
SG time iteration framework operates on a 100-dimensional SG.

6.2. Model analysis. We now use the active dimension selection criterion out-
lined in Section 4.3 as an analysis tool to assess the significance of the component
functions of the policy function. In Figure 10, we show the aggregate minimum, aver-
age, and maximum values of 7, for the 8-dimensional smooth and non-smooth models,
at varying expansion orders. For a given expansion order, an increase in variability
between the maximum and minimum values of 7, signifies that active dimension se-
lection could be effective in selecting only a subset of the component functions. In
contrast, if both the maximum and minimum values are equivalent to the average,
then we would conclude that no component function could be considered to be more
significant than the other. In such scenarios, active dimension selection would not
be an effective way to reduce the computational cost of approximating the respective
policy functions. In the left panel of Figure 10, we can see that the smooth model’s
policy function only significantly impacts up to the third expansion order in the left
panel. The second and third-order terms are approximately 100 times less significant
compared to the first-order component functions. Our experiments show that com-
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Fic. 10. Aggregate minimum, average, and mazimum values of the active dimensional selection
criterion for the smooth (left), and the non-smooth (right) 8-dimensional IRBC models.
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Fia. 11. Average and mazimum Euler error with respect to the cumulative number of grid points
for an 8-dimensional smooth (top panel) and non-smooth (bottom panel) IRBC model. Notice that
each data point represents a time iteration step.

ponent functions with 7, < 10" do not play a significant role in the approximation of
the policy function. Thus, they can be eliminated without significantly degrading the
overall approximation quality. Notice that using €, = ¢, = 104, the active dimen-
sional selection criterion, and the expansion criterion would truncate the expansion
at the first DDSG expansion order. In the right panel of Figure 10, we see the same
analysis for the non-smooth IRBC model, whereas in this case, the component func-
tions show significance up to the fourth-order expansion terms. Here we can see that
both the first and second-order component functions are required while the majority
of the third and fourth-order component functions fall below the 104 threshold. With
this analysis, we proceed with our experiments using I = 1 and 2 for the smooth and
non-smooth IRBC models, respectively, and €, =€, = 10 for both cases.
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We now look at the effect of these parameters on the convergence trajectories. In
the top panel of Figure 11, we show the average and maximum FEuler errors for the
smooth IRBC model using SG, adaptive SG, and the DDSG time iteration algorithm.
The horizontal axis corresponds to the cumulative number of grid points evaluated for
several time iteration steps. For DDSG to be a superior approximation method than
SG and adaptive SG, we should attain smaller Euler errors for the same number of grid
points. We test our DDSG implementation with K = 1 at £ = 4, using €, = 10 and
104, The observed average and maximum Euler errors begin relatively high in both
configurations but quickly decrease beyond classical and adaptive SG. Notice that
DDSG with e, = 10"* does not improve the convergence rate in comparison to DDSG
with €, = 1073, but there is a reduction in the number of grid points. With this said,
DDSG requires roughly 10 times fewer grid points to attain equivalent Euler adaptive
SG errors. In the bottom panel of Figure 11, we show the average and maximum errors
for the non-smooth IRBC model using SG, adaptive SG, and the DDSG method at
varying SG adaptivity coefficients. Unlike the previous case, the non-smooth IRBC
model requires significantly higher SG refinement levels to represent its non-smooth
policy function adequately. Two tests were conducted using the DDSG method with
K = 2, one using £ = 8 with and €, = 1072, and the other with ¢ = 10 and 5 x 1073.
Notice that in high-dimensions, at such high SG refinement levels, the number of
grid points would almost surely render a model uncomputable for adaptive SGs, even
if run on modern supercomputer facilities. For example, using an SG at £ = 10, a
20-dimensional model would consist of about 5 billion grid points. As observed in the
right bottom panel, DDSG requires higher refinement levels to sufficiently decrease
the maximum Euler error. Even at this refinement level, in comparison to adaptive
SG at £ = 8 and e, = 102, the DDSG method allows for a significant reduction in
the Euler error with half the number of grid points of adaptive SG.

6.3. Large-scale models. Based on the analysis conducted in the previous
section, we proceed here by adopting the DDSG parameters noted above as a baseline
for solving a set of large-scale IRBC models with up to 300 and 60 dimensions for
the smooth and non-smooth IRBC models, respectively. At such dimensions, adaptive
SGs would not be a fitting numerical approach due to the sheer number of grid points.
The effect of this massive increase in the number of grid points is proportional to an
increase in the computation time, which quickly surpasses a day of runtime on a
high-performance computer. In Table 2, we show the results for the two IRBC model
variants. Firstly, we achieve low average and maximum Euler errors for the smooth
model for all test cases. For the 300-dimensional model, we have used a lower SG
refinement level of 3, compared to 4 for the 100- and 200-dimensional models. To
compensate for this lower refinement level, we use e, = 10°. With this said, we can
see that even for the 300-dimensional case, the proposed framework is sufficient to
achieve —2.89 and —1.78 for the average and maximum Euler errors, respectively. For
comparative purposes, we show the number of SG grid points at refinement level 4.
There is roughly a four-orders-of-magnitude difference between the required number of
grid points between SG and the DDSG. Using adaptive SGs will undoubtedly decrease
the number of grid points. However, dimensions > 100 remain uncomputable using
adaptive SG. The per iteration runtimes of the smooth IRBC model tests are 0.5, 1.6
and 4.2 hours using 100, 200 and 300 nodes, for model dimensions 100, 200 and 300,
respectively. For the non-smooth IRBC models, we look at model dimensions of 20,
40, and 60. Compared to the smooth model, the number of grid points required is
significantly larger, as we need a much denser grid to capture the strong nonlinearities
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TABLE 2
Large—scale results for the smooth and non-smooth IRBC model.

Model DDSG Parameters Grid Points Euler Error
Type d K e =¢ [ €y DDSG SG* Avg.  Max.
100 | 1 104 4 103 | 8.1x10% 1.4x10% | -3.35 -2.21

smooth 200 | 1 104 4 108 | 1.6x10% 1.1x107 | -2.95 -2.15
1

2

2

300 104 3 106 1.5x10% 3.6x107 | -2.89 -1.78

20 104 10 5x103 | 4.3x10% 1.4x10° | -2.79 -1.92
non-smooth 40 104 10 5x103 | 1.7x10* >100 | -2.71 -1.98
60 | 2 104 10 5x102 | 3.1x10* > 10 | -2.84 -1.96

Average and mazximum Euler errors for smooth IRBC models using the DDSG time iter-
ation method. Note that no SG tests could be conducted at such high dimensions. ™ The
reported SG grid points are for comparison purposes and are reported using £ = 4 and 10
for the smooth and mon-smooth model, respectively.

in the policy functions. We can efficiently alleviate this problem by using DDSG with
a refinement level of 10. The shortfall of a pure SG becomes apparent when we look
at a comparative number of SG grid points at the same refinement level, surpassing
trillions of grid points in a 60-dimensional model with level 10. Using adaptive SGs
can provide some degree of efficiency in lower-dimensions, for example, [6] show that
a 20-dimensional model can be solved using roughly 10 grid points. With this said,
the DDSG approximation method required more than half the grid points to achieve
the same error metrics. Furthermore, in a higher dimension, the number of grid
points for both SG and adaptive SG will increase significantly, rendering the model
uncomputable on contemporary supercomputers. The per-iteration-runtimes of the
kink model are 1.8, 9.9, and 16.4 hours using 38, 156, and 354 nodes, for model
dimensions 20, 40 and 60, respectively.

7. Conclusions. We introduced a computational framework to solve large-scale
dynamic stochastic economic models on practical time scales. As a secondary benefit,
it can serve as an a priori analysis tool to shed light on the model’s complexity. At
the core of the methodology is the DDSG function approximation that combines an
HDMR technique with adaptive SGs. We parallelized the DDSG method by lever-
aging the intrinsic separability in the computation, embedded it in a time iteration
algorithm, and deployed it on the Cray XC50 system installed at CSCS. Our numerical
experiments—that is, solving a set of smooth and non-smooth IRBC models, showed
a speedup of 10 times in comparison to state-of-the-art adaptive SGs in cases of mid-
scale models, where both methods were applicable. In addition, we showed that even
for a relatively small 50-dimensional model, the proposed framework provides excel-
lent strong scaling up 1,000 compute nodes. Furthermore, we demonstrated that we
can compute global solutions to IRBC models with at least 300 continuous dimensions
in only a few hours. This is a substantial improvement over the previous literature
and opens new possibilities for a richer set of model specifications. Finally, note that
the scope of the presented method is not restricted to models that are recursively
formulated via first-order conditions, but more broadly to high-dimensional models
that can be characterized in the functional equation (1.1). The latter also nests the
common characterizations of recursive equilibria in discrete time, where p is the value
function, and the operator H captures the Bellman equation it has to satisfy—or the
Hamilton-Jacobi-Bellman equation in continuous time [14]. However, tackling such
models with the proposed method is subject to further research.
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