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THE DISCOVERY OF DYNAMICS VIA LINEAR MULTISTEP METHODS AND

DEEP LEARNING: ERROR ESTIMATION

QIANG DU∗, YIQI GU† , HAIZHAO YANG‡ , AND CHAO ZHOU§

Abstract. Identifying hidden dynamics from observed data is a significant and challenging task in a wide range of
applications. Recently, the combination of linear multistep methods (LMMs) and deep learning has been successfully
employed to discover dynamics, whereas a complete convergence analysis of this approach is still under development.
In this work, we consider the deep network-based LMMs for the discovery of dynamics. We put forward error
estimates for these methods using the approximation property of deep networks. It indicates, for certain families of
LMMs, that the ℓ2 grid error is bounded by the sum of O(hp) and the network approximation error, where h is the
time step size and p is the local truncation error order. Numerical results of several physically relevant examples are
provided to demonstrate our theory.

Key words. Discovery of Dynamics; Convergence Analysis; Data-driven Modeling; Linear Multistep Methods;
Deep Learning; Lorenz System.
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1. Introduction. Dynamical systems are widely applied to characterize scientific prin-
ciples and phenomena in various fields such as physics, biology, chemistry, economics, etc. In
many situations, the observational data are accessible, whereas the underlying dynamics remain
elusive. Data-driven discovery of dynamical systems is, therefore, an important research direction.
There have been extensive study on data-driven discovery using Gaussian processes [28, 48, 49, 47],
symbolic regression [7, 55], S-systems formalism [14], sparse regression [9, 53, 68, 69], numer-
ical PDE analysis [24], statistical learning [32], etc. Recently, along with the rapid advance-
ments of deep learning, the discovery of dynamics using neural networks has also been proposed
[46, 51, 60, 54, 19, 21, 44, 59, 31, 64]. This paper studies high-order schemes for the discovery of
dynamics using deep learning.

In numerical analysis, developing high-order methods is an important topic in many applica-
tions. Traditionally, in solving dynamical systems, high-order discretization techniques such as
linear multistep methods (LMMs) and Runge-Kutta methods have been well-developed [4, 18, 37].
In recent years, LMMs have also been employed for the discovery of dynamics. More precisely,
one uses LMM schemes to discretize the dynamical system and take a certain class of functions
to approximate the governing function. Typical candidate approximate functions include neural
networks [50, 60, 65]. The underlying parameters of the approximation is thereafter determined by
solving the derived linear system or least squares optimization. Thanks to the high orders of the
local truncation error, LMMs can discover the system with higher accuracy. Another advantage
of LMMs with neural networks is the capability of approximating complicated or high-dimensional
governing functions, because neural networks can overcome or lessen the curse of dimensionality
for a variety of functions [20, 40, 41, 16]. As a summary, we present an overview (Table 1.1) of
popular techniques for similar problems.
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2 Discovery of Dynamics via Deep Learning

Techniques Procedures Main features Limitations

Gaussian
processes
[28, 48, 49,
47]

place the Gaussian process
prior on the state func-
tion; then infer parameters
from data by maximizing
the marginal log-likelihood

suitable for resolving
high-dimensional
problems [48, 49]

have restrictions on the
form of the systems and
are used to estimate
parameters of the
system [69]

Symbolic
regression
[7, 55]

create and correct sym-
bolic models corresponding
to the observed data

provide more expressive
functional forms for the
governing function [54]

computational expensive
for large systems; may
be prone to overfitting
[9, 54]

Sparse
regression
[9, 53, 68,
69]

find a sparse combination
of candidate basis functions
to approximate the govern-
ing function, whose coef-
ficients are determined by
least squares or Bayesian
regression

provide explicit formulas
of the system and do
not require too much
prior knowledge [69]

rely on a set of
appropriate candidate
functions; may be
inefficient for complex
dynamics without a
simple or sparse
representation
[54, 50, 32, 31]

Statistical
learning
[32, 70]

learn the interaction kernel
of the system in some hy-
pothesis space by minimiz-
ing the empirical error

avoid the curse of
dimensionality and can
discover systems in very
high dimensions [32]

only work for dynamics
with interaction kernel
functions [17]

LMMs
with
neural
networks
[50, 60, 65]

determine the neural net-
work approximation that
minimizes the residual of
the dynamical system dis-
cretized by LMMs

have high error orders
(revealed in this paper)
and can discover more
complicated or
high-dimensional
systems [54]

usually provide “black
boxes”, in which the
mechanism of the
systems is not very
clearly revealed [31, 69]

Table 1.1: Overview of popular techniques for the discovery of dynamical systems.

Although a wide range of methods have been put forward in the past few years, theoretical
analysis for those methods is less explored. In [25], a rigorous framework based on refined notions of
consistency and stability is established to yield the convergence of LMM-based discovery for three
popular LMM schemes (the Adams-Bashforth, Adams-Moulton, and Backwards Differentiation
Formula schemes). However, the theory in [25] is specialized for methods that cannot provide a
closed-form expression for the governing function, which is needed in many applications. Therefore,
this paper studies the convergence theory of LMM schemes and deep learning, which can provide
a closed-form description of the governing equation.

This paper concentrates on two types of discovery problems. The first type is to do the discovery
on a trajectory of the dynamical system as in [50, 60, 65]. In this case, the observational data
are collected from a specific trajectory, and the purpose is to identify the governing function on
this trajectory with a closed-form expression in the form of a neural network, the parameters of
which are trained by minimizing the square residual of the corresponding LMM scheme. Through
this work, we can forecast the future behavior of the same dynamics or predict the dynamics on
nearby trajectories. The second type is the discovery on a compact region consisting of a bunch of



Discovery of Dynamics via Deep Learning 3

trajectories on which the observational data are collected such as in [63]. The purpose is to identify
the governing function in a connected compact region of the domain of the governing equation,
which may not have been discussed in the literature.

In this paper, we perform a convergence analysis of these methods based on the LMM framework
discussed in [25]. We first consider the LMMs using an abstract approximation set A. The main
result indicates that when using a p-th order LMM with a step size h in time, the error estimate is
formally given by

(1.1) ‖f̂ − f‖2,h ≤ O (κ2(Ah)(h
p + eA)) ,

where ‖ · ‖2,h denotes the ℓ2 grid norm; f is the true governing function and f̂ is its approximation
computed by the method; κ2(Ah) is the 2-condition number of the corresponding matrix Ah of
the LMM; eA is the approximation error bound between A and f (Theorem 5.1). Next, based on
Theorem 5.1, we develop the error estimate of the network-based LMMs using the approximation
theory of deep networks [56, 57, 33, 58]. Note that Theorem 5.1 can also be used for the error
estimate of LMMs using other approximation structures. Moreover, in connection with the stability
theory developed in [25], we discuss the situations that κ2(Ah) is uniformly bounded with respect
to h. Therefore, the ℓ2 grid error decays to zero as h → 0 and the network size approaches to
infinity.

So far, besides the mentioned work [25], some other analysis results for the discovery of dynamics
can be found in, e.g., [44, 63]. In [44], the authors propose to use neural networks to approximate
the flow function of the dynamical system instead of the governing function. Thereafter, they
derive an error bound for the prediction of the learned model at equidistant time steps, which is
conceptually given by

(1.2) |x̂(kh)− x(kh)| ≤ O(‖Φ̂− Φ‖L∞), with some integer k,

where x̂ is the predicted state of the learned dynamical system and x is the true state; Φ is the
true flow function and Φ̂ is its approximation obtained by their method. However, their analysis
does not further investigate the error bound for ‖Φ̂ − Φ‖L∞ . In [63], the authors use the linear
combination of standard polynomial basis to approximate the governing function, and also estimate
prediction error of the learned model at arbitrary time t > 0, namely,

(1.3) |x̂(t)− x(t)| ≤ O(‖f − ProjV f‖L∞ + ‖f̂ − ProjV f‖L2),

where V is the approximate polynomial space. Similarly, the two projection errors on the right-hand
side are not estimated. Comparatively, we directly quantify the error between the true governing
function and its approximation, which is analogous to the error terms on the right-hand sides of
(1.2) and (1.3). On one hand, our error estimate contributes to an intuitive understanding of how
well the discovery is, not merely from the perspective of prediction. On the other hand, by typical
ODE theory or the approach adopted in [63], the corresponding prediction error can be quickly
derived based on our result.

In numerical experiments, we test the performance of the network-based LMMs on both toy
models and a few physically relevant benchmark problems. It is observed that for stable LMM
schemes, the numerical error orders are consistent with our theory; for unstable schemes, even
though the method still manages to find solutions with similar ranges of errors as some of the
stable counterparts, the orders are much smaller. We also conduct experiments to simulate the
optimization errors in practice and the implicit regularization of deep learning. The results indicate
that, thanks to the implicit regularization, the network-based methods without initial conditions
can still find correct solutions numerically.
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This paper is organized as follows. In Section 2, background knowledge of dynamical systems
and LMMs is introduced. In Section 3, we will introduce the LMM approach for the discovery
of dynamics and discuss auxiliary conditions for unique recovery. In Section 4, the network-based
LMM approach with ReLU neural networks is described. In Section 5, we discuss the convergence
rate of the preceding approach with various LMM families. Numerical experiments are provided in
Section 6 to validate the theoretical results. Finally, we conclude this paper in Section 7.

2. Dynamical Systems. In this section, we introduce some basic notations and defini-
tions, as adopted by [25]. Most of the materials on LMMs can be found in [12, 13, 22].

2.1. Initial Value Problem. Suppose d > 0 is the dimension of the dynamics, let us
consider the following dynamical system with an initial condition

d

dt
x(t) = f(x(t)), 0 < t < T,(2.1)

x(0) = xinit,(2.2)

where x ∈ C∞[0, T ]d is an unknown vector-valued state function; f : Rd → R
d is a given vector-

valued governing function; xinit ∈ R
d is a given initial vector. To seek a numerical solution, one

usually discretizes the problem by setting equidistant grid points in [0, T ]. Let N > 0 be an integer,
we define h := T/N and tn = nh for n = 0, 1, · · · , N . The objective for solving the initial value
problem in (2.1)-(2.2) is to find an approximate value xn ≈ x(tn) for each n when f(x) is given.

2.2. Linear Multistep Method. LMMs are widely utilized in solving dynamical systems.
Suppose x0,x1, · · · ,xM−1 are given states, then xn for n =M,M +1, · · · , N can be computed by
the following linear M -step scheme,

(2.3)

M
∑

m=0

αmxn−m = h

M
∑

m=0

βmf(xn−m), n =M,M + 1, · · · , N,

where αm, βm ∈ R for m = 0, 1, · · · ,M are specified coefficients and α0 is always nonzero. By the
scheme, all xn are evaluated iteratively from n = M to n = N . In each step, xn−M , · · · ,xn−1 are
all given or computed previously such that xn can be computed by solving algebraic equations. If
β0 = 0, the scheme is called explicit since xn does not appear on the right hand side of (2.3) and xn

can be computed directly by xn = α−1
0

∑M
m=1(hβmf(xn−m)−αmxn−m). Otherwise, the scheme is

called implicit and it requires solving nonlinear equations for xn. The first value x0 is simply set
as x0 = xinit, while other initial values x1, · · · ,xM−1 need to be computed by other approaches
before performing the LMM if M > 1. Common types of LMMs include Adams-Bashforth (A-B)
schemes, Adams-Moulton (A-M) schemes, and Backwards Differentiation Formula (BDF) schemes.

2.3. Consistency. An LMM is effective for a dynamical system only if it is consistent;
that is, the discrete scheme (2.3) approximates the original differential equation (2.1) accurately as
h is small enough. More specifically, we first define the local truncation error τh,n as

(2.4) τh,n =
1

h

M
∑

m=0

αmx(tn−m)−
M
∑

m=0

βmf(x(tn−m)),

for n = M,M + 1, · · · , N . Note that τh,n ∈ R
d is a numeric vector. It is clear that the local

truncation error is defined by substituting the true function x(t) into the discrete scheme (2.3),
and measures the extent to which the true solution satisfies the discrete equation.
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Method s e(N) t(N) p

M -step A-B 0 N − 1 N M

M -step A-M 0 N N + 1 M + 1

M -step BDF M N N −M + 1 M

Table 3.1: The first involved index s, the last involved index e(N), the total number of involved
indices t(N), and the truncation error order p for common types of LMMs.

Now we can define the notion of consistency. The LMM (2.3) is said to be consistent with the
differential equation (2.1) if max

M≤n≤N
‖τh,n‖∞ → 0 as h→ 0, for any x ∈ C∞[0, T ]d. Specifically, an

LMM is said to have an order p if max
M≤n≤N

‖τh,n‖∞ = O(hp) as h→ 0.

3. Discovery of Dynamics. In this section, we introduce the discovery of dynamics on
a single trajectory, on which a time series of the state is available. Conventional LMMs with
auxiliary conditions for this type of discovery are introduced. Note that these methods can be
simply generalized for the discovery on a compact region, which will be discussed in Section 4.5.

The discovery of dynamics is essentially an inverse process of solving a dynamical system (2.1)-
(2.2) with given observations on the state. That is, suppose that only the information of the state
x at the equidistant time steps {tn}Nn=0 are provided, we would like to recover f , namely, the
governing function of the state.

3.1. Linear Multistep Method. Let x(t) ∈ C∞([0, T ])d and f(·) : Rd → R
d be two

vector-valued functions satisfying the dynamics (2.1), and we assume x(t) and f(·) are both un-
known. Now given xn = x(tn) for n = 0, · · · , N , the objective is to determine f(·), i.e. to find a
closed-form expression for f(·) or to evaluate f(xn) for all n. One effective approach is to build a
discrete relation between xn and fn ≈ f(xn) by LMMs [25], namely,

(3.1) h

M
∑

m=0

βmfn−m =

M
∑

m=0

αmxn−m, n =M,M + 1, · · · , N,

where fn ∈ R
d is an approximation of f(xn). Note that (3.1) directly follows the LMM scheme

(2.3). Different from (2.3) that evaluates xn given f , (3.1) computes fn from the data xn. It
indicates the dynamics discovery is actually an inverse process of solving the dynamical system
[25]. Moreover, we note that the components of f(·) can be discovered independently. Thus, in the
remainder of this paper, without loss of generality, we work with a scalar-valued system to simplify
(3.1) using notation in a scalar form as the following general equation,

(3.2) h

M
∑

m=0

βmfn−m =

M
∑

m=0

αmxn−m, n =M,M + 1, · · · , N.

It is worth noting that fn may not be involved in (3.2) for some indices n between 0 and N .
For example, in A-B schemes, fN does not appear in (3.2) since β0 = 0. In general, given an LMM,
we use s and e(N) to denote the first and last indices such that fs and fe(N) are involved in (3.2)
with non-zero coefficients (correspondingly, βM−s and βN−e(N) are both nonzero). We also write
t(N) := e(N)− s+1 as the total number of fn involved in (3.2). We briefly list s, e(N), t(N), and
the truncation error orders p of A-B, A-M, and BDF schemes in Table 3.1.
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3.2. Auxiliary Conditions. For each linear M -step method, it is supposed to compute

all unknowns {fn}e(N)
n=s by the linear relation (3.2). In the following, we will use the special notation

~· and bold fonts to denote column vectors of size O(N), distinguishing them from other vectors or
vector functions. We write

~fh :=
[

fs fs+1 · · · fe(N)

]T ∈ R
t(N),(3.3)

~qh :=
1

h

[

M
∑

m=0

αmxM−m

M
∑

m=0

αmxM+1−m · · ·
M
∑

m=0

αmxN−m

]T

∈ R
N−M+1,(3.4)

(3.5) Bh :=











βM−s βM−s−1 · · · βN−e(N)

βM−s βM−s−1 · · · βN−e(N)

. . .
. . .

. . .
. . .

βM−s βM−s−1 · · · βN−e(N)











∈ R
(N−M+1)×t(N),

then (3.2) leads to the following linear system,

(3.6) Bh
~fh = ~qh.

However, the number of equations and unknowns may not be equal in (3.2). For A-B and A-M

schemes, it is insufficient to determine {fn}e(N)
n=s by (3.2) since equations are fewer than unknowns.

This implies that the linear system (3.6) is underdetermined. For this issue, a natural solution is

to provide Na := t(N) − (N −M + 1) auxiliary linear conditions to make {fn}e(N)
n=s unique. For

example, we can compute Na certain unknown fn directly by first-order (derivative) finite difference
method (FDM) using related data. For consistency, the selected FDM should be of the same error
order as the LMM. Assume the LMM has order p, one straightforward way is to compute the initial
Na unknowns by one-sided FDM of order p, i.e.,

(3.7) fn =
1

h

p
∑

m=0

γmxn+m, n = s, s+ 1, · · · , s +Na − 1,

where γm are the corresponding finite difference coefficients. Note that (3.7) has the error estimate

(3.8) max
s≤n≤s+Na−1

|fn − f(x(tn))| = O(hp), as h→ 0.

If we write

(3.9) ch :=
1

h

[

p
∑

m=0

γmxs+m

p
∑

m=0

γmxs+1+m · · ·
p

∑

m=0

γmxs+Na−1+m

]T

∈ R
Na,

then combining (3.2) and (3.7) leads to the following augmented linear system

(3.10) Ah
~fh =

[

ch
~qh

]

,

where

(3.11) Ah :=

[

C

Bh

]

and C :=
[

INa O
]
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with INa being the Na×Na identity matrix and O being the zero matrix of size Na× (t(N)−Na).
Clearly, (3.10) has a unique solution since the coefficient matrix is lower triangular with nonzero
diagonals. Moreover, if M ≪ N , the linear system (3.10) is sparse.

In general, as pointed out in [25], we can formulate the auxiliary conditions in various ways,
not just as discussed above. Different auxiliary conditions, such as initial and terminal conditions
have different effects on the stability and the convergence of the method, see further discussions in
[25]. An interesting question is whether the regularization effect provided by the neural network
approximations could help mitigate these effects.

4. Neural Network Approximation. In this section, we first introduce the concept of
fully connected neural networks (FNNs) and their approximation properties. Next, the network-
based LMMs for the discovery on a trajectory will be presented together with a discussion on
implicit regularization. Finally, we discuss the discovery on a compact region.

4.1. Preliminaries. We introduce the fully connected neural network (FNN) which is
widely used in deep learning. Mathematically speaking, given an activation function σ, L ∈ N

+,
and Wℓ ∈ N

+ for ℓ = 1, . . . , L, an FNN is the composition of L simple nonlinear functions, called
hidden layer functions, in the following formulation:

(4.1) φ̂(x;θ) := aThL ◦ hL−1 ◦ · · · ◦ h1(x) for x ∈ R
d,

where a ∈ R
WL; hℓ(xℓ) := σ (Wℓxℓ + bℓ) with Wℓ ∈ R

Wℓ×Wℓ−1 and bℓ ∈ R
Wℓ for ℓ = 1, . . . , L.

With the abuse of notations, σ(x) means that σ is applied entry-wise to a vector x to obtain
another vector of the same size. Wℓ is the width of the ℓ-th layer and L is the depth of the FNN.
θ := {a, Wℓ, bℓ : 1 ≤ ℓ ≤ L} is the set of all parameters in φ̂ to determine the underlying neural
network. Common types of activation functions include the rectified linear unit (ReLU) max(0, x)
and the sigmoid function (1 + e−x)−1.

4.2. Approximation Property. Now let us introduce existing results on the approxima-
tion property of ReLU FNNs. Given a function g on a compact subset S in R

d, we can define the
modulus of continuity by

(4.2) ωg(λ) = sup{|g(x) − g(y)| : ‖x− y‖2 ≤ λ, x,y ∈ S}, for any λ ≥ 0,

where ‖x‖2 :=
√

x21 + x22 + · · ·+ x2d is the Euclidean norm of a vector in R
d. Suppose Λ is any

subset in R
d, we define the Cr norm in Λ,

(4.3) ‖g‖Cr(Λ) := max
{

‖∂αg‖L∞(Λ) : ‖α‖1 ≤ r,α ∈ N
d
}

.

Besides, we define

(4.4) RΛ := inf{ρ > 0 : Λ ⊂ [−ρ, ρ]d}

as the “radius” of Λ.
Approximation properties of ReLU FNNs for continuous functions and smooth functions are

indicated as follows.
Proposition 4.1. Given any J,K ∈ N

+ and a function g on a compact subset S of Rd,
1. if g ∈ C(S), there exists a ReLU FNN φ̂ with width 3d+3 max{d⌊J1/d⌋, J + 1} and depth

12K + 2d+ 14 such that

(4.5) |φ̂(x)− g(x)| ≤ 19
√
dωg(2RSJ

−2/dK−2/d), for any x ∈ S;
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2. if g ∈ Cr(S) with r ∈ N
+, there exists a ReLU FNN φ̂ with width 17rd+13dd(J +2) log2(8J)

and depth 18r2(K + 2) log2(4K) + 2d such that

(4.6) |φ̂(x)− g(x)| ≤ 170RS (r + 1)d8r‖g‖Cr(S)J
−2r/dK−2r/d, for any x ∈ S,

The estimate (4.5) directly follows Theorem 4.3 in [56], and the estimate (4.6) can be derived
from Theorem 1.1 in [33] by generalizing the regular domain [0, 1]d to a compact subset S.

Note that the error bounds in (4.5) and (4.6) suffer from the curse of dimensionality; namely,
they exponentially depend on the dimension of the whole space R

d. However, if we are only
interested in the approximation on a low-dimensional submanifold rather than a general compact
subset in R

d, stronger results can be adopted. Specifically, we consider a submanifold having certain
volume, condition number, and geodesic covering regularity. Note that for manifolds, the definition
of volume can be found in [36, 8], and the condition number and geodesic covering regularity are
formally defined by Definition 2.1-2.3 in [5]. The approximation properties on submanifolds are
given as follows.

Proposition 4.2. Given J,K ∈ N
+, ε ∈ (0, 1), δ ∈ (0, 1). Let M ⊂ R

d be a compact
dM-dimensional Riemannian submanifold having condition number τ−1

M , volume VM, and geodesic
covering regularity GM, and define the ε-neighborhood as Mε := {x ∈ R

d : inf
y∈M

‖x − y‖2 ≤ ε}.
Suppose g is a function defined in Mε,

1. if g ∈ C(Mε), there exists a ReLU FNN φ̂ with width 3dδ+3max{dδ⌊J1/dδ⌋, J+1} and depth
12K + 2dδ + 14 such that

(4.7) |φ̂(x)− g(x)| ≤ 2ωf

(

4RMε((1 − δ)−1
√

d/dδ + 1)
)

+ 19
√
dωg

(

4RM(1− δ)−1
√

d/dδJ
−2/dδK−2/dδ

)

, for any x ∈ Mε;

2. if g ∈ Cr(Mε) with r ∈ N
+, there exists a ReLU FNN φ̂ with width 17rdδ+13dδdδ(J +

2) log2(8J) and depth 18r2(K + 2) log2(4K) + 2dδ such that

(4.8) |φ̂(x)− g(x)| ≤ 8‖g‖Cr(Mε)RMε((1 − δ)−1
√

d/dδ + 1)

+ 170RM(r + 1)dδ8r(1− δ)−1‖g‖Cr(Mε)J
−2r/dδK−2r/dδ , for any x ∈ Mε,

where dδ := O
(

dM ln
(

dVMGMτ−1
M /δ

)

/δ2
)

= O
(

dM ln(d/δ)/δ2
)

is an integer with dM ≤ dδ ≤ d.
Equation (4.7) in Proposition 4.2 is an immediate result of Theorem 1.2 in [56] and Equation

(4.8) can be derived from Theorem 1.1 in [33] and Theorem 4.4 in [56] similarly. In Proposition
4.2, both the error bounds and the ReLU FNN sizes depend on dδ instead of d so that the curse of
dimensionality is lessened. Note that when δ is closer to 1, dδ is closer to dM, then the approximation
actually occurs in a reduced space with dimension close to dM instead of the whole space R

d.

The approximation properties of other FNNs are also studied. For example, the properties of the
Floor-ReLU FNN and a special three-hidden-layer FNN can be found in [57] and [58], respectively.
Also, dimension-independent error bounds of FNNs for the target functions in Barron space are
investigated in [6]. It is also interesting to apply these approximation theories to develop error
estimates of dynamics discovery as future work.

4.3. Network-based Methods for Discovery. Let us review the discovery of dynamics
on a single trajectory introduced in Section 3. Indeed, the discovery by conventional LMMs is
simple to implement, and the solution can be found by merely solving a linear system. However, the
governing function f is only computed at prescribed equidistant time steps, and the relation between
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f and the state x is still unknown. One strategy to overcome this limitation is to approximate each
component of f by functions of specific structures such as neural networks, polynomials, splines,
etc. The approximate functions can be determined through optimization and will serve as closed-
form expressions for f . In real applications, once f has been recovered with an explicit expression,
the future behavior of the x on the same trajectory can be forecast via solving (2.1)-(2.2) with the
given initial condition. On the other hand, the behavior of the x on nearby trajectories can also
be predicted via solving (2.1)-(2.2) with perturbed initial conditions.

Among all structures of approximations, it is popular to employ neural networks in the discov-
ery problems. Especially, when d is moderately large, it is convenient to use neural networks to
approximate the governing functions with high-dimensional inputs, which is usually intractable for
other structures. Therefore we focus on the network-based methods in this paper. Note that the
proposed methods can be easily generalized for other structures of approximations.

We consider the neural network approximation based on the LMM scheme (3.2). Generally, we
use NM̂ to denote the set of all neural networks with a specified architecture of a size set M̂. For

example, NM̂ can be the set of all FNNs with the fixed size M̂ = {L,W}, where L is the depth

and W is the width. The notation M̂ → ∞ means that some of the numbers in M̂ go to infinity.

Now we introduce a network f̂M̂(z) ∈ NM̂ to approximate f(z), an arbitrary component of

f(·). The neural network method can be developed by replacing fn with f̂M̂(xn) in (3.2), namely,

(4.9) h

M
∑

m=0

βmf̂M̂(xn−m) =

M
∑

m=0

αmxn−m, n =M,M + 1, · · · , N,

where xn for n = 0, · · · , N are given sample locations.

Unfortunately, if M̂ is too small, the degree of freedom of NM̂ will be less than the number of

equations in (4.9) and, hence, there is no f̂M̂ ∈ NM̂ such that (4.9) is satisfied precisely. Even if

M̂ is large enough, it is usually intractable to solve (4.9) for f̂M̂ directly because of the nonlinear

parametrization of neural networks. Consequently, in practice, we seek f̂M̂ by minimizing the

residual of (4.9) under a machine learning framework. Namely, we aim to find f̂M̂ ∈ NM̂ such that

(4.10) Jh(f̂M̂) = min
u∈N

M̂

Jh(u),

where

(4.11) Jh(u) :=
1

N −M + 1

N
∑

n=M

∣

∣

∣

∣

∣

M
∑

m=0

βmu(xn−m)−
M
∑

m=0

h−1αmxn−m

∣

∣

∣

∣

∣

2

.

However, similar to the underdetermined linear system (3.6) that has infinitely many solutions,

there exist infinitely many sets of real numbers {yn}e(N)
n=s such that Jh(u) = 0 providing

(4.12) u(xn) = yn, ∀n.

For each set {yn}e(N)
n=s , if the degree of freedom of NM̂ is large enough, there is always some u ∈ NM̂

such that (4.12) is satisfied due to overfitting. In this situation, u is a global minimizer of Jh.
Consequently, Jh admits infinitely many global minimizers, all of which lead to Jh = 0 but take

distinct values at {xn}e(N)
n=s . It implies a minimizer of Jh might be totally different from the target

governing function we aim to approximate.
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To ensure the uniqueness of the minimizer in the function space at grid points, we introduce
auxiliary conditions and build an augmented loss function based on (4.11). For example, the initial
condition (3.7) on the solution network f̂M̂ is enforced by solving

(4.13) Ja,h(f̂M̂) = min
u∈N

M̂

Ja,h(u),

where
(4.14)

Ja,h(u) :=
1

t(N)





s+Na−1
∑

n=s

∣

∣

∣

∣

∣

u(xn)−
1

h

p
∑

m=0

γmxn+m

∣

∣

∣

∣

∣

2

+

N
∑

n=M

∣

∣

∣

∣

∣

M
∑

m=0

βmu(xn−m)−
M
∑

m=0

h−1αmxn−m

∣

∣

∣

∣

∣

2


 .

The augmented optimization above guarantees that f̂M̂(xn) = ĝM̂(xn) for n = s, · · · , e(N) pro-

viding Ja,h(f̂M̂) = Ja,h(ĝM̂) = 0, for any f̂M̂, ĝM̂ ∈ NM̂.

Indeed, two networks that are equal at grids {xn}e(N)
n=s are not necessarily equal on the whole

trajectory {x(t) : 0 ≤ t ≤ T}. Fortunately, it is shown for regression problems and partial
differential equation problems, deep learning can generalize well [26, 39, 38, 35]. This means the
closeness of two networks at a dense set of training inputs can lead to their closeness at other nearby
inputs. It can be inferred that f̂M̂(x(t)) ≈ ĝM̂(x(t)) for 0 ≤ t ≤ T providing f̂M̂(xn) = ĝM̂(xn)

for n = s, · · · , e(N) for any f̂M̂, ĝM̂ ∈ NM̂ as long as N is moderately large.

4.4. Implicit Regularization. We discuss the implicit regularization [42, 29] of gradient
descent in deep learning. For regression problems, if we use over-parameterized FNNs with the
standard random initialization, gradient descent can lead to global convergence with a linear con-
vergence rate under certain conditions [23, 11, 15, 67]. Similar results also exist in the problems
of solving partial differential equations [35]. Even though the global convergence could be estab-
lished with over-parametrization, global minimizers are typically not unique. It is interesting to
investigate what global minimizers would be identified by gradient descent and how the training
process would reduce fitting errors. To answer these questions, it has been shown that, in regression
problems, the training of FNN first captures low-frequency components of the target function and
then starts to eliminate the high-frequency fitting error [66, 34]. Similar work about this spectral
bias of deep learning is discussed in [10, 45]. In sum, all the above discussions show that neural
networks trained by gradient descent in regression problems have an implicit bias towards smooth
functions with low frequencies among all possible neural networks that perfectly fit training data.

Now let us consider the preceding network-based LMM optimization. Note that the loss func-
tion (4.11) without auxiliary conditions and the loss function (4.14) with auxiliary conditions are
formally close to the ℓ2 loss in regression problems. Especially, for BDF schemes, β0 = 1 and
β2 = β3 = · · · = 0, so the loss functions (4.11) and (4.14) are exactly the ℓ2 loss. Hence, it is
conjectured that the implicit regularization discussed above can also be applied to the LMM op-
timization. Namely, the gradient descent tends to find a very smooth function among all global
minimizers. Consequently, if the target governing function is also smooth enough, the gradient
descent is expected to find good approximations either through (4.10) without auxiliary conditions,
or through (4.13) with auxiliary conditions. Numerical experiments in Section 6 will validate this.

However, the implicit regularization may not succeed in the discovery problems with noisy
measurement. In a recent work [65], a typical example is presented to show the discovery of
the Navier-Stokes equation using A-M scheme with M = 1, where the data is perturbed with
Gaussian noise. Similar to the approach discussed in this work, the network is trained through the
optimization with implicit regularization. The results show that the discovery is fairly accurate
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(with errors O(10−2)) for small noise magnitude (1%), but becomes completely incorrect (with
errors O(101)) if the noise is enlarged to 5%. This implies that the network approximation with
implicit regularization is sometimes sensitive to the perturbation of the raw data such as noise,
especially when the problem is ill-conditioned. Future investigations should be carried out to make
further potential improvement for this issue.

4.5. Discovery on a Compact Region. The network-based formulation (4.13)-(4.14) is
specific for the discovery on a single trajectory from which the data are collected. More generally,
we can build similar formulations for the discovery on a connected compact region, from which a
set of trajectories can be sampled, to recover the whole vector field in this region.

Suppose x(t; x̃0) is the solution of (2.1) with initial value x̃0. Let Γ be a compact subset in
R
d, then Ω := {x(t; x̃) : 0 ≤ t ≤ T, x̃ ∈ Γ} ⊂ R

d is a compact region filled with all trajectories
starting from Γ with time period 0 ≤ t ≤ T . In practice, suppose we are given a dataset {xn,n′ =
x(tn; x̃n′)}n=0,··· ,N ;n′=1,··· ,N ′ , where {x̃n′}n′=1,··· ,N ′ is a set of points densely distributed in Γ, and
suppose Ω is densely covered by {xn,n′}. We aim to use neural networks to approximate the
governing function in the whole subset Ω.

Note that (4.14) is a loss function with respect to one trajectory. For multiple trajectories,
we can build a similar loss function by summing up all individual loss functions with respect to
each trajectory. Specifically, let f̂M̂ be a network that approximates a certain component of the

governing function, then we can determine f̂M̂ by

(4.15) Ja,h,multi(f̂M̂) = min
u∈N

M̂

Ja,h,multi(u),

where

(4.16) Ja,h,multi(u) :=
1

N ′t(N)

N ′
∑

n′=1

·





s+Na−1
∑

n=s

∣

∣

∣

∣

∣

u(xn,n′)− 1

h

p
∑

m=0

γmxi+m,n′

∣

∣

∣

∣

∣

2

+

N
∑

n=M

∣

∣

∣

∣

∣

M
∑

m=0

βmu(xn−m,n′)−
M
∑

m=0

h−1αmxn−m,n′

∣

∣

∣

∣

∣

2


 .

Similar to the discovery on a single trajectory, the optimization (4.15)-(4.16) for multiple tra-
jectories will be also effective without auxiliary conditions due to the implicit regularization.

5. Convergence Analysis. In this section, we consider the convergence of the preceding
network-based dynamics discovery using LMMs, namely, the convergence from the global minimizer
of the optimization to the exact governing function f as M̂ → ∞ and h → 0. The optimization
with auxiliary initial conditions is taken as a special case for analysis. For the optimization with
other auxiliary conditions, a similar argument can be applied.

5.1. Error Estimates on a Trajectory. We consider the error estimation of the dis-
covery on the specific trajectory T := {x(t) : 0 ≤ t ≤ T}. For least-square optimization, people
are usually interested in the ℓ2-type error estimation. Therefore, let us introduce the ℓ2 seminorm

|g|2,h :=
(

(N + 1)−1
∑N

n=0 |g(xn)|2
)1/2

, for all g ∈ C(T ) with a given h > 0. Note that | · |2,h is

not a norm in C(T ) since |g|2,h = 0 does not imply g = 0 in C(T ). However, | · |2,h acts as a norm
in the space of all grid functions merely defined on {xn}Nn=0 (see [25]).

As discussed above, for a specific LMM, some states in {xn}Nn=0 may not be involved in the

scheme. For fairness, we study the convergence at all involved states {xn}e(N)
i=s . Therefore, we

rewrite | · |2,h as the LMM-related seminorm |g|2,h =
(

t(N)−1
∑e(N)

n=s |g(xn)|2
)1/2

, for all g ∈ C(T ).
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Without ambiguity, we use the notation | · |2,h for all LMMs afterwards. If we write {g(xn)}e(N)
n=s

as a vector ~g :=
[

g(xs) g(xs+1) · · · g(xe(N))
]T

, then it follows |g|2,h = (t(N))−1/2‖~g‖2, where
‖ · ‖2 is the Euclidean norm of a column vector.

First, let us reformulate the optimization (4.13)-(4.14) with an abstract admissible set, say,
Ja,h(f̂A,h) = min

u∈A
Ja,h(u), where Ja,h(u) is defined in (4.14) and A is a general nonempty set of

functions. We aim to estimate the distance between f̂A,h and f .
For a given LMM, recall thatBh defined in (3.5) is constructed by lining up the LMM coefficients

into rows and Ah is defined in (3.10). We denote the 2-condition number of Ah by κ2(Ah) =
‖Ah‖2‖A−1

h ‖2. The estimation is described as follows.
Theorem 5.1. In the dynamical system (2.1), suppose x ∈ C∞([0, T ])d and f is defined in T ′,

a small neighborhood of T . Let f be an arbitrary component of f . Also, let N > 0 be an integer
and h := T/N , then we have

(5.1)
∣

∣

∣f̂A,h − f
∣

∣

∣

2,h
< Cκ2(Ah) (h

p + eA) ,

where f̂A,h ∈ A is a global minimizer of Ja,h defined by (4.14) corresponding to an LMM with order
p; eA satisfies eA > inf

u∈A
sup
x∈T ′

|u(x)− f(x)|; C is a constant independent of h and A.

Proof. Given h > 0, similar to (2.4), we can define the component-wise local truncation error
by τh,n := h−1

∑M
m=0 αmxn−m −∑M

m=0 βmf(x(tn−m)). Then by denoting

(5.2) ~τh := [τh,M τh,M+1 · · · τh,N ]T , ~f :=
[

f(xs) f(xs+1) · · · f(xe(N))
]T
,

we have ~τh = ~qh −Bh
~f . By the hypothesis that the LMM has order p, there exists some C1 > 0

independent of h such that

(5.3) ‖~τh‖2 ≤ (N −M + 1)
1

2‖~τh‖∞ < C1(N −M + 1)
1

2hp.

On the other hand, since eA > inf
u∈A

sup
x∈T ′

|u(x) − f(x)|, there exists a function v ∈ A such that

(5.4) |v(x)− f(x)| ≤ eA, ∀x ∈ T ′.

Also, write eh = ch − [INa O] ~f , where ch is defined in (3.9). Then by (3.8), there exists some
constant C2 independent of h such that

(5.5) ‖eh‖2 ≤ N
1

2
a ‖eh‖∞ < C2N

1

2
a h

p.

Moreover, we introduce the notation
~̂
fA,h =

[

f̂A,h(xs) f̂A,h(xs+1) · · · f̂A,h(xe(N))
]T

and

~v :=
[

v(xs) v(xs+1) · · · v(xe(N))
]T

. Then by (3.10), we immediately have

(5.6) Ja,h(f̂A,h) =
1

t(N)

∥

∥

∥

∥

Ah
~̂
fA,h −

[

ch
~qh

]∥

∥

∥

∥

2

2

=
1

t(N)

∥

∥

∥

∥

Ah

(

~̂
fA,h − ~f

)

−
[

eh
~τh

]∥

∥

∥

∥

2

2

.

Since f̂A,h ∈ NM̂ is a global minimizer of Ja,h, it satisfies Ja,h(f̂A,h) ≤ Ja,h(v), namely,

(5.7)
1

t(N)

∥

∥

∥

∥

Ah

(

~̂
fA,h − ~f

)

−
[

eh
~τh

]∥

∥

∥

∥

2

2

≤ 1

t(N)

∥

∥

∥

∥

Ah

(

~v − ~f
)

−
[

eh
~τh

]∥

∥

∥

∥

2

2

,
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which implies

(5.8)
∥

∥

∥Ah

(

~̂
fA,h − ~f

)∥

∥

∥

2
−

∥

∥

∥

∥

[

eh
~τh

]∥

∥

∥

∥

2

≤
∥

∥

∥Ah

(

~v − ~f
)∥

∥

∥

2
+

∥

∥

∥

∥

[

eh
~τh

]∥

∥

∥

∥

2

.

Therefore,

(5.9)
∥

∥

∥

~̂
fA,h − ~f

∥

∥

∥

2
≤ ‖A−1

h ‖2
∥

∥

∥Ah

(

~̂
fA,h − ~f

)∥

∥

∥

2
≤ ‖A−1

h ‖2
(

∥

∥

∥Ah

(

~v − ~f
)∥

∥

∥

2
+ 2

∥

∥

∥

∥

[

eh
~τh

]∥

∥

∥

∥

2

)

.

As a consequence, by (5.3), (5.4), (5.5), and (5.9), it follows that

∣

∣

∣
f̂A,h − f

∣

∣

∣

2,h
= t(N)−

1

2

∥

∥

∥

~̂
fA,h − ~f

∥

∥

∥

2

≤ t(N)−
1

2

[

‖Ah‖2‖A−1
h ‖2‖~v − ~f‖2 + 2‖A−1

h ‖2
(

‖eh‖22 + ‖~τh‖22
)

1

2

]

≤ t(N)−
1

2

[

t(N)
1

2 ‖Ah‖2‖A−1
h ‖2 · eA + 2‖A−1

h ‖2
(

C2
2Na + C2

1 (N −M + 1)
)

1

2 hp
]

≤ Cκ2(Ah) (h
p + eA) .

with C independent of h and A, which completes the proof.

The error estimate given in Theorem 5.1 is general for any types of the admissible set A.
Specifically, we propose the error estimate of the discovery using neural networks. Note that T is
a one-dimensional Riemannian submanifold, combining Theorem 5.1 and Proposition 4.2 directly
leads to the following result.

Theorem 5.2. Under the notations and hypothesis of Theorem 5.1, for any J,K ∈ N
+ and

δ ∈ (0, 1), it satisfies:

1. If f ∈ C(T ′) and NM̂ consists of all ReLU FNNs with width 3dδ+3max{dδ⌊J1/dδ⌋, J + 1}
and depth 12K + 2dδ + 14,

(5.10)
∣

∣

∣
f̂M̂,h − f

∣

∣

∣

2,h
< Cκ2(Ah) (h

p + eNN(J,K))

with eNN(J,K) =
√
dωf

(

4RT (1− δ)−1
√

d/dδJ
−2/dδK−2/dδ

)

;

2. If f ∈ Cr(T ′) with r ∈ N
+ and NM̂ consists of all ReLU FNNs with width 17rdδ+13dδdδ(J+

2) log2(8J) and depth 18r2(K + 2) log2(4K) + 2dδ, then (5.10) still holds with eNN(J,K) =
RT (r + 1)dδ8r(1− δ)−1‖f‖Cr(T ′)J

−2r/dδK−2r/dδ ,

where dδ = O
(

ln(d/δ)/δ2
)

is an integer such that 1 ≤ dδ ≤ d; RT is defined by (4.4); ωf (·) is

defined by (4.2); f̂M̂,h ∈ NM̂ is a global minimizer of Ja,h defined by (4.14) corresponding to an
LMM with order p; C is a constant independent of h, J , K, d and dδ. In particular, if κ2(Ah) is
uniformly bounded for all h > 0, then

(5.11) lim
J,K→∞,h→0

∣

∣

∣f̂M̂,h − f
∣

∣

∣

2,h
= 0.

Remark 5.1. If J and K are large enough, the error bound eNN(J,K) will be overwhelmed by
hp. This means the LMM truncation error will dominate the network approximation error if the

network size is large enough. In this situation,
∣

∣

∣
f̂M̂,h − f

∣

∣

∣

2,h
will decay to zero with the rate O(hp).

Namely, the convergence rate has the same order as the LMM scheme.
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Similarly, we can develop the ℓ2 error estimate for the discovery on multiple trajectories (4.15)-
(4.16). It suffices to use preceding results to get an error inequality for each trajectory and take the

mean square of them. Specifically, we define |g|2,h,multi =
(

(t(N)N ′)−1
∑N ′

n′=1

∑e(N)
n=s |g(xn,n′)|2

)1/2
,

for all g ∈ C(Ω), then under the hypothesis of Theorem 5.1, it satisfies

(5.12)
∣

∣

∣f̂M̂,h − f
∣

∣

∣

2,h,multi
< Cκ2(Ah) (h

p + eA) ,

where f̂A,h ∈ A is a global minimizer of Ja,h defined by (4.16) corresponding to an LMM with order
p, and eA is any real number such that eA > inf

u∈A
sup
x∈Ω

|u(x)− f(x)|.
In particular, we can derive the error estimates for the discovery using ReLU FNNs if the

governing function is either continuous or Cr smooth from Proposition 4.1. Similar arguments
apply to other types of neural networks or other structures of approximations.

5.2. Uniform Boundedness of κ2(Ah). Next, we discuss the estimation of κ2(Ah). This
is a special case, corresponding to the | · |2,h norm, of the discussion on the stability of LMM for
dynamics discovery made in [25]. Here, for completeness, we provide an alternative approach to
derive a conclusion that is the same as that shown in [25]. First, we introduce the following lemma
([3]),

Lemma 5.3. Given the following triangular Toeplitz band matrix

(5.13) TN =



















c0
...

. . .

cM
. . .

. . .
. . .

. . .
. . .

cM · · · c0



















∈ R
N×N

with c0 6= 0, we define the associated polynomial by p(z) =
∑M

i=0 ciz
M−i. If all roots of p(z)

have modulus smaller than 1, then κ2(TN ) is uniformly bounded, i.e. κ2(TN ) < C for some C
independent of N .

Then we have the following theorem to determine the uniform boundedness of κ2(Ah),

Theorem 5.4. Let Ah be the matrix defined by (3.11), and ph(z) be the following polynomial

(5.14) ph(z) =
M−s
∑

i=N−e(N)

βiz
M−s−i.

If all roots of ph(z) have modulus smaller than 1, then κ2(Ah) is uniformly bounded with respect to
N .

Proof. Rewrite Ah as 2× 2 blocks

(5.15) Ah =

[

INa O

Bh,1 Bh,2

]

, where Bh,1 =











βM−s · · · βN−e(N)+1

. . .
...

βM−s

· · ·











∈ R
(N−M+1)×Na ,
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and

(5.16) Bh,2 =



















βN−e(N)
...

. . .

βM−s
. . .

. . .
. . .

. . .
. . .

βM−s · · · βN−e(N)



















∈ R
(N−M+1)×(N−M+1).

Clearly, ‖Bh,1‖2 only depends on the LMM scheme and independent of N . By Lemma 5.3,
both ‖Bh,2‖2 and ‖B−1

h,2‖2 are uniformly bounded with respect to N . Therefore, the proof directly
follows

(5.17) ‖Ah‖2 = max
‖x‖2=1

‖Ahx‖2 = max
‖x‖2=1

∥

∥

∥

∥

[

INa O

Bh,1 Bh,2

] [

x1

x2

]∥

∥

∥

∥

2

= max
‖x‖2=1

(

‖x1‖22 + ‖Bh,1x1 +Bh,2x2‖22
)

1

2 ≤ max
‖x‖2=1

(

‖x1‖22 + (‖Bh,1‖2‖x1‖2 + ‖Bh,2‖2‖x2‖2)2
)

1

2

≤
(

1 + (‖Bh,1‖2 + ‖Bh,2‖2)2
) 1

2

,

and

(5.18) ‖A−1
h ‖2 = max

‖x‖2=1
‖A−1

h x‖2 = max
‖x‖2=1

∥

∥

∥

∥

[

INa O

−B−1
h,2Bh,1 B−1

h,2

] [

x1

x2

]∥

∥

∥

∥

2

= max
‖x‖2=1

(

‖x1‖22 + ‖ −B−1
h,2Bh,1x1 +B−1

h,2x2‖22
) 1

2

≤ max
‖x‖2=1

(

‖x1‖22 + ‖B−1
h,2‖22 (‖x2‖2 + ‖Bh,1‖2‖x1‖2)2

)
1

2 ≤
(

1 + ‖B−1
h,2‖22 (1 + ‖Bh,1‖2)2

)
1

2

.

Remark 5.2. For BDF schemes, β1 = · · · = βM = 0, and the corresponding Bh,2 is a diagonal
matrix with diagonals β0. So Ah is always uniformly bounded for each M ∈ N. This means the
network-based dynamics discovery with BDF schemes for all M ∈ N is convergent in the sense of
(5.11).

Remark 5.3. For A-B schemes, Bh,2 is diagonal if M = 1. Also, it is verified for 2 ≤M ≤ 6,
all the roots of the associated polynomial ph(z) have modulus smaller than 1 ([25]). Hence, by
Theorem 5.4, Ah is uniformly bounded for 1 ≤ m ≤ 6. This means the network-based dynamics
discovery with A-B schemes for 1 ≤M ≤ 6 is convergent in the sense of (5.11).

Remark 5.4. For A-M schemes with M ≥ 2, it was proven in [25] that all the roots of the
associated polynomial ph(z) have a modulus greater than 1. In these cases, κ2(Ah) increases expo-
nentially with respect to N , and hence the error bounds in Theorem 5.2 also increases exponentially.
This means we have no guarantee of their convergence in theory. In spite of this, it is still possible
to obtain convergent solutions as h→ 0 in practice (see Section 6.1.4 and Appendix A)

Remark 5.5. Note that [25] considered stability under norms other than | · |2,h as well, which
also allowed the discussion of convergence for A-B family for which there are roots on the unit disc.
In particular, it was shown that A-M scheme is marginally stable for M = 1, (see the definition
in [25]) but remains convergent. Actually, in this case, κ2(Ah) increases linearly with respect
to N = T/h. If the network size is large enough such that the network approximation error is
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dominated by O(hp), the error bounds in Theorem 5.2 will be C · T
h · hp = O(h) since p = 2. This

means A-M scheme with M = 1 is convergent with order 1. Moreover, Theorem 5.2 can be modified
for norms other than | · |2,h and condition number other than κ2, resulting in various error bounds
with special orders.

6. Numerical Experiments. In this section, several examples are provided to show the
performance of dynamics discovery via deep learning in practical computation. We aim to compute
the errors of various LMMs, estimate the orders of accuracy and compare them with the theoretical
ones.

In the first, second and third examples, we conduct the discovery on a single trajectory T
described in Section 4.3, in which we define the following relative ℓ2 error

(6.1) ef̂ =



d−1
d

∑

j=1





e(N)
∑

n=s

∣

∣

∣f̂j(xn)− fj(xn)
∣

∣

∣

2



 /





e(N)
∑

n=s

|fj(xn)|2








1/2

,

where fn for n = 1, · · · , d are components of the original governing function f , and f̂n is the network

approximating fn. Note that {xn}e(N)
n=s are exactly the grid points involved in the loss function,

the error defined by (6.1) is actually an empirical error. For the deep learning, we name (6.1) as
the training error or grid error. On the other hand, we are also interested in the generalization
performance of the network approximation. So we also define the relative ℓ2 error at testing points
as

(6.2)

ẽf̂ =



d−1
d

∑

j=1

∫

T |f̂j − fj|2ds
∫

T |fj|2ds





1/2

=



d−1
d

∑

j=1

∫ T
0 |f̂j(x(t)) − fj(x(t))|2 · ‖f(x(t))‖2dt

∫ T
0 |fj(x(t))|2 · ‖f(x(t))‖2dt





1/2

,

where the integral over T is evaluated by Gauss quadrature. For the deep learning, we name (6.2)
as the testing error. Both (6.1) and (6.2) are taken as metrics for evaluation.

In the fourth example, we conduct the discovery on a compact region Ω described in Section
4.5. Similarly, we define the following training error

(6.3) ef̂ =






d−1

d
∑

j=1

∑N ′

n′=1

∑e(N)
n=s

∣

∣

∣f̂j(xn,n′)− fj(xn,n′)
∣

∣

∣

2

∑N ′

n′=1

∑e(N)
n=s |fj(xn,n′)|2







1/2

,

and testing error ẽf̂ =
(

d−1
∑d

j=1

(

∫

Ω |f̂j − fj|2dx
)

/
(∫

Ω |fj|2dx
)

)1/2
, where the integral over Ω is

evaluated by Monte Carlo method.
The overall setting in all experiments is summarized as follows.

• Environment The experiments are performed in Python 3.8 environment. We utilize
PyTorch library for neural network implementation and CUDA 11.0 toolkit for GPU-based
parallel computing. All examples are implemented on a desktop.

• Optimizer and hyper-parameters The network-based optimization is solved by adam
subroutine from PyTorch library. This subroutine implements the Adam algorithm in [27].
For all examples, the number of epochs NI is set as 3×104, and use batch gradient descent.
The learning rate in the n-th epoch, denoted as δn, is set to decay exponentially with linearly
decreasing powers from 10−2 to 10−4, namely, δn = 10−2−2n/NI .
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• Network setting The FNN with ReLU activation is taken for approximation, whose
weights and biases are initialized via uniform distributions Wl, bl ∼ U(−

√

Wl−1,
√

Wl−1).
• Generation of data In the first example, the state data are generated directly by the

explicit expression. In the second and third examples, no expression for the state is available.
Hence we generate the state data by solving the dynamical system via the solver ode45 in
Matlab with tiny tolerances (RelTol= 10−13, AbsTol= 10−13).

In the numerical implementation, the overall error is not only affected by the LMM discretiza-
tion error and the network approximation error, but also by the optimization performance. In
neural network optimization, it is usually difficult to find global minimizers numerically due to
non-convexity. There is no existing optimizer that can guarantee to identify a global minimizer to
the best of our knowledge. The optimization error is the difference between the actually identified
neural network and the neural network associated with an arbitrary global minimizer. Consequently,
for LMMs with uniformly bounded κ2(A), the overall error between the numerical solution and
the target governing function consists of the LMM discretization error O(hp), the network approx-
imation error determined by the network size, and the optimization error. We will validate and
quantify the optimization error in our tests later.

6.1. Problem with Accurate Data. Let us consider the following model problem

(6.4)

{

ẋ1 = x2, ẋ2 = −x1, ẋ3 = 1/x22, t ∈ [0, 1]

[x1, x2, x3]t=0 = [0, 1, 0],
,

whose state can be explicitly given by x1 = sin(t), x2 = cos(t), x3 = tan(t). Thanks to the explicit
expressions, we can directly take the accurate time-series {x1(tn), x2(tn), x3(tn)}Nn=1 for the test,
and no error is brought to the data. Under this setting, the error on numerical solutions are only
caused by the method. In this experiment, we focus on the deep learning discovery with auxiliary
initial conditions (4.13)-(4.14).

6.1.1. Network Size Test. Note that Theorem 5.2 implies ef̂ ∼ O(hp) as h→ 0, as long
as the network is sufficiently deep and wide. However, in practice, the desired depth and width
are usually unknown. So we first perform the discovery with networks of various sizes to find a
decent network that is both effective in approximation and cheap in computation. Specifically, we
use depth L = 2, 3, · · · , 6, width W = 10, 20, · · · , 2560, and h = 10−3. The BDF-6 scheme
is employed in this test. Therefore, the local truncation error is up to O(h6) = O(10−18), which
is smaller than machine precision. Consequently, numerical errors in this case are mainly caused
by network approximation (i.e., the difference of the network associated with a global minimizer
of (4.10) and (4.13) and the target function) and network optimization (i.e., the difference of the
networks associated with a local minimizer and a global minimizer of (4.10) and (4.13)). In Figure
6.1, ef̂ and ẽf̂ versusW for various L are presented. It is observed that both errors decrease quickly
as W increases. On the other hand, the network with L = 5 and W = 2560 obtains the minimal
error. We can also observe that for L = 5, the error decay becomes very slow after W = 640.
Consequently, we choose the network with L = 5 and W = 640 for all tests afterward, since the
computation whenW = 640 is not expensive and the overall error cannot be improved significantly
furthermore.

6.1.2. Quantification of Optimization Errors. A special test is conducted to estimate
the optimization errors. First, we set up three ReLU FNNs with L = 5 and W = 640, denoted as
f̂∗1 , f̂

∗
2 , f̂

∗
3 , and use them to fit the three components of the governing functions in (6.4), respectively.

We use a standard least-square regression in this fitting. Next, we consider the dynamical system
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Fig. 6.1: Training error ef̂ and testing error ẽf̂
versus W of the model problem (6.4).
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Fig. 6.2: Training error ef̂ and testing error
ẽf̂ versus h via network-based A-M schemes of

the model problem (6.4).

with the governing function being these FNNs, namely,

(6.5)

{

ẋ1 = f̂∗1 , ẋ2 = f̂∗2 , ẋ3 = f̂∗3 , t ∈ [0, 1]

[x1, x2, x3]t=0 = [0, 1, 0],
.

We still use ReLU FNNs with L = 5 and W = 640 to do discovery on (6.5). Under this setting, the
approximate networks have the same architecture as the target governing function, which implies
the approximation error is automatically zero. Moreover, same as the preceding test, we take BDF-
6 scheme with h = 10−3, whose LMM discretization error is negligible. Therefore the obtained
error should be dominated by the optimization error.

Finally, we obtain the training error ef̂ = 3.451 × 10−4 and testing error ẽf̂ = 3.443 × 10−4,

which reflects the optimization error caused by the current optimizer is around O(10−4). This
quantification indicates that there exists an error bottleneck around O(10−4) preventing the overall
error from being reduced below it.

6.1.3. Convergence Rate with Respect to h. Next, we test the convergence rate of
the deep learning discovery by varying h and using various LMM schemes. Recall the overall error
consists of the LMM discretization error, the network approximation error, and the optimization
error. To conduct appropriate tests on the convergence order in h, the network approximation
error and the optimization error should be well controlled such that the LMM discretization error
is the dominant error. For this purpose, we will conduct a series of tests to empirically identify
a threshold h∗ > 0 such that the LMM discretization error is dominating the overall error when
h > h∗. When h < h∗, although decreasing h would still reduce the overall error, it is difficult to
observe the order of O(hp) since, for example, the optimization error may be dominant.

Specifically, we assign h = 2−3, · · · , 2−9, fix the network width W = 640, and test A-B and
BDF (M = 1, · · · , 4) schemes, both of which are proved to have uniformly bounded matrices Ah.
The log-log error decay versus h for each scheme is presented in Figure 6.3. Recall the theoretical
results in Section 5 imply that the training error of the M -step scheme should converge to zero
with order M . According to Figure 6.3, there indeed exist some empirical threshold h∗ > 0 for
each scheme. It is shown in Figure 6.3 (a) that when h > h∗, deep learning-based LMMs can
effectively discover the governing function on training sample points with error orders close to the
theoretical ones. And it is shown in Figure 6.3 (b) that deep learning-based LMMs also have good
generalization performance similar to the training error on sample points.

We would like to double-check that W = 640 is an appropriate size and the approximation
error is small enough for the convergence rate test with respect to h; that is, the training errors are
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Fig. 6.3: Training error ef̂ and testing error ẽf̂ versus h via network-based A-B/BDF schemes of

the model problem (6.4).

indeed dominated by O(hp) when h > h∗, in which case the log-log error curves appear as straight
line segments. For different M and h∗, we repeat the preceding test using width W = 1280 and
present the new training errors in Table 6.1. Table 6.1 shows that usingW = 1280 can not even get
smaller errors in most cases, which excludes the possibility that the network approximation error
is dominant. Note that decreasing h can reduce errors with an expected order as long as h > h∗,
which excludes the possibility that the optimization error is dominant. Therefore, these numerical
results show that the training errors are dominated by the LMM discretization when h > h∗, which
is a suitable range of h for a convergence test.

6.1.4. Convergence of A-M schemes. Moreover, we perform a test using A-M schemes
with 1 ≤M ≤ 4 . Although no theoretical analysis is made on the convergence of A-M schemes with
M ≥ 2 (see Remark 5.4), it is intriguing to investigate how the A-M schemes perform in practice.
First, we conduct the network-based discovery with A-M schemes under the same framework as in
Section 6.1.3. The training and testing errors versus h are shown in Figure 6.2. It is observed that
both errors decrease as h decreases, though the errors decrease more slowly when h is smaller due
to the optimization errors.

This result indicates that the network-based LMM with unstable schemes can still work effec-
tively, obtaining solutions with small errors if h is small enough. However, comparative tests in
Appendix A show that with unstable LMM schemes, using other approximations (e.g., grid func-
tions and polynomials) are less robust, whose results are highly sensitive to the used solvers and
their settings. This comparison implies that the network approximation is advantageous over other
approximations in overcoming the ill-conditioning of the unstable schemes.

Despite obtaining errors up to O(10−3) in this test, A-M schemes are not recommended to users
in practical problems. Indeed, the observed convergence rates are clearly lower than the theoretical
ones, and it shows no improvement when using larger M . Instead, stable schemes such as A-B or
BDF are more manageable in the convergence rates and not more expensive in the computational
cost.

6.1.5. Variability test. Finally, we conduct a variability test by repeating the experi-
ments with randomness. Note that the randomness of our algorithm only comes from the initial-
ization of neural networks. In this test, the A-B, BDF and A-M schemes for various M and h
are implemented repeatedly on the model problem (6.4) using 10 different random seeds, and we
compute the average errors and their standard deviations of these trials. Selected results for the
training errors are presented in Table 6.2. It is clear that most of the average errors dominate their
standard deviations, and in some cases they have the same magnitude (e.g., (M,h) = (4, 1/32)).



20 Discovery of Dynamics via Deep Learning

Schemes A-B BDF

M,h∗ h ef̂ ,W=640 ef̂ ,W=1280 Diff ef̂ ,W=640 ef̂ ,W=1280 Diff

M = 1
h∗ = 1/512

1/8 1.019e-01 1.019e-01 6.755e-10 9.330e-02 9.987e-02 -6.576e-03
1/32 2.485e-02 2.485e-02 -8.722e-07 2.431e-02 2.471e-02 -3.971e-04
1/128 6.173e-03 6.179e-03 -5.386e-06 6.139e-03 6.142e-03 -3.145e-06
1/512 1.561e-03 1.595e-03 -3.420e-05 1.582e-03 1.598e-03 -1.544e-05

M = 2
h∗ = 1/64

1/8 2.234e-02 2.234e-02 -1.937e-12 2.222e-02 2.222e-02 1.128e-10
1/16 6.928e-03 6.930e-03 -1.946e-06 6.405e-03 1.433e-02 -7.928e-03
1/32 1.987e-03 2.045e-03 -5.865e-05 1.746e-03 1.877e-03 -1.304e-04
1/64 6.110e-04 8.278e-04 -2.167e-04 5.380e-04 1.298e-03 -7.602e-04

M = 3
h∗ = 1/23

1/8 8.117e-03 8.117e-03 -1.388e-17 8.354e-03 8.354e-03 1.105e-08
1/11 4.035e-03 4.036e-03 -1.016e-06 3.836e-03 3.840e-03 -4.602e-06
1/16 1.665e-03 1.744e-03 -7.959e-05 1.471e-03 1.950e-03 -4.786e-04
1/23 6.735e-04 7.855e-04 -1.120e-04 6.531e-04 8.099e-03 -7.446e-03

M = 4
h∗ = 1/16

1/8 3.852e-03 3.949e-03 -9.610e-05 3.920e-03 3.920e-03 1.996e-14
1/11 1.577e-03 1.577e-03 -4.042e-09 1.472e-03 1.470e-03 2.552e-06
1/16 5.179e-04 6.443e-04 -1.263e-04 5.413e-04 1.375e-03 -8.338e-04

Table 6.1: Training errors ef̂ with W = 640 and 1280 for various h’s using A-B and BDF schemes

of the model problem (6.4). h∗ denotes the step size threshold above which the error decreases as
O(hp) approximately. “Diff” denotes ef̂ ,W=640 − ef̂ ,W=1280.

Schemes A-B BDF A-M

(M,h) ef̂ SD ef̂ SD ef̂ SD

(1, 1/8) 1.019e-01 2.789e-09 9.330e-02 5.626e-09 9.007e-03 3.433e-04

(1, 1/16) 5.032e-02 2.381e-04 4.801e-02 2.707e-07 2.258e-03 7.404e-05

(1, 1/32) 2.489e-02 5.792e-05 2.432e-02 6.625e-07 1.262e-03 8.316e-04

(1, 1/64) 1.237e-02 3.607e-06 1.224e-02 1.376e-05 3.968e-04 3.892e-05

(1, 1/128) 6.175e-03 3.502e-06 6.145e-03 4.452e-06 4.099e-04 9.328e-05

(4, 1/8) 3.852e-03 2.084e-09 3.920e-03 3.610e-12 1.059e-02 1.919e-03

(4, 1/16) 5.183e-04 1.146e-06 4.742e-04 1.757e-05 3.492e-03 1.472e-03

(4, 1/32) 1.923e-03 1.691e-03 6.707e-04 5.927e-04 9.407e-04 5.669e-04

(4, 1/64) 9.154e-04 5.227e-04 3.283e-04 5.869e-05 6.474e-04 4.152e-04

(4, 1/128) 4.678e-04 9.506e-05 2.736e-04 4.330e-05 3.945e-04 1.279e-04

Table 6.2: Average training errors ef̂ and standard deviations (SDs) of 10 trials with different

random seeds. (Used network size: L = 5, W = 640)

Same results apply to the testing errors. Therefore the computed errors with any random seeds
are kept in the same magnitude with high probability. Consequently, our algorithm is numerically
stable under the random initialization, and hence all experiments and conclusions are reliable.

6.2. Lorenz System. Let us consider the 3-D Lorenz system which characterizes the
chaotic dynamics for certain initial conditions and has a number of important applications including
weather forecasting. The system is formulated as

(6.6) ẋ1 = 10(x2 − x1), ẋ2 = x1(28 − x3)− x2, ẋ3 = x1x2 − 8x3/3, t ∈ [0, T ],
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Fig. 6.4: Training error ef̂ and testing error ẽf̂ versus h via network-based A-B/BDF schemes with

or without auxiliary conditions (ACs) of Lorenz system (6.6).

6.2.1. Convergence Rate with Respect to h. We continue testing the convergence
rate with respect to h of the dynamics discovery via deep learning. As in the previous convergence
test, the test is only valid when h is larger than a threshold h∗ when the LMM discretization error
is dominating the overall error. For simplicity, we only empirically chooseW = 640 since this width
is large enough for the previous test. Specifically, we consider the long time behavior of the system
(6.6) by setting T = 25 and taking initial values [x1, x2, x3]t=0 = [−8, 7, 27]. We assign h = 0.04,
0.02, · · · , 0.0025 and take A-B (M = 1, · · · , 4) and BDF (M = 1, · · · , 4) schemes. First, we conduct
the optimization with initial conditions (4.13)-(4.14). The error decay versus h is demonstrated
in Figure 6.4. The dynamics of the true governing function and the approximate neural network
obtained by A-B (M = 4, h = 0.0025) are also presented in Figure 6.5, from which we observe that
deep learning can identify the chaotic dynamics on training samples effectively.

As discussed in Section 4.4, it is conjectured that auxiliary conditions may not be necessary to
guarantee a correct solution because the implicit regularization has a bias towards the smoothest
solution. To validate this fact, we conduct a comparative test by solving the optimization (4.10)-
(4.11) with or without auxiliary conditions (ACs) in the loss function of the problem in (6.6).
We take the same parameters as in the preceding test and visualize the error decay versus h for
A-B schemes in Figure 6.4. We visualize the training error and loss versus training iterations in
Figure 6.7. It is clear that when h = 0.02, the error of the A-B (M = 2) scheme without auxiliary
conditions is larger than the one with initial auxiliary conditions. The difference is also significant
for A-B scheme (M = 4) with h ≤ 0.01. The comparison shows that the approach with auxiliary
conditions is more accurate, although both approaches work effectively overall. Due to the non-
uniqueness of networks approximately minimizing the loss function, networks with and without the
auxiliary conditions can both reduce the loss functions well as shown by Figure 6.7 (c). However,
reducing the loss function well does not imply the corresponding network converges to the right
target function. When h is large, though the implicit regularization of deep learning can provide
a smooth solution without auxiliary conditions, this solution may not be our target function and,
hence, the error ef̂ on the training grid points and the error ẽf̂ on random grid points would be

large as shown in Figure 6.7 (a) and (b) (left). When h is small, a larger number of training samples
makes the loss function better restrict its local minimizers closer to the desired solution and, hence,
both ef̂ and ẽf̂ becomes reasonable. The auxiliary conditions can better eliminate spurious local
minimizers of the loss function and, hence, both ef̂ and ẽf̂ are reasonably small no matter h is

large or small as shown in Figure 6.7 (a) and (b) (right).

6.2.2. Prediction. In real applications, we are interested in how well the discovered dy-
namics perform in making predictions. For this purpose, we first discover the system (6.6) with
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initial values [−8, 7, 27] + δ, δ = 0, 0.2, 0.5, in
Lorenz system (6.6).
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Fig. 6.7: The training error ef̂ , testing error ẽf̂ and loss function versus training iterations via

network-based A-B schemes with or without auxiliary conditions (ACs) of Lorenz system (6.6).

initial values [−8, 7, 27] + ε for ε = 0, 0.2 and 0.5 by A-B scheme (M = 4, h = 0.0025), obtaining
networks f̂0, f̂0.2 and f̂0.5, respectively. Next, we solve the discovered system ẋ = f̂ ε with ini-
tial values [−8, 7, 27] + δ for δ = 0, 0.2 and 0.5 by the Matlab solver ode45 with tiny tolerances
(RelTol= 10−13, AbsTol= 10−13), obtaining states x̂ε,δ(t). Moreover, we compute the states of the
exact system (6.6) with initial values [−8, 7, 27] + δ, denoting as xδ(t), for comparison. The first
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component of these states are presented in Figure 6.6.

It can be observed that the predicted states x̂ε,δ(t) become less accurate over time and ultimately
fail to match the true states after a particular time. The inaccuracy of the long-time prediction
for the Lorenz system is imputed to its positive Lyapunov exponent, which results in exponential
growth of any tiny initial error over time [62, 61]. Furthermore, the prediction performance also
depends on the discrepancy between the initial value in prediction and the one for learning. Smaller
discrepancy leads to better prediction. For example, in the case of δ = 0, it is shown that x̂0,0(t)
moves consistently with x0(t) until t = 5.1, while x̂0,0.2(t) and x̂0,0.5(t) can only keep the consistency
before t = 4.5 and t = 1.5, respectively. Similarly, for δ = 0.2 and 0.5, the states x̂δ,δ(t) has a
longer accurately predicted period than x̂ε,δ(t) with ε 6= δ. These numerical observations are due
to the fact that only training samples of one trajectory are provided in deep learning and, hence,
the recovered force term may not be accurate far away from the sampled trajectory.

6.3. Glycolytic Oscillator. We consider the model of oscillations in yeast glycolysis,
which is a nonlinear biological system [14]. The model concentrates on 7 biochemical species:

(6.7)
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Ṡ1 = J0 − k1S1S6

1+(S6/K1)q
,

Ṡ2 = 2 k1S1S6

1+(S6/K1)q
− k2S2(N − S5)− k6S2S5,

Ṡ3 = k2S2(N − S5)− k3S3(A− S6),

Ṡ4 = k3S3(A− S6)− k4S4S5 − κ(S4 − S7),

Ṡ5 = k2S2(N − S5)− k4S4S5 − k6S2S5,

Ṡ6 = −2 k1S1S6

1+(S6/K1)q
+ 2k3S3(A− S6)− k5S6,

Ṡ7 = ψκ(S4 − S7)− kS7,

t ∈ [0, T ],

where the model parameters are taken from Table 1 in [14].

6.3.1. Convergence Rate Test with Respect to h. We continue testing the conver-
gence rate with respect to h on the long time behavior of the system (6.7) with T = 10 and the
initial value [S1, S2, S3, S4, S5, S6, S7]t=0 = S0, where S0 = [1.125, 0.95, 0.075, 0.16, 0.265, 0.7, 0.092].

Similar to the preceding case, we assign h = 0.04, 0.02, · · · , 0.04/26 and conduct the opti-
mization (4.13)-(4.14) with A-B (M = 1, · · · , 4) and BDF (M = 1, · · · , 4) schemes. The error
decay versus h is demonstrated in Figure 6.8. The dynamics of the true governing function and
the neural network approximation obtained by A-B (M = 4, h = 0.04/26) are presented in Figure
6.9. It is observed that when h is relatively large, the numerical convergence rates of all schemes
are much lower than the theoretical ones. One explanation is that the low regularity of this system
worsens the accuracy of LMMs. In Figure 6.9, it is clear that the governing function appears highly
oscillatory with only C0 regularity. Even in this challenging case, high-order LMM schemes can
still recover the governing function up to O(10−3) accuracy as h decreases.

6.3.2. Prediction. Similar to the preceding example, a prediction test is conducted for
the glycolytic oscillator system. We compare the states of the exact system (6.7) and the system
discovered by the A-B scheme (M = 4, h = 0.00125) with training data generated with the initial
value S0. The states are computed with initial values S0+δ for δ = 0, 0.05 and 0.2. In Figure 6.10,
we present the first component of states. The overall prediction performance in this example is
better than that of the chaotic Lorenz system. The forecast time-series when δ = 0 is very accurate.
The forecast time-series when δ = 0.05 and 0.2 are also reasonably accurate, though the prediction
error is obvious when the prediction time is large.
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Fig. 6.8: Training error ef̂ and testing error ẽf̂ versus h via network-based A-B/BDF schemes of

Glycolytic oscillator (6.7)
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Fig. 6.9: The true governing function (solid black curves) and the approximate neural network (red
circles) of Glycolytic oscillator (6.7).
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Fig. 6.12: Training error ef̂ and testing error ẽf̂ versus h via network-based A-B/BDF schemes of

the model system (6.8)

6.4. Discovery on a Compact Region. In this example, we consider the following model
system

(6.8)

{

ẋ1 = 2x1x2, ẋ2 = x1 + x2, t ∈ [0, 1]

[x1, x2]t=0 = x̃,
.

The initial value point x̃ is chosen from the line segment Γ = {(−0.5, x2) : 0.5 ≤ x2 ≤ 1}. All the
trajectories starting from Γ within t ∈ [0, 1] will form a compact region in R

2, denoted as Ω. Note
that Ω is enclosed with Γ, {(x1(1; x̃), x2(1; x̃)) : x̃ ∈ Γ)} and two outside trajectories. We collect
the data of discrete states in Ω. Specifically, we choose N ′ points x̃1, · · · , x̃N ′ by equidistantly
partitioning Γ as the initial values. Next, we compute the trajectories x(t; x̃n′) for n′ = 1, · · · , N ′

and take {x(tn; x̃n′)}n=0,··· ,N ;n′=1··· ,N ′ as the dataset. To display the data sampling clearly, we
show the state points, trajectories and Γ for N = N ′ = 10 in Figure 6.11, where the shaded region
enclosed by Γ and outside trajectories is exactly Ω.

6.4.1. Convergence Rate with Respect to h. Since the loss function of the discovery on
a compact region is merely the sum of loss functions of the discovery on every involved trajectory
(see (4.16)), the implementation for the discovery on a compact region should share the same
properties as the implementation on a trajectory, including the optimization errors and implicit
regularization. The tests with respect to these properties will not be repeated in this example.
Instead, we perform the test of the convergence rate with respect to h to valid the error estimate
that ef̂ = O(hp) if the network size is large enough. We take A-B (M = 1, · · · , 4) and BDF

(M = 1, · · · , 4) schemes for h = 0.1, 0.05, · · · , 0.1/24, then compute the training and testing errors
(shown in Figure 6.12). The theoretical orders of error decay are observed when h is relatively
large. While the overall error stops decreasing when h is too small due to the dominance of the
optimization error. Specifically, the 2-D profiles of the obtained approximate networks f̂j and the

errors f̂j−fj for j = 1, 2 are presented in Figure 6.13. The errors are observed to be below O(10−3)
everywhere in Ω.

7. Conclusion. This paper presents a rigorous convergence analysis of the network-based
LMMs that discover unknown dynamical systems. The main result shows that the ℓ2 grid error
of the approximate function is bounded by O(κ2(Ah)(h

p + eA)), where κ2(Ah) is the 2-condition
number of the corresponding matrix derived from the LMM scheme and eA is the approximation
error of the admissible set. This result is combined with approximation properties of deep neural
networks to develop the error estimates for network-based LMMs. We also characterize the root
condition to determine the uniform boundedness of κ2(Ah). Besides, several numerical experiments
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Fig. 6.13: The profiles of obtained networks and errors of the model system (6.8)

are conducted to validate our theory. We observe that the error decaying orders of various LMMs
are close to the theoretical ones.

In the experiments, we also test the network-based method either using formulations without
auxiliary conditions or using unstable LMM schemes. In theory, we can not guarantee the unique-
ness of the solution at grid points in the former case, and we do not have upper bounds for the
discovery error in the latter case. However, in practice, deep learning with gradient descent can
still find solutions with errors in the similar ranges of their stable counterparts. More traditional
approximations, such as grid functions and polynomials, are less robust and sensitive to the choice
of solvers in comparison (see Appendix A).

One limitation of our work is that the error estimation only quantifies the grid error, which is
evaluated at the given sample locations. The generalization error out of sample locations is still
theoretically unknown, though we observe excellent generalization performance in numerical experi-
ments. Inspired by the works on generalization performance of deep learning for regression problems
[26, 39, 38], decision problems [52] and PDEs [35], it is interesting to improve the error estimation
from sample grid points to the whole trajectory. For example, the overlearning performance is
studied in [52] using Rademacher complexity. Moreover, recurrent neural networks (RNNs) have
been widely employed to build machine learning models of temporal data. The research on RNN
generalization [1, 2, 43, 30] may shed light on the convergence analysis of the dynamics discovery.

Furthermore, our error analysis concentrates on the formulation with auxiliary conditions, while
numerical tests show that the deep learning approach without auxiliary conditions can still perform
well when the time step size is small enough. This might be due to the implicit regularization
of the gradient descent and neural networks. Consequently, further investigation of the implicit
regularization without auxiliary conditions is very interesting.
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Appendix A. Supplementary Results on Unstable LMMs. Recall that κ2(Ah) denotes
the 2-condition number of the matrixAh corresponding to certain LMM schemes. It has been shown
in Theorem 5.4 and [25] that as N → ∞, κ2(Ah) is uniformly bounded for stable schemes. Similar
arguments also show that κ2(Ah) increases linearly for marginally stable schemes and increases
exponentially for unstable schemes. Although there has been no convergence theory for unstable
schemes, it is intriguing to investigate how they perform in practice.

We first consider the discovery via linear system (3.10), in which the target function is approx-
imated by grid functions. Note that Ah is a Toeplitz-type band matrix, and hence (3.10) are linear
difference equations. For unstable schemes, the characteristic polynomial has roots of modulus
greater than 1, which causes small perturbations of the system to grow exponentially in the solu-

tion. Specifically, let us consider the perturbed system of (3.10), Ah( ~fh+ ~ε) =

[

ch + δ

~qh

]

, where δ

is a small perturbation of the initial value ch, and ~ε is the error between the perturbed and original
solutions. Then each component of ~ε = [εs, · · · , εe(N)]

T is given by εn = c1λ
n
1 + c2λ

n
2 + · · ·+ cNaλ

n
Na

for n = s, s+1, · · · , e(N), where λ1, · · · , λNa are the roots of the polynomial (5.14), and c1, · · · , cNa

are completely determined by δ. For unstable schemes, at least one root λ has modulus greater
than 1, and hence the error component εn grows exponentially as n increases.

In practice, since Ah is lower-triangular, it is natural to solve (3.10) by forward substitution
directly. However, the error accumulation discussed above occurs in the process of forward sub-
stitution. To demonstrate this, we solve the linear system (3.10) concerning the unstable A-M
scheme (M = 2) to discover the dynamical system (6.4). We first use forward substitution and

compute the relative discovery error
∥

∥

∥

~f ′
h − ~f

∥

∥

∥

2
/
∥

∥

∥

~f
∥

∥

∥

2
, where ~f ′

h is the computed solution of the

linear system and ~f defined by (5.2) is the true governing function evaluated at grid points. It
shows in Figure A.1 that the discovery error increases rapidly as h decreases, implying the failure
of forward substitution.

We then repeat the test by employing iterative solvers such as the generalized minimal residual
method (GMRES) with stopping residual τ = 10−4. It shows in Figure A.1 GMRES with this
setting succeeds in obtaining decaying errors as h decreases, whose orders are close to the theoretical
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Fig. A.1: Discovery error versus h using forward substitution (FS), GMRES (τ = 10−4) or GMRES
(τ = 10−8) in the discovery of the model problem (6.4).

ones [25]. However, if we set a smaller stopping residual τ = 10−8, GMRES also fails like the
forward substitution. Similar results are observed when using biconjugate gradient method to solve
the linear system. These comparative tests imply that the difficulty bought by unstable schemes
can be lessened by using iterative solvers, but these solvers are still sensitive to the implementation
parameters because of the ill-conditioning of the method.

Next, we consider the discovery using linear approximation forms. Suppose the approximation
set A is a linear space with basis {ψ1, · · · , ψd′}, then the governing function can be approximated
by the form f̂A = c1ψ1 + · · · + cd′ψd′ with coefficients c1, · · · , cd′ to be determined. Note that A
can be spaces of polynomials, finite elements, splines, etc. Under the LMM framework, we aim to
compute c1, · · · , cd′ such that

(A.1) AhΨh~c =

[

ch
~qh

]

,

where Ψh := [ψi(xn)]
i=1,··· ,d′

n=s,··· ,e(N) and ~c := [c1, · · · , cd′ ]T . Note that (A.1) is a linear system similar

to (3.10) but might be square if d′ = t(N), overdetermined if d′ < t(N) or underdetermined if
d′ > t(N). It is natural to solve (A.1) by first solving

(A.2) Ah~y =

[

ch
~qh

]

for ~y, then solve Ψh~c = ~y for ~c. However, solving (A.2) faces the same issue as the linear system
(3.10) discussed above.

Therefore, it implies that with unstable LMM schemes, both grid function approximation and
linear form approximation are less robust due to the ill-conditioning. One might attempt to over-
come such difficulties by developing effective preconditioners for the linear system (3.10) or (A.1),
at least when there is no high demand on the numerical precision.

In comparison, the network approximation shows more robustness in practice to get solutions
within the ranges of optimization errors (Section 6.1.4), which is conjectured to be a consequence
of the implicit regularization. All these attempts and conjectures may be further studied in future
work.
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