
PETSC TSADJOINT: A DISCRETE ADJOINT ODE SOLVER FOR
FIRST-ORDER AND SECOND-ORDER SENSITIVITY ANALYSIS ∗

HONG ZHANG† , EMIL M. CONSTANTINESCU‡ , AND BARRY F. SMITH§

Abstract. We present a new software system PETSc TSAdjoint for first-order and second-
order adjoint sensitivity analysis of time-dependent nonlinear differential equations. The derivative
calculation in PETSc TSAdjoint is essentially a high-level algorithmic differentiation process. The
adjoint models are derived by differentiating the timestepping algorithms and implementing them
based on the parallel infrastructure in PETSc. Full differentiation of the library code, including MPI
routines, is avoided, and users do not need to derive their own adjoint models for their specific
applications. PETSc TSAdjoint can compute the first-order derivative, that is, the gradient of a
scalar functional, and the Hessian-vector product, which carries second-order derivative information,
while requiring minimal input (a few callbacks) from the users. The adjoint model employs optimal
checkpointing schemes in a manner that is transparent to users. Usability, efficiency, and scalability
are demonstrated through examples from a variety of applications.

Key words. sensitivity analysis, adjoint, PETSc, second-order adjoint

AMS subject classifications. 97N80, 65L99, 49Q12

1. Introduction. Adjoint methods have been used extensively in computational
modeling and optimization, playing a key role in neural networks, sensitivity analy-
sis, goal-oriented error estimation, data assimilation, and optimal control. They are
efficient algorithmic differentiation (AD) approaches for computing the derivatives of
an objective function of the solution of an ordinary differential equation (ODE) or
differential-algebraic equation (DAE) with respect to parameters of interest, with a
cost independent of the number of parameters. Deriving the adjoint model is trivial for
linear models but can be difficult for nonlinear models [15], especially time-dependent
problems.

Many tools have been developed to derive and implement adjoint models auto-
matically. These automatic tools take as input a forward model that users implement
in languages such as C [8, 37], C++ [6], Fortran [18], Python [27], and Julia [24]; and
they produce as output the associated discrete adjoint model in a line-by-line fashion,
through source-to-source transformations, operator overloading, or a combination of
both. While this black-box approach gives the highest degree of automation and
requires the least knowledge of the mathematical models, it suffers from many low-
level implementation-specific difficulties including memory allocation, management of
pointers, input/output, and parallel communication (e.g., MPI and OpenMP). Such
black-box tools also often produce far from optimally efficient code.

Traditional AD treats a model as a sequence of primitive instructions (e.g., addi-
tion, multiplication, logarithm) and calculates the derivatives based on the chain rule
using the derivatives of these primitive instructions, which are easily obtainable. In
order to overcome the difficulties of these low-level approaches, high-level AD libraries
such as dolfin-adjoint [15] and FATODE [41] recently have been developed to operate

∗Submitted to the editors DATE.
Funding: This material is based upon work supported by the U.S. Department of Energy,

Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through
Advanced Computing (SciDAC) program through the FASTMath Institute under contract DE-AC02-
06CH11357 at Argonne National Laboratory.
†Argonne National Laboratory, Lemont, IL (hongzhang@anl.gov).
‡Argonne National Laboratory, Lemont, IL (emconsta@anl.gov).
§Argonne National Laboratory, Lemont, IL (bsmith@petsc.dev).

1

ar
X

iv
:1

91
2.

07
69

6v
2

 [
cs

.M
S]

 2
6

O
ct

 2
02

1

mailto:hongzhang@anl.gov
mailto:emconsta@anl.gov
mailto:bsmith@petsc.dev

2 H. ZHANG, E. M. CONSTANTINESCU AND B. F. SMITH

Fig. 1: Landscape of adjoint algorithmic differetiation software.

at high abstraction levels.
The landscape of popular existing AD software is depicted in Figure 1. While

these software packages are developed based on the same theory, they differ sig-
nificantly in usage and require varying levels of effort from developers and users.
Dolfin-adjoint [15] considers a model as a sequence of nonlinear equation solves in
the form A(u)u = b(u), where u is the vector of all prognostic variables, b(u) is the
source term, and A(u) is the entire discretization matrix. The derivation of the ad-
joint model is fully automated in dolfin-adjoint if the forward model is written in a
high-level language that is similar to mathematical notation. Dolfin-adjoint is used
primarily by finite-element systems such as FEniCS [3] and Firedrake [31]. FATODE

implements an adjoint model by considering the algorithm of solving time-dependent
differential equations as a sequence of timestepping solves. FATODE provides a built-in
implementation of the adjoint model derived based on the timestepping algorithms
for solving ODEs; simulation of time-dependent partial differential equations (PDEs)
is abstracted as a sequence of time steps, and the libraries differentiate each time
step. In contrast, the adjoint solvers CVODES and IDAS in the SUNDIALS [21] package,
which have been used by notable optimization tools such as CasADi [4], implement an
adjoint model that users derive directly from the model equations. This highest-level
approach, also known as the continuous adjoint approach, requires users to derive a
new set of equations before discretization (adjoint model of the original continuum
or weak form mode). All the other aforementioned approaches are discrete adjoint
approaches since the adjoint models are derived after discretization. In general, lower-
level abstractions tend to impose more implementation burden on library developers
and provide more automation to users while, at the same time, hiding more math-
ematical structures from users. Nevertheless, low-level AD can be mixed with high-
level AD to improve scaling. For example, the internal Jacobian-vector product in a
high-level AD implementation can be effectively computed by using the traditional
reverse-mode AD. This approach has been adopted in many works [4, 28, 36].

Another tool that has recently been developed is a Julia library called Differen-
tialEquations.jl [29]. It has support for both continuous and discrete first-order adjoint
sensitivity analysis for ODEs, and experimental support for second-order sensitivity

PETSC TSADJOINT 3

analysis is claimed.
Adopting a similar approach to that used by FATODE, we have developed the

TSAdjoint component in the Portable, Extensible Toolkit for Scientific Computation
PETSc [1, 39]. PETSc TSAdjoint enables first- and second-order adjoint sensitiv-
ity analysis for nonlinear time-dependent differential equations, which are the key
ingredients of many optimization algorithms. The adjoint models are derived and
implemented for various time integrators in PETSc in a manner that is agnostic to
the spatial discretization engine, thus being suitable for general-purpose applications.
The adjoint models also employ the parallel infrastructure and the sophisticated lin-
ear/nonlinear solvers in PETSc in the same way as the forward models. Optimal adjoint
checkpointing schemes are implemented and tailored to the needs of the ODE/DAE
solvers. The adjoint control flow is managed automatically by PETSc and is transpar-
ent to users. These features are significant advantages in achieving the efficiency of
adjoint calculation compared with other adjoint codes. In particular, dolfin-adjoint
covers less general applications. FATODE, CVODES, IDAS and DifferentialEquations.jl
lack support for optimal checkpointing; and to the best of our knowledge, there are no
reported demonstrations or attempts to use state-of-the-art linear/nonlinear solvers
with these tools, although they are generic to the internal linear solver. A drawback
with TSAdjoint is that the adjoint of each timestepping algorithm must be imple-
mented by the library developers.

In the next section, we provide the mathematical foundations of sensitivity analy-
sis for ODE integrators. In Section 3, we explain the software infrastructure. Section
4 discusses the management of the required checkpointing, and Section 5 explores the
use of these algorithms in three examples. Section 6 summarizes our conclusions.

2. Mathematical Foundation. This section explains how the sensitivity prop-
agation equations are derived based on the model abstraction at the timestepping
level. Both first-order and second-order sensitivity analysis approaches are covered.
An example using theta timestepping methods, for which the adjoint model has mod-
erate complexity, is given to illustrate the details of the derivation. The mathematical
framework can be naturally extended to other timestepping algorithms, including ex-
plicit schemes and even implicit-explicit schemes.

The goal of sensitivity analysis of a dynamical system is to compute the derivative
of a scalar functional with respect to specific system parameters. We consider the
dynamical system in DAE form for notational brevity and without loss of generality:

(2.1) Mu̇ = f(t,u;p) ,

where M ∈ RNd×Nd is the mass matrix, u ∈ RNd is the system state, and p ∈ RNp are
the parameters of interest. These forms typically arise from the semi-discretization
of time-dependent PDEs using the method of lines. The mass matrix may be the
identity for typical ODEs or a singular matrix for DAEs. In this paper, vectors and
matrices are denoted by bold letters and scalars by non-bold letters. The numerator
layout notation is used for derivatives; for example, the derivative of a scalar function
is a row vector.

Consider time integration as a sequence of operations,

(2.2) un+1 = N (un), n = 0, . . . , N − 1,

where the initial condition is u0 = η and N is a timestepping operator that propagates
the solution from tn to tn+1. An example of N , an implicit timestepping method, is

4 H. ZHANG, E. M. CONSTANTINESCU AND B. F. SMITH

discussed in Section 2.4. The scalar functional in sensitivity analysis depends on the
system states and is denoted by ψ(uN) if it is a function of the final state or expressed
in integral form

(2.3)

∫ tF

t0

r(t,u;p)dt

if it is a function of the entire trajectory of the system.
In the following two subsections, we briefly explain how the derivatives of a scalar

function ψ(uN) with respect to the initial condition are derived in the discrete regime.
The derivatives with respect to parameters (e.g., model parameters) can be derived
with the same framework by augmenting the parameters into the initial condition
vector. We refer readers to [41] for details.

2.1. First-order discrete derivatives. We use the Lagrange multipliers λn ∈
RNd , n = 0, . . . , N , which are column vectors, to account for the constraint from each
time step and define the Lagrangian

(2.4) L(η) = ψ(uN)− λT0 (u0 − η)−
N−1∑
n=0

λTn+1 (un+1 −N (un)) .

We choose the transpose for the convenience of derivation because the derivative of a
row vector with respect to a column vector is not well defined in matrix calculus.

Taking the total derivative of equation (2.4) with respect to the initial condition
η leads to

(2.5)
dL
dη

= λT0 −
(
dψ

du
(uN)− λTN

)
duN
dη
−
N−1∑
n=0

(
λTn − λTn+1

dN
du

(un)

)
dun
dη

.

The first-order adjoint equation is defined as

(2.6)

λn =

(
dN
du

(un)

)T
λn+1, n = N − 1, . . . , 0,

λN =

(
dψ

du
(uN)

)T
,

in order to make the last two terms in (2.5) vanish so that the total derivative can be
obtained without computing the forward sensitivities. Note that in the adjoint model,
the sensitivities are calculated by propagating the derivative information in reverse
order.

An alternative approach is to derive the discrete tangent linear model (TLM)
from the discrete forward model. By differentiating directly (2.2) with respect to the
initial condition η and defining the sensitivity matrix Sn ∈ RNd×Nd by

(2.7) Sn =
dun
dη

, n = 0, . . . , N − 1,

we can obtain the TLM equations

(2.8) Sn+1 =

(
dN
du

(un)

)
Sn, n = 0, . . . , N − 1,

PETSC TSADJOINT 5

which propagates the sensitivity matrix forward in time and can be solved together
with the original model equations (2.1). Similarly, one can differentiate (2.2) with
respect to the parameters to derive the TLM equations for calculating parameter
sensitivities. These sensitivities can be used to compute the derivative of the scalar
functional through the chain rule so that the TLM method can achieve the same
goal as the adjoint method. However, these two methods may differ significantly in
terms of computational cost. The computational complexity of the adjoint method is
O(Nf) whereas the complexity of the TLM method is O(Np), where Nf and Np are
the number of functionals and the number of parameters, respectively. Therefore, the
adjoint method is more efficient than the TLM method when computing derivatives
of a scalar functional with respect to many parameters. The TLM method can be
efficient only when there are few parameters and has limited application compared
with the adjoint method.

2.2. Second-order discrete derivatives. A most computationally efficient ap-
proach for calculating second-order derivatives for a large number of parameters is the
forward-over-adjoint method [2], which requires both the first-order adjoint model and

the TLM. By differentiating the transpose of
dL
dη

with respect to η for a second time,

we obtain

d

dη

(
dL
dη

)T
=
dλ0

dη
−
(
dψ

du
(uN)− λTN

)
d2uN
dη2

(2.9)

−
(
duN
dη

)T (
d

du

(
dψ

du
(uN)

)T
duN
dη
− dλN

dη

)

−
N−1∑
n=0

(
dun
dη

)T (
dλn
dη
− λTn+1

d2N
du2

(un)
dun
dη
−
(
dN
du

(un)

)T
dλn
dη

)

−
N−1∑
n=0

(
λTn −

(
dN
du

(un)

)T
λn+1

)
d2un
dη2

.

By utilizing the first-order adjoint equations (2.6) and the second-order adjoint
equations

(2.10)

dλn
dη

=

(
dN
du

(un)

)T
dλn+1

dη
+ λTn+1

d2N
du2

(un)
∂un
∂η

, n = N − 1, . . . , 0,

dλN
dη

=
d

du

(
dψ

du
(uN)

)T
∂uN
∂η

,

where dλ
dη carries second-order derivative information, we obtain the Hessian of the

objective function ∇2
ηL = ∇2

ηψ(un) = dλ0

dη .

Equation (2.10) propagates a matrix, a computationally expensive process that is
also not storage efficient. Practical implementations seek to provide the computation
of Hessian-vector products instead of the full Hessian. To this end, we derive the
directional second-order derivative, which results in a significantly lower complexity.
Assume v ∈ RNd is the directional vector that either comes from the optimization

6 H. ZHANG, E. M. CONSTANTINESCU AND B. F. SMITH

algorithm or is specified by the user. Post-multiplying v on both sides of (2.10) gives

(2.11)

dλn
dη

v =

(
dN
du

(un)

)T
dλn+1

dη
v + λTn+1

d2N
du2

(un)
∂un
∂η

v , n = N − 1, . . . , 0,

dλN
dη

v =
d

dη

(
dψ

du
(uN)

)T
∂uN
∂η

v .

The boxed terms in (2.11) are the directional derivatives for the forward sensitivities
that can be calculated with a TLM.

These equations can also be derived by differentiating the first-order adjoint equa-
tion (2.6). For brevity, we drop n = N − 1, . . . , 0 in the adjoint equations in what
follows. Readers should keep in mind that the adjoint equations always go backward
in time. Parameters p in functions such as f and r are dropped for the same reason.

2.3. Augmented system for deriving parametric sensitivity and incor-
porating integrals. To obtain the parameter sensitivities and incorporate cases
where there are integral terms in the objective function, we can extend the original
DAE (2.1) by augmenting the state vector with the parameters and the integrand in
the objective function (2.3) and obtain a larger system,

(2.12) Mu̇ = F (t,u), t ∈ [t0, tF] ,

where

M =

M
INp×Np

1

 ,u =

 up
q

 , F =

 F
0Np×1

r

 .
The second equation enforces constant parameters during the time integration, and
the last equation results from a transformation of the integral (2.3).

In this extended framework, the initial condition is η0 = [η p 0]T . The extended
Jacobian is

Fu =

 fu fp 0Nd×1

0Np×Nd
0Np×Np 0Np×1

ru rp 0

 ,
and the extended forward sensitivity matrix is given by

du

dη
=

 du
dη

du
dp 0Nd×1

0Np×Nd
INp×Np

0Np×1
dq
dη

dq
dp 0

 .
The first-order adjoint variable expands to the combination of three variables,

corresponding to the partial derivative of the objective function with respect to the
initial condition of the system state, the parameters, and the initial value of q, re-
spectively. The third variable has a constant value of 1 because of the zeros in the
last column of Fu (see the Appendix in [41]).

2.4. Example: theta methods. As an illustrative example, we describe how
the TLM and the first-order and second-order adjoint models are derived for theta
methods, which can be written as

(2.13) Mun+1 = Mun + hn(1− θ)f(un) + hnθf(un+1) ,

where hn = tn+1 − tn.

PETSC TSADJOINT 7

2.4.1. First-order adjoint sensitivity. In its simplest form, the adjoint theta
method for computing solution sensitivity is

MTλs = λn+1 + hnθ f
T
u (un+1)λs(2.14a)

λn = MTλs + hn(1− θ)fTu (un)λs(2.14b)

with the terminal condition

(2.15) λN =

(
∂ψ

∂u
(un)

)T
.

By applying this formula to the augmented system (2.12), we obtain a method
that can compute parameter sensitivities and can incorporate integrals in the objective
function:
(2.16)

MTλs = λn+1 + hnθ f
T
u (un+1)λs + hnθ r

T
u(tn+1,un+1),

λn = MTλs + hn(1− θ)fTu (un)λs + hn(1− θ)rTu(tn,un),

µn = µn+1 + hnθ
(
fTp (un+1)λs + rTp (un+1)

)
+ hn(1− θ)

(
fTp (un)λs + rTp (un)

)
,

where µn = ∂ψ
∂p (un), f{u,p} = ∂f

∂{u,p} , and r{u,p} = ∂r
∂{u,p} . The corresponding

terminal conditions are

(2.17) λN =

(
∂ψ

∂u
(un)

)T
, µN =

(
∂ψ

∂p
(un)

)T
.

2.4.2. First-order forward sensitivity. We take the derivative of the one-step
time integration algorithm (2.13) with respect to parameters p ∈ RNp and obtain the
discrete TLM

(2.18)
MSn+1 = MSn + hn

(
(1− θ) (fu(un)Sn + fp(un))

+ θ (fu(un+1)Sn+1 + fp(un+1))
)
,

where Sn = dun/dp denotes the solution sensitivities (a.k.a. trajectory sensitivities).
With the solution sensitivities, the total derivative of ψ(un) can be computed by

using

(2.19)
dψ

dp
(un) =

∂ψ

∂u
(un)SN +

∂ψ

∂p
(un)

or in column-vector form

(2.20)

(
dψ

dp
(un)

)T
= STN

(
∂ψ

∂u
(un)

)T
+

(
∂ψ

∂p
(un)

)T
.

Sensitivity for the integral representation of the objective function is given by

(2.21)
dq

dp
=

∫ tF

t0

(
∂r

∂u
(u)S +

∂r

∂p
(u)

)
dt.

8 H. ZHANG, E. M. CONSTANTINESCU AND B. F. SMITH

2.4.3. Second-order adjoint: sensitivities to initial condition. Differenti-
ating the first-order adjoint (2.14) with respect to the initial condition leads to

MT dλs
dη

=
dλn+1

dη
+ hnθλ

T
s fuu(un+1)

dun+1

dη
+ hnθf

T
u (un+1)

dλs
dη

(2.22a)

dλn
dη

= MT dλs
dη

+ hn(1− θ)λTs fuu(un)
dun
dη

+ hn(1− θ)fTu (un)
dλs
dη

,(2.22b)

with the terminal condition

(2.23)
dλN
dη

=
d

du

(
dψ

du
(un)

)T
∂un
∂η

.

Post-multiplying both sides of (2.22) by a direction vector v ∈ RNd and defining
Λ = (dλ/dη)v to shorten the expression, we obtain

(2.24)

MTΛs = Λn+1 + hnθλ
T
s fuu(un+1)

dun+1

dη
v + hnθf

T
u (un+1)Λs

Λn = MTΛs + hn(1− θ)λTs fuu(un)
dun
dη

v + hn(1− θ)fTu (un)Λs

with the terminal condition

(2.25) ΛN =
d

du

(
dψ

du
(un)

)T
∂un
∂η

v.

Comparing the second-order adjoint (2.24) with the first-order adjoint (2.14), one
can see that they are similar; the only difference is the additional term containing
the Hessian-vector product of the DAE right-hand side. They result in linear systems
with the same shifted Jacobian matrix MT − hnθfTu (un+1) but different right-hand
sides. Therefore, they can be solved together with those in the first-order adjoint,
using the same preconditioners.

For large-scale simulations, computing the full forward sensitivity matrix dun

dη
quickly becomes impractical because it requires a computational cost that is linear
with the number of states. However, calculating the directional derivatives for the
forward sensitivities (boxed terms in (2.24)) makes the cost constant; as a result, the
computational cost of the second-order adjoint is independent of the number of inputs
(states and parameters), like the cost of the first-order adjoint.

2.4.4. Second-order adjoint: sensitivities to parameters. We can apply
techniques similar to those described in Section 2.3 to extend the method for com-
puting solution sensitivities to cases where parameter sensitivities are desired and
integrals are included in the objective function.

The extended Hessian of the DAE right-hand side contains 3×3×3 tensor blocks,
including fuu, Fup, Fpu, Fpp, ruu, rup, rpu, and rpp, and 19 zero blocks. The vector-
Hessian product term in (2.22), λTs fuu(un), is λTfuu + ruu λTfup + rup 0

λTfpu + rpu λTfpp + rpp 0
0 0 0

 .
We also need to extend the second-order adjoint variable multiplied with a direc-

tional vector to three variables denoted by Λ, Γ, and Θ. The corresponding directional

PETSC TSADJOINT 9

vector should be split into three components v1 ∈ RNd , v2 ∈ RNp , and v3 ∈ R1. We
define the new directional forward sensitivity to bew1 ∈ RNd ,w2 ∈ RNp , andw3 ∈ R1

for the boxed term in (2.24), where w1(un)
w2(un)
w3(un)

 =
dun

dη

 v1

v2

v3

 .
Multiplying the vector-Hessian product term with the directional forward sen-

sitivities eliminates w3 because of the zeros in the last row and leads to w2 = v2

because of the identity in the center. Thus, only w1 needs to be obtained by solving
the TLM equation

(2.26)
Mwn+1 = Mwn + hn

(
(1− θ) (fu(un)wn + fp(un)v2)

+ θ (fu(un+1)wn+1 + fp(un+1)v2)
)
.

See the supplementary material for details.
Expanding the augmented system leads to

(2.27)

MT Λs = Λn+1 + hnθ f
T
u (un+1) Λs

+ hnθ
(
λTs fuu(un+1)w1(un+1) + ruu(un+1)w1(un+1)

)
+ hnθ

(
λTs fup(un+1)w2(un+1) + rup(un+1)w2(un+1)

)
Λn = MT Λs + hn(1− θ)fTu (un)Λs

+ hn(1− θ)
(
λTs fuu(un)w1(un) + ruu(un)w1(un)

)
+ hn(1− θ)

(
λTs fup(un)w2(un) + rup(un)w2(un)

)
Γn = Γn+1 + hnθf

T
p (un+1) Λs

+ hnθ
(
λTs fpu(un+1)w1(un+1) + rpu(un+1)w1(un+1)

)
+ hnθ

(
λTs fpp(un+1)w2(un+1) + rpp(un+1)w2(un+1)

)
+ hn(1− θ)fTp (un) Λs

+ hn(1− θ)
(
λTs fpu(un)w1(un) + rpu(un)w1(un)

)
+ hn(1− θ)

(
λTs fpp(un)w2(un) + rpp(un)w2(un)

)
Θn = Θn+1

with terminal conditions
(2.28)

ΛN =
∂

∂u

(
∂ψ

∂u
(un)

)T
∂un
∂η

v1 +

(
∂

∂u

(
∂ψ

∂u
(un)

)T
∂un
∂p

+
∂

∂p

(
∂ψ

∂u
(un)

)T)
v2

ΓN =
∂

∂u

(
∂ψ

∂p
(un)

)T
∂un
∂η

v1 +

(
∂

∂u

(
∂ψ

∂p
(un)

)T
∂un
∂p

+
∂

∂p

(
∂ψ

∂p
(un)

)T)
v2.

The final solution is given by

(2.29)

Λ0 =
∂

∂η

(
∂ψ

∂η

)T
v1 +

∂

∂p

(
∂ψ

∂η

)T
v2

Γ0 =
∂

∂η

(
∂ψ

∂p

)T
v1 +

∂

∂p

(
∂ψ

∂p

)T
v2.

10 H. ZHANG, E. M. CONSTANTINESCU AND B. F. SMITH

To compute the total derivatives for ψ, we can apply the chain rule with the
adjoint solution

(2.30) ∇pψ =

(
dψ

dp

)T
=

(
dη

dp

)T (
∂ψ

∂η

)T
+

(
∂ψ

∂p

)T
= ηTp λ0 + µ0.

Similarly, the second-order directional derivative with respect to the parameters can
be computed as
(2.31)

∇2
pψσ =

d

dp

(
dψ

dp

)T
σ

=
∂ψ

∂η
ηpp σ + ηTp

(
∂

∂η

(
∂ψ

∂η

)T
ηp +

∂

∂p

(
∂ψ

∂η

)T)
σ +

∂

∂η

(
∂ψ

∂p

)T
ηp σ

+
∂

∂p

(
∂ψ

∂p

)T
σ

= λT0 ηpp σ + ηTp Λ0 + Γ0

with v1 = ηpσ and v2 = σ. At this point, the second-order derivative with respect
to the initial conditions is simply

(2.32) ∇2
ηψσ =

d

dη

(
dψ

dη

)T
σ = Λ0 ,

with v1 = σ.

3. PETSc TSAdjoint. We begin this section with an overview of the PETSc

TSAdjoint software and then discuss the design and user interface as well as some
implementation issues.

3.1. Overview of the software. PETSc is a scalable MPI- and GPU-based
object-oriented numerical software library written in C and fully usable from C, C++,
Fortran, and Python. It is publicly available at https://www.mcs.anl.gov/petsc/.
PETSc has several fundamental classes from which applications are composed, includ-
ing data structures for vectors and matrices, abstractions for working with subspaces
of vectors, linear and nonlinear solvers, ODE/DAE solvers, and optimization solvers
(within the Toolkit for Advanced Optimization (TAO) component of PETSc). In ad-
dition, PETSc has an abstract class DM that serves as an adapter between meshes,
discretizations, and other problem descriptors and the algebraic and timestepping
objects that are used to solve the discrete problem.

PETSc TSAdjoint provides a number of advantages. It avoids the full differenti-
ation of a simulation code that classic AD requires, while maintaining the accuracy
and speed of using AD tools. PETSc also offers finite-difference approximations for
validating the user-supplied Jacobian (or Jacobian-vector products in a matrix-free
context) and even the adjoint sensitivities. Users can easily enable these function-
alities via command-line options at runtime. Compared with the continuous adjoint
approach [23] that has been popular in control theory for a long time, the discrete
adjoint approach adopted in PETSc does not require users to derive a new set of PDEs
and determine boundary conditions to ensure the existence of the solution of the ad-
joint equations. One may argue that the continuous adjoint approach allows different
discretization schemes and adaptive techniques to be applied to the adjoint equation,

https://www.mcs.anl.gov/petsc/

PETSC TSADJOINT 11

giving opportunities for efficiency improvement. While this is reasonable in theory,
implementation and accuracy concerns may arise in applications. First, adapting spa-
tial discretization is not trivial, since it may involve changes to the mesh and need
extra code development to implement the new schemes. Second, interpolation in the
temporal domain becomes necessary when the checkpointed data from the original
forward model cannot be used directly in solving the continuous adjoint equation
(e.g., when adaptive timestepping is enabled). The interpolation will also induce ad-
ditional numerical errors. Thus, exploiting the flexibility in choosing discretization
schemes for continuous adjoint approaches can be a tremendous burden for applica-
tion developers. Third, it has been shown that the discrete adjoint approach can
deliver better accuracy than can the continuous adjoint approach in machine learning
[26, 17]. The abstraction level at which the discrete adjoint model in PETSc is derived
provides a balance between flexibility and usability—it does not raise concerns about
discretization, and it still offers flexibility in the selection of algebraic solvers.

Various checkpointing schemes have been implemented in a new class called
TSTrajectory, which generates an optimal checkpointing schedule used internally
by TSAdjoint, thus being completely transparent to users. Using an optimal check-
pointing schedule is critical for achieving good performance in adjoint calculations.
It is a difficult combinatorial problem and orthogonal to the focus of application de-
velopers. Therefore, the implementation of automatic checkpointing is a significant
advantage to application developers.

3.2. Design and user interface. Rooted in the PETSc timestepping library
[1], TSAdjoint is designed for the scalable computation of sensitivities of systems of
time-dependent PDEs, DAEs, and ODEs. For each class of time integration methods
in PETSc, a corresponding adjoint version of the algorithm is implemented with the
context (e.g., method coefficients, working vectors) shared with the forward timestep-
ping solver. The adjoint solvers are provided with event detection and handling
(TSEvents), solution monitoring (TSMonitor), and performance profiling and thus
are feature-complete compared with their counterparts. The event feature is partic-
ularly crucial for handling hybrid dynamical systems with discontinuities (or jumps)
in time. These problems are known to be challenging for sensitivity analysis because
complicated jump conditions at the switching surface need to be derived and im-
plemented. Interested readers can refer to [39] for details on how this capability is
achieved with PETSc TSAdjoint.

In PETSc, DAEs and ODEs are formulated as F (t,u, u̇) = G(t,u). For clarity
of presentation, the form considered in this paper, (2.1), is a common case where
F = Mu̇ − f and G = 0; but TSAdjoint is extensible to fully support the more
general case. To utilize the PETSc integrators, users supply callback routines for the
residual function (F and G) evaluations and optional routines for Jacobian evaluation
when implicit methods are chosen. For example, the Jacobian with respect to the state
for (2.1), by the chain rule, is aFu̇ +Fu, where the shift parameter a depends on the
time integration method and is passed to the user’s callback routine. For sensitivity
analysis, these same callbacks are reused, but a few additional callbacks may be
required to provide derivatives (Jacobian and Hessian) of the ODE/DAE operator
with respect to system state or parameters depending on the application needs. The
Jacobian can be given either directly or in a matrix-free form. The matrix-free form
(vector-Hessian-vector product) is preferred for the Hessian because the sensitivity
analysis techniques do not need to use the matrix or tensor directly, the memory
footprint can be dramatically reduced, and the vector-Hessian-vector product can be

12 H. ZHANG, E. M. CONSTANTINESCU AND B. F. SMITH

Table 1: User-supplied callbacks for an implicit timestepping solver and its adjoint
calculations. Reusable callbacks across use cases are marked in gray.

Use case Without integral With integral

forward integration
Mu̇− f
aM− fu

r

1st-order adjoint
or TLM

Mu̇− f
aM− fu

−fp r
ru
rp

2nd-order adjoint
Mu̇− f
aM− fu

−fp

−vT1 fuuv2

−vT1 fupv2

−vT1 fpuv2

−vT1 fppv2

r
ru
rp

ruuv3

rupv3

rpuv3

rppv3

generated much more efficiently by AD tools than can the Hessian itself. The vectors
to be multiplied with the Hessian are also prepared by PETSc and accessed by users
through the API. Table 1 summarizes the callback routines for several typical use
cases.

The user interface to the adjoint solver is consistent with that of the timestepping
solver. In particular, users need to create the appropriate PETSc vectors for storing the
adjoint variables, provide the problem-specific context using TSSetCostGradients()

for first-order adjoints, and initialize the adjoint variables according to the proper
terminal conditions between the end of the forward solve and the start of the adjoint
solve. For the second-order adjoint, additional adjoint variables need to be provided
using TSSetCostHessianProducts(), and tangent linear variables need to be set with
TSAdjointSetForward().

Adaptive timestepping is naturally supported. Both the tangent linear and ad-
joint solvers follow the same trajectory that the timestepping solver determines via
a timestep controller. The PETSc timestepping solver provides a variety of options
for automatic timestep control to attain a user-specified goal. The adaptivity logic
can be based on embedded error estimates [14], linear digital control theory [33], the
Courant–Friedrichs–Lewy condition, and global error estimates [10]. When adaptive
timestepping is used, an online checkpointing scheme must be employed because the
total number of steps is not known a priori.

3.3. Jacobian/Hessian computation. PETSc provides several choices for the
Jacobian/Hessian operators or their application needed by the forward and adjoint
solvers. First, PETSc offers efficient and automatic Jacobian approximation with finite
differences and coloring [16] if the Jacobian is not supplied by users and the sparsity
pattern of the Jacobian is available (e.g., when the PETSc data management object
DM is used for the implementation of discretization schemes). Second, PETSc allows
low-level AD tools to differentiate local routines so that MPI routines need not be
differentiated through, and it provides utilities to facilitate fast Jacobian recovery
from AD-generated matrices (see [36] for details). Third, one can use libraries such
as Firedrake and FEniCS that have excellent high-level AD capabilities; this use is
demonstrated with examples in Section 5.

4. Checkpointing. In order to calculate the discrete adjoint state, Jacobians
and Hessians or matrix-free operations for them must be evaluated by using the system

PETSC TSADJOINT 13

states that are computed in the forward run. The storage space needed to retain all
these states is proportional to the number of time steps performed. To overcome this
drastic storage requirement, one can checkpoint selective states along the trajectory
while recomputing the missing ones. This technique has been well studied in the
literature. A notable offline algorithm, revolve, developed by Griewank and Walther
[19], generates a checkpointing schedule that minimizes the number of recomputation
time steps, given the total number of time steps and the number of allowed checkpoints
in memory. A C++ tool was developed to implement the revolve algorithm; a few
online algorithms [20, 35, 38] were also implemented for cases when the number of
time steps is not known a priori; and a multistage algorithm was included to consider
both disk and memory for storage [34]. Figure 2a depicts an optimal schedule for
adjoining 10 time steps given three checkpoints.

However, using these algorithms and the tool can cause difficulties. First, they
provide only the schedule that guides the checkpoint manipulation for adjoint com-
putation. Significant effort is still needed to implement the required operations that
are dependent on the application codes and hardware platforms. Second, the tool was
designed to be an explicit controller for conducting forward integration and adjoint
integration in time-dependent applications. Most ODE solvers, however, have their
own framework for controlling the timestepping process. Incorporating revolve in
these software systems can be intrusive or even infeasible. For example, the adjoint
solve involves a workflow that mixes forward and reverse integration, which are not
commonly supported in existing ODE solvers. Third, revolve was designed under
the assumption that only solution states are checkpointed at distinct time steps; it
requires at least one recomputation before each adjoint step can be performed. This
strategy is not necessarily ideal for the discrete adjoint of multistage time integra-
tion methods because checkpointing the intermediate stage values together with the
solution states would remove the need to recompute the corresponding time steps.

To address these challenges, we have implemented the TSTrajectory component
in PETSc to serve as the intermediary between revolve and the timestepping solver.
It is responsible for implementing the operations required by revolve and handling
the adjoint workflow. The main features are summarized below.

• Storing and restoring a checkpoint are implemented for different storage me-
dia. In memory, these operations are straightforward; on disk or other devices,
data format and parallel I/O must be considered. For example, we currently
support binary file formats and MPI I/O, but this support can easily be
extended to other possibilities.

• Needed data points can be requested from TSTrajectory by specifying either
the timestep number (a unique index for labeling each time step) or the time.
In the forward run, selected checkpoints will be stored. In the reverse run,
the data point needed to complete an adjoint step is restored directly if it
has already been checkpointed; and then the checkpoint can be discarded to
leave the storage space for a new checkpoint. If not available immediately,
the data point will be recomputed from the nearest checkpoint. During the
recomputation, a new checkpoint may be stored if storage space permits.
This reinterpretation of the checkpointing schedule allows us to encapsulate
the process of obtaining a data point into TSTrajectory and hide it from the
requesting code (i.e., the adjoint solver).

• For multistage time integration methods TSTrajectory allows users to check-
point only the solution or the solution plus the stage values. The latter choice
may result in further savings in recomputations for some cases.

14 H. ZHANG, E. M. CONSTANTINESCU AND B. F. SMITH

0 1 2 3 4 5 6 7 8 9 10 7 8 9

7 8 4 5 6 7 5 6 4 5

0 1 2 3 4 2 3 1 2 0 1

(a) Checkpointing only the solutions.

0 1 2 3 4 5 6 7 8 9 10 8 9

7 8 5 6 7 5 6 4 5

1 2 3 4 2 3 1 2 0 1

(b) Checkpointing both solutions and stage values (denoted by dots).

Fig. 2: From left to right, top to bottom: the processes controlled by (a) revolve

and (b) modified revolve. Numbered nodes stand for solutions at each time step.

The up arrow and down arrow stand for “store” operation and “restore” operation,
respectively. When a stack is used for holding the checkpoints, the arrows with solid
lines correspond to push and pop operations. The down arrow with dashed line
indicates reading the top element on the stack without removing it.

Figure 2b illustrates (a) an optimal checkpointing schedule given a storage ca-
pacity for 3 solutions and (b) an optimal checkpointing schedule, modified from (a),
given a storage capacity for 3 solutions and all the stage values associated with these
solutions. One can see that with a similar schedule, the first case requires 15 extra
recomputations in the reverse run while the second case involves 6 extra recompu-
tations. The reduction in recomputations results from the fact that a time step can
be directly adjoined for multistage time integration methods if the stage values are
available in memory.

As a simplistic example to show the potential benefit of the modified revolve

algorithm, we consider the adjoint checkpointing schedule given a limited amount of
memory that can be used to hold 12 units (one unit corresponds to one solution or
one stage). For a two-stage time integration method, one can also use the memory
to store the data for 4 time steps (1 solution and 2 stages at each step). Similarly,
for a three-stage method, the data for at most 3 time steps can be stored in memory.
Figure 3 illustrates the performance of these options. We observe that saving only
the solutions is not always optimal in terms of extra recomputations and that saving

PETSC TSADJOINT 15

0 10 20 30 40 50
Number of steps in forward integration

0

20

40

60

80

100

Ex
tra

 re
co
m
pu

ta
tio

ns

13

save solution
save solution + 3 stages

0 10 20 30 40 50
Number of steps in forward integration

0

20

40

60

80

100

Ex
tra

 re
co
m
pu

ta
tio

ns

41

save solution
save solution + 2 stages

Fig. 3: Comparison in terms of recomputations between checkpointing only solutions
and checkpointing solutions and stage values. In this example we assume that the
memory available at runtime can hold up to 12 units (one solution or one stage
corresponds to one unit). If we save only the solution at a time step, 12 checkpoints
can be used. Saving one solution and two stages results in 4 checkpoints available,
and saving one solution and three stages leads to 3 checkpoints.

the stage values along with the solutions, although leading to fewer “checkpoints”
available, can require fewer recomputations when the total number of time steps to
be adjoined is below certain thresholds.

5. Examples. This section presents three representative examples from a diverse
set of problems. The goals are to (1) illustrate the use of the PETSc TSAdjoint in
outer-loop applications such as optimal control and inverse problems, (2) demonstrate
the efficiency and scalability of the implementation, and (3) show the usability of
PETSc TSAdjoint in other scientific computing libraries. To date, TSAdjoint has
been applied in domains including power systems [39], data assimilation [9], and
computational fluid dynamics [25]. These applications are not covered in this paper.
We refer readers to these references for more information.

5.1. An optimal control problem. The goal of aircraft trajectory planning
is to find a control sequence that can control the pursuer to the targeting leader by
minimizing a given cost function, as illustrated in Figure 4a. The sequence is divided
into finite time intervals Tk = [tk, tk+1] for k = 0, 1, . . . , N − 1. In each interval,
control inputs are provided in response to the changes in the leader’s position. The
dynamics of the aircraft is governed by a nonlinear kinematic model

(5.1)
ẋk(t) = vk(t) cos(ωk(t))

ẏk(t) = vk(t) sin(ωk(t))

defined on each time interval Tk.
The problem can be transformed into the minimization of the cost function

(5.2) ψ(u,p) =

∫ tF

0

‖u(t)− uleader(t)‖2dt, u = [x(t), y(t)]T , p = [v(t), ω(t)]T

subject to dynamical constraints (5.1) and inequality constraints

(5.3) vmin ≤ v(t) ≤ vmax, ωmin ≤ ω(t) ≤ ωmax.

16 H. ZHANG, E. M. CONSTANTINESCU AND B. F. SMITH

Ø

Ø

Ø

Ø Ø

(a) Trajectory of the leader (red)
and candidate trajectories of the
pursuer (blue).

0 10 20 30 40

Iteration number

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

105

S
qu

ar
e

of
th

e
L

2
no

rm
of

th
e

re
si

du
al Exact Newton method

Limited-memory BFGS method

(b) Convergence of the optimization methods.

Fig. 4: Aircraft trajectory planning: (a) schematic of the problem and (b) comparison
in convergence between the limited-memory BFGS method and the Newton method
with the exact Hessian in matrix-free form.

This is a simple example from [30] but has all the complexities including nonlinear-
ity and inequality constraints that are common for practical dynamical optimal control
applications. We implemented this example in PETSc using PETSc time integrators
for solving the dynamical system and using TAO for optimization. For optimization,
we use the exact Newton method and the classic limited-memory Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method in TAO. The first-order derivative information (that
is, the gradient∇pψ) required by both methods is obtained with the first-order adjoint
solver, while the second-order derivative information required by the exact Newton
method is obtained with the second-order adjoint solver and provided in a matrix-free
form (as the Hessian-vector product ∇2

pψσ). The bound constraints are handled by
using an active-set approach [12, 13] in which the problem is reduced to an uncon-
strained minimization problem and the descent direction is searched by the projected
line search.

Figure 4b shows that the second-order derivative calculated with the PETSc ad-
joint solver speeds up the convergence of the optimization significantly: the exact
Newton method takes 7 iterations to drive the norm of the gradient of the objec-
tive function below 10−13, whereas the BFGS method [7] approaches 10−8 after 50
iterations.

To validate the gradient computed with the adjoint solver, we leverage the feature
of automatically comparing the gradient with the finite-difference approximation in
TAO, and we perform a analogous test of the Taylor remainder convergence test in
[15]. While the comparison itself can indicate the quality of the adjoint solution, the
convergence test shows the consistency between the forward model and the adjoint
model. By observing that

ψ(u,p+ hp̃)− ψ(u,p)→ 0 with O(h) , and(5.4a)

ψ(u,p+ hp̃)− ψ(u,p)− hp̃∇pψ → 0 with O(h2),(5.4b)

we find that the difference between the gradient approximated by using central finite-

PETSC TSADJOINT 17

Table 2: Convergence test for the gradient computed with TSAdjoint. It is performed
for the first gradient calculation in the optimization loop. RK4 is used for time
integration.

h ‖∇pψ − ∇̃pψ‖ order

0.005 3.415e-6
0.0005 3.416e-8 2
0.00005 3.334e-10 2

difference and the adjoint solution converges at second order:

(5.5) ‖∇pψ̃ −∇pψ‖ → 0 at O(h2).

Table 2 shows the results of the convergence test. As expected, a second-order
convergence is achieved, indicating that the adjoint solution is correct.

5.2. An inverse initial value problem. This example demonstrates the ap-
plication of adjoint methods in an inverse problem of recovering the initial condition
for a time-dependent PDE and illustrates the parallel performance of the adjoint
calculation involved. The problem can be formulated as a PDE-constrained optimiza-
tion problem that minimizes the L2 norm of the discrepancy between simulated and
observed results:

(5.6) minimize
U0

‖U(tf)−Uob(tf)‖2

subject to the Gray–Scott equations [22]

(5.7)
u̇ = D1∇2u− uv2 + γ (1− u)

v̇ = D2∇2v + uv2 − (γ + κ) v,

where U = [u v]T is the PDE solution vector and U0 is the initial condition. The
PDE models the reaction and diffusion of two interacting species that produce spatial
patterns over time, as shown in Figure 5.

In our simulation, the PDE is solved with the method of lines. A centered finite-
difference scheme is used for spatial discretization. The computational domain is
Ω ⊂ [0, 2]2. The time interval is [t0, tf] = [0, 5]. A reference solution is generated
from the initial condition

(5.8) u0 = 1− 2v0, v0 =

{
sin2 (4πx) cos2 (4πy)/4, ∀x, y ∈ [1.0, 1.5]

0 otherwise

and set as observed data. The nonlinear system that arises at each time step is solved
by using a Newton-based method with line search. For large-scale experiments, we use
the geometric algebraic multigrid (GAMG) preconditioner with the following options:

-mg_levels_ksp_type richardson -mg_levels_pc_type jacobi

-pc_gamg_process_eq_limit 500 -pc_gamg_square_graph 10

-pc_gamg_reuse_interpolation -pc_gamg_repartition false

18 H. ZHANG, E. M. CONSTANTINESCU AND B. F. SMITH

(a) t=0 sec (b) t=100 sec (c) t=200 sec

Fig. 5: Evolving spatial patterns of the concentrations v in the Gray–Scott equations.

Table 3: Convergence test for the gradient computed with TSAdjoint. It is performed
for the first gradient calculation in the optimization loop. The grid size is set to 50×50.
RK4 is used for time integration.

h ‖∇U0ψ −∇U0 ψ̃‖ order

0.005 2.649e-3
0.0005 2.648e-5 2
0.00005 2.649e-7 2

The last two options allow us to reuse the prolongation operator and avoid repar-
titioning across the iterations, thus mitigating the performance impact of the setup
phase, which is complex and difficult to scale for algebraic multigrid preconditioners
[5].

To solve the optimization problem, we use the limited-memory BFGS algorithm
[7] in TAO [13] by providing to TAO a function that returns the value of the objective
function and its gradient with respect to U0 in the Euclidean space (thus implying
mesh dependence [32]). The function is computed with a forward solve solving the
PDE for solution and evaluation of the objective function, followed by an adjoint
solve calculating the gradient expressed by (2.30). The gradient is verified by using
an analog of the Taylor convergence test described in Section 5.1. As shown in Table 3,
the theoretical order of convergence 2 is achieved, indicating that the adjoint solution
is correct.

Efficiency The efficiency of the adjoint solver can be defined by the ratio of
the cost of the forward solve to the cost of the adjoint solve. The results for three
timestepping methods are presented in Table 4.

The two selected implicit methods, backward Euler and Crank–Nicolson, are spe-
cial cases of the theta method (θ = 1/2 for backward Euler and θ = 0 for Crank–
Nicolson). Both achieve an efficiency ratio of less than 1. For linear problems, the
optimal ratio is 1, assuming the cost of assembling the linear system and the right-
hand side is identical and the cost of solving the transposed linear system in an adjoint
time step is equivalent to the cost of solving the system in the corresponding forward

PETSC TSADJOINT 19

Table 4: Performance comparison of two different Jacobian evaluation strategies and
three selected timestepping methods. The grid size used in the tests is 100× 100. A
fixed stepsize of 0.5 is used on the time interval [0, 5].

Jacobian
Time

integration
Wall time
(second)

Ratio
(adjoint/forward)

Iterations
First-order

computations
RHS

evaluations
Jacobian

evaluations

Analytical
Backward Euler 30.0 0.48 188 194 5,870 5,870
Crank–Nicolson 45.4 0.76 253 264 10,581 10,581
Runge–Kutta 4 25.6 38.03 246 253 10,120 10,120

FDColoring
Backward Euler 19.9 0.48 188 196 67,190 -
Crank–Nicolson 28.8 0.66 246 254 127,252 -
Runge–Kutta 4 11.8 16.48 244 255 122,400 -

Matrix-free
Backward Euler 4.3 0.40 186 194 5,869 -
Crank–Nicolson 5.1 0.41 240 246 9,865 -
Runge–Kutta 4 1.8 1.11 229 237 9,480 -

time step. For nonlinear problems, a smaller ratio is expected because the forward
solve requires the solution of one or more (depending on the timestepping algorithm)
nonlinear systems while the adjoint run requires only the solution of linear systems at
each adjoint time step, the number of which is the same as the number of nonlinear
systems required in the forward time step. In this example, the nonlinear solve takes
2 Newton iterations on average. The adjoint solver based on the backward Euler
scheme is slightly more efficient than the adjoint solver based on the Crank–Nicolson
scheme because the Jacobian evaluation needed in equation (2.14b) can be avoided
for backward Euler when the mass matrix is the identity. This kind of performance
optimization can be discovered easily from the formula and implemented; however, it
is difficult to be realized by algorithmic differentiation tools.

The fourth-order explicit method, Runge–Kutta 4, has a relatively high efficiency
ratio when using the explicit Jacobian, mainly because the right-hand side evaluation
is significantly faster than the Jacobian evaluation, which consists of costly memory
operations including assembling the matrix. When using the matrix-free approach,
however, the efficiency ratio is significantly improved for Runge–Kutta 4, while the
ratios for the other two methods tested within PETSc are slightly improved.

Interestingly, using finite differences and coloring outperforms the analytical Ja-
cobian for this example and implementation. As Table 4 indicates, the number of
iterations of the optimization process does not vary much between the two choices.
The Jacobian approximation takes 10 right-hand side function evaluations (5 colors
and 2 components in the PDE). Although finite differences need more arithmetic op-
erations, the array of values generated from the approximation can be transferred into
a PETSc sparse matrix efficiently. In contrast, in the implementation of the analytical
Jacobian, the matrix values are set row-wise, which is natural for sparse matrices in
the compressed sparse row format but less cache-efficient.

Parallel scaling. To demonstrate the scalability of the adjoint solver, we ran the
gradient calculation portion of this benchmark problem with fine grid resolution on
the Intel Xeon Phi Knights Landing (KNL) nodes of the NERSC supercomputer Cori.
Each KNL node is assigned 64 MPI processes with one process per core. Manually
optimized linear algebra kernels (e.g., vectorized matrix-vector multiplication [40]) are
used for the best performance. Figure 6 shows the scaling results for up to 8, 192 MPI
processes. Backward Euler and Crank–Nicolson exhibit good parallel scaling for both
the forward solve and the adjoint solve. In fact, the solve phase of GAMG scales well in

20 H. ZHANG, E. M. CONSTANTINESCU AND B. F. SMITH

2048 4096 8192
Number of processes

101

102

Ti
m
e
(s
ec

on
ds

)

Strong scaling for problem size 16,384×16,384
forward sweep
adjoint sweep
linear scalability

(a) Backward Euler

2048 4096 8192
Number of processes

101

102

Ti
m
e
(s
ec

on
ds

)

Strong scaling for problem size 16,384×16,384
forward sweep
adjoint sweep
linear scalability

(b) Crank–Nicolson

2048 4096 8192
Number of processes

100

101

102

Ti
m
e
(s
ec

on
ds

)

Strong scaling for problem size 16,384×16,384
forward sweep
adjoint sweep
linear scalability

(c) Runge–Kutta 4

Fig. 6: Strong scaling of the adjoint sensitivity calculation for the 2D reaction-
diffusion equation (5.7) on NERSC’s supercomputer Cori. In all the tests, 32, 64,
and 128 compute nodes with 64 MPI processes on each node are used. The grid
size is 16, 384 × 16, 384 (yielding about 0.5 billion degrees of freedom). Three time
integrations methods are tested.

the strong-scaling regime. The setup phase scales up to 40, 96 processes. For Runge–
Kutta 4, the scaling of the forward solve is not ideal because the communication cost in
the right-hand side function becomes relatively large compared with the computation
time as the number of processes increases. For the adjoint solve, however, perfect
linear scaling is observed.

5.3. A Firedrake example: adjoint of Burgers’ equation. We consider
Burgers’ equation on a uniform square mesh:

(5.9)
U̇ + (U · ∇)U − ν∆U = 0

(n · ∇)U = 0 on Ω,

where Ω is the domain and ν is a constant scalar viscosity. The equation is discretized
in space by using Lagrange finite elements of polynomial degree 2. The initial condi-
tion is a Gaussian profile with amplitude 1.0 and distribution width 0.06, as shown
in Figure 7; and 16 uniform time steps are used on the time interval [0, 2] seconds.
For testing, we compute the sensitivity of the H1 error norm of the solution in the

PETSC TSADJOINT 21

(a) (b) (c)

Fig. 7: Initial condition (a), final solution at T = 2s (b), and sensitivity of the H1

error norm with respect to the initial condition in the Lagrangian function space (c).

Table 5: Timings of Burgers’ adjoint in Firedrake.

Time integration Stage
Wall time
(second)

Ratio
RHS

evaluations
Jacobian

evaluations

Backward Euler
forward run 22.386 1 142 109
reverse run 5.543 0.25 0 32

Crank–Nicolson
forward run 40.704 1 254 157
reverse run 5.868 0.14 0 32

finite-element function space with respect to the initial condition:

(5.10)

∫
Ω

((U −Ur) · (U −Ur) + (∇U −∇Ur) · (∇U −∇Ur)) dx,

where the reference solution Ur is computed by using a strict stepsize and a fine mesh.
This example is implemented by using only a few lines of Python code. The right-
hand side function and Jacobian function defining the ODE problem are automatically
generated by specifying the variational formulations of the semi-discretized PDE using
Firedrake; they are provided to the PETSc timestepping solver through petsc4py [11]
for the forward and the adjoint solution.

Table 5 lists the total runtime and number of right-hand side and Jacobian eval-
uations for both the forward and the adjoint computation. We observe that the
adjoint-to-forward ratios are 0.25 for backward Euler and 0.14 for Crank–Nicolson.
While the runtime of the forward solve differs significantly for the time integration
methods, the runtime of the adjoint solve is approximately the same. The reason
is that the right-hand side function evaluation (the spatial discretization) dominates
the total computational cost, while the adjoint solver of backward Euler or Crank–
Nicolson requires the same number of Jacobian evaluations and the same number of
linear solves (one per adjoint time step).

6. Conclusion. Algorithmic differentiation has long been needed by many sci-
entific applications, especially as machine learning becomes increasingly popular. It

22 H. ZHANG, E. M. CONSTANTINESCU AND B. F. SMITH

has been realized at different abstraction levels, posing different challenges for applica-
tion developers and software developers. The new tool presented in this paper, PETSc
TSAdjoint, provides an efficient and accurate approach for computing first-order and
second-order adjoints for ODEs, DAEs, and time-dependent nonlinear PDEs. It makes
the task of gradient calculation easier by avoiding full differentiation of the entire code,
with no loss of accuracy and speed. Minimal changes are required for applications
using PETSc time integrators to be equipped with sensitivity analysis capabilities. An
optimal checkpointing component has been developed to deliver transparent and op-
timal checkpointing strategies on high-performance computing platforms. Parallelism
is inherited from PETSc parallel infrastructures. Thanks to the hierarchical structure
of PETSc, the adjoint solvers take advantage of the well-developed nonlinear and linear
iterative solvers and the extensive collection of preconditioners in PETSc.

Extensive experiments have been performed to demonstrate the usability, effi-
ciency, and scalability of the adjoint solvers. We have shown that they can be easily
used with various other scientific computing libraries or tools in different program-
ming languages. We have also shown that using finite differences and coloring and
relying on high-level AD are efficient and convenient alternatives to deriving and im-
plementing an analytical Jacobian. For first-order adjoints, the adjoint solve cost is
typically less than the forward solve cost when implicit timestepping methods are
employed. The performance ratio for explicit methods can exceed 1 if the Jacobian
matrix is provided in the explicit form; however, this could be mitigated by using
matrix-free implementations. Furthermore, the adjoint computation of PDEs scales
nicely to large numbers of cores on a supercomputer, even when the scaling of the
forward solve is not ideal. In addition, we show how the second-order adjoint sensitiv-
ities can be used to accelerate the convergence of optimization in an optimal control
problem. Without a doubt, Hessian-related information for the dynamical system is
needed by second-order adjoints and may be difficult to compute. However, PETSc
TSAdjoint requires only a rank-1 vector-Hessian-vector product for the second-order
adjoints.

As far as we know, this library is the first general-purpose HPC-friendly library
that offers first-order and second-order discrete adjoint capabilities based on multi-
stage time integration methods, supports sensitivity analysis for hybrid dynamical
systems, and comes with sophisticated checkpointing support that is transparent to
users. We expect that more applications in PDE-constrained optimization, data as-
similation, uncertainty quantification, and machine learning will be enabled by our
development.

Acknowledgments. We are grateful to Jed Brown for his extensive code review
and helpful discussions during the software development. We also thank Mark Adams
for the guidance on GAMG and Todd Munson for his valuable comments on the draft.

REFERENCES

[1] S. Abhyankar, J. Brown, E. M. Constantinescu, D. Ghosh, B. F. Smith, and H. Zhang,
PETSc/TS: a modern scalable ODE/DAE solver library, arXiv e-preprints, (2018), https:
//arxiv.org/abs/1806.01437.

[2] M. Alexe and A. Sandu, On the discrete adjoints of adaptive time stepping algorithms,
Journal of Computational and Applied Mathematics, 233 (2009), pp. 1005–1020, https:
//doi.org/https://doi.org/10.1016/j.cam.2009.08.109.

[3] M. S. Alnaes, J. Blechta, A. J. J. Hake, B. Kehlet, A. Logg, C. Richardson, J. Ring,
M. E. Rognes, and G. N. Wells, The FEniCS Project Version 1.5, Archive of Numerical
Software, (2015), https://doi.org/10.11588/ans.2015.100.20553.

https://arxiv.org/abs/1806.01437
https://arxiv.org/abs/1806.01437
https://doi.org/https://doi.org/10.1016/j.cam.2009.08.109
https://doi.org/https://doi.org/10.1016/j.cam.2009.08.109
https://doi.org/10.11588/ans.2015.100.20553

PETSC TSADJOINT 23

[4] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, CasADi – A
software framework for nonlinear optimization and optimal control, Mathematical Pro-
gramming Computation, 11 (2019), pp. 1–36.

[5] A. H. Baker, T. Gamblin, M. Schulz, and U. M. Yang, Challenges of scaling algebraic multi-
grid across modern multicore architectures, in 2011 IEEE International Parallel Distributed
Processing Symposium, 2011, pp. 275–286, https://doi.org/10.1109/IPDPS.2011.35.

[6] R. A. Bartlett, D. M. Gay, and E. T. Phipps, Automatic differentiation of c++ codes for
large-scale scientific computing, in Computational Science – ICCS 2006, V. N. Alexandrov,
G. D. van Albada, P. M. A. Sloot, and J. Dongarra, eds., Berlin, Heidelberg, 2006, Springer
Berlin Heidelberg, pp. 525–532.

[7] S. J. Benson and J. J. More, A limited memory variable metric method in subspaces and
bound constrained optimization problems, tech. report, in Subspaces and Bound Con-
strained Optimization Problems, 2001.

[8] C. H. Bischof, L. Roh, and A. J. Mauer-Oats, ADIC: An extensible automatic differen-
tiation tool for ANSI-C, Software - Practice and Experience, 27 (1997), pp. 1427–1454,
https://doi.org/10.1002/(SICI)1097-024X(199712)27:12〈1427::AID-SPE138〉3.0.CO;2-Q.

[9] L. Carracciuolo, E. M. Constantinescu, and L. D’Amore, Validation of a PETSc based
software implementing a 4DVAR data assimilation algorithm: a case study related with
an oceanic model based on shallow water equation, arXiv e-prints, (2018), https://arxiv.
org/abs/1810.01361.

[10] E. M. Constantinescu, Generalizing global error estimation for ordinary differential equations
by using coupled time-stepping methods, Journal of Computational and Applied Mathemat-
ics, 332 (2018), pp. 140–158, https://doi.org/https://doi.org/10.1016/j.cam.2017.05.012.

[11] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, Parallel distributed computing using
Python, Advances in Water Resources, 34 (2011), pp. 1124–1139, https://doi.org/10.1016/
j.advwatres.2011.04.013.

[12] A. Dener, A. Denchfield, T. Munson, J. Sarich, S. Wild, S. Benson, and L. C. McInnes,
Tao users manual, Tech. Report ANL/MCS-TM-322 - Revision 3.13, Argonne National
Laboratory, 2020, https://www.mcs.anl.gov/petsc.

[13] A. Dener and T. Munson, Accelerating limited-memory quasi-newton convergence for large-
scale optimization, in Computational Science – ICCS 2019, vol. 11538 of Lecture Notes in
Computer Science, Cham, 2019, Springer International Publishing, pp. 495–507.

[14] J. Dormand and P. Prince, A family of embedded Runge-Kutta formulae, Journal of Compu-
tational and Applied Mathematics, 6 (1980), pp. 19–26, https://doi.org/https://doi.org/
10.1016/0771-050X(80)90013-3.

[15] P. E. Farrell, D. A. Ham, S. F. Funke, and M. E. Rognes, Automated derivation of
the adjoint of high-level transient finite element programs, SIAM Journal on Scientific
Computing, 35 (2013), pp. 369–393, https://doi.org/10.1137/120873558.

[16] A. H. Gebremedhin, F. Manne, and A. Pothen, What color is your Jacobian? Graph
coloring for computing derivatives, SIAM Review, 47 (2005), pp. 629–705, https://doi.
org/10.1137/S0036144504444711.

[17] A. Gholami, K. Keutzer, and G. Biros, ANODE: Unconditionally accurate memory-efficient
gradients for neural ODEs, IJCAI International Joint Conference on Artificial Intelligence,
2019-August (2019), pp. 730–736, https://doi.org/10.24963/ijcai.2019/103, https://arxiv.
org/abs/1902.10298.

[18] R. Giering and T. Kaminski, Recipes for adjoint code construction, ACM Transactions on
Mathematical Software, 24 (1998), pp. 437–474, https://doi.org/10.1145/293686.293695.

[19] A. Griewank and A. Walther, Algorithm 799: revolve: an implementation of checkpointing
for the reverse or adjoint mode of computational differentiation, ACM Transactions on
Mathematical Software, 26 (2000), pp. 19–45, https://doi.org/10.1145/347837.347846.

[20] V. Heuveline and A. Walther, Online checkpointing for parallel adjoint computation in
PDEs: application to goal-oriented adaptivity and flow control, in Euro-Par 2006, vol. 4128
of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2006.

[21] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker,
and C. S. Woodward, SUNDIALS: Suite of nonlinear and differential/algebraic equation
solvers, ACM Transactions on Mathematical Software, 31 (2005), pp. 363–396, https://
doi.org/10.1145/1089014.1089020.

[22] W. Hundsdorfer and J. Verwer, Numerical Solution of Time-Dependent Advection-
Diffusion-Reaction Equations, Springer Series in Computational Mathematics, Springer
Berlin Heidelberg, 2007.

[23] A. Jameson, Aerodynamic design via control theory, Journal of Scientific Computing, 3 (1988),
https://doi.org/10.1007/BF01061285.

https://doi.org/10.1109/IPDPS.2011.35
https://doi.org/10.1002/(SICI)1097-024X(199712)27:12<1427::AID-SPE138>3.0.CO;2-Q
https://arxiv.org/abs/1810.01361
https://arxiv.org/abs/1810.01361
https://doi.org/https://doi.org/10.1016/j.cam.2017.05.012
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.advwatres.2011.04.013
https://www.mcs.anl.gov/petsc
https://doi.org/https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1137/120873558
https://doi.org/10.1137/S0036144504444711
https://doi.org/10.1137/S0036144504444711
https://doi.org/10.24963/ijcai.2019/103
https://arxiv.org/abs/1902.10298
https://arxiv.org/abs/1902.10298
https://doi.org/10.1145/293686.293695
https://doi.org/10.1145/347837.347846
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1007/BF01061285

24 H. ZHANG, E. M. CONSTANTINESCU AND B. F. SMITH

[24] M. Lubin and I. Dunning, Computing in operations research Using Julia, INFORMS Journal
on Computing, 27 (2015), pp. 238–248, https://doi.org/10.1287/ijoc.2014.0623.

[25] O. Marin, E. Constantinescu, and B. Smith, Unsteady PDE-constrained optimization with
spectral elements using PETSc and TAO, arXiv e-prints, (2018), https://arxiv.org/abs/
1806.01422.

[26] D. Onken and L. Ruthotto, Discretize-Optimize vs. Optimize-Discretize for Time-Series
Regression and Continuous Normalizing Flows, (2020), http://arxiv.org/abs/2005.13420,
https://arxiv.org/abs/2005.13420.

[27] A. Paszke, S. Chintala, G. Chanan, Z. Lin, S. Gross, E. Yang, L. Antiga, Z. De-
vito, A. Lerer, and A. Desmaison, Automatic differentiation in PyTorch, 31st Con-
ference on Neural Information Processing Systems, (2017), https://doi.org/10.1017/
CBO9781107707221.009, https://arxiv.org/abs/arXiv:1011.1669v3.

[28] C. Rackauckas, Y. Ma, V. Dixit, X. Guo, M. Innes, J. Revels, J. Nyberg, and V. Iva-
turi, A comparison of automatic differentiation and continuous sensitivity analysis for
derivatives of differential equation solutions, arXiv preprint arXiv:1812.01892, (2018).

[29] C. Rackauckas and Q. Nie, Differentialequations. jl–a performant and feature-rich ecosystem
for solving differential equations in julia, Journal of Open Research Software, 5 (2017).

[30] R. Raffard and C. Tomlin, Second order adjoint-based optimization of ordinary and partial
differential equations with application to air traffic flow, Proceedings of the 2005, American
Control Conference, (2005), pp. 798–803, https://doi.org/10.1109/ACC.2005.1470057.

[31] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G.-
T. Bercea, G. R. Markall, and P. H. J. Kelly, Firedrake: Automating the finite
element method by composing abstractions, ACM Transactions on Mathematical Software,
43 (2016), pp. 24:1–24:27, https://doi.org/10.1145/2998441, http://doi.acm.org/10.1145/
2998441.

[32] T. Schwedes, D. A. Ham, S. W. Funke, M. D. Piggott, T. Schwedes, D. A. Ham,
S. W. Funke, and M. D. Piggott, Mesh dependence in PDE-constrained optimisation,
in Mesh Dependence in PDE-Constrained Optimisation, 2017, https://doi.org/10.1007/
978-3-319-59483-5 2.

[33] G. Söderlind, Digital filters in adaptive time-stepping, ACM Transactions on Mathematical
Software, 29 (2003), pp. 1–26, https://doi.org/10.1145/641876.641877.

[34] P. Stumm and A. Walther, MultiStage approaches for optimal offline checkpointing, SIAM
Journal on Scientific Computing, 31 (2009), pp. 1946–1967, https://doi.org/10.1137/
080718036.

[35] P. Stumm and A. Walther, New algorithms for optimal online checkpointing, SIAM Journal
on Scientific Computing, 32 (2010), pp. 836–854.

[36] J. G. Wallwork, P. Hovland, H. Zhang, and O. Marin, Computing derivatives for PETSc
adjoint solvers using algorithmic differentiation, arXiv e-prints, (2019), https://arxiv.org/
abs/1909.02836.

[37] A. Walther and A. Griewank, Getting started with ADOL-C, in Combinatorial Scientific
Computing, Chapman-Hall CRC Computational Science, 2012, pp. 181–202, https://doi.
org/10.1201/b11644-8.

[38] Q. Wang, P. Moin, and G. Iaccarino, Minimal repetition dynamic checkpointing algo-
rithm for unsteady adjoint calculation, SIAM Journal on Scientific Computing, 31 (2009),
pp. 2549–2567, https://doi.org/10.1137/080727890.

[39] H. Zhang, S. Abhyankar, E. Constantinescu, and M. Anitescu, Discrete adjoint sensitivity
analysis of hybrid dynamical systems with switching, IEEE Transactions on Circuits and
Systems I: Regular Papers, 64 (2017), pp. 1247–1259, https://doi.org/10.1109/TCSI.2017.
2651683.

[40] H. Zhang, R. T. Mills, K. Rupp, and B. F. Smith, Vectorized parallel sparse matrix-
vector multiplication in PETSc using AVX-512, in Proceedings of the 47th Interna-
tional Conference on Parallel Processing - ICPP 2018, ACM Press, 2018, pp. 1–10,
https://doi.org/10.1145/3225058.3225100.

[41] H. Zhang and A. Sandu, FATODE: a library for forward, adjoint, and tangent linear in-
tegration of ODEs, SIAM Journal on Scientific Computing, 36 (2014), pp. C504–C523,
https://doi.org/10.1137/130912335.

https://doi.org/10.1287/ijoc.2014.0623
https://arxiv.org/abs/1806.01422
https://arxiv.org/abs/1806.01422
http://arxiv.org/abs/2005.13420
https://arxiv.org/abs/2005.13420
https://doi.org/10.1017/CBO9781107707221.009
https://doi.org/10.1017/CBO9781107707221.009
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1109/ACC.2005.1470057
https://doi.org/10.1145/2998441
http://doi.acm.org/10.1145/2998441
http://doi.acm.org/10.1145/2998441
https://doi.org/10.1007/978-3-319-59483-5_2
https://doi.org/10.1007/978-3-319-59483-5_2
https://doi.org/10.1145/641876.641877
https://doi.org/10.1137/080718036
https://doi.org/10.1137/080718036
https://arxiv.org/abs/1909.02836
https://arxiv.org/abs/1909.02836
https://doi.org/10.1201/b11644-8
https://doi.org/10.1201/b11644-8
https://doi.org/10.1137/080727890
https://doi.org/10.1109/TCSI.2017.2651683
https://doi.org/10.1109/TCSI.2017.2651683
https://doi.org/10.1145/3225058.3225100
https://doi.org/10.1137/130912335

	1 Introduction
	2 Mathematical Foundation
	2.1 First-order discrete derivatives
	2.2 Second-order discrete derivatives
	2.3 Augmented system for deriving parametric sensitivity and incorporating integrals
	2.4 Example: theta methods
	2.4.1 First-order adjoint sensitivity
	2.4.2 First-order forward sensitivity
	2.4.3 Second-order adjoint: sensitivities to initial condition
	2.4.4 Second-order adjoint: sensitivities to parameters

	3 PETSc TSAdjoint
	3.1 Overview of the software
	3.2 Design and user interface
	3.3 Jacobian/Hessian computation

	4 Checkpointing
	5 Examples
	5.1 An optimal control problem
	5.2 An inverse initial value problem
	5.3 A Firedrake example: adjoint of Burgers' equation

	6 Conclusion
	References

