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Abstract

Reduced-order models of time-dependent partial differential equations
(PDEs) where the solution is assumed as a linear combination of pre-
scribed modes are rooted in a well-developed theory. However, more gen-
eral models where the reduced solutions depend nonlinearly on time vary-
ing parameters have thus far been derived in an ad hoc manner. Here, we
introduce Reduced-order Nonlinear Solutions (RONS): a unified frame-
work for deriving reduced-order models that depend nonlinearly on a set
of time-dependent parameters. The set of all possible reduced-order solu-
tions are viewed as a manifold immersed in the function space of the PDE.
The parameters are evolved such that the instantaneous discrepancy be-
tween reduced dynamics and the full PDE dynamics is minimized. This
results in a set of explicit ordinary differential equations on the tangent
bundle of the manifold. In the special case of linear parameter depen-
dence, our reduced equations coincide with the standard Galerkin projec-
tion. Furthermore, any number of conserved quantities of the PDE can
readily be enforced in our framework. Since RONS does not assume an
underlying variational formulation for the PDE; it is applicable to a broad
class of problems. We demonstrate the efficacy of RONS on three exam-
ples: an advection-diffusion equation, the nonlinear Schrédinger equation
and Euler’s equation for ideal fluids.

1 Introduction

Reduced-order models are routinely used to facilitate computational and math-
ematical analysis of nonlinear partial differential equations (PDEs). The theory
is well-developed when the reduced-order solution @(x,t) = 3 . ¢;(t)u;(x) is a
linear combination of time-independent modes u; (see Refs. [10, 31], for ex-
haustive reviews). However, a robust mathematical framework is missing when
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the model i(x,q(t)) depends nonlinearly on a set of time-dependent variables
qa=(q1,92, " »qn)-

This is despite the fact that such nonlinear reduced-order solutions are ubiqg-
uitously used, e.g., in prediction of rogue waves [17, 23, 33], vortex methods in
fluid dynamics [8, 15], tracking shocks in supersonic flows [19], and shape opti-
mization [24, 35], to name a few. In these studies, the reduced solutions depend
nonlinearly on amplitudes, length scales, traveling speed, phase, etc. Currently,
these parameters are evolved in an ad hoc manner based on domain expertise
and familiarity with the underlying PDE. The purpose of this paper is to pro-
pose a unified framework that is broadly applicable to time-dependent nonlinear
PDEs.

Nonlinear reduced-order solutions #(x,q(t)) are often better suited for ef-
ficiently quantifying the dynamics, as compared to their linear counterpart
> ¢i(t)ui(x). As a rudimentary example, consider the heat equation in d di-
mensions, dyu = Awu, and its fundamental solution

x 2
uxa(0) = A0 e (- 31 ). )

where A(t) = (47t)~%? and L(t) = v/4t. Here, the parameters are q = (A, L)
where the solution depends linearly on the amplitude A and nonlinearly on the
length scale L. We use this example throughout the paper for illustrative pur-
poses. But, more importantly, it already showcases the potency of reduced-order
models that depend nonlinearly on time-dependent parameters. If we were to
approximate solution (1) as the linear combination of time-independent modes
ug, ie., Y. qi(t)u;(x), several modes would be required to obtain a reasonable
approximation. On the other hand, the solution can be expressed with a single
mode (1) when allowing nonlinear dependence on time-dependent parameters.

Here, we develop a unified framework for evolving the reduced-order solu-
tions @(x,q(t)) which depend nonlinearly on time-dependent parameters q(t).
For a prescribed dependence on the spatial variable x, we view @ as a map from
the parameter space to the function space H of the PDE. The image of this
map is a manifold immersed in H. We require the evolution of the parameters
q(t) to minimize the instantaneous discrepancy between the reduced-order dy-
namics and full dynamics of the PDE. This leads to a set of nonlinear ordinary
differential equations (ODEs) for q(¢), defined on the tangent bundle of the
manifold. In our framework, any number of conserved quantities of the PDE
can be readily enforced. Since it does not rely on the variational formulation
of the PDE, our method is broadly applicable. We also show that when u de-
pends linearly on the parameter q, our reduced-order equations coincide with
the standard Galerkin projection models. We refer to the proposed method as
RONS: Reduced-Order Nonlinear Solutions.

We point out that the method presented here should not be confused with
parametric model reduction [10] where the PDE itself depends on some pa-
rameters. In contrast, in RONS, the parametric dependence appears in the
reduced-order solution. Furthermore, the term nonlinear model reduction is of-
ten used for reduced-order modeling of nonlinear PDEs even when the reduced




solution is a linear combination of modes. In this paper, in addition to the PDE
being nonlinear, the reduced solution is also a nonlinear function of the reduced
variables.

1.1 Related work

This paper introduces a novel and unified framework for evolving time-dependent
parameters of reduced-order nonlinear solutions. However, as mentioned earlier,
the idea of using such nonlinear ansatz is not new. Here, we review some of the
work which use nonlinear ansatz and the respective ad hoc methods for evolving
their parameters.

The propagation of optical beams in nonlinear dispersive media has been
studied by considering the evolution of a localized Gaussian ansatz with time-
dependent amplitude, length scale, and phase [11, 20, 30]. A similar approach
has also been taken in the context of nonlinear water waves by Ruban [33, 34]
and Adcock et al. [1, 2]. Following [20], Ruban [33, 34] uses the Lagrangian
associated with the nonlinear Schrodinger equation (NLSE) to derive reduced-
order equations for the parameters of the ansatz. Adcock et al. [1, 2|, on the
other hand, use the conserved quantities of NLSE to evolve the parameters.
Cousins and Sapsis [16] consider the modified NLSE which does not have a
known Lagrangian structure or as many conserved quantities as NLSE. They use
a hyperbolic secant as the ansatz, take a second time derivative of the modified
NLSE, and project the resulting equation on the subspace of the ansatz to derive
their reduced-order equations.

In fluid dynamics, vortex methods decompose the flow field into a combi-
nation of vortices, with a prescribed smooth profile, whose centers evolve over
time [14, 8]. The motion of each vortex center is determined by computing the
induced velocity by the other vortices.

Self-similar solutions of PDE are also obtained by varying the parameters of
a prescribed ansatz [7]. Rowley et al. [32] use symmetry reduction from geomet-
ric mechanics to derive the symmetry reduced governing equations. Although
rigorous, this method is only applicable for reducing continuous symmetries as
opposed to RONS which is a more general reduced-order modeling framework.

Finally, we point out that the idea of optimally time-dependent modes
(OTD) has been introduced in the context of stability analysis [6]. However,
OTD is only applicable to linearized PDEs. In addition, to compute each OTD
mode, an auxiliary PDE must be solved which renders this method computa-
tionally expensive [5, 22]. In contrast, RONS is applicable to fully nonlinear
PDEs and reduces the computational cost as it only requires solving a relatively
small set of ODEs.

1.2 Outline of the paper

This paper is organized as follows. In section 2, we introduce the problem set-
up in which our method is applicable. Section 3 describes RONS in detail and



contains our main results. In section 4, we present numerical results on three
different examples. Section 5 contains our concluding remarks.

2 Set-up and preliminaries

We consider PDEs of the form

%~ F), ux,0) = wo(x), 2
t

for the map u : D x RT — RP, (x,t) > u(x,t) where D is a subset of R¥. Here,
F' is a potentially nonlinear differential operator. For simplicity, we restrict
our attention to the case p = 1, where u is a scalar function of the spatial
variable x € D and time ¢t > 0. Our results generalize to the case p > 1 in
a straightforward fashion. We assume that for any time ¢, u(-,t) belongs to a
Hilbert function space H with the inner product (-,-)y and the corresponding
norm || - ||g. The appropriate boundary conditions for the PDE are encoded in
the Hilbert space H.

We seek approximate solutions of the form 4(x,q(¢)) to PDE (2). The
dependence of 4 on the spatial variable x is prescribed based on the type of
the PDE and requires familiarity with its solutions. As such, we refer to the
approximation solution 4(x,q(t)) as the ansatz. For instance, the heat kernel
discussed in Section 1 has a Gaussian shape with time-dependent amplitude
A(t) and length scale L(t) so that q(t) = (A(t), L(¢)). Given the prescribed
spatial shape of the ansatz u, our objective is to determine the evolution of
the parameters q(t), so that the ansatz u(x,q(t)) best approximates a true
solution u(x,t) of the PDE. Since the ansatz solutions are typically smooth in
the spatial variable x, we only consider strong solutions of the PDE, assuming
their existence and uniqueness.

We view the ansatz i(x,q) as a map from the parameters q € & C R" to
the function space H,

u:Q—H
q (-, q), (3)
where 2 is a simply connected open subset of R™ over which the ansatz 4 is
well-defined. For instance, for the heat kernel discussed in Section 1, 2 is the
positive quadrant of R? where A > 0 and L > 0. We note that the domain of the
map 4 is over the finite-dimensional parameters q = (q1,¢2, -+ ,qn), whereas,
for a given parameter q, its image is a function in the Hilbert space H (see

figure 1 for an illustration). We refer to the image of the map 4 as the ansatz
manifold, motivating the following definition.

Definition 1 (Ansatz Manifold). We refer to the set
M:={ue H:3qe€Qwithu=14(,q)} C H, (4)

which is the image of the map (3), as the ansatz manifold.



Figure 1: Geometric illustration of RONS. The reduced solution evolves on the
ansatz manifold M C H, which is the image of the ansatz map 4. The blue
curve illustrates the evolution of the reduced-order solution. The black curve
marks the true trajectory of the PDE which can leave M since the manifold is
not invariant under the full dynamics.

For well-posedness of the reduced-order equations governing the evolution
of the parameters q, a number of mild assumptions regarding the ansatz map
4 are required. We list these assumptions below and explain their relevance.

Assumption 1. We assume that the map 4 : 2 — H has the following prop-
erties.

(H1) It is injective and at least once continuously differentiable with respect to
the parameters q.

(H2) For every parameter q € €, the ansatz 4(x,q) is ¢-times continuously
differentiable with respect to the spatial variable x. Here, £ € N is the
highest order of spatial derivatives appearing in the PDE (2).

(H3) The map @ : Q — H is an immersion.

Our reduced-order equations involve partial derivatives of the ansatz with
respect to the parameters. Assumption (H1) ensures that these derivatives
exist. Assumption (H2) ensures that the ansatz would in fact approximate
strong solutions of the PDE. Finally, assumption (H3) requires the map @ to
be an immersion, which essentially means that the tangent space of the ansatz
manifold at every base point 4 € M is full rank. More precisely, the tangent
space T3 M at a point 4 € M is the linear vector space

ou ou 5@}
6111,3%’ 73% ’

TaM = span{ (5)

The map @ being an immersion implies that the partial derivatives 04/9g;
are linearly independent functions and therefore dim (T3 M) = n for all & € M.
As such, the set M is an n-dimensional manifold immersed in the function space



H. Most importantly, assumption (H3) ensures that the metric tensor, to be
defined in Section 3, is invertible. It should be clear that, as a special case, the
ansatz map includes linear superposition of potentially parameter-dependent
modes,

i(x,q) = Zaiui(xaai)» (6)

where q consists of the parameters a; and «;.
As reviewed in the Introduction, earlier studies which use nonlinear reduced-
order solutions are confronted with two main tasks,

1. Choosing an ansatz manifold, i.e., choosing the shape of the ansatz i (x, q(t)),
2. Choosing a strategy for evolving the variables q(¢) in time.

The first task relies on domain expertise and familiarity with the solutions of the
PDE. The second task has thus far been carried out based on ad hoc methods.
The present paper introduces a rigorous and unified approach for addressing the
second task. Choosing an appropriate ansatz manifold remains a challenging
problem and still relies on domain expertise.

3 Evolution of reduced-order solutions

This section contains our main results. First, in Section 3.1, we discuss the
minimization principle from which the reduced-order equations are derived. For
clarity, we do not assume any conserved quantities for the PDE in this section.
Next, we show that our reduced-order equations are equivalent to the standard
Galerkin projection if the ansatz is a linear function of the parameters (Sec-
tion 3.2). Finally, for PDEs with conserved quantities, in Section 3.3 we derived
reduced-order equations that respect those conservation laws.

3.1 Reduced-order equations without conserved quanti-
ties

Given an ansatz i(x, q(t)), we would like to determine an evolution equation for
the parameters q(t) such that the ansatz closely approximates a true solution
u(x,t) of the PDE (2). Since the true solutions are a priori unknown, this
cannot be achieved by minimizing some distance metric between the ansatz and
the true solution. Therefore, an alternative metric needs to be used.

Here, we evolve the ansatz such that its instantaneous dynamics best match
the true dynamics of the PDE. To this end, we consider the instantaneous error,

@@ = 5l — F(@)}, @

where 4, is shorthand for the derivative of the ansatz 4(x, q(t)) with respect to
time, i.e.,

ou

w(x,q(t)) = 5 -(xa(t))ai(t), (8)



where summation over repeated indices is implied. We note that %; belongs to
the tangent space T3 M of the ansatz manifold M at the point .

The cost function (7) measures the instantaneous discrepancy between the
dynamics of the ansatz, i.e. ;, and the dynamics dictated by the PDE, i.e.
F(u). Given a set of parameters q(t), at any time ¢ > 0, we seek q(¢) such
that the instantaneous error J(q, q) is minimized. Figure 1 shows a geometric
illustration of the instantaneous error J.

Remark 1. As an alternative to the instantaneous error, one might be tempted
to minimize the finite-time error,

smr:A T(a(t), a()dt, (9)

over a time interval ¢t € [0, T]. At first sight, this functional seems more suitable,
compared to its instantaneous counterpart (7), since it measures the accumu-
lated error between the true dynamics and the ansatz dynamics. However, as
we show in Appendix A, it generally leads to unstable reduced-order models for
the evolution of the parameters. Therefore, in this paper we choose to minimize
the instantaneous error.

As mentioned earlier, given the parameter q(t) at time ¢, we determine its
dynamics by minimizing the instantaneous error (7) over all possible ¢(t). More
precisely, we solve the minimization problem

min ,q)- 10
min 7(q,d) (10)
We prove that this problem has a unique minimizer which satisfies a first-order
ODE for the parameters q. By solving this ODE, the optimal evolution of the

parameters q(t) can be obtained. To prove these results, we need the following
lemma.

Lemma 1 (Metric Tensor). Let Assumption 1 hold. Then the metric tensor
M defined by

ot 0u
17 <8Qi’8Qj>H’ [2W) e{ ) 4y 7”}7 ( )

is a symmetric positive-definite matrix for all q € .

Proof. 1t is clear from its definition that M is symmetric. We show that the
matrix is positive definite by proving that (£, M&) > 0 for all nonzero £ € R™,
where (-, ) denotes the Euclidean inner product. We first note that

ot ot ot
(& M¢g) = <((mfia aquj>H = Haqi&

2

>0, (12)

H

where summation over repeated indices is implied. Next we show that (€, ME)
is in fact strictly positive.



Assume that there exists & # 0 such that (£, M§) = 0. This, together with
equation (12), implies that

ot

9qi

Since € # 0, this implies that d4/dq;, ¢ = 1,2,--- ,n, are linearly dependent.

However, this violate assumption (H3) that the map 4 is an immersion. There-

fore, we must have (£, M€) > 0 which completes the proof. O

& =0.

The fact that the metric tensor M is symmetric positive-definite, and hence
invertible, plays an important role in deriving our reduced-order equations. Now
we state the main result of this section which establishes that there exists a
unique solution to the minimization problem (10), and that the minimizer sat-
isfies an explicit ODE.

Theorem 1. Let Assumption 1 hold. Then there exists a unique solution to
the minimization problem (10). Furthermore, the minimizer satisfies

q=M""(q)f(q) (13)
where M is the metric tensor defined in Lemma 1 and f : R™® — R"™ is a vector
field defined by

ou
fi= <,F U > , 1=1,2,---,n.
o () .

Proof. First note that the instantaneous error (7) can be written more explicitly
as

T (e,8) = 3 [(ie )31 — 2, F (@) + (F(), F(3)) ]
~ g0 (G ) = (GrF@)) 5P, Pl
= (6, M(a)d) — (@ f@) + 3 (F(i), ().

Therefore, J is a smooth quadratic function of q. Furthermore, since the metric
tensor M (q) is symmetric positive-definite, J is a strictly convex function of q.
As such, it has a unique minimizer satisfying V¢ J(q,q) = 0, or equivalently
M(q)q — f(q) = 0. Since the metric tensor M(q) is invertible, we obtain
equation (13) for q. O

Figure 1 depicts the geometric interpretation of Theorem 1. Consider an
arbitrary, but smooth, evolution of the parameters q(t). This can be viewed as
acurve q : [0,00) = Q, t — q(t) parametrized by time ¢. The tangent vector to
the curve at a point q(t) is given by q(¢). The ansatz @ maps this curve onto a
curve on the ansatz manifold M in the function space H. The tangent vector
to this second curve is 4; (see equation (8)) which is bound to belong to the
tangent space T3 M of the ansatz manifold, i.e., 4; € Ty M.



On the other hand, F(u) does not necessarily belong to T3 M since the
ansatz manifold M is not invariant under the dynamics of the PDE (2). There-
fore, typically there is no evolution of the parameters q(¢) such that the ansatz
a(+,q(t)) would solve the PDE. If the parameters q(t) evolve according to equa-
tion (13), Theorem 1 ensures that the deviation of the ansatz dynamics i; from
the true dynamics F'(4) is instantaneously minimized. In fact, 4, is the or-
thogonal projection of F(4) onto the tangent space of the manifold at point
.

We close this section with a remark about the initial condition of the pa-
rameters. In order to numerically integrate the reduced-order equation (13), we
need to supply an initial condition q(0) = qg. If the initial condition ug of the
PDE belongs to the ansatz manifold M, there exists a unique qg € §2 such that
uo(x) = 1(x,qp). In this case, there is no ambiguity regarding the appropriate
initial parameter values qo. However, if ug ¢ M, a criterion must be devised to
determine a suitable initial condition qg. One such criterion, for instance, is to
solve the optimization problem,

qo = argmin |Jug — (-, Q)| , (14)
qeN

which returns the closest point on the ansatz manifold to the initial condition ug.
Optimization problem (14) can potentially be non-convex and computationally
expensive to solve, but it is solved only once at the initial time.

3.2 Relation to Galerkin projection

In this section, we show that if the ansatz 4(x,q) is linear in the parameters
q, then the reduced-order equations (13) coincides with the standard Galerkin
truncation.

Consider the ansatz

a(x,q(t)) = Z qi(t)ui(x), (15)

which is a linear superposition of the prescribed modes {u;}_;. Without loss
of generality, we assume that these modes are orthonormal with respect to the
inner product on the Hilbert space H, i.e., (u;, u;) g = 0i5, 14,5 € {1,2,--- ,n},
where §;; denotes the Kronecker delta. These modes span an n-dimensional
linear subspace V of the function space H, where V := span{u;}? ;. The
subspace V' is not generally an invariant subspace under the dynamics of the
PDE (2). Therefore, the Galerkin ansatz (15) may not be an exact solution of
the PDE. More precisely, although 4 belongs to V, the right-hand side of the
PDE F() does not generally lie in V.

To obtain an approximate solution, one defines the projection operator P :
H — V which is an orthogonal projection onto the subspace V', and replaces
the right-hand side with PF'(4). Substituting the ansatz in the truncated PDE,



M = span{u;, (X)}zn:l

Figure 2: The geometry of the reduced-order equation for a linear ansatz. In
this case, the ansatz manifold M is a linear subspace of the function space H.
The reduced-order equations coincide with the Galerkin truncation of the PDE
to the modes u; that span this subspace.

Ot = PF (@), and taking the inner product with a mode uy, we finally obtain
the standard Galerkin projection,

qk:<uk,F(ﬁ)>H, k:1,2,“' ,n. (16)

Now, we show that the reduced-order equation (13) of Theorem 1 coincides
with the Galerkin truncation (16). First note that, for the linear ansatz (15),
we have

di
0q; B

and therefore the metric tensor M is an identity matrix since M;; = (u;, u;) =
0;j. Furthermore, for a linear ansatz, the vector field f : R" — R" is given by

fi= (i, F(@)) - (18)

Substituting these in the reduced-order equation (13), we see that it coincides
exactly with the Galerkin truncation (16).

Figure 2 depicts the geometric meaning of the Galerkin projection. In the
case of a linear ansatz, the ansatz manifold M becomes a linear subspace of the
function space H. The Galerkin method evolves the ansatz so that instanta-
neously the tangent vector to the path of the ansatz is the orthogonal projection
of F(u) onto the ansatz subspace. Therefore, our method is a generalization of
the Galerkin method to the case when the ansatz manifold is a nonlinear subset
of the function space. In this more general case, the evolution of the ansatz is
obtained by projecting F (@) onto the tangent space of the manifold M at the
ansatz @ (see figure 1).
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3.3 Reduced-order equations with conserved quantities

Certain PDEs possess conserved quantities which are invariant along their tra-
jectories [12]. Sometimes these conserved quantities are evident because the
PDE is derived from underlying conservation laws [26]. Other conserved quan-
tities, such as helicity in Euler’s equation for ideal fluids 28], are not evident
and are only discovered by further mathematical analysis of the PDE. In either
case, constructing reduced-order models that preserve these conserved quantities
is attractive for two main reasons. First, conserved quantities reflect symme-
tries and physical properties of the system that reduced-order models should
also exhibit [25]. Secondly, it is known that reduced-order models that vio-
late the conservation laws can develop spurious finite-time blowups and other
non-physical dynamics [27].

In this section, we modify the reduced-order equations developed in Sec-
tion 2 to enforce conserved quantities of the PDE. Let I, : H — R with
k € {1,2,--- ,m} denote m conserved quantities of the PDE (2). More pre-
cisely, if u(-,t) denotes a solution of the PDE, then Ij(u(-,t)) = Ir(ug) and
therefore Iy, is independent of time. We seek reduced-order equations for evolv-
ing an ansatz 4(x, q(t)) such that the conserved quantities Ij, are also invariant
along the trajectories of the ansatz. For notational simplicity, we write I;(q)
instead of I (a(-, q)) and view Ix(q) as a map from the parameter space  C R"
to the real line.

Remark 2. To be precise, I;(4(-,q)) is the pullback of I, : H — R under the
ansatz map 4 : 0 — H. In other words, we should write

ﬂ)k]'k(q) = Ik(ﬂ(vq))v Vq € Qv

where 4" I}, denotes the pullback of I under the ansatz map @. However, this
unnecessarily complicates the notation. Therefore, we simply write I, (q) instead
of 4*I(q).

To enforce the conserved quantities, we add them as constraints to the op-
timization problem (10), and solve

oin 7 (q, ),

st In(q(t) =Ixo, k=1,2,...,m, Vt>0, (19)

where I, o are prescribed constants. In practice, these constants are determined
by the initial condition so that Iy o = I;(do). To avoid degenerate solutions of
the optimization problem, we must make the following assumption.

Assumption 2. We assume that, for each q € 2, the gradients VI (q), VIz(q),
-+, and VI,,(q) are linearly independent.

In order to derive the reduced-order equations corresponding to the con-
strained optimization problem (19), we need the following lemma.
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Lemma 2 (Constraint Matrix). Let Assumptions 1 and 2 hold and M € R™*"
denote the metric tensor defined in Lemma 1. Then the constraint matriz
C(q) € R™*™ with entries defined by

Ciyj = (VI;, M7'VI), i,je{1,2,--- ,m}, (20)
is symmetric positive-definite for all q € €.

Proof. First, we define the n x m matrix B := (VI1|VIy|---|VI,) and note
that the constraint matrix can be written as C = B" M ~!'B. Since the matrix
tensor M is symmetric, so is the constraint matrix C.

Now we prove that C' is also positive-definite. For any nonzero v € R™, we

have
(v,Cv) = (v, BTM~'Bv) = (Bv, M~'Bv) > 0, (21)

where the last inequality is justified by the facts that M ~! is symmetric positive-
definite and Bv is nonzero for v # 0. The last statement is the consequence
of the fact that B is full-rank due to Assumption 2. Therefore, the constraint
matrix C' is symmetric positive-definite. O

The following theorem gives the reduced-order equations for q(t) such that
the quantities I are conserved along the trajectory of the ansatz.

Theorem 2. Let assumptions 1 and 2 hold. If a solution to the the constrained
optimization problem (19) exists, it must satisfy

q=M"(q) [f(q) -3 )\kVIk<q)] ; (22)
k=1

where A = (A1, A2, -+, A\y) | is the unique solution to the linear equation
CA=bh, (23)

with the constrained matrix C' defined in Lemma 2 and the components of the
vector b = (by, by, -+ ,by,) " € R™ defined as

by = (VI;, M~f).
The metric tensor M and the vector field f are defined as in Theorem 1.

Proof. First, we rewrite the constraints in (19) in an equivalent form. Taking a
time derivative, the constraints can be alternatively written as

S @) = (Vi@ d) =0, k=1,2..m (24)

Introducing the Lagrange multiplier A = (A1,...,\n) | € R™, we define the
augmented cost function,

k=1
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If the minimizer of the constrained optimization problem (19) exists, the partial
derivatives of J. with respect to ¢; and A\ must vanish at the minimizer. This
yields

Vo + Zm: AV =0, (26a)
(V@) &) = (VIa(). &) = .. = (VIn(q), &) = 0. (26b)

Since V4qJ = M(q)q — f(q), equation (26a) yields

q=M"(q) [f(q) -3 /\kVIk(Q)] - (27)
k=1
Substituting this expression into (26b), yields m equations

S MV, M7V = (VL M7, i=1,2,...,m. (28)
k=1
Equation (28) can be written as the linear system CA = b, where C is the
constraint matrix (20). Lemma 2 guarantees that C' is invertible and therefore
there exists a unique solution A to the linear system (23). Thus, q must satisfy
equation (27) with the Lagrange multiplies Ay solving the linear system (23).
This completes the proof. O

We note that unlike the unconstrained problem (Theorem 1), the constrained
optimization problem (19) is not guaranteed to have a solution. For a minimizer
to exist, the level sets {q € Q : I};(q) = Iy 0}, with £ = 1,2,--- ,m, must have a
nonempty intersection. Otherwise, the problem is over-constrained and a mini-
mizer would not exist. Apart from these degenerate situations, the constrained
optimization problem has a solution and the ansatz evolves according to the
reduced-order equations (22). In our numerical experiments, presented in Sec-
tion 4, we never encountered a degenerate case where the solution does not
exist.

4 Numerical examples

In this section, we present three numerical examples. We begin with a proof-
of-concept example where the ansatz captures the exact solution to a linear
advection-diffusion equation. The other two examples deal with nonlinear PDEs,
where the ansatz is not an exact solution, but the reduced-order equations
nonetheless capture the important features of the system dynamics.

4.1 Advection-diffusion equation

As a proof-of-concept example we first consider a linear advection-diffusion equa-
tion and an ansatz solution which is an exact solution of the PDE for an ap-
propriate choice of the time-dependent ansatz parameters. We show that the
reduced-order equations (Theorem 1) reproduce this exact solution.

13



Consider the linear advection-diffusion equation,

ou ou 8%u . T
a = —c% —+ V@’ U(JJ, 0) = Ao Sin <Lo)7 (29)

where ¢ € R and Ay, Lo and v are positive constants. Equation (29) admits the
exact solution

v . T —ct
u(x,t) = Agexp [— L(Q)t] sin ( T )7 (30)
which is a traveling sine wave with a decaying amplitude. We define the ansatz

T

(z,q(t)) = A(t) sin (L(t) + (b(t)), (31)

with the time-dependent parameters q(t) = (A(t), L(t),¢(t)) . Although the
ansatz is linear in the amplitude A, it is a nonlinear function of the parameters
L and ¢.

We choose the initial parameter values A(0) = Ay, L(0) = Lo, and ¢(0) = 0,
so that the ansatz coincides with the initial condition of the PDE, i.e., u(xz,0) =
@(z,q(0)). Then the ansatz is an exact solution of (29) if the parameter values
evolve according to

AW = Aoexp | - fat] . L) =La, 6= . (32)
L2 Lo
Now we show that the reduced-order equations (13) exactly reproduce the
parameter evolution (32). The cost function (7) for the linear advection-diffusion
equation reads
1 2w Lo 9
J(@) = 5/ @y + clly — Vilge|” da, (33)
0
where the integral is taken over one period of the initial condition. The appro-
priate function space for this problem is the Hilbert space of periodic square
integrable functions L2,,.(0,27Lg). In this section, we do not enforce any con-
served quantities. After a straightforward calculation, the reduced-order equa-
tions (13) read

. v . . C
A=-24A L=0 ¢=-2= 34
24 ;9= —T (34)
which have the exact solution (32). In other words, our reduced-order equations

applied to the ansatz (31) reproduce the exact solution (30).

4.2 Nonlinear Schrodinger equation

In this section, we derive reduced-order equations approximating the solutions
to the nonlinear Schrodinger equation (NLSE). NLSE is a perturbative model for
optical waves [11, 3] and surface water wave [39, 21]. NLSE has been intensely
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Figure 3: Comparing NLSE solutions using direct numerical simulations (DNS)
and the Gaussian ansatz. (a) Focusing wave with initial parameters Ag = 0.2,
Lo = 20, Vo = —0.05, ¢g = 0. (b) Defocusing wave with initial parameters
Ay =02, Lo =5, Vo = ¢ = 0.

studied since, through modulational instability [9], it can reproduce the self-
focusing of optical and water waves which leads to the formation of waves of
extreme amplitude, often referred to as rogue waves [37, 13].

The nonlinear Schrédinger equation for unidirectional deep water waves is
given by

ot 'sk2oiz 2

ou . Wo 82ﬂ ,kag |ﬂ|2ﬂ (35)

where ﬂ(’f,tN) is the complex wave envelope. The prescribed constants wgy and
ko denote the frequency and wave number of the carrier wave, respectively. The
wave surface elevation is then given by 7(Z,?) = Re [4(Z, ) exp(koZ — wol)].
Introducing the non-dimensional variables z = 2v/2koZ, ¢t = —wot, and u =
(ko/v/2), equation (35) becomes

o 0u . o,
5 = 'oa2 + ilul*u. (36)
In the following, we work with this non-dimensionalized NLSE.
It is known that wave groups with certain combinations of initial amplitude
and length scale evolve under NLSE to grow in amplitude while their width
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shrinks. This phenomena is referred to as focusing of wave groups. In contrast,
defocusing wave groups exhibit decaying amplitude and widening width (see
figure 3).

This observation has spurred a plethora of reduced-order methods for model-
ing and prediction of rogue waves [2, 1, 33, 34, 17, 22, 23]. These methods invari-
ably assume a prescribed spatial shape for a wave group with time-dependent
parameters, such as length scale, amplitude, velocity, and phase. The evolution
of these parameters is then determined by ad hoc methods. Adcock et al. [2, 1],
for instance, use conserved quantities of NLSE to determine the temporal evo-
lution. Ruban [33, 34] leverages the variational formulation of NLSE to derive
a set of ODEs for the parameters. Cousins and Sapsis [16] take an additional
time derivative of NLSE and project the resulting equation onto their ansatz.

Here, we use the rigorous reduced-order equations (22) to evolve the time-
dependent parameters and show that they correctly capture focusing and de-
focusing of the wave groups. Following earlier work [30, 33, 34|, we use the
Gaussian ansatz,

. x? 22V (t)

iz, q(t)) = A(t) exp 200 +1 o)
with the time-dependent parameters q(t) = (A, L,V, @), where A determines
the wave amplitude, L is a length scale controlling how quickly the wave group
decays away from its center, V' is the wave velocity, and ¢ is the wave phase. The
motivation for choosing this ansatz is that, for a special choice of the parameters
q(t), it is an exact solution to the linear part of NLSE [34]. However, ansatz (37)
is not an exact solution of NLSE except for the trivial case A(t) = 0. We note
that @ is complex-valued, but its parameters q = (A, L,V, ¢) are real-valued
with the additional restrictions that A(t) > 0 and L(¢) > 0.

The cost function (7) for NLSE reads

+ip(t) |, (37)

. 1 o RTINE
F(a.) = 5 [ Jin = iie, —ififaf” do. (39)

where |- | denotes the modulus of a complex number. The Hilbert space H here
is the square integrable complex functions over R. We note that, for simplicity,
we stated our results in Section 3 for real-valued functions. Their generalization
to complex-valued functions is straightforward.

NLSE has several conserved quantities [2, 1] which can be enforced using
the method described in Section 3.3 (Theorem 2). Here, we only enforce the
conservation of the two most relevant quantities,

1
I(u) = / lul? dz, Ip(u) = / |ug|* da — f/ lu* d, (39)
R R 4 Jr

which are the total mass and the total energy, respectively. To obtain the
reduced-order equations (22), we solve the constrained optimization problem (19)
with m = 2 and

T A2 VAG (2v2 (L3VE + 1) — AFLF)
Iiog= §A0L07 I = SLo ;
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Solution Comparison at x = 0 Solution Comparison at x = 0

0.5

Figure 4: Evolution of NLSE solutions evaluated at x = 0 using direct numeri-
cal simulations (DNS), RONS with the Gaussian ansatz, and Galerkin projection
onto four POD modes. Left: Focusing wave with initial parameters Ay = 0.2,
Lo = 20, Vj = —0.05, ¢g = 0. Right: Defocusing wave with initial parameters
Ap=02,Ly=5,Vy=¢o=0.

where (Ao, Lo, Vo, ¢o) are the initial values of the parameters of the ansatz (37).
The resulting reduced-order ODEs read

24V
L )

. ) 4 A2 . 5A2 2
L=4V, V=— — , = —— - —, 40
G- Tas e W

A:

For comparison, we use direct numerical simulations (DNS) of the NLSE
as the ground truth. As in Ref. [17], we solve NLSE using a Fourier pseue-
dospectral method in space and a fourth-order Runge—Kutta exponential time
differencing scheme [18]. Boundary conditions are assumed to be periodic for
ease of implementation and should not affect the results so long as the domain
is chosen to be large enough so that u is small near the boundaries. We use the
domain size 256v/27 (64 wave periods) which we have found large enough to
ensure u is small near the boundary for the duration of the computation. For
all runs we use 2'° Fourier modes and a time step of 0.025. Using more Fourier
modes, smaller time steps, or larger domain size did not significantly affect the
results of our simulations. For example, doubling the number of Fourier modes
and halving the time step caused a relative change of |u| on the order of 10~7 in
the L2-norm. The DNS results are initialized with ug(z) = @(x, q(0)), so that
the DNS solution and the ansatz solution coincide at the initial time.

In figure 3, we plot the evolution of the DNS results |u| and the ansatz ||
for two sets of initial parameters. One set of parameters leads to a focusing
wave (growing amplitude) and the other leads to a defocusing wave (decaying
amplitude). In both cases, the ansatz correctly predicts the qualitative focusing
or defocusing behavior of the wave group. We have repeated these comparisons
for a range of parameter values qg and in every case, the ansatz correctly predicts
the focusing or defocusing behavior of the wave group.
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In figure 4, we plot the evolution of the amplitudes at x = 0 for the same
set of parameter values as in figure 3. For the case of the defocusing wave, the
reduced-order solution produced by RONS is in excellent agreement with the
DNS results. For the focusing wave the RONS reduced-order solution provides
a reasonable approximation compared to the DNS, roughly capturing both the
peak amplitude and the time that it occurs. However, the Gaussian ansatz over-
estimates the peak height and also produces a peak which is thinner than that
of the DNS. This behavior, i.e. excellent agreement for defocusing waves and
overshooting for focusing waves, is systematically observed for other parameter
values qo (not shown here).

To compare RONS results with a standard technique in model reduction,
figure 4 also shows the results obtained by Galerkin projection with modes found
through proper orthogonal decomposition (POD) as described in [36]. We use
four POD modes as a benchmark which is on par with the four parameters
(A, L,V,¢) involved in the Gaussian RONS ansatz (37). We point out that the
POD modes are complex valued, so that the reduced-order equations involve four
complex-valued ODEs or equivalently eight real-valued ODEs. In other words,
the POD-reduced equations involve twice as many ODEs as the RONS reduced-
order equations (40). Nonetheless, as shown in figure 4, the POD reduced-
order solutions provide poor approximations for both focusing and defocusing
waves, demonstrating the superiority of RONS. To obtain an accurate POD-
reduced model which is capable of accurately approximating the focusing and
defocusing waves, we have observed that at least 16 complex-valued POD modes
are required.

4.3 Two-dimensional fluid flow

For our last example, we consider the flow of a two-dimensional, incompressible,
and Newtonian fluid. The vorticity equation for such a fluid is given by

o +u-Vw =rvAuw, (41)
ot
where v is the kinematic viscosity, u(x,t) denotes the velocity field of the fluid,
and w(x,t) is the component of the vorticity orthogonal to the plane of motion.
We consider the flow on the unbounded two-dimensional domain, x = (z,y) €
R2. A two-dimensional incompressible fluid admits a stream function ¥ (z,y,t)
which satisfies

u(x,t) = (1/1@/, 71/)96)1—; w=—A. (42)

Therefore, prescribing the stream function v is sufficient to determine the
fluid velocity u and the vorticity w. As a result, we define the ansatz in terms
of the stream function,

~ X —X; 2
dtx.at) = 3 seyesp | - =00, (4
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Figure 5: Reduced dynamics of a vortex dipole. The initial parameter so the
ansatz are A1(0) = 1, A2(0) = —1, L1(0) = L1(0) = 0.75, x1(0) = (=3,0.5),
x2(0) = (—3,—0.5). See the supplementary material for a movie.

which is the superposition of N axisymmetric vortices, where A;(t) denotes the
amplitude of the i-th vortex, L;(t) is its length scale, and x;(t) = (x;(t), y;(t)) is
the vortex center. Therefore, each term of the ansatz has four time-dependent
parameters, (A;, L;, z;,y;), resulting in a total of n = 4N parameters for N
vortices. We use this ansatz because it belongs to the class of smooth vortex
methods [14, 15] and, more importantly, vortices with the Gaussian stream
function (43) have been observed in laboratory experiments [38].

After defining the stream function, the corresponding fluid velocity a and
vorticity w are computed to define the cost functional,

2

For brevity, here we only study the inviscid case, ¥ = 0, where the vortex
dynamics has a rich mathematical structure. In particular, the inviscid vorticity
equation admits a class of exact weak solutions called point vorticies [4]. We
show that the reduced equations governing the parameters of the ansatz (43)
reproduce the expected point vortex dynamics, although the ansatz is not an
exact solution of the vorticity equation.

Point vortex solutions of the inviscid vorticity equation consist of the super-
position of Dirac delta functions,

1
J(q,q) = f/ @ + - V& — vAG|? dx. (44)
R2

N
w(x,t) =Y Tid(x — xi(1)), (45)
i=1

where T'; are constant vortex amplitudes and x;(t) = (z;(t), y;(t)) are the time-
dependent vortex centers. Using the Green’s function for the Poisson equation

A1) = —w, the stream function for point vortex solution (45) can be obtained
as L
vl t) = —o- D Tilog|x — xi(t)]. (46)
i=1
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For the point vortex to be a weak solution of the vorticity equation, the vortex
centers x;(t) must satisfy the set of ordinary differential equations [29],

O L OH
_ay,L? lyl_ axl7

L, (47)
where H = — Zi# I';I';log |x; — x;|/4m is the Hamiltonian corresponding to
the N vortex problem.

Dynamics of point vortices depends on the number of vortices NV and their
initial configuration. We refer the reader to Refs [4, 29| for a complete account-
ing. Here, we consider three distinct configurations,

1. Vortex dipole: Two vortices of equal strengths but with opposite signs,
2. Vortex pair: Two vortices of equal strengths and signs,
3. Leapfrogging: Two vortex pairs with opposite signs.

For each configuration, we show that the reduced-order equations (22) applied to
the ansatz (43) reproduce the expected vortex dynamics predicted by the point
vortex solution. We emphasize that, unlike the point vortex (46), our ansatz
has a smooth profile and is not an exact solution of the vorticity equation. In
addition, we allow the amplitude A; and the length scale L; of each vortex in
the ansatz to vary with time.

The inviscid vorticity equation admits several conserved quantities [29].
Here, we enforce two of these conserved quantities,

1 1 1
ILi(u) = 5/]1@2 lu? dx, IL(u) = i/Rz |V x ul? dx = 5/]1@2 lw? dx,  (48)

which denote the kinetic energy and enstrophy, respectively. To derive the
reduced-order equations, we minimize the cost function (44) with the constraints
I =10 and I = Iz o (see Theorem 2).

First, we present the results for a vortex dipole. Point vortex dynamics
predict that a vortex dipole, consisting of two vortices of opposite sign, travels
on a straight line without changing shape. Figure 5 shows a similar scenario
for our smooth Gaussian ansatz, where two vortices of opposite sign and equal
amplitude are placed symmetrically along the z-axis. The vortices are evolved
according to our reduced-order equation (22). The length-scales L; and ampli-
tudes A; remain constant during the evolution. The vortex centers x;, however,
translate horizontally at a constant speed, reproducing the expected dynamics
that point vortices exhibit.

Next, we consider the case of a vortex pair, where the vortices have the same
sign and amplitudes. Point vortex dynamics, in this case, predicts that the
vortices rotate around their midpoint at a constant angular velocity. Figure 6
shows a similar vortex pair created by the Gaussian ansatz (43). The reduced-
order dynamics shows that the system is in a relative equilibrium where the
two vortices continually rotate counterclockwise around the origin x = 0 at a
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Figure 6: Reduced dynamics of a vortex pair. The initial parameter so the
ansatz are A1(0) = A2(0) = 1, L1(0) = Ly(0) = 1, x1(0) = (—1,0), x2(0) =
(1,0). See the supplementary material for a movie.
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Figure 7: Reduced dynamics of leapfrogging vortices. The initial parameters
values are A;(0) = A3(0) = 1, A2(0) = A4(0) = -1, L;(0) = 0.3, x1(0) =
(0.5,0.5) , x2(0) = (0.5,—0.5) , x3(0) = (—0.5,0.5), x4(0) = (—0.5,—0.5). See
the supplementary material for a movie.

constant angular velocity. Again, the reduced-order dynamics are in excellent
agreement with the expected point vortex behavior.

Finally, we consider the leapfrogging configuration, where four vortices are
placed at the corners of a square (see figure 7). The vortices on the top row have
positive vorticity whereas the vortices on the bottom row have negative vortic-
ity. The point vortex dynamics predicts that the vortices to the left accelerate
and zoom in between the vortices in the front. This motion repeats indefinitely,
creating the so-called leapfrogging dynamics. Figure 7 shows the reduced dy-
namics of the Gaussian ansatz (43). One pair of vortices is placed at (£0.5,0,5),
and another pair of vortices with opposite sign is placed at (£0.5,—0,5). The
RONS reduced-order equations once again reproduce the leapfrogging dynamics
predicted by point vortices. The computational time to numerically integrate
the RONS equations for the vortex dipole, vortex pair, and leapfrogging configu-
rations was 0.0087, 0.0304, and 4.2188 seconds, respectively, on a 2019 Macbook
Pro with a 1.7 GHz Quad-Core Intel Core i7 processor.

We chose the Gaussian stream function (43) as the ansatz since it has been
observed in experiments [38]; then we showed that the RONS reduced-order
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Figure 8: Comparing RONS against point vortex dynamcis for a vortex dipole
(top) and a vortex pair (bottom). RONS trajectories are solid and dashed lines
and point vortex trajectories are marked by circles. The parameter values used
for the vortex dipole are I'y = 1, Ty = —1, ¢(0) = 0.05, x1(0) = (—1,0.5),
x2(0) = (—1,—0.5), and initial parameter values for the vortex pair are I'; =
I'; =1, (0) = 0.05, x1(0) = (—0.5,0), x2(0) = (0.5,0). Note that, in the vortex
dipole plot, the time series of x1 and x5 overlap.

equations reproduce the expected dynamics. However, this ansatz is not conve-
nient for a quantitative comparison with solutions produced by point vortices.
To make quantitative comparisons with point vortex dynamics, we introduce
the following ansatz for the vorticity,

(;)(X’ q) = Z L

|x — x;|?
exp [ 522 } , (49)
which is a sum of Gaussians with the amplitudes A; = T';/(2we?) and length-
scales L; = ey/2. Note that the ansatz (49) converges to point vortices (45) as
€ tends to zero. After obtaining the corresponding fluid velocity @ using the
Biot-Savart law [29], we derive the RONS equations by minimize the cost func-
tional (44) while enforcing conservation of kinetic energy and enstrophy. Figure
8 shows the vortex center trajectories with €(0) = 0.05 for the vortex dipole and
the vortex pair. It shows that the RONS results are in excellent agreement with
point vortex dynamics. We point out that, to derive the RONS reduced-order
equations, we allow €(t) and x;(¢) to be time-dependent functions. Nonetheless,
RONS predicts that € remains constant (¢ = 0).

In closing, we point out that our reduced-order equations can be similarly
applied to the viscous vorticity equation (v > 0) with no difficulty. In this
case, the equation is dissipative and therefore there are no conserved quantities
to be enforced. However, direct numerical simulations indicate that initially
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axisymmetric vortices evolve under the viscous vorticity equation into an ap-
proximately elliptical shape. As a result, the axisymmetric ansatz (43) may no
longer be appropriate, and a more general non-axisymmetric Gaussian ansatz
might be needed. This viscous case will be explored in future work.

5 Conclusions

We proposed RONS as a general framework for evolving time-dependent non-
linear reduced-order solutions of PDEs which is applicable to a broad class of
problems. The reduced-order solution has a prescribed shape in space and de-
pends nonlinearly on a set of time-dependent parameters. Our reduced-order
equations evolve the parameters such that the instantaneous error between the
ansatz dynamics and the full PDE dynamics is minimized. Any number of con-
served quantities can readily be enforced in our framework without requiring a
Lagrangian or Hamiltonian formulation for the PDE.

We presented several numerical examples to demonstrate the effectiveness
of this method: a linear advection-diffusion equation, the nonlinear Schrédinger
equation, and Fuler’s equation for two-dimensional ideal fluids. In every case,
the reduced-order equations produce approximate solutions which capture all
qualitative features of the PDE.

Our method opens a new paradigm in reduced-order modeling, with many
aspects undoubtedly remaining to be explored. For instance, an upper bound
should be derived to estimate the accumulated finite-time error between the
reduced-order solution and the true solutions of the PDE. Here we focused on
approximating strong solutions; further work is needed to derive reduced-order
equations for PDEs in the weak formulation. Finally, here we resolved an im-
portant aspect of reduced-order nonlinear solutions, namely, the evolution of the
ansatz variables q(t). However, the choice of the shape of the ansatz 4(x, q(t))
still relies on domain expertise and familiarity with the PDE. A systematic
method for determining an appropriate ansatz manifold remains an open prob-
lem.

A Instability of the finite-time formulation

In Remark 1, we advised against using the finite-time error,

T
Sla] = / T(a(t). a(t))dt, (50)

since it generally leads to unstable reduced-order models. In this section, we
demonstrate this with a simple example. Consider the linear PDE,

ou

where L is a self-adjoint negative-definite operator with orthonormal eigenfunc-
tions u;(x) and corresponding eigenvalues —\;, where \; > 0.
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Approximating a solution of the PDE as the linear combination of the eigen
functions wu;, we consider the linear ansatz,

N
a(x,q(t)) = Z ai(t)ui(z). (52)

The standard Galerkin projection leads to the uncoupled ODEs,
Qk:*AkQIm k:17277N7 (53)

which admit the exact solution ¢ (¢) = ¢x(0) exp(—Axt). Therefore, the Galerkin

method correctly predicts that the solutions decay to zero exponentially fast.
Next we derive the reduced-order equations by extremizing the action (50).

Substituting the linear ansatz (52) in the Lagrangian J, we obtain

N
T(ad) =5 [ lae - Laf dx =3 30 (@ + 2 + ). (51)

R i=1
We take the first variation of the functional S[q] with respect to perturbations
dq(t), t € [0,T]. The variations at the endpoints, §q(0) and dq(7T'), need to be
prescribed. Since, in general, the true solution of the PDE is a priori unknown,
the endpoint variations cannot be prescribed by taking the different between the
ansatz solution and the true solution. Therefore, we adopt the usual assumption
from classical mechanics that the variations vanish at the end points. Requiring

the first variation of S to vanish leads to the Euler-Lagrange equations,

- B ) (55)
which admit the exact solution,
1 1 . Aot 1 1 . ot
() = |500) + 500 M4 G0 0) - sLa@] e 50)
Except for the special initial conditions ¢x(0) = —Agqx(0), the solutions grow

exponentially fast. However, we know that the true solutions of the PDE must
decay to zero. Even if the special initial condition ¢x(0) = —Axgqx(0) is specified,
numerical round-off errors will grow exponentially in time, rendering the solution
unstable in practice. In the case of the nonlinear Schrédinger equation, we have
observed (not presented here) a similar instability for reduced-order equations
obtained from the finite-time error functional (50).
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