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Abstract. We propose a novel numerical method for high dimensional Hamilton–Jacobi–
Bellman (HJB) type elliptic partial differential equations (PDEs). The HJB PDEs, reformulated
as optimal control problems, are tackled by the actor-critic framework inspired by reinforcement
learning, based on neural network parametrization of the value and control functions. Within the
actor-critic framework, we employ a policy gradient approach to improve the control, while for the
value function, we derive a variance reduced least-squares temporal difference method using sto-
chastic calculus. To numerically discretize the stochastic control problem, we employ an adaptive
step size scheme to improve the accuracy near the domain boundary. Numerical examples up to 20
spatial dimensions including the linear quadratic regulators, the stochastic Van der Pol oscillators,
the diffusive Eikonal equations, and fully nonlinear elliptic PDEs derived from a regulator problem
are presented to validate the effectiveness of our proposed method.
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1. Introduction. The Hamilton-Jacobi-Bellman (HJB) equation is an impor-
tant family of partial differential equations (PDEs), given its connection with optimal
control problems that lead to a wide range of applications. The unknown in the
HJB equation can be viewed as the total expected value function for optimal control
problems. The equation can be derived from the dynamic programming principle
pioneered by Bellman [8], which gives a necessary and sufficient condition of the opti-
mality. Theoretical results for the existence and uniqueness of the HJB equations are
well established; see, e.g., [68]. From the viewpoint of stochastic control, the relation-
ship between the viscosity solution of the HJB equations and the backward stochastic
differential equations (BSDEs) is introduced in [14,52–55].

The wide applications of HJB equations call for efficient numerical algorithms.
Various numerical approaches have been developed in the literature, including the
monotone approximation scheme [3, 21], the finite volume method [60, 65], and the
Galerkin method [4, 5]. In [50], nonoscillatory schemes are developed to solve the
HJB equations exploring the connection with hyperbolic conservation laws. The HJB
equations related to reachability problems are studied in [42,45,46]. A general survey
for classical methods to solve the optimal control problem numerically can be found,
e.g., in [59]. While these conventional approaches have been quite successful, they fall
short for solving HJB equations in high dimensions due to the curse of dimensional-
ity [8]: the computational cost goes up exponentially with the dimensionality. Many
works attempt to mitigate this fundamental difficulty by leveraging dimension reduc-
tion techniques such as proper orthogonal decomposition, sparse grid, pseudospectral
collocation, and tensor decomposition (see e.g., [16, 35, 36, 41, 51]). The performance
of these algorithms heavily depends on how well the low dimensional representation
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matches the solutions, and is typically problem dependent and thus with limited ap-
plicability.

To better address the challenge of high dimensionality, a promising direction
is to consider the artificial neural network as a more flexible and efficient function
approximation tool. This topic has received a considerable amount of attention and
been a rapidly developing field in recent years. Several numerical approaches for high
dimensional PDEs based on neural network parametrization have been proposed; see
e.g., the reviews [6, 20] and references therein.

For HJB type equations and related optimal control problems, the most tightly
connected approach to our work is the deep BSDE method [19,27], which reformulates
parabolic PDEs as control problems using BSDEs, and uses deep neural network
parametrization for the solution and control to solve this problem. Theoretical results
for convergence of this method are studied in [28]. The deep BSDE method and its
variants have been applied to solve HJB type equations, stochastic control problems,
and differential games (see e.g., [13, 19, 24, 26, 27, 32, 34, 40, 49, 56, 58]). Numerical
algorithms for solving high dimensional deterministic and stochastic control problems
based on other forms combined with deep learning approximation have also been
investigated in [7, 18,25,48].

While some methods mentioned above have been successful in solving PDEs in
high dimensions, there have been two issues that remain to be addressed. On the
one hand, most of these works concern parabolic PDEs of finite time horizon (often
of order one), while only a few works investigate the static elliptic HJB equations
corresponding to control problems with infinite time horizon. On the other hand,
most existing works consider equations where the optimal controls are explicitly known
given the value function or without controls, while there are many important HJB
type equations for which the optimal control is cast through an optimization problem
and hence implicit. Recently, an algorithm for a high dimensional finite-time horizon
stochastic control problem with implicit optimal control is considered in [33], based on
the deep BSDE formulation associated with the stochastic maximum principle. In this
paper, we take a different approach and focus on solving the static elliptic type HJB
equation with implicit control, in which the above two challenges are compounded.

Our proposed numerical method is heavily inspired by the literature on reinforce-
ment learning (RL) [63], which is of course closely related to control problems. Our
motivation for borrowing techniques from RL is due to the impressive revolution and
great success in recent years in deep RL by utilizing neural network parametriza-
tion [17, 47, 61]. In the RL context, the control problem is usually formulated as a
Markov decision process (MDP) on discrete time and state space. If the model is
given, finding the optimal policy can be viewed as solving a discrete HJB equation.
It is then natural to ask whether algorithms developed in the RL context can be
generalized to the context of solving high dimensional HJB equations.

In this paper, we reformulate the HJB type fully nonlinear elliptic PDEs into
stochastic control problems and leverage the actor-critic framework in conjunction
with a neural network approximation to solve the equations. The actor-critic methods
are a class of algorithms in RL [63]. These algorithms iteratively evaluate and improve
the current policies (i.e., controls) until final convergence. The critic refers to the
value function of a given policy. The process of estimating the critic is called policy
evaluation. The most common algorithms for policy evaluation are temporal difference
(TD) methods [10, 39, 64], or their variants, such as the TD(λ) [15] and the least-
squares TD (LSTD) [11,43,57]. The actor refers to the policy function, and we need
to make policy improvement based on a given value function. In this case, the most
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popular method is policy gradient [2, 9, 15, 39, 66] and their variants, such as natural
policy gradient [10, 57]. In this work, we propose a variance reduced version of the
LSTD method for policy evaluation derived using stochastic calculus. We also adapt
the policy gradient method for policy improvement to the continuous-time stochastic
control problem.

The rest of this paper is organized as follows. In Section 2, we provide a the-
oretical background for the optimal control problems and formulate the actor-critic
framework for continuous-time stochastic control. In Section 3, we introduce the
numerical algorithm to solve the optimal control problem. Numerical examples are
presented in Section 4. We conclude in Section 5 with an outlook for future works.

2. Theoretical background of the actor-critic framework.

2.1. Control formulation of elliptic equations. Consider the following fully
nonlinear elliptic PDE
(2.1)

inf
u∈U

[
1

2
Tr
(
σσ>Hess(V )

)
(x, u) + b(x, u)>∇V (x) + f(x, u)

]
− γV (x) = 0 in Ω,

with boundary condition V (x) = g(x) on ∂Ω. Here the state space Ω is an open,
connected set in Rd with piecewise smooth boundary, and the control space U is
a convex closed domain in Rdu . We assume that V (x) ∈ C2(Ω), f(x, u) ∈ C(Ω ×
U), b(x, u) ∈ C(Ω × U ;Rd), σ(x, u) ∈ C(Ω × U ;Rd×dw) with σ(x, u)σ>(x, u) being
uniformly elliptic and bounded, and γ ≥ 0 is a constant. Here and in the following,
we use ∇ and Hess to denote the gradient and Hessian operators.

As a starting point of our approach, we reformulate the above elliptic equation
as an optimal control problem. Let (Ω̃,F , {Ft}t≥0,P) be a filtered probability space.
Consider the following stochastic differential equation (SDE)

(2.2) dXt = b(Xt, ut) dt+ σ(Xt, ut) dWt

with initial condition X0 = x ∈ Ω, where ut ∈ U ⊂ Rdu is an Ft-adapted control field
and Wt is a dw-dimensional Ft-standard Brownian motion. As we solve the equation
in the domain Ω, we define a stopping time

(2.3) τ = inf{t : Xt /∈ Ω}.
It is a standard result that τ <∞ a.s.; see, for example, [38].

We then consider an optimal control problem to minimize the following cost func-
tional

(2.4) Ju(x) = E
[∫ τ

0

f(Xs, us)e
−γs ds+ e−γτg(Xτ ) | Xu

0 = x
]
.

In this cost functional, f can be interpreted as running cost, g is the terminal cost
when the SDE hits the boundary ∂Ω, and γ is the discount rate.

The control u is chosen over the set of stochastic processes that have values in U
and are adapted to the filtration Ft. Define

(2.5) V (x) = inf
u
Ju(x)

as the optimal value function (i.e., optimal cost-to-go function). According to stan-
dard results in stochastic control theory [68], V satisfies the time-independent HJB
equation

(2.6) inf
u

{
LuV (x, u) + f(x, u)− γV (x)

}
= 0
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in Ω with boundary condition V (x) = g(x) on ∂Ω, where

LuV (x) =
1

2
Tr
(
σσ>Hess(V )

)
(x, u) + b(x, u)>∇V (x)

is the generator of the controlled SDE (2.2). Note that the HJB equation (2.6)
coincides with the original PDE (2.1) and, hence, we can solve the PDE (2.1) by
solving the optimal control problem to obtain the optimal value function.

2.2. Actor-critic method in stochastic optimal control problem. Our ap-
proach for solving the optimal control problem is based on the actor-critic framework.
In such methods, one solves for both the value function and control field. The control
(i.e., policy in the RL terminology) is known as the actor, while the value function
corresponding to the control is known as the critic since it is used to evaluate the
optimality of the control. Accordingly, the actor-critic algorithms consist of two parts:
policy evaluation for the critic and policy improvement for the actor. While many ap-
proaches have been developed under the actor-critic framework [2,10,15,39,57,64,66],
we will focus on simple and perhaps the most popular algorithms: TD learning for
the value function given a policy and policy gradient for improving the control.

2.2.1. TD for discrete Markov decision processes. To better convey the
idea, let us first briefly recall the algorithms for the discrete-time MDP with finite
state and action space; more details can be found in e.g., [63]. The MDP starts with
some initial state S0 in the state space S, possibly sampled according to a distribution.
At time t ∈ N, given the current state St, the agent picks an action At in the action
set A according to a policy. We assume that the policy is deterministic, i.e., the policy
is a map π from the state space S to the action space A:

(2.7) At = π(St).

After the action At is chosen, the system state will transit to St+1, according to a
probability transition function

(2.8) P(St+1 = s′ | St = s,At = a) = p(s′ | s, a).

The action also incurs a cost Rt+1, which we assume to be given by a deterministic
function of the previous state St, action At, and the current state St+1:

(2.9) Rt+1 = f(St, At, St+1).

The goal of the MDP problem is to choose the best policy to minimize the expected
total discounted cost

(2.10) ES0∼µ,π

[ ∞∑
t=1

βt−1Rt

]
,

where β ∈ (0, 1) is a discount factor, µ is the distribution of the initial state S0, and
we have used Eπ to indicate the dependence on the transition dynamics on the choice
of the policy π.

To solve the MDP problem, it is convenient to introduce the (state) value function
w.r.t. a policy π as the expected cost starting at states s under that policy:

(2.11) V π(s) = Eπ
[ ∞∑
t=1

βt−1Rt | S0 = s
]
.
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By the dynamic programming principle [8], for any given policy π, the value function
satisfies

(2.12) V π(s) = Eπ
[ n∑
t=1

βt−1Rt + βnV π(Sn) | S0 = s
]

for any n ≥ 1. In order to minimize the total cost (2.10), we search for an optimal
policy π∗ that satisfies for all π,

(2.13) V π
∗
(s) ≤ V π(s) ∀ s ∈ S.

Specifically, by the optimality principle, we have
(2.14)

V π
∗
(s) = min

{at}⊂A
E
[ n∑
t=1

βt−1Rt + βnV π
∗
(Sn) | S0 = s,At = at, t = 0, 1, · · · , n− 1].

Note that while in (2.12) and (2.14) the right-hand side starts at time 0, we can start
at any time and run the process for n steps due to stationarity.

Let us make a couple of remarks for the setup of the discrete MDP used here.
First, in RL, reward is usually used instead of cost and, hence, one maximizes the total
reward instead of minimizing the cost; evidently, the two viewpoints are equivalent
up to a change of sign. We use cost, which is more in line with the control literature
and also our problem in the continuous setting. Second, the cost Rt is not necessarily
a deterministic function as in (2.9), but may follow some probability distribution
together with the next state:

(2.15) P(St+1 = s′, Rt+1 = r | St = s,At = a) = p(s′, r | s, a).

Moreover, the policy can also be probabilistic rather than deterministic as assumed
in (2.7). We choose the simplified setting for the cost and policy to make it consistent
with our continuous optimal control setting. Finally, we use an MDP without stopping
time and thus without terminal cost for simplicity. The adaptation to our PDE setup
will be discussed below in Sections 2.2.3 and 2.2.4.

TD learning is a class of algorithms that evaluate a given control (i.e., policy) by
updating the value function, combining a Monte Carlo estimate of the running cost
over a time period and the dynamic programming principle for the future cost-to-go.
For a policy π to be evaluated, with a given trajectory {St, t ≥ 0}, we update the
value function at each t by

(2.16) V̂ π(St)←− V̂ π(St) + α

(
n∑
k=1

βk−1Rt+k + βnV̂ π(St+n)− V̂ π(St)

)
,

where α is the learning rate and V̂ π on the right-hand side is the current estimate
of the value function. In (2.16), we only update the value function at the state St
and the value at other states remain unchanged. In practice, this update of the value
function is usually done for multiple trajectories.

In the above updating rule, we have used the n-step TD TDπ
n(St), defined as

(2.17) TDπ
n(St) =

n∑
k=1

βk−1Rt+k + βnV̂ π(St+n)− V̂ π(St),
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which depends on the trajectory of length n + 1 (t to t + n) from the starting state
St. TDπ

n can be understood as an indicator of the inconsistency between the current
estimate of the value function with a sampled value using n-steps of the MDP, since
according to (2.12), EπTDπ

n vanishes if V̂ π agrees with the true value function V π.
Hence, TD learning can be viewed as a stochastic fixed point iteration for the value
function.

When function approximation is used for the value function, in particular non-
linear approximations such as neural networks, an alternative approach, the LSTD is
often used to overcome potential divergence problems of TD learning [11,57]. Instead
of the stochastic fixed point updating formula as (2.16), in the LSTD method, the
parameters are optimized to minimize the squares of the TD error as a loss function.
More specifically, if the value function is parametrized as V π(·; θV ), we solve for θV
by

(2.18) min
θV

ES0∼µ,π

[( n∑
t=1

βt−1Rt + βnV π(Sn; θV )− V π(S0; θV )
)2

| S0

]
,

where µ is some initial distribution for the state S0. In practice, (2.18) is often
solved using the stochastic gradient descent method. Such method has been proved
successful in e.g., [17, 47].

2.2.2. Policy gradient for discrete MDP. Policy gradient is a class of meth-
ods to learn parametrized policies through gradient based algorithms. Assume we
consider a class of (deterministic) policy parametrized as

(2.19) At(St) = π(St; θπ),

where θπ denotes a collection of parameters and π(·; θ) is a chosen nonlinear param-
etrization.

To find an optimal policy, we aim to minimize the objective function (cf. (2.14))

(2.20) J(θπ) = ES0∼µ,π(·;θπ)

[ n∑
k=1

βk−1Rk + βnV̂ π(Sn)
]

w.r.t. the collective parameter θπ. Note that (2.20) explicitly takes into account

the cost of the first n steps, while using an (approximate) value function V̂ π for the
future cost after n steps, coming from e.g., the TD learning algorithm. The objective
function (2.20) can be optimized using stochastic gradient method. Using a stochastic

estimate of the gradient ∇̂J ≈ ∇θπJ , so that the parameter is updated as

(2.21) θπ ← θπ − α∇̂J

with suitable learning rate α. Note that in principle, one needs to differentiate all
terms involved in (2.20) w.r.t. θπ; however, in practice, in the actor-critic framework,

one typically leaves out the derivative of V̂ π w.r.t. π, as it is impractical to compute
since V̂ π is obtained using e.g., TD learning. Nevertheless, we would still need to
differentiate V̂ π(Sn) w.r.t. Sn, as the state Sn is affected by the choice of the policy,
thus

∂V̂ π(Sn)

∂θπ

·
=
∂V̂ π

∂Sn

∂Sn
∂θπ

,
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where
·
= indicates that the (functional) derivative δV̂ π

δπ is omitted. Dropping this
term is often applied in actor-critic algorithms. Some justifications can be found
in [15]: Under certain conditions, the approximated gradient is still in the direction
of improving the performance and the set of critical points of the objective function
coincides with the set of zero approximated gradients.

Since we consider deterministic policies, the policy gradient approach discussed
above is in the same spirit as the deterministic policy gradient algorithm proposed
in [62]. One difference is that we use the state value function V (s) while [62] uses
the state-action value function (Q-function) Q(s, a). Another difference is that the
objective function used in [62] is based on the stationary distribution of a state-action
pair given the policy, while we roll out a trajectory for the cost function (combined
with using an estimated value function for future cost), which is more suitable to an
actor-critic framework. Our approach is also easier to generalize to the continuous
setting, which will be discussed in Section 2.2.4.

2.2.3. TD for continuous optimal control problems. We now introduce
how to adapt the above algorithmic ideas to the continuous setting.

Given a control function u(x) ∈ C(Ω) (which corresponds to π in the discrete
setting), the corresponding value function is given by

(2.22) V u(x) = Eu
[∫ τ

0

f(Xs, u(Xs))e
−γs ds+ e−γτg(Xτ ) | X0 = x

]
.

Here Eu indicates expectation w.r.t. the trajectory (with a fixed policy u). This
is just the cost functional in (2.4) with a specific control policy. In the continuous
setting, the dynamical programming principle indicates that the value function V u

satisfies the PDE (see e.g., [68])
(2.23)
1

2
Tr
(
σσ>Hess(V u)

)
(x, u(x)) + b(x, u(x))>∇V u(x) + f(x, u(x))− γV u(x) = 0 in Ω

with boundary condition V u(x) = g(x) on ∂Ω.
To better convey the idea, we first consider a fixed time interval [0, T ] with T > 0

and neglect the stopping time and also the domain boundary. Necessary modifications
regarding the stopping time and boundary will be explained below. Applying Itô’s
formula to e−γtV u(Xt), we get

(2.24) e−γTV u(XT ) = V u(X0) +

∫ T

0

e−γs
[1

2
Tr
(
σσ>Hess(V u)

)
(Xs, u(Xs))

+ b(Xs, u(Xs))
>∇V u(Xs)− γV u(Xs)

]
ds

+

∫ T

0

e−γs∇V u(Xs)
>σ(Xs, u(Xs)) dWs.

Combined with the PDE (2.23), (2.24) gives

(2.25) V u(X0) =

∫ T

0

e−γsf(Xs, u(Xs)) ds

−
∫ T

0

e−γs∇V u(Xs)
>σ(Xs, u(Xs)) dWs + e−γTV u(XT ).
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The term
∫ T

0
e−γs∇V u(Xs)

>σ(Xs, u(Xs)) dWs is a martingale w.r.t. T because ∇V
and σ are bounded according to our assumptions [38]. Therefore, taking the expec-
tation, we arrive at

(2.26) V u(X0) = Eu
[∫ T

0

e−γsf(Xs, u(Xs)) ds+ e−γTV u(XT ) | X0

]
.

We observe that this is the analog of (2.12) in the continuous setting, where the unit
time discount e−γ is the analog of the discount factor β in the discrete setting. Com-
pared with the discrete time setting, besides (2.26), we have in addition (2.25) before
taking expectation, thanks to Itô’s lemma. Exploiting the two identities, analogously
to the discrete case, we define two versions of TD in the continuous setting as

TDu
1 =

∫ T

0

e−γsf(Xs, u(Xs)) ds−
∫ T

0

e−γs∇V (Xs)
>σ(Xs, u(Xs)) dWs(2.27)

+ e−γTV (XT )− V (X0),

TDu
2 =

∫ T

0

e−γsf(Xs, u(Xs)) ds+ e−γTV (XT )− V (X0).(2.28)

Note that both TD1 and TD2 depend on the trajectory Xt; in particular, they should
be viewed as random variables, while we suppress such dependence in the notation.
From (2.25) and (2.26), if V is the exact value function corresponding to the control
u, we have

TDu
1 = 0, P-a.s.(2.29)

Eu TDu
2 = 0.(2.30)

Note in particular that TDu
1 vanishes without taking the expectation for the exact

value function while Var(TDu
2 ) = Eu[

∫ T
0
e−2γs|∇V (Xs)

>σ(Xs, u(Xs))|2 ds] > 0 if

∇V >(x)σ(x, u) 6≡ 0. Moreover, as the difference between TD1 and TD2 is given by a
martingale term, for any approximate value function, we have

EuTDu
1 = EuTDu

2 .

Now let us introduce two loss functionals for the critic in the spirit of LSTD:

L1(V ) = EX0∼µ,u
(
TDu

1

)2(2.31)

= EX0∼µ,u

[(∫ T∧τ

0

e−γsf(Xs, u(Xs)) ds

−
∫ T∧τ

0

e−γs∇V (Xs)
>σ(Xs, u(Xs)) dWs + e−γ(T∧τ)V (XT∧τ )− V (X0)

)2
]
,

L2(V ) = EX0∼µ,u
(
TDu

2

)2(2.32)

= EX0∼µ,u

[(∫ T∧τ

0

e−γsf(Xs, u(Xs)) ds+ e−γ(T∧τ)V (XT∧τ )− V (X0)
)2
]
,

where µ is some initial distribution for X0 and we have also taken into account the
stopping time τ when the process hits the domain boundary. Here the two losses
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are viewed as functionals of the value function V , the finite-dimensional function
approximation will be discussed in the next section.

The stochastic gradient method is used to minimize the loss function in LSTD
to find the best approximation of the value function. Written in terms of functional
variations, this amounts to approximating

EX0∼µ,u
δ
(
TDu

1 )2

δV
≈ δ

(
TDu

1 )2

δV

(
Xt

)
= 2TDu

1

(
Xt

)δTDu
1

δV

(
Xt

)
,(2.33)

EX0∼µ,u
δ
(
TDu

2 )2

δV
≈ δ

(
TDu

2 )2

δV

(
Xt

)
= 2TDu

2

(
Xt

)δTDu
2

δV

(
Xt

)
,(2.34)

where we evaluate the right-hand side term on a single realization of the trajectory to
the ease the notation. In our numerical implementation, we use multiple trajectories
to further improve the computation efficiency. As we remark above, since (2.25) holds
true without taking the expectation, the right-hand side of (2.33) thus vanishes for
the exact value function for any realization of Xt, in particular, the variance of the
stochastic gradient is 0. In comparison, while the stochastic estimate of (2.34) has
the expectation 0 for the exact value function, for each trajectory, the right-hand side
is not 0. This means that the stochastic gradient estimate (2.34) has a larger variance
than the estimate (2.33). Let us remark that the vanishing variance property of (2.33)
is similar to quantum Monte Carlo [22], for which the variance of the local energy
estimate also vanishes at the ground state.

In the following, to distinguish the two loss functions, we call the method based
on L1 (2.31) the variance reduced LSTD (VR-LSTD), while that corresponding to L2

(2.32) is named the LSTD. We will demonstrate in our numerical experiments that
VR-LSTD gives better results than LSTD.

2.2.4. Policy gradient for continuous optimal control problems. For the
actor part, we use policy gradient to improve the policy. According to the dynamical
programming principle [68], for the optimal value function V , we have

(2.35) V (X0) = inf
u

Eu
[∫ T

0

f(Xs, u(Xs))e
−γs ds+ e−γTV (XT ) | X0

]
,

where u is minimized over the set of admissible controls. In other words, the control
u should minimize the functional on the right-hand side. Therefore, we can use the
following loss function for the actor, for which we also incorporate the stopping time:

(2.36) J(u) = EX0∼µ,u

[∫ T∧τ

0

f(Xs, u(Xs))e
−γs ds+ V̂ (XT∧τ )e−γ(T∧τ)

]
,

where V̂ is the current estimate of the value function (via TD learning in the critic
part). Observe that this loss function is a continuous analog of (2.20).

In the numerical algorithm, the control, as a high dimensional function, will be
parametrized as a neural network u(·; θu), where θu denotes collectively the param-
eters. The parameters are optimized using a stochastic approximation to gradients
of J(u). Similarly to our discussion of policy gradient for the discrete case in Sec-
tion 2.2.2, when differentiating the loss function (2.36) w.r.t. the parameters of the
control θu, several terms would contribute to the derivative, including the control u(·)
itself, the SDE trajectory X·, the stopping time τ , and also the estimated value func-
tion V̂ (·). Similarly to the discrete case, we will drop the functional derivative of V̂
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w.r.t. u, i.e., the derivative δV̂
δu

∂u
∂θu

, since the dependence of V̂ on u is through the algo-
rithm for the critic, e.g., the TD learning, which is impractical to track. Furthermore,
if V̂ is the optimal value function, treating it as a fixed function and optimizing u in
(2.36) gives the optimal policy function. Therefore, we approximate the functional
derivative as

(2.37)
δJ

δu

·
= EX0∼µ,u

[∫ T∧τ

0

δf(Xs, u(Xs))

δu
e−γs ds+ 1{τ<T}f(Xτ , u(Xτ ))e−γτ

δτ

δu

+∇V̂ (XT∧τ )e−γ(T∧τ) δXs

δu

∣∣∣∣
s=T∧τ

+ 1{τ<T}(Lu − γ)V̂ (Xτ )e−γτ
δτ

δu

]
,

where
·
= indicates that we leave out the contribution from the functional derivative

of V̂ w.r.t. u and we have

(2.38)
δf(Xs, u(Xs))

δu
=
∂f

∂x

δXs

δu
+
∂f

∂u

(
Id +∇u(Xs)

δXs

δu

)
.

To obtain the formula, we have used Itô’s lemma to rewrite

(2.39) EX0∼µ,u[V̂ (XT∧τ )e−γ(T∧τ)] = EX0∼µ,u

[
V̂ (X0) +

∫ T∧τ

0

(Lu − γ)V̂ (Xs) ds
]
,

and taken the derivative of the right-hand side w.r.t. u.

3. Numerical algorithm. In this section, we present our numerical algorithm
for solving high dimensional HJB type elliptic PDEs based on the actor-critic frame-
work discussed in the previous section.

3.1. Function approximation. In order to numerically deal with the high di-
mensional functions V and u, we use two neural networks to parametrize the value
function V (· ; θV ) and the control u(· ; θu), the parameters of which are denoted col-
lectively by θV and θu, respectively. We apply the structure of the residual neural
network [31] in pursuit of better optimization performance. A neural network φ(x; θ)
with l hidden layers is represented by

(3.1) φ(x; θ) = Fl ◦ σl ◦ Fl−1 ◦ σl−1 ◦ · · · ◦ F1 ◦ σ1 ◦ F0(x),

where Fi are linear transforms with dimensions depending on the width of hidden
layers and the dimensions of inputs and outputs, and σi are elementwise activate
functions with skip connection: σi(x) = x+ ReLU(x).

Moreover, note that the VR-LSTD loss function L1 (2.31) requires the gradient of
the value function. Since we are using a neural network parametrization V = V (· ; θV ),
a direct approach is to use autodifferentiation of V (x; θV ) w.r.t. x to calculate the
gradient. We find that a better approach in practice is to use another neural network
to represent ∇V , which is consistent with the observations in [27, 29]. Thus, for VR-
LSTD, the gradient of the value function is represented by a separate neural network
G(·; θG) with collective parameters θG.

To summarize, w.r.t. the collective parameters, the loss functions for the critic
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corresponding to (2.31) and (2.32) are

L1(θV , θG) = EX0∼µ,u

[(∫ T∧τ

0

e−γsf(Xs, u(Xs)) ds(3.2)

−
∫ T∧τ

0

e−γsG(Xs; θG)>σ(Xs, u(Xs)) dWs

+ e−γ(T∧τ)V (XT∧τ ; θV )− V (X0; θV )
)2
]
,

L2(θV ) = EX0∼µ,u

[(∫ T∧τ

0

e−γsf(Xs, u(Xs)) ds+ e−γ(T∧τ)V (XT∧τ ; θV )(3.3)

− V (X0; θV )
)2
]
.

We remark that there is no need to add penalty terms in L1 to ensure the consistency
between V (x, θV ) and G(x; θG), because if we replace V u(·) by V (·, θV ) in (2.24) and
plug it in (3.2), we have

L1(θV , θG) = EX0∼µ,u

[(∫ T∧τ

0

e−γs[(LuV − γV )(Xs; θV ) + f(Xs, u(Xs))] ds

(3.4)

−
∫ T∧τ

0

e−γs (∇xV (Xs; θV )−G(Xs; θG))
>
σ(Xs, u(Xs)) dWs

)2
]

= EX0∼µ,u

[(∫ T∧τ

0

e−γs[(LuV − γV )(Xs; θV ) + f(Xs, u(Xs))] ds
)2]

(3.5)

+ EX0∼µ,u

[∫ T∧τ

0

e−2γs
∣∣σ>(Xs, u(Xs)) (∇xV (Xs; θV )−G(Xs; θG))

∣∣2 ds
]
,(3.6)

where Lu is the generator of the SDE and we have used Itô’s isometry in the second
step. Note that the first (3.5) and second (3.6) terms in (3.4) simultaneously enforce
V to be the value function and its gradient to be consistent with G.

For a neural network parametrization of V , it is not easy to directly impose the
Dirichlet boundary condition V = g on ∂Ω in the parametrization. Thus, instead, we
add a penalty term to the loss functions (3.2) or (3.3) for the critic to help enforce
the boundary condition

(3.7) η EX∼Unif(∂Ω)

[
(V (X; θV )− g(X))2

]
,

where η is a penalty hyperparameter and Unif(∂Ω) denotes the uniform distribution
on ∂Ω.

3.2. Discretization of SDEs and stochastic integrals. In the implementa-
tion, we need to simulate numerically, based on a discretization of the diffusion process
with approximating stopping time and exit point. The solution to the PDE problem
crucially depends on the boundary condition, and thus in control formulation, the exit
time and position of the SDE at the boundary. Several schemes have been developed
in the literature to deal with the stopping time and exit point of the SDEs in related
scenarios. Perhaps the most natural idea is to stop at the last step of the numerical
SDE before exiting the domain, which has been tested in the context of using neural
networks for solving PDEs in [40]. The error of such boundary treatment has been
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analyzed in [23]. Moreover, several schemes have been proposed to improve the accu-
racy around the boundary. In [30], the authors approximate the exit position by the
intersection of the domain boundary and the line segment between the consecutive
two steps before and after exiting the domain. It has also been considered to reduce
step size when the discretized trajectory approaches the boundary [12]. Some bias
reduction schemes with the bubble-wrap or max-sampling exit condition are proposed
in [44]. After studying and testing several approaches for numerical discretization in
our algorithms, we present two choices of discretization and give some remarks on the
other schemes.

Let us start with a näıve approach. We can discretize the SDE (2.2) by the Euler–
Maruyama scheme with a given partition of interval [0, T ]: 0 = t0 < t1 < · · · < tN =
T , where a constant step size ∆t = T

N is used, so tn = n∆t. The SDE is discretized
as

(3.8) X0 = X0, Xtn+1 = Xtn + b(Xtn , un)∆t+ σ(Xtn , un)ξn
√

∆t,

where un = u(Xtn ; θu) and ξn ∼ N(0, Idw) follows the standard normal distribution.
Here, we use Xtn to denote the discretized stochastic process, to distinguish from Xt,
the continuous process. Given a numerical trajectory Xtn , n = 0, . . . , N , we define

(3.9) n̄ = max
{
n ∈ {0, . . . , N} | Xti ∈ Ω, i = 0, 1, · · · , n

}
.

Thus, if n̄ < N , Xtn̄+1 exits the domain as Xtn̄+1 6∈ Ω, while if n̄ = N the trajectory
Xtn remains in the domain for n = 0, 1, . . . , N .

Perhaps the most direct and intuitive approach for the boundary treatment is to
view t = n̄∆t as the stopping time, even though Xtn̄ is still inside Ω. This scheme
will be referred to as the “näıve scheme” in the following. The stochastic integrations
in (2.31), (2.32), and (2.36) are correspondingly approximated by
(3.10)∫ T∧τ

0

e−γsf(Xs, us) ds ≈
n̄−1∑
n=0

e−γn∆tf(Xtn , un)∆t,

∫ T∧τ

0

e−γs∇V (Xs)
>σ(Xs, us) dWs ≈

n̄−1∑
n=0

e−γn∆tG(Xtn ; θG)>σ(Xtn , un)ξn
√

∆t,

where ξn
√

∆t is the same realization of Brownian increments as in (3.8). We remark
that this discretization scheme is similar to the one used in [40] for solving degenerate
semilinear elliptic equations, in particular, both algorithms approximate the stopping
time by n̄∆t. However, we aim to solve the value function in the whole domain, while
the method developed in [40] only aims at the value at a specific point; thus the overall
framework of the algorithm is quite different.

After discretization, the loss functions (2.31), (2.32), and (2.36) are further ap-
proximated by Monte Carlo samples: for each iteration, we draw K independent
sample trajectories (K is known as the batch size) by drawing initial point X0 from
the distribution µ and independent increments of the Brownian motion. At each itera-
tion, we also draw K independent Monte Carlo samples uniformly from the boundary
to approximate the expectation in (3.7). To update the parameters of the neural
networks, we employ the Adam optimizer [37].

To apply the policy gradient method to the loss functional (2.36), we need to
differentiate the discretized functional w.r.t. the control, similar to the functional
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derivative setting considered above in (2.37). While the first and third terms in
(2.37), which involve derivatives of J through its dependence on u and the trajectory,
can be easily dealt with on the discretized level using autodifferentiation, the second
and fourth terms in (2.37) become tricky to deal with on the discrete level, since the
stopping time is approximated by n̄∆t, which is discrete so δn̄/δu is not really well
defined. In our implementation, such terms are omitted in the policy gradient w.r.t.
u; we leave a better numerical treatment of such terms to future works.

The pseudocode for our actor-critic method for solving high dimensional PDEs is
summarized in Algorithm 3.1.

Algorithm 3.1 Neural network based actor-critic solver for fully nonlinear PDEs

input : A fully nonlinear PDE (2.1), terminal time T , number of time intervals N ,
loss weights η, neural network structures, number of iterations, learning rate,
batch size K, the choice of TD

output: Value function V (· ; θV ), its gradient G(x; θG) if we choose VR-LSTD, and
the control u(· ; θu)

initialization: θvalue (θvalue = (θV , θG) for VR-LSTD and θvalue = θV for LSTD) and
θu for ` = 1 to the number of iterations do

/* critic steps */

Sample K independent trajectories X ktn , k = 1, 2, · · · ,K
Sample K points on the boundary ∂Ω to enforce the boundary condition
Estimate the gradient of the chosen critic loss ((3.2) + (3.7) or (3.3) + (3.7)) w.r.t.
θvalue using the K trajectories and K boundary points

Update parameters θvalue using the Adam optimizer
/* actor steps */

Sample K independent trajectories X ktn , k = 1, 2, · · · ,K
Estimate the gradient of the actor loss (2.36) w.r.t. θu using the K trajectories
Update parameters θu using the Adam optimizer

end

3.3. The adaptive step size scheme. It turns out in our numerical exper-
iments that while the above näıve scheme is able to get reasonably accurate value
functions, the approximation to control results in large errors, especially near the
boundary (see Section 4 for more details). To improve the accuracy near the boundary,
we adaptively shrink the step size when the trajectory approaches the boundary ∂Ω,
instead of using the uniform time step size as in the näıve scheme. More specifically,
we use the following scheme at the boundary, which is motivated by the integration
scheme used in [12] for the Feynman–Kac representation of boundary value problems
of the Poisson equation.

The idea is to reduce the time step size adaptively when Xt is close to the bound-
ary, and thus to improve the accuracy of the trajectory. We consider the Euler–
Maruyama scheme with varying step size given by

(3.11) Xtn+1 = Xtn + b(Xtn , un)h(Xtn) + σ(Xtn , un)
√
h(Xtn) ξn,

where the step size h(Xtn) depends on the current position of the trajectory. For the
choice of step size, we define a subset near the boundary of Ω as

(3.12) Γ =
{
x ∈ Ω | dist(x, ∂Ω) ≤ ς

√
3d∆t

}
,
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where ς = supx∈Ω,u∈U‖σ(x, u)‖ is the supremum of the operator norm of σ. The
adaptive choice of the step size is specified as follows:

1. When Xtn ∈ Ω\Γ, it would be considered in the “interior” of Ω, as it is very
unlikely that after one time step with step size ∆t that the trajectory will exit the
domain. Thus, we will use the basic constant step size h(Xtn) = ∆t.

2. When Xtn ∈ Γ, we decrease the step size according to the distance of the
trajectory to the boundary, with the minimum step size set as 1

104 ∆t:

h(Xtn) = max
{ 1

3dς2
dist(Xtn , ∂Ω)2,

1

104
∆t
}
.

This reduced step size, together with the width of Γ defined in (3.12), are decided
such that the probability that Xtn ∈ Ω\Γ goes out of Ω in the next step is small. Note
that when the step size is small, the diffusion dominates the drift term, and thus it
suffices to incorporate the diffusion part in the choice. Note that we have used the
supremum of ‖σ‖ for simplicity, one could also choose the criteria more locally if σ
varies a lot across the domain. The minimum step size is set to balance the accuracy
and computational cost as, otherwise, the scheme might spend an unnecessarily long
time resolving the trajectory near the domain boundary.

In summary, we choose the adaptive step size h = h(Xtn) as

(3.13) h(Xtn) =

{
∆t, Xtn ∈ Ω\Γ,
max{ 1

3dς2 dist(Xtn , ∂Ω)2, 1
104 ∆t}, Xtn ∈ Γ.

It should be noted that, as a result of the adaptive step size, different trajectories
may have different discretized time steps. The integrals are similarly discretized as in
(3.10) with step size changed to h(Xtn):

(3.14)

∫ T∧τ

0

e−γsf(Xs, u) ds ≈
n̄−1∑
n=0

e−γ
∑n−1
k=0 h(Xtk )f(Xtn , un)h(Xtn);

∫ T∧τ

0

e−γs∇V (Xs)
>σ(Xs) dWs

≈
n̄−1∑
n=0

e−γ
∑n−1
k=0 h(Xtk )G(Xtn ; θG)>σ(Xtn , un)ξn

√
h(Xtn).

For the policy gradient, similar to our numerical treatment in the case of näıve
scheme, we use autodifferentiation generated by the computational graph in practice,
instead of directly numerically approximating the functional derivative defined in
(2.37). One reason is that the adaptive step size scheme further complicates the
dependence of the trajectory and exit time on the control, compared with the näıve
scheme and, hence, makes the direct numerical discretization of (2.37) even more
difficult. In practice, the result from using autodifferentiation for the policy gradient
seems to be quite accurate, as will be further discussed in the next section.

Remark 3.1. In addition to the adaptive step size, in our numerical experiments,
we have also tested the bounded sample of Brownian increments proposed in [12] to
further avoid the potentially large error of the trajectory near the boundary due to
tail events of the normal sample. We do not find, however, a significant difference
in the result between using bounded samples versus the usual normal samples for
Brownian increments. Therefore, we will stick to the normal samples for simplicity.
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Remark 3.2. Moreover, besides adaptively shrinking the step size near the bound-
ary, we have tested two approaches using constant step size, but try to improve the
estimate of the exit time and exit point of the näıve scheme instead. They do not
yield satisfactory numerical results, so we will only briefly sketch the ideas without
going into details or presenting numerical results.

One scheme is adapted from [30], which tries to determine the exit point on ∂Ω
more accurately. In this scheme, the exit position Xτ on ∂Ω is numerically approx-
imated by the intersection of ∂Ω and the line segment between Xtn̄ and Xtn̄+1

; the
stopping time is correspondingly adjusted. The numerical result from the scheme is
still not accurate enough for the control near the boundary.

The linear interpolation above gives an error of order
√

∆t due to the diffusion
term; we can further improve the accuracy using a method proposed in [23]. Instead
of linear interpolation, we seek for a coefficient ρ ∈ (0, 1] such that Xτ , defined by

Xτ = Xtn̄ + b(Xtn̄ , un̄)ρ∆t+ σ(Xtn̄ , un̄)
√
ρ∆t ξn̄,

is on ∂Ω. In practice, we observe that numerically solving the coefficient ρ makes the
training unstable.

4. Numerical examples. In this section, we present the numerical results for
the proposed method. We test on several examples: the linear quadratic regulator
(LQR) problems, the stochastic Van der Pol oscillator problems, the diffusive Eikonal
equations, and fully nonlinear elliptic PDEs derived from a regulator problem. To
test the performance of our algorithm, we do not assume knowledge of the true solu-
tion or the explicit formula for the control given the value function. The considered
dimensions in all four examples are as large as 20. The algorithm is implemented in
Python with the deep learning library TensorFlow 2.0 [1]. In all the examples, the
weight parameter η associated with the boundary condition (cf. (3.7)) is set to 1 and
the terminal time is T = 0.2. The numbers of time intervals are N = 50 for problems
in 4 dimensions (4d) and 5d, and N = 100 in 10d and 20d. As for the architecture of
the neural networks, the width of the hidden layers is set to 200 in all problems, while
the numbers of hidden layers are 2 for problems in 4d and 5d, and 3 in 10d and 20d.
During the training, we use piecewise constant learning rates of 1e−3, 1e−4, and 1e−5
consecutively in order to achieve high accuracy. The numbers of steps with learning
rate 1e−3 are 20000 for problems in 4d, 5d, and 10d, and 30000 in 20d. The numbers
of steps with learning rate 1e−4 and 1e−5 are both 10000 in the four examples. The
batch sizes are K = 1024 for problems in 4d and 5d, and K = 2048 in 10d and 20d.
The parameters in the numerical examples are determined empirically. In order to
illustrate the effect of some parameters such as T and the basic step size ∆t, we also
compare the results with different parameters in the first example.

During the training, we sample a validation set {Xk}Kk=1 uniformly in Ω, inde-
pendent of the training, to evaluate the errors of the value function and the control.
Note that the validation size K is the same as the batch size. We find that such sizes
are enough to estimate the error accurately with a small variance. The relative L2

errors are computed by

(4.1) err2
V =

K∑
k=1

(V (Xk)− V (Xk; θV ))2/

K∑
k=1

V (Xk)2
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and

(4.2) err2
u =

K∑
k=1

|u(Xk)− u(Xk; θu)|2/
K∑
k=1

|u(Xk)|2,

where V (·) and u(·) are the true value and control functions, respectively (we will
choose test examples such that these true solutions are known). In addition to the
errors above, we also visualize the density of the true value function and compare
that with its neural network approximation, considering the difficulty of visualizing
functions in high dimensions directly. Here, the density of a function V is defined as
the probability density function of V (X), where X is uniformly distributed in Ω. In
our numerical experiments, the density is estimated by Monte Carlo sampling.

Our numerical results indicate that in all the examples, the value functions are
approximated accurately, and the associated densities match well with that of the
true solution. Furthermore, the numerical results show that, for the critic, the VR-
LSTD performs better than LSTD, as expected. The adaptive step size scheme also
significantly improves the accuracy, in particular, for the control. The details can
be found in the following subsections. The code developed to solve these numerical
examples is made publicly available on GitHub [69].

4.1. LQR. In this subsection we consider the PDE arising from the LQR prob-
lem, given by

(4.3) ∆V (x) + inf
u∈Rd

(
βu>∇V (x) + p|x|2 + q|u|2 − 2kd

)
− γV (x) = 0 in BR ⊂ Rd

with boundary condition V (x) = kR2 on ∂BR, where BR = {x ∈ Rd : |x| < R}. Here
p, q, β, k are positive constants such that

(4.4) k =

√
q2γ2 + 4pqβ2 − γq

2β2
.

This is the HJB equation corresponding to the controlled stochastic process

(4.5) dXt = βudt+
√

2 dWt

with cost functional

(4.6) Ju(x) = E
[∫ τ

0

(p|Xs|2 + q|u(Xs)|2 − 2kd)e−γs ds+ e−γτkR2
]
,

where τ is the exit time of the domain BR. The PDE has the exact solution as a
quadratic function, V (x) = k|x|2, and the optimal control is also explicitly given as
u∗(x) = −β

2q ∇V (x) = −kβ
q x.

We choose the model parameters p = q = R = β = γ = 1 and k = (
√

5 − 1)/2.
The numerical results for our two versions of TDs with different discretization schemes
in 5d are shown in Table 1. The results of VR-LSTD have smaller errors due to the
smaller asymptotic variance, as we discussed above. Moreover, the adaptive step size
scheme is able to compute a more accurate control function, compared with the näıve
scheme. One possible reason is that the adaptive step size scheme samples more points
Xtn near the boundary, which helps to improve the accuracy of the control function
near the boundary. To further illustrate the idea, let us compare the results for the
näıve scheme and the adaptive step size scheme in 5d, both with critics optimized by
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Fig. 1: The comparison of two discretization schemes in the 5d LQR example. Left:
the true optimal control and approximated control by the näıve scheme; right: the true
optimal control and approximated control by the adaptive step size scheme. x-axis:
the norm of x; y-axis: the norm of control u.

discretization TD variant error of value function error of control

adaptive step size VR-LSTD 1.02e−2 9.19e−3
adaptive step size LSTD 1.58e−1 1.17e−1

näıve VR-LSTD 1.29e−2 1.24e−1
näıve LSTD 1.41e−1 8.55e−2

Table 1: Errors for different discretization schemes and TDs in 5d LQR.

VR-LSTD. The plot of the norm of the control |u(x)| w.r.t. the norm of the variable
|x| is shown in Figure 1. The error of the control for the näıve scheme is significantly
larger near the boundary. The adaptive step size scheme achieves a uniform accuracy
of the control in the whole domain.

Therefore, for the rest of the numerical experiments, we will stick to the adaptive
step size scheme and VR-LSTD loss function for the critic. Figure 2 shows the density
and error curves for the LQR problem when d = 5, 10, 20. The sharp drop of the errors
at steps 20000 and 30000 is due to the reduced learning rates at those steps. The final
errors of the value functions and controls are 1.02e−2 and 9.19e−3 in 5d; 1.40e−2
and 1.95e−2 in 10d; 1.96e−2 and 4.78e−2 in 20d.

Considering that T and the basic step size ∆t are two hyperparameters in our
algorithm, we test different choices of their values in the 5d LQR example and provide
the errors in Table 2. The results show that our algorithm is not sensitive to the choice
of T and ∆t.

4.2. Stochastic Van der Pol oscillator. The Van der Pol oscillator is a pop-
ular example in the study of dynamical systems because of its chaotic behavior. The
stochastic Van der Pol oscillator has been studied in [67], in which some internal or
external noise is considered. In this subsection, we consider the generalized stochastic
Van der Pol oscillator in high dimensional cases and solve the PDE

(4.7) ∆V (x) + inf
u∈Rd/2

[
b(x, u)>∇V (x) + f(x, u)

]
− γV (x) = 0 in BR ⊂ Rd,
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Fig. 2: Top: density of V for the LQR problem with d = 5 (left), d = 10 (middle), and
d = 20 (right). Bottom: associated error curves in the training process with d = 5
(left), d = 10 (middle), and d = 20 (right).

T T = 0.04 T = 0.1 T = 0.2 T = 0.4 T = 0.8

50 time intervals
value 8.40e−3 9.46e−3 1.04e−2 1.03e−2 9.97e−3

control 1.15e−2 9.87e−3 1.01e−2 8.99e−3 8.33e−3

step size 0.004
value 3.17e−2 1.40e−2 9.96e−3 9.16e−3 8.76e−3

control 3.51e−2 1.19e−2 9.39e−3 1.03e−2 1.07e−2

Table 2: Errors of value and control functions with different parameters in the 5d LQR
example using adaptive step sizes and VR-LSTD. The first two rows denote different
T , with the same number of time intervals N = 50. The last two rows denote different
T , with the same basic step size ∆t = 0.004. The relationship T = N∆t always holds.

where d = 2n is even. The boundary condition is given by (with convention x0 = xn
and x2n+1 = xn+1)

(4.8) g(x) = a

2n∑
i=1

(xi)
2 − ε

( n∑
i=1

xi−1xi +

2n∑
i=n+1

xixi+1

)
.

Here a and ε are positive constants. The drift field is given by

(4.9) bi(x, u) =

{
xi+n (1 ≤ i ≤ n),

(1− x2
i−n)xi − xi−n + ui−n (n+ 1 ≤ i ≤ 2n).
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We choose the running cost as
(4.10)

f(x, u) = q|u|2 + γ[

n∑
i=1

(ax2
i − εxixi−1) +

2n∑
i=n+1

(ax2
i − εxixi+1)]

+
1

4q
[(2axn+1 − εx2n − εxn+2)2 +

2n∑
i=n+2

(2axi − εxi−1 − εxi+1)2]− 4na

− 2a

n∑
i=1

xn+ixi + ε

n∑
i=1

xn+ixi−1 + ε

n−1∑
i=1

xn+ixi+1 + εx2nx1

− (xn+1 − x1 − x2
1xn+1)(2axn+1 − εx2n − εxn+2)

−
n∑
i=2

(xi+n − xi − x2
ixi+n)(2axi+n − εxi+n−1 − εxi+n+1),

so that the true value function has an explicit formula:

(4.11) V (x) = a

2n∑
i=1

(xi)
2 − ε

( n∑
i=1

xi−1xi +

2n∑
i=n+1

xixi+1

)
.

The corresponding optimal control is given by u∗1(x) = − 1
2q∂n+1V (x) = 2axn+1 −

εx2n − εxn+2 and u∗i (x) = − 1
2q∂i+nV (x) = 2axi+n − εxi+n−1 − εxi+n+1 for i =

2, 3, · · · , n.
The PDE can be reformulated as a stochastic control problem with the controlled

SDE given by

(4.12) dXt = b(Xt, u) dt+
√

2 dWt

with objective function

(4.13) Ju(x) = E
[∫ τ

0

f(Xs, u)e−γs ds+ e−γτg(Xτ )
]
.

In the numerical experiments, we take a = q = R = γ = 1 and ε = 0.1. Figure 3
shows the density and error curves when d = 4, 10, 20. The algorithm learns reason-
ably nice shapes of the value functions. The final errors of the value functions and
controls are 1.01e−2 and 5.12e−3 in 4d; 1.19e−2 and 9.77e−3 in 10d; 1.81e−2 and
2.50e−2 in 20d.

4.3. Diffusive Eikonal equation. The Eikonal equation corresponds to the
shortest-path problems with a given metric. In our experiments, we add a small
diffusion term to regularize the equation (otherwise, the solution has kinks, which
creates difficulty for the neural networks to approximate well in high dimensions).
The diffusive Eikonal equation is given by

(4.14)

ε∆V (x) + inf
u∈B1

(
c(x)u>∇V (x)

)
+ 1 = 0 in BR,

V (x) = a3 − a2 on ∂BR,

where

(4.15) c(x) =
3(d+ 1)a3

2da2(2a2 − 3a3|x|)
> 0
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Fig. 3: Top: density of V for the Van der Pol problem with d = 4 (left), d = 10
(middle), and d = 20 (right). Bottom: associated error curves in the training process
with d = 4 (left), d = 10 (middle), and d = 20 (right).

is a real valued function. Here a2 and a3 are positive constants such that 2a2−3a3R >
0 and ε = 1/(2da2). We choose the form of c so that the true solution of the PDE is
explicitly given by

(4.16) V (x) = a3|x|3 − a2|x|2

and the optimal control is u∗(x) = x/|x|. In the numerical test, we take a2 = 1.2,
a3 = 0.2, and R = 1.

Unlike the previous two examples, the constraint on the control in this example
poses a new challenge to the numerical algorithm. In order to ensure that the control
u is in the unit ball, we construct a specific structure of the neural network for the
control. Instead of outputting the control directly, the neural network gives a d + 1
dimensional vector (ulen, udir) ∈ Rd+1. The control is represented by

(4.17) u =
udir

δ + ReLU(ulen) + |udir|
,

where ReLU(x) = max(0, x) and δ = 10−15. This δ is to ensure that the denominator
in (4.17) is not 0 to prevent numerical singularity. Figure 4 shows the density and error
curves for the Eikonal equation when d = 5, 10, 20. We also tried the straightforward
parametrization of the control function as before, with an additional penalty term
η′EX∼Unif(Ω)[ReLU(|u(X)| − 1)] in the loss for the actor. However, the numerical
performances indicate that implementing the constraints of control directly like (4.17)
is better than the penalty method. The final errors of the value functions and controls
are 6.97e−3 and 6.03e−3 in 5d; 1.02e−2 and 1.76e−2 in 10d; 1.82e−2 and 4.14e−2 in
20d.

4.4. LQR with a nonconstant diffusion coefficient. In this subsection, we
consider a variant of the LQR in which the diffusion coefficient σ is a function of both



ACTOR-CRITIC METHOD FOR HIGH DIMENSIONAL STATIC HJB EQUATIONS 21

−1.0 −0.5 0.0

V (x)

0

1

2

D
en

si
ty

True

NN Solution

−1.0 −0.5

V (x)

0

2

4

D
en

si
ty

True

NN Solution

−1.0 −0.5

V (x)

0.0

2.5

5.0

7.5

D
en

si
ty

True

NN Solution

0 20000 40000

Iteration

0.01

0.05

0.1

E
rr

or

value

control

0 20000 40000

Iteration

0.01

0.05

0.1

E
rr

or
value

control

0 20000 40000

Iteration

0.01

0.05

0.1

E
rr

or

value

control

Fig. 4: Top: density of V for the Eikonal equation with d = 5 (left), d = 10 (middle),
and d = 20 (right). Bottom: associated error curves in the training process with d = 5
(left), d = 10 (middle), and d = 20 (right).

x and u. Consider the HJB equation
(4.18)

inf
u∈Rd

[ d∑
i=1

(
∂2
i V (x)(1 + εxiui)

2 + β∂iV (x)ui
)
+q|u|2+f̃(x)

]
−γV (x) = 0 in BR ⊂ Rd,

where

(4.19) f̃(x) = γk|x|2 +

d∑
i=1

k2(β + 2ε)2x2
i

q + 2kε2x2
i

− 2kd.

In contrast to the previous three examples, this is a fully nonlinear PDE. The corre-
sponding SDE is

(4.20) dXt = βut dt+ σ(Xt, ut) dWt,

where σ(x, u) is a diagonal matrix with i-th diagonal element
√

2(1 + εxiui), i =

1, · · · , d. The running cost is f(x, u) = q|u|2 + f̃(x). The true value function is
V (x) = k|x|2 and the optimal control is

(4.21) u∗i (x) = −β∂iV (x) + 2εxi∂
2
i V (x)

2q + 2ε2x2
i ∂

2
i V (x)

= − (β + 2ε)xi
q/k + 2ε2x2

i

.

Note that this example coincides with the first example when ε = 0. In the numerical
experiments, we set the parameters q = R = β = γ = 1, k = (

√
5 − 1)/2 the same

as the first example and ε = −1. The final errors of the value functions and controls
are 9.98e−3 and 1.63e−2 in 5d; 1.50e−2 and 4.95e−2 in 10d; 1.96e−2 and 5.25e−2
in 20d. This example showcases that our algorithm is able to solve fully nonlinear
elliptic PDEs in high dimensions accurately.
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5. Conclusion and future directions. In this paper, we propose and study
numerical methods for high dimensional static HJB equations based on neural net-
work parametrization and the actor-critic framework. There are several promising
directions for future research. First, the scalability of the methods shall be further
tested by problems of higher dimensions. Second, it would be interesting to extend
our methods to other types of boundary conditions like natural boundary conditions
or broader types of equations, such as the porous medium equation. In both cases,
the corresponding control formulation is not so clear. Third, one might explore the
better numerical treatment of discretization of the functional derivative (2.37), rather
than relying on autodifferentiation. Finally, as an outstanding challenge in the field of
deep learning, theoretical analysis for convergence and error analysis of the proposed
numerical methods would be of great interest.
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[43] H. R. Maei, C. Szepesvári, S. Bhatnagar, and R. S. Sutton, Toward off-policy learning
control with function approximation, in Proceedings of the 27th International Conference
on Machine Learning (ICML-10), 2010, pp. 719–726.

[44] C. Martin, H. Zhang, J. Costacurta, M. Nica, and A. R. Stinchcombe, Solving elliptic
equations with brownian motion: Bias reduction and temporal difference learning, Method-

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980


24 MO ZHOU, JIEQUN HAN, AND JIANFENG LU

ology and Computing in Applied Probability, (2021), pp. 1–24.
[45] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, A time-dependent Hamilton–Jacobi formu-

lation of reachable sets for continuous dynamic games, IEEE Transactions on automatic
control, 50 (2005), pp. 947–957.

[46] I. M. Mitchell and C. J. Tomlin, Overapproximating reachable sets by Hamilton–Jacobi
projections, Journal of Scientific Computing, 19 (2003), pp. 323–346.

[47] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, Playing atari with deep reinforcement learning, arXiv preprint
arXiv:1312.5602, (2013).

[48] T. Nakamura-Zimmerer, Q. Gong, and W. Kang, Adaptive deep learning for high-
dimensional Hamilton–Jacobi-Bellman equations, arXiv preprint arXiv:1907.05317, (2019).
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