
Improving “Fast Iterative Shrinkage-Thresholding Algorithm”:
Faster, Smarter and Greedier

Jingwei Liang* Tao Luo† Carola-Bibiane Schönlieb‡

Abstract. The “fast iterative shrinkage-thresholding algorithm”, a.k.a. FISTA, is one of the most well-known first-order
optimization scheme in the literature, as it achieves the worst-case O(1/k2) optimal convergence rate in terms of objective
function value. However, despite such an optimal theoretical convergence rate, in practice the (local) oscillatory behavior
of FISTA often damps its efficiency. Over the past years, various efforts are made in the literature to improve the practical
performance of FISTA, such as monotone FISTA, restarting FISTA and backtracking strategies. In this paper, we propose
a simple yet effective modification to the original FISTA scheme which has two advantages: it allows us to 1) prove the
convergence of generated sequence; 2) design a so-called “lazy-start” strategy which can be up to an order faster than
the original scheme. Moreover, we propose novel adaptive and greedy strategies which probe the limit of the algorithm.
The advantages of the proposed schemes are tested through problems arising from inverse problem, machine learning
and signal/image processing.
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1 Introduction
The acceleration of first-order optimization methods is an active research topic of non-smooth optimization.
Over the past decades, various acceleration techniques are proposed in the literature. Among them, one most
widely used is called “inertial technique” which dates back to [26] where Polyak proposed the so called “heavy-
ball method” which dramatically speeds up the practical performance of gradient descent. In a similar spirit,
in [22] Nesterov proposed another accelerated scheme which improves the O(1/k) objective function conver-
gence rate of gradient descent to O(1/k2). The extension of [22] to the non-smooth case was due to [6] where
Beck and Teboulle proposed the FISTA scheme which is the main focus of this paper.

In this paper, we are interested in the following structured non-smooth optimization problem, which is the
sum of two convex functionals,

min
x∈H

Φ(x) def
= F(x)+R(x), (P)

where H is a real Hilbert space. The following assumptions are assumed throughout the paper
(H.1) R : H →]−∞,+∞] is proper, convex and lower semi-continuous (lsc);
(H.2) F : H →]−∞,+∞[ is convex and differentiable, with gradient ∇F being L-Lipschitz continuous for

some L > 0;
(H.3) The set of minimizers is non-empty, i.e. Argmin(Φ) 6= /0.

Problem (P) covers many problems arising from inverse problems, signal/image processing, statistics and
machine learning, to name few. We refer to Section 7 the numerical experiment section for concrete examples.
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1.1 Forward–Backward-type splitting schemes
In the literature, one widely used algorithm for solving (P) is Forward–Backward splitting (FBS) method [17],
which is also known as proximal gradient descent.

Forward–Backward splitting With initial point x0 ∈H chosen arbitrarily, the standard FBS iteration without
relaxation reads as

xk+1
def
= proxγkR

(
xk− γk∇F(xk)

)
, γk ∈]0,2/L], (1.1)

where γk is the step-size, and proxγR is called the proximity operator of R defined by

proxγR(·)
def
= argminx∈H γR(x)+ 1

2 ||x−·||
2. (1.2)

Similar to gradient descent, FBS is a descent method, that is the objective function value Φ(xk) is non-
increasing under properly chosen step-size γk. The convergence properties of FBS are well established in
the literature, in terms of both sequence and objective function value:

• The convergence of the generated sequence {xk}k∈N and the objective function value Φ(xk) are guaran-
teed as long as γk is chosen such that 0 < γ ≤ γk ≤ γ̄ < 2

L [12].
• Convergence rate: we have Φ(xk)−minx∈H Φ(x) = o(1/k) for the objective function value [19] and
||xk−xk−1||= o(1/

√
k) for the sequence {xk}k∈N [15]. Moreover, linear convergence rate can be obtained

under for instance strong convexity.
Over the years, numerous variants of FBS have been proposed under different purposes, below we particularly
focus on its inertial accelerated variants.

Inertial Forward–Backward The first inertial Forward–Backward was proposed by Moudafi and Oliny in [20],
under the setting of finding zeros of monotone inclusion problems. Specifying the algorithm to the case of
solving (P), we obtain the following iteration:

yk = xk +ak(xk− xk−1),

xk+1 = proxγkR
(
yk− γk∇F(xk)

)
, γk ∈]0,2/L[,

(1.3)

where ak is the inertial parameter which controls the momentum xk− xk−1. The above scheme recovers the
heavy-ball method when R = 0 [27], and becomes the scheme of [18] if we replace ∇F(xk) with ∇F(yk). We
refer to [16] for a more general discussion of inertial Forward–Backward splitting schemes.

The convergence of (1.3) can be guaranteed under proper choices of γk and ak. Under the same step-
size choice, (1.3) could be significantly faster than FBS in practice. However, except for special cases (e.g.
quadratic problem as in [27]), in general there is no convergence rate established for (1.3).

The original FISTA By the form of iteration, FISTA is a particular example of the class of inertial FBS
algorithms. What differentiates FISTA from others is the restriction on step-size γk and special rule for updating
ak. Moreover, FISTA schemes have convergence rate guarantee on the objective function value, which is the
consequence of ak updating rule. The original FISTA scheme of [6] is described below in Algorithm 1.

Algorithm 1: The original FISTA scheme (FISTA-BT)
Initial: t0 = 1, γ = 1/L and x0 ∈H ,x−1 = x0, k = 1.
repeat

tk =
1+
√

1+4t2
k−1

2 , ak =
tk−1−1

tk
,

yk = xk +ak(xk− xk−1),

xk+1 = proxγR
(
yk− γ∇F(yk)

)
.

(1.4)

k = k+1;
until convergence;
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As described, FISTA first computes tk and then updates ak with tk and tk−1. Due to the choices of parame-
ters, FISTA achieves O(1/k2) convergence rate for Φ(xk)−minx∈H Φ(x) which is optimal [21]. For the rest
of the paper, to distinguish the original FISTA from the one in [10] and the proposed modified FISTA scheme,
we shall use “FISTA-BT” to refer Algorithm 1.

A sequence-convergent FISTA Although achieving optimal convergence rate for objective function value, the
convergence of the sequence {xk}k∈N generated by Algorithm 1 was initially an open problem. This question
was answered in [10], where Chambolle and Dossal proved the convergence of {xk}k∈N by considering the
following rule to update tk: let d > 2 and

tk =
k+d

d
, ak =

tk−1−1
tk

= k−1
k+d

. (1.5)

Such a rule maintains the O(1/k2) objective convergence rate, and also allows the authors to prove the conver-
gence of {xk}k∈N. Later on in [3], (1.5) was studied under the continuous time dynamical system setting, and
the convergence rate of objective function is proved to be o(1/k2) [2]. For the rest of the paper, we shall use
“FISTA-CD” to refer to (1.5).

1.2 Problems
Although theoretically FISTA-BT achieves the optimal O(1/k2) convergence rate, in practice it could be even
slower than the non-accelerated Forward–Backward splitting scheme, which is mainly caused by the oscil-
latory behavior of the scheme [16]. In the literature, several modifications of FISTA-BT are proposed to
deal with such oscillation, such as the monotone FISTA [5] and restarting FISTA [24]. Other work includes
FISTA-CD [10] for the convergence of iterates, and a backtracking strategy for adaptive Lipschitz constant
estimation [8]. Despite these works, there are still important questions to answer:

• Although [10] proves the convergence of the iterates {xk}k∈N under tk updating rule (1.5), the conver-
gence of {xk}k∈N for the original FISTA-BT remains unclear.

• The practical performance of FISTA-CD is almost identical to FISTA-BT if d of (1.5) is chosen close
to 2. However, when relatively large values of d are chosen, significant practical acceleration can be
obtained. For instance, it is reported in [16] that for d = 50 the resulted performance can be several
times faster than d = 2. However, there is no proper theoretical justifications on how to choose the value
of d in practice.

• When the problem (P) is strongly convex, there exists an optimal choice for ak [23]. However, in
practice, very often the problem is only locally strongly convex with unknown strong convexity, and
estimating the strong convexity could be time consuming. This leads to the question of whether there is
a low-complexity approach to estimate strong convexity, or do we really need a tight estimation of it?

• Restarting FISTA successfully suppresses the oscillatory behavior of FISTA schemes, hence achieving
much faster practical performance. Can we further improve this scheme?

1.3 Contributions
The above questions are the main motivations of this paper, and our contributions are summarized below.

A sequence-convergent FISTA scheme By studying the tk updating rule (1.4) of FISTA-BT and its difference
with (1.5), we propose a modified FISTA scheme which applies the following rule,

tk =
p+
√

q+rt2
k−1

2 , ak =
tk−1−1

tk
, (1.6)

where p,q ∈]0,1] and r ∈]0,4], see also Algorithm 2. Such a modification has two advantages when r = 4,
• It maintains the O(1/k2) (actually o(1/k2)) convergence rate of the original FISTA-BT (Theorem 3.3);
• It allows us to prove the convergence of the iterates {xk}k∈N (Theorem 3.5);

It also allows us to show that the original FISTA-BT is also optimal in terms of the constant which appears in
the O(1/k2) rate, see (3.7) in Theorem 3.3.
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Lazy-start strategy For the proposed scheme and FISTA-CD, owing to the free parameters in computing tk,
we propose in Section 4 a so-called “lazy-start” strategy for practical acceleration. The idea of such strategy is
to slow down the speed of ak approaching 1, which can lead to a faster practical performance. For certain prob-
lems, such a strategy can be an order faster than the original schemes, see Section 7 for illustration. For least
squares problems, we show that theoretically there exists optimal choices for ak update which only depends on
the stopping criteria.

Adaptive and greedy acceleration Although the lazy-start strategy can significantly speed up the performance
of FISTA, it still suffers the oscillatory behavior since the inertial parameter ak eventually converges to 1. By
combining with the restarting technique of [24], in Section 5 we propose two different acceleration strategies:
restarting adaptation to (local) strong convexity and greedy scheme.

The oscillatory behavior of FISTA schemes is often related to strong convexity. When the problem is
strongly convex, there exists an optimal choice a? < 1 for ak [23], Moreover, under such a? the iteration will
no longer oscillate. Many problems in practice are only locally strongly convex however, estimating strong
convexity in general is time consuming. Therefore in Section 5, we propose an adaptive scheme (Algorithm 4)
which combines the restarting technique [24] and parameter update rule (1.6). Such an adaptive scheme avoids
the direct estimation of strong convexity and achieve state-of-the-art performance.

We also investigate the mechanism of oscillation and the restarting technique, and propose a greedy scheme
(see Algorithm 5) which uses aggressive inertial parameter (e.g. ak ≥ 1) and step-size (e.g. γ ≥ 1/L), hence
probing the limit of the restarting technique. Doing so, the greedy scheme can achieve a faster practical
performance than the restarting FISTA of [24].

Nesterov’s accelerated schemes Given the close relation between FISTA and the Nesterov’s accelerated
schemes [23], we also extend the above results, particularly the modified FISTA to Nesterov’s schemes. Such
an extension can also significantly improve the performance when compared to the original schemes.

1.4 Paper organization
The rest of the paper is organized as follows. Some notation and preliminary results are collected in Section 2.
The proposed sequence-convergent FISTA scheme is presented in Section 3. The lazy-start strategy and the
adaptive/greedy acceleration schemes are presented in Section 4 and Section 5 respectively. In Section 6, we
extend the results to Nesterov’s accelerated schemes. Numerical experiments are presented in Section 7.

2 Preliminaries
Throughout the paper, H is a real Hilbert space equipped with scalar product 〈·, ·〉 and norm || · ||. Id denotes
the identity operator on H . N is the set of non-negative integers and k ∈ N is the index, x? ∈ Argmin(Φ)
denotes a global minimizer of (P).

The sub-differential of a proper convex and lower semi-continuous function R : H →]−∞,+∞] is a set-
valued mapping defined by

∂R : H ⇒ H , x 7→
{

g ∈H |R(x′)≥ R(x)+ 〈g, x′− x〉, ∀x′ ∈H
}
. (2.1)

Definition 2.1 (Monotone operator). A set-valued mapping A : H ⇒ H is said to be monotone if,

〈x1− x2, v1− v2〉 ≥ 0, ∀v1 ∈ A(x1) and v2 ∈ A(x2). (2.2)

It is maximal monotone if the graph of A can not be contained in the graph of any other monotone operators.

It is well-known that for proper, convex and lower semi-continuous function R : H →]−∞,+∞], its sub-
differential is maximal monotone [28], and that proxR = (Id+∂R)−1.

Definition 2.2 (Cocoercive operator). Let β ∈]0,+∞[ and B : H →H , then B is β -cocoercive if

〈B(x1)−B(x2), x1− x2〉 ≥ β ||B(x1)−B(x2)||2, ∀x1,x2 ∈H . (2.3)
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The L-Lipschitz continuous gradient ∇F of a convex continuously differentiable function F is 1
L -cocoercive [4].

Lemma 2.3 (Descent lemma [7]). Suppose that F : H → R is convex, continuously differentiable and ∇F is
L-Lipschitz continuous. Then, given any x,y ∈H ,

F(x)≤ F(y)+ 〈∇F(y), x− y〉+ L
2 ||x− y||2.

Given any x,y ∈H , define the energy function Eγ(x,y) by

Eγ(x,y)
def
= R(x)+F(y)+ 〈x− y, ∇F(y)〉+ 1

2γ
||x− y||2.

It is obvious that Eγ(x,y) is strongly convex with respect to x, hence denote the unique minimizer as

eγ(y)
def
= argmin

{
Eγ(x,y) : x ∈ Rn}= argminx

{
γR(x)+ 1

2 ||x− (y− γ∇F(y))||2
}

= proxγR
(
y− γ∇F(y)

)
.

(2.4)

The optimality condition of eγ(y) is described below.

Lemma 2.4 (Optimality condition of eγ(y)). Given y ∈H , let y+ = eγ(y), then

0 ∈ γ∂R(y+)+
(
y+− (y− γ∇F(y))

)
= γ∂R(y+)+(y+− y)+ γ∇F(y).

We have the following basic lemmas from [6].

Lemma 2.5 ([6, Lemma 2.3]). Let y ∈H and γ ∈]0,2/L[ such that

Φ(eγ(y))≤ Eγ(eγ(y),y),

then for any x ∈H , we have Φ(x)−Φ(eγ(y))≥ 1
2γ
||eγ(y)− y||2 + 1

γ
〈y− x, eγ(y)− y〉.

Lemma 2.6 ([10, Lemma 3.1]). Given y ∈H and γ ∈]0,1/L], let y+ = eγ(y), then for any x ∈H , we have

Φ(y+)+ 1
2γ
||y+− x||2 ≤Φ(y)+ 1

2γ
||y− x||2.

3 A sequence-convergent FISTA scheme
As we mentioned in the introduction, the main problems of the current FISTA schemes are caused by the
behavior of ak, that ak converges to 1 too fast. As a result, we need some proper way to control this speed.
For FISTA-CD, this can be achieved by choosing a relatively large value of d, while for FISTA-BT there is no
option so far. In this section, we shall first discuss how to introduce control parameters to FISTA-BT which
leads to a modified FISTA scheme, and then present convergence analysis.

3.1 A modified FISTA
Recall the tk update rule of the original FISTA-BT [6],

tk =
1+
√

1+4t2
k−1

2 , ak =
tk−1−1

tk
.

In the following, we replace the constants 1,1 and 4 in the update of tk with three parameters p,q and r and
study how they affect the behavior of tk and consequently ak.
Observation I Consider first replacing 4 with a non-negative r, we get

tk =
1+
√

1+rt2
k−1

2 , ak =
tk−1−1

tk
. (3.1)

With simple calculation, we obtain:

r ∈]0,4[ : tk→ 4
4− r

<+∞, ak→
r
4
< 1,

r = 4 : tk ≈ k+1
2 →+∞, ak→ 1,

r ∈]4,+∞[ : tk ∝

(√
r

2

)k
→+∞, ak→ 2√

r
< 1,

(3.2)
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which implies that r controls the limiting value of tk, hence that of ak. In Figure 1 (a), we show graphically the
behavior of ak under two choices of r: r = 4 and r = 3.6.

200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1

(a) Value of ak under different r

400 800 1200 1600 2000
0.8

0.9

1

(b) Value of ak under different p,q

Figure 1: Different effects of p,q and r. (a) r controls the limiting value of ak; (b) p,q control the speed of ak
approaching its limit.

Observation II Now further replace the two 1’s in (3.1) with p,q > 0, and restrict r ∈]0,4]:

tk =
p+
√

q+rt2
k−1

2 , ak =
tk−1−1

tk
. (3.3)

Depending on the choices of p,q and r, this time we have

r ∈]0,4[ : tk→ 2p+∆

4− r
<+∞, ak→ 2p+∆− (4− r)

2p+∆
< 1,

r = 4 : tk ≈ k+1
2 p→+∞, ak→ 1,

(3.4)

where ∆
def
=
√

rp2 +(4− r)q.
Equation (3.4) is quite similar to (3.2), in the sense that ak converges to 1 for r = 4 and to some value

smaller than 1 when r < 4. Moreover, for r = 4, the growth of tk is controlled by p, indicating that we can
control the speed of ak approaching 1 via p, which is illustrated graphically in Figure 1 (b). Under r = 4, two
different choices of p,q are considered, (p,q) = (1,1) and (p,q) = ( 1

20 ,1). Clearly, ak approaches 1 much
slower for the second choice of p,q. In comparison, we also add a case for (1.5) of FISTA-CD, for which a
larger value of d leads to a slower speed of ak approaching 1.

Remark 3.1. Let r < 4, and denote t∞
def
= 2p+∆

4−r ,a∞ = 2p+∆−(4−r)
2p+∆

the limiting value of tk,ak, respectively.

Depending on the initial value of t0, we have


t0 < t∞ : tk↗ t∞, ak↗ a∞;

t0 = t∞ : tk ≡ t∞, ak ≡ a∞;

t0 > t∞ : tk↘ t∞, ak↘ a∞.

Algorithm 2: A modified FISTA scheme
Initial: p,q > 0 and r ∈]0,4], t0 = 1, γ ≤ 1/L and x0 ∈ Rn,x−1 = x0.
repeat

tk =
p+
√

q+rt2
k−1

2 , ak =
tk−1−1

tk
,

yk = xk +ak(xk− xk−1),

xk+1 = proxγR
(
yk− γ∇F(yk)

)
.

(3.5)

until convergence;
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A modified FISTA scheme Based on the above two observations of tk, we propose a modified FISTA scheme,
which we call “FISTA-Mod” for short and describe below in Algorithm 2.

Remark 3.2. When r is strictly smaller than 4, Algorithm 2 is simply a variant of the inertial Forward–
Backward, and we refer to [16] for more details on its convergence properties.

3.2 Convergence properties of FISTA-Mod
The parameters p,q and r in FISTA-Mod allow us to control the behavior of tk and ak, hence providing pos-
sibilities to prove the convergence of the iterates {xk}k∈N. Below we provide two convergence results for
Algorithm 2: o(1/k2) convergence rate for Φ(xk)−minx∈H Φ(x) and convergence of {xk}k∈N together with
o(1/k) rate for ||xk− xk−1||. The proofs of these results are inspired by the work of [10, 2], and for the sake of
self-consistency we present the details of the proofs.

3.2.1 Main result
We present below first the main result, and then provide the corresponding proofs. Let x? ∈ Argmin(Φ) be a
global minimizer of the problem.

Theorem 3.3 (Convergence of objective). For the FISTA-Mod scheme (3.5), let r = 4 and choose p ∈
]0,1],q > 0 such that

q≤ (2− p)2, (3.6)

then it holds

Φ(xk)−Φ(x?)≤ 2L
p2(k+1)2 ||x0− x?||2. (3.7)

Moreover, if p ∈]0,1[ and q ∈ [p2,(2− p)2], then Φ(xk)−Φ(x?) = o(1/k2).

Remark 3.4. The O(1/k2) convergence rate (3.7) recovers the result of FISTA-BT [6] for p = 1. Since p
appears in the denominator, this suggests that FISTA-BT has the smallest constant in the O(1/k2) rate.

Theorem 3.5 (Convergence of sequence). For the FISTA-Mod scheme (3.5), let r = 4, p ∈]0,1[ and q ∈
[p2,(2− p)2], then the sequence {xk}k∈N generated by FISTA-Mod converges weakly to a global minimizer x?

of Φ. Moreover, ||xk− xk−1||= o(1/k).

3.2.2 Proofs of Theorem 3.3
Before presenting the proof of Theorem 3.3, we recall the key points for establishing O(1/k2) convergence for
FISTA-BT [6] and o(1/k2) convergence rate [10, 2]. In particular:

• tk grows to +∞ at a proper speed, e.g. tk ≈ k+1
2 as pointed out in [6];

• The sequence {tk}k∈N satisfies t2
k − tk ≤ t2

k−1. For example, for tk =
1+
√

1+4t2
k−1

2 , one has t2
k − tk = t2

k−1.
To further improve the O(1/k2) convergence rate to o(1/k2), the key is that the difference t2

k−1− (t2
k − tk)

should also grow to +∞ [10, 2]. For instance, for the FISTA-CD update rule (1.5), one has

t2
k−1− (t2

k − tk) =
1
d2

(
(d−2)k+d2−3d +3

)
,

which goes to +∞ as long as d > 2 [10, Eq. (13)]. It is worth noting that t2
k−1− (t2

k − tk)→+∞ is also the key
for proving the convergence of the iterates {xk}k∈N.

We start with the following supporting lemmas. Recall in (3.4) that tk ≈ k+1
2 p, we show in the lemma

below that k+1
2 p is actually a lower bound of tk.

Lemma 3.6 (Lower bound of tk). For the tk update rule (3.3), set r = 4 and p ∈]0,1],q > 0. Let t0 = 1, then
for all k ∈ N, it holds that

tk ≥ (k+1)p
2 . (3.8)

7



Remark 3.7. When p = 1, we have tk ≥ k+1
2 which recovers [6, Lemma 4.3].

Proof. Since p ∈]0,1], it is obvious that t0 = 1 ≥ p
2 and t1 =

p+
√

q+4
2 ≥ p+2

2 ≥ p. Now suppose (3.8) holds

for a given k ∈ N, i.e. tk ≥ (k+1)p
2 . Then for k+1, we have tk+1− p

2 =
p+
√

q+4t2
k

2 − p
2 > p+2tk

2 − p
2 = tk which

concludes the proof.

Lemma 3.8 (Lower bound of t2
k−1− (t2

k − tk)). For the tk update rule (3.3), let r = 4 and p ∈ [0,1], p2−q≤ 0.
Then there holds

p(1− p)(k+1)
2 ≤ t2

k−1− (t2
k − tk). (3.9)

Remark 3.9. The inequality (3.9) implies that, if we choose p < 1, then t2
k−1− (t2

k − tk)→+∞.

Proof. For (3.3), when r = 4, we have tk =
p+
√

q+4t2
k−1

2 ⇔ t2
k − ptk + 1

4(p2−q) = t2
k−1. Since p2 ≤ q, then

t2
k − ptk +

1
4(p2−q) = t2

k−1 =⇒ t2
k − ptk ≤ t2

k−1

⇐⇒ t2
k − tk +(1− p)tk ≤ t2

k−1

=⇒ (1− p)tk ≤ t2
k−1− (t2

k − tk)

(Lemma 3.6) =⇒ p(1− p)(k+1)
2 ≤ (1− p)tk ≤ t2

k−1− (t2
k − tk),

(3.10)

which concludes the proof.

Remark 3.10. The first line of (3.10) implies that t2
k − t2

k−1 ≤ ptk. Recently it is shown in [1] that p < 1 is the
key for proving the convergence of the iterates {xk}k∈N, see [1, Theorem 2.1].

The proof below is a combination of the result of [6, 10].

Proofs of Theorem 3.3. For (3.3), when r = 4, tk is monotonically increasing as tk− tk−1 ≥ p
2 > 0. Moreover,

t2
k − ptk +

1
4(p2−q) = t2

k−1 ⇐⇒ t2
k − tk +(1− p)tk +

1
4(p2−q) = t2

k−1

=⇒ t2
k − tk +(1− p)t0 + 1

4(p2−q)≤ t2
k−1

(t0 = 1) ⇐⇒ t2
k − tk +

1
4((2− p)2−q)≤ t2

k−1

(owing to (3.6)) =⇒ t2
k − tk ≤ t2

k−1.

Define vk = Φ(xk)−Φ(x?). Applying Lemma 2.5 at the points (x = xk,y = yk) and at (x = x?,y = yk) leads to
2
L
(vk− vk+1)≥ ||xk+1− yk||2 +2〈xk+1− yk, yk− xk〉

− 2
L

vk+1 ≥ ||xk+1− yk||2 +2〈xk+1− yk, yk− x?〉,

where xk+1 = eγ(yk) is used. Multiplying tk−1 to the first inequality and then adding to the second one yield,
2
L

(
(tk−1)vk− tkvk+1

)
≥ tk||xk+1− yk||2 +2〈xk+1− yk, tkyk− (tk−1)xk− x?〉.

Multiply tk to both sides of the above inequality and use the result t2
k − tk ≤ t2

k−1, we get
2
L

(
t2
k−1vk− t2

k vk+1
)
≥ t2

k ||xk+1− yk||2 +2tk〈xk+1− yk, tkyk− (tk−1)xk− x?〉.

Apply the Pythagoras relation 2〈b−a, a− c〉= ||b− c||2−||a−b||2−||a− c||2 to the last inner product of the
above inequality we get

2
L

(
t2
k−1vk− t2

k vk+1
)
≥ ||tkxk+1− (tk−1)xk− x?||2−||tkyk− (tk−1)xk− x?||2

= ||tkxk+1− (tk−1)xk− x?||2−||tk−1xk− (tk−1−1)xk−1− x?||2.
(3.11)
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If ak−ak+1 ≥ bk+1−bk and a1 +b1 < c, then ak < c for all k ≥ 1 [6, Lemma 4.2]. Hence, (3.11) yields,
2
L

t2
k vk ≤ ||x0− x?||.

Apply Lemma 3.6, we get

Φ(xk)−Φ(x?)≤ 2L
p2(k+1)2 ||x0− x?||2,

which concludes the proof for the first claim (3.7).
Let uk = xk + tk(xk+1− xk). Applying Lemma 2.6 with y = yk,y+ = xk+1 and x = (1− 1

tk
)xk +

1
tk

x? yields

Φ(xk+1)+
1
2γ
|| 1tk uk− 1

tk
x?||2 ≤Φ

(
(1− 1

tk
)xk +

1
tk

x?
)
+ 1

2γ
|| 1tk uk−1− 1

tk
x?||2.

Applying the convexity of Φ, we further get(
Φ(xk+1)−Φ(x?)

)
− (1− 1

tk
)
(
Φ(xk)−Φ(x?)

)
≤ 1

2γt2
k

(
||uk−1− x?||2−||uk− x?||2

)
.

Multiply t2
k to both sides of the above inequality,

t2
k
(
Φ(xk+1)−Φ(x?)

)
− (t2

k − tk)
(
Φ(xk)−Φ(x?)

)
≤ 1

2γ

(
||uk−1− x?||2−||uk− x?||2

)
.

From Lemma 3.8, we have p(1−p)(k+1)
2 − t2

k−1 ≤−(t2
k − tk), hence

t2
k
(
Φ(xk+1)−Φ(x?)

)
− t2

k−1
(
Φ(xk)−Φ(x?)

)
+

p(1− p)(k+1)
2

(
Φ(xk)−Φ(x?)

)
≤ 1

2γ

(
||uk−1− x?||2−||uk− x?||2

)
.

Summing the inequality from k = 1 to K, we get

t2
K
(
Φ(xK+1)−Φ(x?)

)
+

p(1− p)
2 ∑

K
j=1 j

(
Φ(x j)−Φ(x?)

)
≤ 1

2γ

(
||u0− x?||2−||uK− x?||2

)
,

which means that ∑
+∞

j=1 j
(
Φ(x j)−Φ(x?)

)
<+∞, that is Φ(xk)−Φ(x?) = o(1/k2).

3.2.3 Proofs of Theorem 3.5
The proof of Theorem 3.5 is inspired by [10], where the authors showed that the key to prove the convergence
of {xk}k∈N is the following summability

∑k∈Nk||xk− xk−1||2 <+∞.

As previously mentioned, the major difference between FISTA-BT (1.4) and FISTA-CD (1.5) is that t2
k−1−

(t2
k − tk)→+∞ holds for FISTA-CD. For the proposed FISTA-Mod scheme, as p(1−p)k

2 ≤ t2
k−1− (t2

k − tk) also
goes to +∞ as long as p is strictly smaller than 1, this allows us to adapt the proof of [10] to FISTA-Mod,
hence proving the convergence of {xk}k∈N.

We need two supporting lemmas before presenting the proof of Theorem 3.5. Given ` ∈ N+, define the
truncated sum S`

def
= q

4p ∑
`
i=0

1
1+i and a new sequence t̄k by

t̄k
def
= 1+S`+

( p
2 + q

4p(`+1)

)
k.

We have the following lemma showing that t̄k serves an upper bound of tk.

Lemma 3.11 (Upper bound of tk). For the tk update rule (3.3), let r = 4 and p,q ∈ [0,1]. For all k ∈ N, it
holds that tk ≤ t̄k.

The purpose of bounding tk from above by a linear function of k is such that we can eventually bound ak
from above, which is needed by the following lemma.

Proof. Given tk, tk+1, we have

tk+1− tk =
p+
√

q+4t2
k

2 − tk =
p
2 +

√
q+4t2

k−2tk
2 ≤ p

2 +

√
(2tk+q/(4tk))2−2tk

2 = p
2 +

q
8tk
.

9



Clearly, t0 ≤ t̄0. Suppose tk ≤ t̄k for `≤ k and recall that tk ≥ k+1
2 p, then we have

tk+1 ≤ tk +
p
2 + q

8tk
≤ t̄k +

p
2 + q

8tk
= 1+S`+

( p
2 + q

4p(`+1)

)
k+ p

2 + q
8tk

≤ 1+S`+
( p

2 + q
4p(`+1)

)
k+ p

2 + q
4(k+1)p

≤ 1+S`+
( p

2 + q
4p(`+1)

)
k+ p

2 + q
4(`+1)p

= t̄k+1,

and we conclude the proof.

Denote dxe the smallest integer that is larger than x, and define the following two constants

b def
= d p+2

p+q/(2p(`+1))e and c def
= p+2+2S`

p+q/(2p(`+1)) .

Lemma 3.12. For all j ≥ 1, define β j,k
def
= ∏

k
i= jai for all j,k, and β j,k = 1 for all k < j. Let `≥ d q

p(2−p)e, then

for all j, it holds that ∑
∞

k= jβ j,k ≤ j+ c+2b.

Proof. We first show that ak is bounded from above. From the definition of ak we have

ak =
tk−1−1

tk
=

2tk−1−2
p+
√

q+4t2
k−1
≤ p+2tk−1−2− p

p+2tk−1
= 1− 2+ p

p+2tk−1

(Lemma 3.11)≤ 1− 2+ p
p+2+2S`+(p+ q

2p(`+1) )k
= 1− b

k+ c
.

(3.12)

From (3.12) we have that

β j,k = ∏
k
i= jai ≤∏

k
i= j

i+ c−b
i+ c

.

For k = j, ..., j+2b−1, we have β j,k < 1. Then for k− j ≥ 2b,

β j,k ≤∏
k
i= j

i+ c−b
i+ c

= j+ c−b
j+ c

j+1+ c−b
j+1+ c

· · · j+ c
j+b+ c

j+1+ c
j+b+1+ c

· · · k+ c−b
k+ c

=
( j+ c−b) · · ·( j+ c−1)
(k+ c−b+1) · · ·(k+ c)

≤ ( j+ c−1)b

(k+ c−b+1)b .

Therefore,

∑
∞

k= jβ j,k ≤ 2b+∑
∞

k= j+2bβ j,k ≤ 2b+( j+ c−1)b
∑

∞

k= j+2b
1

(k+ c−b+1)b

≤ 2b+( j+ c−1)b
∫

∞

x= j+2b

1
(x+ c−b+1)b dx

≤ 2b+( j+ c−1)b 1
b−1

1
( j+b+ c+1)b−1

≤ 2b+ 1
b−1( j+ c−1)≤ j+ c+2b.

The last inequality uses the fact that b≥ 2 for `≥ d q
p(2−p)e.

Proofs of Theorem 3.5. Applying Lemma 2.6 with y = yk and x = xk, we get

Φ(xk+1)+
||xk− xk+1||2

2γ
≤Φ(xk)+a2

k
||xk−1− xk||2

2γ
,

which means, let ∆k
def
= 1

2 ||xk−xk−1||2, that ∆k+1−a2
k∆k ≤ γ(vk−vk+1). Denote the upper bound of ak in (3.12)

as āk
def
= 1− b

k+c , ∀k ≥ 2, and let ā1 = 0 since a1 = 0. It is then straightforward that

∆k+1− ā2
k∆k ≤ ∆k+1−a2

k∆k ≤ γ(vk− vk+1).

Multiplying the above inequality with (k+ c)2 and summing from k = 1 to K lead to

∑
K
k=1(k+ c)2(∆k+1− ā2

k∆k)≤ γ ∑
K
k=1 (k+ c)2(vk− vk+1).
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Since ā1 = 0, we derive from above that

∑
K
k=1(k+ c)2(∆k+1− ā2

k∆k) = (K + c)2
∆K+1 +∑

K
k=2
(
(k+ c−1)2− (k+ c)2ā2

k
)
∆k

= (K + c)2
∆K+1 +∑

K
k=2
(
(k+ c−1)2− (k+ c−b)2)

∆k

≤ (K + c)2
∆K+1 +∑

K
k=22(b−1)(k+ c)∆k

≤ γ
(
(c+1)2w1− (c+K)2wK+1

)
+ γ ∑

K
k=2
(
(k+ c)2− (k+ c−1)2)vk

≤ γ
(
(c+1)2w1− (c+K)2wK+1

)
+2γ ∑

K
k=2 (k+ c)vk.

From the proof of Theorem 3.3, we have that ∑k∈N kvk <+∞, which in turn implies that {k∆k}k∈N is summable
and that sequence {k2∆k}k∈N is bounded, which also indicates ||xk− xk−1||= o(1/k).

Now define ψk
def
= 1

2 ||xk− x?||2 and φk
def
= 1

2 ||yk− xk+1||2. By applying the definition of yk, we have

ψk−ψk+1 =
1
2〈xk− x?+ xk+1− x?, xk− xk+1〉

= ∆k+1 + 〈ya,k− xk+1, xk+1− x?〉−ak〈xk− xk−1, xk+1− x?〉
≥ ∆k+1 + γ〈∇F(yk)−∇F(x?), xk+1− x?〉−ak〈xk− xk−1, xk+1− x?〉.

(3.13)

As ∇F is 1
L -cocoercive (Definition 2.2), applying Young’s inequality yields

〈∇F(yk)−∇F(x?), xk+1− x?〉 ≥ 1
L
||∇F(yk)−∇F(x?)||2 + 〈∇F(yk)−∇F(x?), xk+1− yk〉

≥ 1
L
||∇F(yk)−∇F(x?)||2− 1

L
||∇F(yk)−∇F(x?)||2− L

2 φk =−L
2 φk.

(3.14)

Back to (3.13), we get

ψk−ψk+1 ≥ ∆k+1− γL
2 φk−ak〈xk− xk−1, xk+1− x?〉. (3.15)

For 〈xk− xk−1, xk+1− x?〉, we have

〈xk− xk−1, xk+1− x?〉= 〈xk− xk−1, xk+1− xk〉+ 〈xk− xk−1, xk− x?〉
= 〈xk− xk−1, xk+1− xk〉+(∆k +ψk−ψk−1),

(3.16)

where we applied the usual Pythagoras relation to 〈xk− xk−1, xk− x?〉. Putting (3.16) back into (3.15) and
rearranging terms yield

ψk+1−ψk−ak(ψk−ψk−1)≤−∆k+1 +
γL
2 φk +ak〈xk− xk−1, xk+1− xk〉+ak∆k

=−∆k+1 +
γL
2 φk + 〈yk− xk, xk+1− xk〉+ak∆k

=−∆k+1 +
γL
2 φk +

(
a2

k∆k +∆k+1− 1
2 ||yk− xk+1||2

)
+ak∆k

= γL−1
2 φk +(ak +a2

k)∆k,

(3.17)

where the Pythagoras relation is applied again to 〈yk− xk, xk+1− xk〉. Since γ ∈]0,1/L] and ak ≤ 1, we get
from above that

ψk+1−ψk−ak(ψk−ψk−1)≤ 2ak∆k.

Define ξk = max{0,ψk−ψk−1}, then

ξk+1 ≤ ak(ξk +2∆k)≤ 2∑
k
j=2

(
∏

k
l= jal

)
∆ j = 2∑

k
j=2 β j,k∆ j,

Applying Lemma 3.12 and the summability of {k∆k}k∈N leads to

∑
+∞

k=2ξk ≤ 2∑
+∞

k=1 ∑
k
j=2β j,k∆ j = 2∑

k
j=2 ∆ j ∑

+∞

k=1 β j,k ≤ 2∑
k
j=2 ( j+ c+2b)∆ j <+∞.

Then we have

Φk+1−∑
k+1
j=1[θ j]+ ≤Φk+1−θk+1−∑

k
j=1[θ j]+ = Φk−∑

k
j=1[θ j]+,
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which means {Φk −∑
k
j=1[θ j]+}k∈N is monotone non-increasing, hence convergent. It is immediate that

{Φk}k∈N is also convergent, meaning that limk→+∞ ||xk− x?|| exists for any x? such that 0 ∈ A(x?)+B(x?).
Let x̄ be a weak cluster point of {xk}k∈N, and let us fix a subsequence, say xk j ⇀ x̄. Applying Lemma 2.4

with y = yk j , we get

gk j

def
=

yk j−xk j+1

γ
−∇F(yk j) ∈ ∂R(xk j+1).

Since ∇F is cocoercive and yk j = xk j + ak j(xk j − xk j−1) ⇀ x̄, we have ∇F(yk j)→ ∇F(x̄). In turn, uk j →
−∇F(x̄) since γ > 0. Since (xk j+1,uk j) ∈ gph(∂R), and the graph of the maximal monotone operator ∂R is
sequentially weakly-strongly closed in H ×H , we get that −∇F(x̄) ∈ ∂R(x̄), i.e. x̄ is a solution of (P).
Opial’s Theorem [25] then concludes the proof.

4 Lazy-start strategy
From the last section, the benefits of free parameters p,q,r in FISTA-Mod are o(1/k2) convergence rate in
objective function value and convergence of sequence. In this section, we further show that the degree of
freedom provided by these parameters allows us to design a so-called “lazy-start strategy” which can make
FISTA-Mod/FISTA-CD much faster in practice.

Proposition 4.1 (Lazy-start FISTA). For FISTA-Mod and FISTA-CD, consider the following choices of p,q
and d respectively:

FISTA-Mod p ∈ [ 1
80 ,

1
10 ],q ∈ [0,1] and r = 4;

FISTA-CD d ∈ [10,80].

Remark 4.2. The intervals for p and d are obtained from practical observations and not inclusive. Take
FISTA-CD for example, there can be problems where d < 10 or d > 80 provides even faster performances.

The main reason of calling the above strategy “lazy-start” is that it slows down the speed of ak converging
to 1; Recall Figure 1 (b). To discuss the advantage of lazy-start, we consider the simple least square problem:

min
x∈R201

{
F(x) def

= 1
2 ||Ax||2

}
, (4.1)

where A ∈ R201×201 is of the form

A =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2


201×201

.

In this example, F is strongly convex and admits a unique minimizer x? = 0.
In what follows, we first discuss the advantage of lazy-start in the discrete setting, and then in the continu-

ous dynamical system setting.

4.1 Advantage of lazy-start
Specialising FISTA-CD to solve (4.1), we get

yk = xk +
k−1
k+d (xk− xk−1)

xk+1 = yk− 1
L AT Ayk = (Id− 1

L AT A)yk.
(4.2)

To show the benefits of lazy-start, two different values of d are considered:
• FISTA-CD with d = 2;
• Lazy-start FISTA-CD with d = 20.
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The convergence of ||xk− x?|| for the two choices of d are plotted in Figure 2, where the red line represents
d = 2 and the black line for d = 20. The starting points x0 for both cases are the same and chosen such that
||x0− x?|| = 1. It can be observed that the lazy-start one is significantly faster than the normal choice after
iteration step k = 2×105.

1 2 3 4 5 6 7 8 9 10

105

10-12

10-8

10-4

100

Figure 2: Convergence comparison of ||xk− x?|| of FISTA-CD for d = 2 and d = 20.

To explain such a difference, we need the following steps:

(1) Fixed-point characterization of (4.2): the iteration can be written as a linear system owing to the
quadratic form of the problem; See (4.3).

(2) Spectral property of the linear system: the spectral property of the linear system is controlled only by d.
(3) Advantage of lazy-start: comparison of spectral properties under different choices of d.

It is worth noting that, the convergence seen in Figure 2 appears not only for (4.1), but rather is observed in
many problems; see Section 7 for more examples.

Fixed-point formulation of (4.2) Denote G = Id− 1
L AT A, we have from (4.2) that,

xk+1− x? = G(yk− x?) = (1+ak)G(xk− x?)−akG(xk−1− x?).

Define

zk
def
=

(
xk− x?

xk−1− x?

)
and Md,k

def
=

[
(1+ak)G −akG

Id 0

]
. (4.3)

Then it is immediate that

zk+1 = Md,kzk, (4.4)

which is the fixed-point characterization of (4.2). Denote M̃d,k
def
= ∏

k−1
i=1 Md,k−i, then recursively apply the above

relation, we get

zk = M̃d,kz1.

Spectral property of M̃d,k From above it is immediate that

||zk||= ||M̃d,k||||z1||.
To set up the comparison between d = 2 and d = 20, we need to compute spectral property of ||M̃k||:

• Let ρd,i be the leading eigenvalue of Md,i for i = 1, ...,k−1, then there exists C > 0 such that

||M̃d,k|| ≤ Ed,k
def
= C ∏

k−1
i=1 |ρd,k−i| (4.5)

holds for all k≥ 1. We call Ed,k the envelope of ||M̃d,k||. Unfortunately, unlike the case of Md,k, this time
we can only discuss through numerical illustration.

• Let α be the smallest eigenvalue of AT A and η = 1−α/L the leading eigenvalue of G. Owing to the
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result of [16], for each Md,k, the magnitude of its leading eigenvalue ρd,k reads:

|ρd,k|=

{
(1+ak)η +

√
(1+ak)2η2−4akη

2 < 1 : ak ≤ a?,
√

akη < 1 : ak ≥ a?,
(4.6)

where a? = 1−
√

α/L

1+
√

α/L
. Moreover, |ρk| attains the minimal value ρ? = 1−

√
α/L when ak = a? [16].

For more details about the dependence of ρd,k on η and ak, we refer to [16, 14]. Below we inspect the value
of |ρd,k| under d = 2 and d = 20. The modulus of |ρd,k| for d = 2,20 are shown in Figure 3 (a), where the red
line is |ρ2,k| and the black line stands for |ρ20,k|:

• In both cases, the values of |ρ2,k|, |ρ20,k| decrease first, until reaching ρ? = 1−
√

α/L, and then start to
increase until they reach

√
η ;

• Choosing d = 20 slows the speed at which ak is increasing (see Figure 1), therefore also slows the speed
at which |ρ20,k| approaches ρ?. Such a difference in approach to ρ? is key for the lazy-start strategy
being faster.

Denote Keq the point |ρ20,k| equals to ρ?, then we have Keq = d1+20a?
1−a? e.

1 2 3 4 5 6 7 8 9 10

105

0.99993

0.99996

0.99999

(a) Value of |ρd,k|

1 2 3 4 5 6 7 8 9 10

105

10-8

10-6

10-4

10-2

100

(b) Value of Ed,k

Figure 3: The value of |ρd,k| and Ed,k under d = 2,20.

The advantage of lazy-start Now we compare E2,k,E20,k, whose values are plotted in Figure 3 (b), where the
red and black lines are corresponding to E2,k and E20,k respectively. Observe that, E2,k and E20,k intersect
for certain k which turns out very close to Keq. For k ≥ Keq, the difference between E2,k and E20,k becomes
increasingly large.

From (4.6) and the definition of ak, we have that for k ≥ Keq,

|ρ2,k|=
√

k−1
k+2 η ≥ |ρ20,k|=

√
k−1

k+20 η .

Define the accumulation of |ρ2,i|
|ρ20,i| by Rk

def
= ∏

k
i=Keq

|ρ2,i|
|ρ20,i| = ∏

k
i=Keq

√
i+20
i+2 and let k ≥ Keq +36, we get

Rk = ∏
k
i=Keq

|ρd1,i|
|ρd2,i|

= ∏
k
i=Keq

√
i+20
i+2

= ∏
k
i=Keq

(
Keq +20
Keq +2

Keq +1+20
Keq +1+2 · · ·

Keq +17+20
Keq +17+2

Keq +18+20
Keq +18+2 · · ·

k−2+20
k−2+2

k−1+20
k−1+2

k+20
k+2

)1/2

= ∏
17
j=0

(
k+3+ j

Keq +2+ j

)1/2 ≈
(

k+20
Keq +19

)9
=
(

2√
C+1

)9(k+20
21

)9
,

(4.7)

where C def
= L/α is the condition number of (4.1). To verify the accuracy of the above approximation, for the

considered problem (4.1), we have L = 16 and α = 5.85× 10−8. Consequently, C = L
α
= 2.735× 108. Let
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k = 106 and substitute them into (4.7), we have Rk ≈ 5.98×106, while for Ed,k we have
E2,k=106

E20,k=106
= 5.96×106,

which means (4.7) is a good approximation of the envelope ratio E2,k/E20,k.

The above discussion is mainly about the envelope Ed,k. In terms of what really happens on ||xk− x?|| for
d = 2 and d = 20: from Figure 2, we have that for k = 106, ||xk− x?|| of d = 2 is about 2×106 larger than that
of d = 20. Compared with 5.98× 106, we can conclude that (4.7) is able to accurately estimate the order of
acceleration obtained by a lazy-start strategy.

4.2 Quantifying the advantage of lazy-start
The approximation (4.7) indicates that Rk is a function of C and k, in the following we discuss the dependence
of Rk on C and k from two perspectives.

Fixed k First consider C ∈ [104,1012] and let k = Keq+106, note that Keq is changing over C. This setting is to
check how much better d = 20 is than d = 2 in terms of ||xk− x?|| if we run the iteration (4.2) 106 more steps
after Keq. The obtained value of Rk is shown in Figure 4 (a). As we can see, when C is small, e.g. C = 104, the
advantage can be as large as 1027 times and decrease to almost 1 for C = 1012. However, it should be noted
that for this large C, Keq +106 steps of iteration could be not enough for producing a satisfactory output.

Fixed Rk The second part is to check for fixed Rk = R, e.g. R = 105, how many more steps are needed after
Keq. From (4.7), simple calculation yields

k−Keq =
21(
√

C+1)
2

9
√

R−20.

Let again C ∈ [104,1012], the value of k−Keq is shown in Figure 4 (b). We can observe that when C = 104,
only around 2,000 steps are needed, while about 2×107 steps are needed for C = 1012.

104 106 108 1010 1012
100

105

1010

1015

1020

1025

1030

(a) Value of Rk when fix k = Keq +106

104 106 108 1010 1012
103

104

105

106

107

108

(b) Value of k−Keq when fix Rk = 105

Figure 4: The dependence of Rk on the iteration number k and the condition number C.

Remark 4.3. When C and k are fixed, Rk increases with d. This means if we consider only Rk, then the larger
value of d the better. However, one should not do so in practice, as larger d will make the value of Keq much
larger. As a result, proper choice of d is a trade-off between Keq and Rk, which is the content of the next part.

4.3 Continuous dynamical system perspective
The above discussion implies the existence optimal choices of d. From continuous dynamical system perspec-
tive, we show that an optimal d does indeed exists. What is interesting is that the optimal d does not depend on
condition number of the problem, but the accuracy of solution. The analysis is inspired by the result of [30].
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4.3.1 Optimal choice damping coefficient

To prove the claim, we start from continuous dynamical system (4.8) first, showing that larger values of ω

below leads to faster convergence, and then back to the discrete setting for the proposed claim.

For problem (4.1), the associated continuous dynamical system reads:

ẍ+ ω

t
ẋ+AT Ax = 0, (4.8)

where ω is the damping coefficient. Since AT A is symmetric, it can be diagonalised with invertible matrix P
and diagonal matrix Λ = diag(λ1, · · · ,λn): AT A = PΛP−1. Let y = P−1x, then we get

ÿ+ ω

t
ẏ+Λy = 0.

Since Λ is diagonal, it is sufficient to consider each entry of y that

ÿi +
ω

t
ẏi +λiyi = 0, i = 1, · · · ,n,

where n is the dimension of the problem. Let ωi = ωλ
−1/2
i , νi =

ωi−1
2 and zi(t) = tνiyi(λ

−1/2
i t) for i = 1, · · · ,n.

This change of variables results in Bessel’s differential equations [30]:

t2z̈i + tżi +(t2−ν
2
i )zi = 0, i = 1, · · · ,n,

whose solution is

zi = ci,1Jνi + ci,2Yνi , i = 1, · · · ,n,
where Jνi and Yνi are the first and second kind of Bessel functions. Therefore, we get for yi that

yi(λ
−1/2
i t) = t−νizi(t) = t−νi

(
ci,1Jνi(t)+ ci,2Yνi(t)

)
,

yi(t) = (λ
1/2
i t)−νi

(
ci,1Jνi(λ

1/2
i t)+ ci,2Yνi(λ

1/2
i t)

)
.

For Jνi and Yνi , recall the following asymptotic forms of Bessel functions for positive and large argument t:

Jν(t) =
√

2
πt

(
cos
(
t− νπ

2 −
π

4

)
+O(t−1)

)
and Yν(t) =

√
2
πt

(
sin
(
t− νπ

2 −
π

4

)
+O(t−1)

)
.

As a result,

Jνi(λ
1/2
i t) =

√
2

πλ
1/2
i t

(
cos
(
λ

1/2
i t− (ωλ

−1/2
i −1)π

4 − π

4

)
+O(t−1)

)
=
√

2
πλ

1/2
i t

(
cos
(
λ

1/2
i t− ωλ

−1/2
i π

4

)
+O(t−1)

)
,

Yνi(λ
1/2
i t) =

√
2

πλ
1/2
i t

(
sin
(
λ

1/2
i t− ωλ

−1/2
i π

4

)
+O(t−1)

)
.

Eventually, we get for yi that

yi(t) =
√

c2
i,1 + c2

i,2

√
2
π

λ
−ωi

4
i t−

ωi
2 sin

(
λ

1/2
i t− ωλ

−1/2
i π

4 +θi
)
+O(t−1−ωi

2 ), (4.9)

where θi = arctan ci,1
ci,2

depends on ci,1 and ci,2 which are determined by the initial condition.

From the above asymptotics, we conclude that, in the continuum case (i.e. ODEs), the convergence is
faster for larger ω . However, in the discrete case, we have to also consider the numerical error. We consider
the following FISTA-CD scheme

yk = xk +
k−1
k+d (xk− xk−1),

xk+1 = yk− γ∇F(yk),

where d = ω−1. Note that xk ≈ x(kτ) with step-size τ =
√

γ . The algorithm is then rewritten as
xk+1− xk

τ
= k−1

k+d
xk− x−k−1

τ
− τ∇F(yk).
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By Taylor expansion in τ , we have

ẋ(t)+ 1
2 ẍ(t)τ +o(τ) = t− τ

t +dτ

(
ẋ(t)− 1

2 ẍ(t)τ +o(τ)
)
− τ∇F(x(t))+o(τ)

= (1− ωτ

t )
(
ẋ(t)− 1

2 ẍ(t)τ +o(τ)
)
− τ∇F(x(t))+o(τ).

Note that in the last step we have applied expansion

t− τ

t +dτ
= 1− ωτ

t +(ω−1)τ = 1− ωτ

t
+

ω(ω−1)τ2

t2 + · · · . (4.10)

This makes sense only for (ω−1)τ
t < 1. More precisely, the numerical error at time T is εnum = ωτ

T .

By approximation (4.9), the truncation error (tolerance) is ε = |x(T )−x(+∞)|= |x(T )|= λ
− ω̄

4
1 T−

ω̄

2 where

ω̄ = max1≤i≤n{ωi}. Thus T−1 = ε
2
ω̄ λ

1
2

1 and εnum = τλ
1
2

1 ωε
2
ω̄ . We need to minimize

logεnum = log(τλ
1/2
1 )+ logω + 2

ω̄
logε = log(τλ

1/2
1 )+ logω +

2λ
1/2
1

ω̄
logε, ω̄ ≥ 3,

which leads to 0= 1
ω̄
+

2λ
1/2
1

ω̄2 logε . As a result, the optimal choice of ω̄ is ω =−2λ
1/2
1 logε , hence−2λ

1/2
1 logε−

1 for d.

4.3.2 Optimal lazy-start parameters
Now we turn to the discrete case and discuss the optimal d, through the envelope Ed,k.

Optimal d for ||xk− x?|| We continue using problem (4.1), with condition number C = 2.735×108. Consider
several different values of d which are d ∈ [5,15,25,35,45]. The values of corresponding Ed,k are plotted in
Figure 5 (a). For each k ∈ [1,106], the minimum of Ed,k is computed and plotted as a red dotted line.

From Figure 5 (a), it can be observed that for each d ∈ [5,15,25,35,45], their corresponding Ed,k is the
smallest for a certain range of k. For instance, for d = 5, E5,k is the smallest for k between 1 and about
1.75×105. This verifies the result from continuous dynamical system that

• There exists an optimal choice of d;
• The optimal d depends on the accuracy of xk.

To illustrate, we consider the following test: under a given tolerance tol ∈ {−2, ...,−10}, for each d ∈ [2,100]
compute the minimal number of iterations, i.e. k, needed such that

log(Ed,k)≤ tol.

The obtained results are shown in Figure 5 (b), from where we can observe that for each tol ∈ {−2, ...,−10},
the corresponding k is a smooth curve that admits a minimal value k?tol for optimal d?

tol. The red line segment
connects all the points of (d?

tol,k
?
tol) which almost is a straight line. It indicates that one should choose small d

for high accuracy and increase the value for lower accuracy.
The red line in Figure 5 (b) accounts only for condition number C = 2.735× 108. In Figure 5 (c), we

consider three different condition numbers C ∈ {104,108,1012} and plot their corresponding optimal choices
of d under different tol. Surprisingly, the obtained optimal choices for each C are almost same, especially for
C = 108,1012. From these three lines, we fit the following linear function

d?
tol = 10.75+4.6(−tol−2),

which can be used to compute the optimal d for a given stopping criterion on ||xk− x?||.
Optimal d for ||xk− xk−1|| To this point, we have presented detailed analysis on the advantage of lazy-start
strategy. However, the analysis is conducted via the envelope Ed,k of ||xk− x?|| which requires the solution x?.
While in practice, only ||xk−xk−1|| is available, which makes the above discussion on optimal d not practically
useful. Therefore, we discuss briefly below on how to adapt the above result to ||xk− xk−1||.

In Figure 5 (d) we plot both ||xk− x?|| and ||xk− xk−1|| for the considered problem (4.1) with d = 2 and
d = 20. The red and magenta lines are for d = 2 while the black and blue lines are for d = 20. It can be
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Figure 5: Optimal choices of d under different stopping tolerance.

observed that ||xk− xk−1|| is several orders smaller than ||xk− x?||, which is caused by the significant decay
at the beginning of ||xk− xk−1||, which is due to the fact that at beginning the convergence of ||xk− xk−1|| is
governed by the o(1/k) rate established in Theorem 3.5; see the green dot-dash line.

If we discard the beginning part of ||xk− xk−1||, then the remainder can be seen as scaled ||xk− x?||, i.e.
||xk− xk−1|| ≈ ||xk− x?||/10s for some s > 0. Therefore, if some prior about this shift could be available, then
the optimal choice of d would be

d?
tol = 10.75+4.6(−tol−2− s).

For a given problem, in practice the value of s can be estimated through the following strategy:
• Run the FISTA iteration for sufficient number of iterations (e.g. 3×105 steps in Figure 5 (d)) and obtain

a rough solution x̃ and also record the residual sequence ||xk− xk−1||.
• Rerun the iteration again (e.g. for 105 steps) and output the value of ||xk− x̃||. Comparing ||xk− xk−1||

and ||xk− x̃|| one can then obtain an estimation of s.
In practice, one can also simply choose d ∈ [10,80] which can provide consistent faster performance.

Remark 4.4.
• The discussion has been conducted through FISTA-CD, to extend the result to the case of FISTA-Mod,

we may simply take p = 1
d and let q∈]0,1]. As we have seen from Figure 1, the correspondence between

FISTA-CD and FISTA-Mod is roughly p = 1
d .

• The discussion of this section considers only the least square problem (4.1) which is very simple. How-
ever, this does not mean that lazy-start strategy will fail for more complicated problems such as (P),
see Section 7 for evidence of this.
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5 Adaptive acceleration
We have discussed the advantages of the proposed FISTA-Mod scheme, particularly the lazy-start strategy.
However, despite the advantage brought by lazy-start, FISTA-Mod and FISTA-CD still suffer the same draw-
back of FISTA-BT: the oscillation of Φ(xk)−Φ(x?) and ||xk− x?|| as shown in Figure 2. Therefore, in this
section we discuss adaptive approaches to avoid oscillation. Note that here we only discuss adaptation to
inertia, and refer to [8] for backtracking strategies for Lipschitz constant L.

The presented acceleration schemes cover two different cases: strong convexity is explicitly available,
strong convexity is unknown (or 0). For the first case, the optimal parameter choices are available. While for
the latter, we need to adaptively estimate the (local) strong convexity.

5.1 Strong convexity is available
For this case, we assume that F of (P) is α-strongly convex and R is only convex, and derive the optimal
setting of p,q and r for FISTA-Mod. Recall that under step-size γ , the optimal inertial parameter is a? = 1−√γα

1+
√

γα
.

From (3.4) the limiting value of ak, we have that for given p,q ∈]0,1], r should be chosen such that

2p+
√

rp2 +(4− r)q− (4− r)
2p+

√
rp2 +(4− r)q

=
1−√γα

1+
√

γα
.

Solve the above equation we get the optimal choice of r which reads

r = f (α,γ; p,q) def
= 4(1− p)+4pa?+(p2−q)(1−a?)2

= 4(1− p)+ 4p(1−√γα)

1+
√

γα
+

4γα(p2−q)
(1+
√

γα)2 ≤ 4.
(5.1)

Note that we have f (α,γ; p,q) = 4 for α = 0, and f (α,γ; p,q)< 4 for α > 0.
Based on the above result, we propose below a generalization of FISTA-Mod which is able to adapt to the

strong convexity of the problem to solve.

Algorithm 3: Strongly convex FISTA-Mod (α-FISTA)
Initial: let p,q > 0 and γ ≤ 1/L. For α ≥ 0, choose r as r = f (α,γ; p,q). Let t0 ≥ 1,

and x0 ∈ Rn,x−1 = x0.
repeat

tk =
p+
√

q+rt2
k−1

2 , ak =
tk−1−1

tk
,

yk = xk +ak(xk− xk−1),

xk+1 = proxγR
(
yk− γ∇F(yk)

)
.

(5.2)

until convergence;

Remark 5.1. Since f (α,γ; p,q) = 4 when α = 0, the above algorithm mains the o(1/k2) convergence rate
for non-strongly convex case, and in general we have the following convergence property for α-FISTA,

Φ(xk)−Φ(x?)≤ C min
{ 2L

p2(k+1)2 ,(1−
√

γα)k},
where C > 0 is a constant.

Relation with [8] Recently, combing FISTA scheme with strong convexity was studied in [8] where the au-
thors also propose a generalization of FISTA scheme for strongly convex problems. They consider the case that
R is αR-strongly convex and F is αF -strongly convex, and the whole problem is then (α = αR +αF)-strongly
convex. In [8, Algorithm 1], the following update rule of tk is considered

tk =
1−qt2

k−1+
√

(1−qt2
k−1)

2+4t2
k−1

2 and ak =
tk−1−1

tk
1+γαR−tkγα

1−γαF
, (5.3)
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where q = γα

1+γαR
. As we shall see later in Section 6, the above update rule is equivalent to Nesterov’s optimal

scheme [23]; see also [11] for discussions.
When α > 0, then [8, Algorithm 1] achieves O((1−√q)k) linear convergence rate. When αR = 0,αF > 0,

we have 1−√q = 1−√γα which means [8, Algorithm 1] and α-FISTA achieves the same optimal rate.

However, if both αR > 0 and αF ≥ 0, then 1−
√

γα

1+γαR
> 1−√γα , which means (5.3) achieves a sub-optimal

convergence rate. As a matter of fact, if we transfer the strong convexity of R to F , that is

R def
= R− αR

2
||x||2 and F def

= F +
αR
2
||x||2.

Then R is convex and F is α-strongly convex, and the optimal rate would be 1−√γα . Moreover, Moreover,
redefining R does not affect the complexity of computing proxγR, as it is simply quadratic perturbation of
proximity operator [12, Lemma 2.6].

5.2 Strong convexity is not available
The goal of α-FISTA is to avoid the oscillatory behavior of the FISTA schemes. In the literature, an efficient
way to deal with oscillation is the restarting technique developed in [24]. The basic idea of restarting is that,
once the objective function value of Φ(xk) is about to increase, the algorithm resets tk and yk. Doing so, the
algorithm achieves an almost monotonic convergence in terms of Φ(xk)−Φ(x?), and can be significantly faster
than the original scheme; see [24] or Section 7 for detailed comparisons.

The strong convexity adaptive α-FISTA (Algorithm 3) considers only the situation where the strong con-
vexity is explicitly available, which is very often not the case in practice. Moreover, the oscillatory behavior is
independent of the strong convexity. As a consequence, an adaptive scheme is needed such that the following
scenarios can be covered

• Φ is globally strongly convex with unknown modulus α;
• Φ is locally strongly convex with unknown modulus α .
• Φ is neither globally nor locally strongly convex;

Estimating the strong convexity in general is time consuming. Therefore, an efficient estimation approach
is also needed. To address these problems, we propose a restarting adaptive scheme (Algorithm 4), which
combines the restarting technique of [24] and α-FISTA.

Algorithm 4: Restarting and Adaptive α-FISTA (Rada-FISTA)
Initial: p,q ∈]0,1],r = 4 and ξ < 1, t0 = 1,γ = 1/L and x0 ∈H ,x−1 = x0.
repeat
• Run FISTA-Mod:

tk =
p+
√

q+rt2
k−1

2 , ak =
tk−1−1

tk
,

yk = xk +ak(xk− xk−1),

xk+1 = proxγR
(
yk− γ∇F(yk)

)
.

• Restarting: if (yk− xk+1)
T (xk+1− xk)≥ 0,

◦ Option I: r = ξ r and yk = xk;
◦ Option II: r = ξ r, tk = 1 and yk = xk.

until convergence;

For the rest of the paper, we shall refer to Algorithm 4 as “Rada-FISTA”. Below, we provide some discussions:
• Compared to α-FISTA, the main difference of Rada-FISTA is the restarting step which is originally

proposed in [24]. Such a strategy can successfully avoid the oscillatory behavior of Φ(xk)−Φ(x?).
• We provide two different options for the restarting step. In both options, we reset yk as in [24]. Mean-

while, we also rescale the value of r by a factor ξ which is strictly smaller than 1. The purpose of
rescaling is to approximate the optimal choice of r in (5.1).
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• The difference between the two options is that tk is not reset to 1 in “Option I”. Doing so, “Option I”
will restart for more times than “Option II”, however it will achieve faster practical performance; see
Section 7 the numerical experiments. It is worth noting that, for the restarting FISTA of [24], removing
resetting tk could also lead to an acceleration.

5.3 Greedy FISTA
We conclude this section by discussing how to further improve the performance of the restarting technique,
achieving an even faster performance than Rada-FISTA and restarting FISTA [24].

The oscillation of FISTA schemes is caused by the fact that ak → 1. For the restarting scheme [24],
resetting tk to 1 forces ak to increase from 0 again, become close enough to 1 and cause the next oscillation,
then the scheme restarts. With such a loop, if we can shorten the gap between two restarts, then maybe extra
acceleration could be obtained. It turns out that using constant ak (close or equal to 1) can achieve this goal.
Therefore, we propose the following greedy restarting scheme.

Algorithm 5: Greedy FISTA

Initial: let γ ∈ [ 1
L ,

2
L [ and ξ < 1,S > 1, choose x0 ∈ Rn,x−1 = x0.

repeat
• Run the iteration:

yk = xk +(xk− xk−1),

xk+1 = proxγR
(
yk− γ∇F(yk)

)
.

(5.4)

• Restarting: if (yk− xk+1)
T (xk+1− xk)≥ 0, then yk = xk;

• Safeguard: if ||xk+1− xk|| ≥ S||x1− x0||, then γ = max{ξ γ, 1
L};

until convergence;

We abuse the notation by calling the above algorithm “Greedy FISTA”, which uses constant inertial param-
eter ak ≡ 1 for the momentum term:

• A larger step-size (than 1/L) is chosen for γ , which can further shorten the oscillation period;
• As such a large step-size may lead to divergence, we add a “safeguard” step to ensure the convergence.

This step shrinkages the value of γ when certain condition (e.g. ||xk+1− xk|| ≥ S||x1− x0||) is satisfied.
Eventually we will have γ = 1/L if the safeguard is activated a sufficient number of times.

In practice, we find that γ ∈ [1/L,1.3/L] provides faster performance than Rada-FISTA and restarting FISTA
of [24]; See Section 7 for more detailed comparisons.

Algorithm 6: Accelerated proximal gradient (APG)
Initial: τ ∈ [0,1],θ0 = 1, γ = 1/L and x0 ∈H ,x−1 = x0.
repeat

Estimate the local strong convexity αk;

θk solves θ
2
k = (1−θk)θ

2
k−1 + τθk, ak =

θk−1(1−θk−1)

θ 2
k−1+θk

,

yk = xk +ak(xk− xk−1),

xk+1 = proxγR
(
yk− γ∇F(yk)

)
.

until convergence;

6 Nesterov’s accelerated scheme
In this section, we turn to Nesterov’s accelerated gradient method [23] and extend the above results to this
scheme. In the book [23], Nesterov introduces several different acceleration schemes, in the following we
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mainly focus on the “Constant Step Scheme, III”. Applying this scheme to solve (P), we obtain the accelerated
proximal gradient method (APG) described in Algorithm 6.

When the problem (P) is α-strongly convex, then by setting τ =
√

α/L and θ0 = τ , we have

θk ≡ τ and ak ≡
1−√γα

1+
√

γα
,

and the iterate achieves the optimal linear convergence speed, i.e. 1−√γα , as we have already discussed in
the previous sections. In the rest of this section, we first build connections between the parameter updates of
APG with α-FISTA, and then extend the lazy-start strategy to APG.

6.1 Connection with α-FISTA
Consider the following equation of θ parametrised by 0 ≤ τ ≤ σ ≤ 1, which recovers the θk update of APG
for σ = 1,

θ
2 +(σθ

2
k−1− τ)θ −θ

2
k−1 = 0. (6.1)

The definition of ak implies θk ∈ [0,1] for all k ≥ 1. Therefore, the θk we seek from above (6.1) reads

θk =
−(σθ 2

k−1−τ)+
√

(σθ 2
k−1−τ)2+4θ 2

k−1
2 . (6.2)

It is then easy to verify that θk is convergent and limk→+∞ θk =
√

τ

σ
. Back to (6.2), we have

θk =
2θ 2

k−1

(σθ 2
k−1−τ)+

√
(σθ 2

k−1−τ)2+4θ 2
k−1

= 2
(σ−τ/θ 2

k−1)+
√

(σ−τ/θ 2
k−1)

2+4
.

Letting tk = 1/θk and substituting back to the above equation lead to

tk =
(σ−τt2

k−1)+
√

(σ−τt2
k−1)

2+4t2
k−1

2 . (6.3)

Note that the update rule (5.3) of [8] is a special case of above equation with σ = 1 and τ = γα

1+γαR
. Moreover,

tk→

 +∞ : τ = 0,√
σ

τ
: τ ∈]0,1].

Depending on the choices of σ ,τ , we have
• When (σ ,τ) = (1,0), APG is equivalent to the original FISTA-BT scheme;
• When (σ ,τ) = (1,γα), APG is equivalent to [8, Algorithm 1] for adapting to strong convexity.

Building upon the above connection, we can extend the previous result of FISTA-Mod to the case of APG.

6.2 A modified APG
Extending the FISTA-Mod and α-FISTA to the case of APG, we propose the following modified APG scheme
which we name as “APG-Mod”.

Algorithm 7: A modified APG scheme (APG-Mod)
Initial: Let σ ∈ [0,1],γ = 1/L and τ = γασ ,θ0 ∈ [0,1]. Set x0 ∈H ,x−1 = x0.
repeat

θk solves θ
2
k = (1−σθk)θ

2
k−1 + τθk,

ak =
θk−1(1−θk−1)

θ 2
k−1+θk

,

yk = xk +ak(xk− xk−1),

xk+1 = proxγR
(
yk− γ∇F(yk)

)
.

(6.4)

until convergence;
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Non-strongly convex case For the case Φ is only convex, we have τ = 0, then θk is the root of the equation

θ
2 +σθ

2
k−1θ −θ

2
k−1 = 0.

Owing to Section 6.1, we have that APG-Mod is equivalent to FISTA-Mod with p = σ and q = σ2. Therefore,
we have the following convergence result for APG-Mod which is an extension of Theorems 3.3 and 3.5.

Corollary 6.1. For APG-Mod scheme Algorithm 7, let τ = 0 and σ ∈]0,1], then
• For the objective function value,

Φ(xk)−Φ(x?)≤ 2L
σ2(k+1)2 ||x0− x?||2.

If moreover σ < 1, we have Φ(xk)−Φ(x?) = o(1/k2).
• Let σ < 1, then there exists an x? ∈ Argmin(Φ) to which the sequence {xk}k∈N converges weakly and
||xk− xk−1||= o(1/k).

Remark 6.2. Given the correspondence between σ of APG-Mod and p of FISTA-Mod, owing to Proposi-
tion 4.1, we obtain the lazy-start APG-Mod by choosing σ ∈ [ 1

80 ,
1

10 ].

Strongly convex case When the problem (P) is strongly convex with modulus α > 0, as τ = γασ , then
according to Section 6.1, we have

θk→
√

τ

σ
=
√

γα and ak→
1−√γα

1+
√

γα
,

which means that APG-Mod achieves the optimal convergence rate 1−√γα .

Remark 6.3. We can also extend the Rada-FISTA to APG, we shall forgo the details here as it is rather trivial.

7 Numerical experiments
Now we present numerical experiments on problems arising from inverse problems, signal/image processing,
machine learning and computer vision to demonstrate the performance of the proposed schemes. Throughout
this section, the following schemes and corresponding settings are considered:

• The original FISTA-BT scheme [6];
• The proposed FISTA-Mod (Algorithm 2) with p = 1/20 and q = 1/2, i.e. the lazy-start strategy;
• The restarting FISTA of [24];
• The Rada-FISTA scheme (Algorithm 4);
• The greedy FISTA (Algorithm 5) with γ = 1.3/L,S = 1 and ξ = 0.96.

The α-FISTA (Algorithm 3) is not considered here, except in Section 7.1, since most of the problems consid-
ered are only locally strongly convex along certain direction [16]. The corresponding MATLAB source code
for reproducing the experiments is available at: https://github.com/jliang993/Faster-FISTA.

All the schemes are running with same initial point, which is x0 = 1× 104 for the least square problem
and x0 = 0 for all other problems. In terms of comparison criterion, we mainly focus on ||xk − x?|| where
x? ∈ Argmin(Φ) is a global minimizer of the optimization problem.

7.1 Least square (4.1) continue
First we continue with the least square estimation (4.1) discussed in Section 4, and present a comparison of
different schemes in terms of both ||xk− x?|| and Φ(xk)−Φ(x?). Since this problem is strongly convex, the
optimal scheme (i.e. α-FISTA) is also considered for comparison.

The obtained results are shown in Figure 6, with ||xk−x?|| on the left and Φ(xk)−Φ(x?) on the right. From
these comparisons, we obtain the following observations:

• FISTA-BT is faster than FISTA-Mod for k ≤ 3× 105, and becomes increasing slow afterwards. This
agrees with our discussion in Figure 5 that each parameter choice (of p and q, and d for FISTA-CD) is
the fastest for a certain accuracy;
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• α-FISTA is the only scheme whose performance is monotonic in terms of both ||xk− x?|| and Φ(xk)−
Φ(x?). It is also faster than both FISTA-BT and FISTA-Mod;

• The three restarting adaptive schemes are the fastest among tested schemes, with Greedy FISTA being
faster than the other two.

1 2 3 4 5 6 7 8 9 10

105

10-6

10-2

102

(a) ||xk− x?||

1 2 3 4 5 6 7 8 9 10

105

10-14

10-10

10-6

10-2

102

106

(b) Φ(xk)−Φ(x?)

Figure 6: Comparison of different FISTA schemes for least square problem (4.1).

7.2 Linear inverse problem and regression problems
From now on, we turn to dealing with problems that are only locally strongly convex around the solution of
the problem. We refer to [16] for a detailed characterization of such local neighborhoods.

Linear inverse problem Consider the following regularised least square problem

min
x∈Rn

µR(x)+ 1
2 ||K x− f ||2, (7.1)

where µ > 0 is trade-off parameter, R is the regularization function. The forward model of (7.1) reads

f = K xob +w, (7.2)

where xob ∈Rn is the original object that obeys certain prior (e.g. sparsity and piece-wise constant), f ∈Rm is
the observed data, K : Rn→Rm is some linear operator, and w ∈Rm stands for noise. In the experiments, we
consider R being `∞-norm and total variation [29]. Here K is generated from the standard Gaussian ensemble
and the following setting is considered:

`∞-norm (m,n) = (1020,1024), xob has 32 saturated entries;
Total variation (m,n) = (256,1024), ∇xob is 32-sparse.

Sparse logistic regression A sparse logistic regression problem for binary classification is also considered.
Let (hi, li) ∈ Rn×{±1}, i = 1, · · · ,m be the training set, where hi ∈ Rn is the feature vector of each data
sample, and li is the binary label. The formulation of sparse logistic regression reads

min
x∈Rn

µ||x||1 +
1
m ∑

m
i=1 log

(
1+ e−lihT

i x). (7.3)

The australian data set from LIBSVM1 is considered.
The observations are shown in Figure 7. Although these problems are only locally strongly convex around

the solution, the observations are quite close to those of least square problem discussed above:
• The lazy-start FISTA-Mod is slower than FISTA-BT at the beginning, and eventually becomes much

faster, as predicted. For the `∞-norm, it is more than 10 times faster if we need the precision to be
||xk− x?|| ≤ 10−10;

• The restarting adaptive schemes are the fastest ones, and the Greedy FISTA is the fastest of all.
1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 7: Comparison of different FISTA schemes for linear inverse problems and sparse logistic regression.

7.3 Principal component pursuit
Lastly, we consider the principal component pursuit (PCP) problem [9], and apply it to decompose a video
sequence into background and foreground.

Assume that a real matrix f ∈ Rm×n can be written as

f = xl,ob + xs,ob +w,

where xl,ob is low–rank, xs,ob is sparse and w is the noise. The PCP proposed in [9] attempts to recover/approximate
(xl,ob,xs,ob) by solving the following convex optimization problem

min
xl,xs∈Rm×n

1
2 || f − xl− xs||2F +µ||xs||1 +ν ||xl||∗, (7.4)

where || · ||F is the Frobenius norm. Observe that for fixed xl, the minimizer of (7.4) is x?s = proxµ||·||1( f − xl).
Thus, (7.4) is equivalent to

min
xl∈Rm×n

1(
µ|| · ||1

)
( f − xl)+ν ||xl||∗, (7.5)

where 1
(
µ|| · ||1

)
( f −xl) = minz

1
2 || f −xl−z||2F +µ||z||1 is the Moreau Envelope of µ|| · ||1 of index 1, and hence

has 1-Lipschitz continuous gradient.

We use the video sequence from [13] and the obtained result is demonstrated in Figure 8. Again, we obtain
consistent observations with the above examples. Moreover, the performance of lazy-start FISTA-Mod is very
close to the restarting adaptive schemes.

(a) Original frame (b) Sparse component (c) Low-rank component

50 100 150 200 250 300 350 400 450 500
10-8

10-4

100

(d) Performance comparison

Figure 8: Comparison of different FISTA schemes for principal component pursuit problem. (a) original frame;
(b) foreground; (c) background; (d) performance comparison.

In all these experiments we find that the proposed variants can perform better than the original versions but
restarting are consistently faster. Greedy FISTA was the best in every example shown.
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8 Conclusions
We proposed a simple modification to the original FISTA-BT scheme, which allows us to prove the conver-
gence of the sequence generated by the modified scheme. We also proposed a lazy-start strategy which can
greatly improve the practical performance of FISTA schemes. Several adaptive schemes were also developed,
which can adaptively adjust to the (local) properties of the problem to solve. The performances of the proposed
schemes were verified on various problems arising from inverse problems, data science and computer vision.
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