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Abstract

In this paper, two high order complex contour discretization methods are proposed to simulate
wave propagation in locally perturbed periodic closed waveguides. As is well known the problem is
not always uniquely solvable due to the existence of guided modes. The limiting absorption principle
is a standard way to get the unique physical solution. Both methods are based on the Floquet-Bloch
transform which transforms the original problem to an equivalent family of cell problems. The
first method, which is designed based on a complex contour integral of the inverse Floquet-Bloch
transform, is called the CCI method. The second method, which comes from an explicit definition
of the radiation condition, is called the decomposition method. Due to the local perturbation, the
family of cell problems are coupled with respect to the Floquet parameter and the computational
complexity becomes much larger. To this end, high order methods to discretize the complex contours
are developed to have better performances. Finally we give the convergence results which we confirm
with numerical examples.

Keywords: periodic waveguide, Floquet-Bloch transform, high order method, finite ele-
ment method

1 Introduction

Periodic structures are widely used in applications such as photonic crystals, for details we refer to [15,
16, 37]. This topic also attracts the interests of many mathematicians and we refer to [4, 24, 25] for the
studies from mathematical point of view. It is well known that this kind of problems is challenging due
to existence of guided modes. To obtain the unique physical solution, the Limiting Absorption Principle
(LAP) is a standard process. The LAP process is to define the physical solution by the limit of unique
solutions with absorption, as the absorption parameter tends to zero. For simplicity, in this paper we call
the solution from the LAP process an LAP solution. Significant progresses have been made in the past
few years in the study of this kind of problem, from both theoretical and numerical point of view. For
example, in [14] with an analysis on the resolvent of the differential operator, a radiation condition was
given for LAP solution in a periodic half guide, and in [12] the authors gave the radiation condition as well
as semi-analytic representations for LAP solutions in the full guide. On the other hand, with the singular
perturbation theory (see [2]), the radiation condition is given by authors in [20]. With this method,
radiation conditions for LAP solutions are also developed for periodic layers in 2D spaces and periodic
open tubes in 3D spaces, see [18–20]. Besides the LAP, a Kondrat’ev’s weighted spaces based method
was adopted by S. A. Nazarov in [31] and further works were carried out by him and his collaborators
in [32–36]. On the other hand, numerical methods are also developed to compute the LAP solutions. For
example, in [17] an algorithm was proposed to compute exact Dirichlet-to-Neumann maps from the LAP
process and this method was extended to periodic structures with local perturbation [8–11]. A method
based on the doubling recursive procedure with an extrapolation technique was also developed to compute
the DtN maps, see [5,6,38]. With a decomposition of Bloch waves, a numerical method was proposed for
waveguides with different refractive indexes on both directions in [3].
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In this paper, we develop two high order complex contour discretization methods to simulate wave
scattered by local perturbations embedded in periodic closed waveguides. For both methods, the Floquet-
Bloch transform is the key to transform the problem defined in 2D unbounded domain to an equivalent
coupled family of cell problems. The idea comes from some older papers of the author and A. Lechleiter
for (locally perturbed) periodic surfaces see [26, 28–30, 40]. Compared to the locally perturbed periodic
waveguides, the surface scattering problems are always uniquely solvable thus the analysis is relatively
easier. For the problems discussed in this paper, we need to introduce a radiation condition to describe
the LAP solutions. The first (complex contour integral/CCI) method is based on the author’s previous
work on purely periodic waveguides from both theoretical (see [42]) and numerical (see [41]) point of view.
The second (decomposition) method comes from an explicit characterization of the radiation condition
proposed in [20, 36]. For both methods, analytic formulations for LAP solutions are given as extensions
of nonperturbed cases. Due to the local perturbation, the whole system is coupled with respect to the
Floquet parameter thus it is a problem defined in 3D. Thus the computational complexity is much larger
than for periodic problems, where the system is not coupled. Based on different types of singularities,
we develop different high order algorithms for both formulations. Finally, we show that both numerical
schemes converge super-algebraically in the domain of the Floquet parameters.

The remaining part of this paper is organized as follows. In the second section, the mathematical model
is given and two explicit formulations via the Floquet-Bloch transform are given in the third section. In
Section 4, different numerical schemes are developed, and numerical examples are shown in Section 5.

2 Mathematical model

Let the closed waveguide Ω := R×(0, 1) with the upper and lower boundaries Σ− := R×{0}, Σ+ := R×{1}.
The scattering problem in Ω is described by the following equations:

∆u+ k2(n+ q)u = f in Ω;
∂u

∂x2
= 0 on Σ±. (1)

Here n is 1-periodic in x1-direction, both f and q are compactly supported. Moreover both n and n + q
are strictly positive, i.e., there is a constant c > 0 such that

n(x) ≥ c > 0; n(x) + q(x) ≥ c > 0 for all x ∈ Ω.

For convenience, we define the following periodicity cells and their boundaries:

Ωj :=

(
j − 1

2
, j +

1

2

)
× (0, 1); Γj =

{
j − 1

2

}
× (0, 1);

Σj− =

(
j − 1

2
, j +

1

2

)
× {0}; Σj+ =

(
j − 1

2
, j +

1

2

)
× {1}.

Thus ∂Ωj = Γj ∪Σj− ∪ Γj+1 ∪Σj+. For simplicity, we assume that both f and q are supported in Ω0. For
visualization of the locally perturbed periodic waveguide we refer to Figure 1.

Figure 1: Periodic waveguide with local perturbation (blue disk).

As is well known, the problem (1) is not always uniquely solvable for k > 0. To carry out the LAP,
we first consider the damped problem, by replacing k2 with k2 + iε where ε > 0. It is well known that
the damped problem is uniquely solvable in H1(Ω). Then the limit of solution when ε → 0+ is set to
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be the physical solution, which is called an LAP solution in this paper. From [12, 20, 42], the radiation
condition for LAP solutions in periodic waveguides have been described in different forms, and the forms
are actually equivalent.

Definition 1 (Radiation Condition). Suppose for the positive valued periodic refractive index n and
wavenumber k > 0, there are no standing waves. Then an LAP solution for (1) satisfies the following
radiation conditions:

u(x) = u+(x) +
∑
`∈L+

a+
` ϕ

+
` (x), x1 > 1/2;

u(x) = u−(x) +
∑
`∈L−

a−` ϕ
−
` (x), x1 < −1/2;

where u+ (u−) decays exponentially when x1 → +∞(−∞), ϕ+
` (ϕ−` ) are propagating modes traveling to

the right (left). L+ (L−) is the finite set of indexes for left (right) propagating modes and a±` ∈ C are
coefficients.

For definitions of standing waves and propagating modes we refer to Section 3.1 for details. The
explicit formulation of LAP solutions plays a crucial role in development of numerical methods. In this
paper, we show two ways to develop different numerical schemes. For convenience, we first define a subset
HLAP (Ω) ⊂ H1

loc(Ω) which contains all the functions that satisfy the radiation condition.
Following [12], we first define the unbounded operator in L2(Ω) by

B = − 1

n+ q
∆ in D(B) :=

{
ϕ ∈ H1(Ω) : ∆u ∈ L2(Ω),

∂u

∂x2
= 0 on Σ±

}
.

We need the following assumption to guarantee our theory.

Assumption 2. For the positive valued k, the equation Bu = k2u only has a trivial solution in D(B).

Remark 3. For perfectly periodic waveguide, an important result is that Assumption 2 always holds
(see [12, 20]). However, when there is a local perturbation, nontrivial solution may exist.

Now we show an example of a k > 0 such that k2 lies in the point spectrum of B for positive n and
n+ q. Suppose n and f are defined by:

n(x) =


1, |x− a0| > 0.3;

9, 0.1 < |x− a0| < 0.3;

1 + 8 ζ(|x− a0|; 0.1, 0.3), otherwise.

; f(x) =


0, |x− a0| > 0.3;

0.5, 0.1 < |x− a0| < 0.3;

0.5 ζ(|x− a0|; 0.1, 0.3), otherwise;

where a0 = (0, 0.5)>, and ζ(t) is a C4-continuous function defined by

ζ(t; a, b) =


1, t ≤ a;

0, t ≥ b;

1−
[∫ b
τ=a

(τ − a)4(τ − b)4 dτ
]−1 [∫ t

τ=a
(τ − a)4(τ − b)4 dτ

]
, a < t < b.

When k2 = 3.2, the problem (1) with q = 0 is uniquely solvable in H1(Ω). The solution u decays
exponentially when |x1| → ∞ thus the radiation condition defined in Definition 13 is satisfied. The
solution in Ω0 is shown in Figure 2, (a), which is strictly positive in Ω0. Let q = −k−2f/u (see (b) in
Figure 2), be the local perturbation. As n+ q is strictly positive (see (c) in Figure 2), 0 6= u is the solution
satisfying (1) with f = 0 and the radiation condition.
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(a) (b) (c)

Figure 2: (a): numerical solution in Ω0; (b): the constructed local perturbation q; (c): the function n+ q.

3 Explicit formulations of LAP solutions

In this section, we formulate the LAP solutions using two different methods introduced in [41] and [20],
respectively. Note that the equation (1) can be rewritten as:

∆u+ k2nu = r in Ω,
∂u

∂x2
= 0 on ∂Σ± (2)

where r = f − k2qu, which depends on u, is compactly supported in Ω0. In this section, we extend
the formulations of LAP solutions with purely periodic refractive indexes to periodic ones with local
perturbations, and also prove the unique solvability of the formulations.

3.1 The α-dependent periodic problems

From the Floquet theory, the α-dependent periodic problems are particularly interesting as they are
associated to the propagating modes (eigenfunctions). The strong formulation for the α-dependent periodic
problem is to find a periodic solution v such that:

∆v + 2iα
∂v

∂x1
+ (k2n− α2)v = g(x) in Ω0;

∂v

∂x2
= 0 on Σ0

±, (3)

where g ∈ L2(Ω0). Note that g = J r = e−iαx1r (for the definition of J we refer to the end of this
subsection), since r is compactly supported in Ω0. For each α, the weak formulation of the periodic
problems is to find v ∈ H1

per(Ω0) such that∫
Ω0

[
∇v · ∇ψ − iα

(
∂v

∂x1
ψ − v ∂ψ

∂x1

)
− (k2n− α2)vψ

]
dx = −

∫
Ω0

gψ dx (4)

for any ψ ∈ H1
per(Ω0). From Riesz representation theorem, there is an operator A(α, k) : H1

per(Ω0) →
H1
per(Ω0) such that

〈A(α, k)ϕ,ψ〉 =

∫
Ω0

[
∇ϕ · ∇ψ − iα

(
∂ϕ

∂x1
ψ − ϕ ∂ψ

∂x1

)
− (k2n− α2)ϕψ

]
dx ,

where 〈·, ·〉 is the inner product in the space H1
per(Ω0). It is obvious that A(α, k) is a Fredholm operator

(see [20]). When k > 0 and α ∈ R, A(α, k) is a self-adjoint operator. There are operators A1, A2, A3, A4

which do not depend on α and k with obvious definitions such that

A(α, k) = A1 + αA2 + α2A3 + k2A4. (5)

Thus A(α, k) depends analytically on both α and k. From [20], for fixed k2, there are only finitely many
α’s in [−π, π] such that A(α, k) is not invertible, which are called exceptional values. The set of exceptional
values is denoted by S(k). They are solutions of the quadratic eigenvalue problems for fixed k, thus can
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be computed in a standard way (for details we refer to Section 4.2). In the following, we introduce some
definitions and notations concerning exceptional values without proofs. For details we refer to [5, 6, 12].

For any α ∈ [−π, π], there is a family of analytic functions µi(α) defined in [−π, π] such that:

(A1 + αA2 + α2A3)ϕ = −µi(α)A4.

For 2D periodic waveguide, none of the analytic functions is constant (see [12]). For any index i, the
graph of the function µi, i.e., {

(
α, µi(α)

)
: α ∈ [−π, π]}, is a dispersion curve. All the dispersion curves

compose dispersion diagrams (see Figure 3).

Figure 3: Dispersion diagrams for different n

For any fixed k > 0, there is a finite set I ( maybe empty, for example when k2 lies in the red bands on

the right picture of Figure 3) such that S(k) =
{
α ∈ [−π, π] : ∃ i ∈ I, s.t., µi(α) = k2

}
. Corresponding to

each dispersion curve µi(α), there is also a family of eigenfunctions {ϕi(α, x) : i ∈ I} which also depend
analytically on α. When µ′i(α) > 0 (µ′i(α) < 0), then the corresponding eigenfunction ϕi(α, ·) propagates
to the right (left); when µ′i(α) = 0, then ϕi(α, ·) is a standing wave. For fixed k > 0, S(k) is divided into
the following subsets:

S−(k) :=
{
α ∈ [0, 2π] : ∃ i ∈ I, s.t., µi(α) = k2, µ′i(α) < 0

}
;

S+(k) :=
{
α ∈ [0, 2π] : ∃ i ∈ I, s.t., µi(α) = k2, µ′i(α) > 0

}
;

S0(k) :=
{
α ∈ [0, 2π] : ∃ i ∈ I, s.t., µi(α) = k2, µ′i(α) = 0

}
.

Note that when S0(k) 6= ∅, the LAP does not work, so we have to make the following assumption.

Assumption 4. In this paper, we assume that S0(k) = ∅.

In [12], it has been proved that the positive valued k’s such that Assumptions 4 holds is only a discrete
set, thus this assumption is reasonable.

At the end of this subsection, we apply the Floquet-Bloch transform to (1) (for details we refer to the
appendix). Let us denote by J u the Floquet-Bloch transform of u in x1 direction (see Appendix), and
set v(α, x) := (J u)(α, x) where α ∈ [−π, π]. With formal calculation, v(α, ·) satisfies (3) and the solution
u is given by the inverse transform of v:

u(x) =

∫ π

−π
eiαx1v(α, x) dα , x ∈ Ω0. (6)

From above arguments, (4) is uniquely solvable in H1
per(Ω0) for all α ∈ [−π, π] \ S(k). From analytic

Fredholm theory, the function v is also extended to α ∈ C (see Theorem 4 in [41]).

Theorem 5. The Floquet-Bloch transformed field v(α, ·) = (J u)(α, ·) is extended to an analytic function
for α ∈ C \ F (where F is a discrete set) and a meromorphic function for α ∈ C. Moreover, eiαx1v(α, ·) is
periodic with respect to the real part of α, i.e.,

ei(α+2π)x1v(α+ 2π, ·) = eiαx1v(α, ·), for almost all α ∈ C.

5



Note that when S(k) 6= ∅, v(α, ·) does not exist when α ∈ S(k) thus the inverse transform (6) is
not well defined. The formulation (6) no longer works thus we need some modifications to give exact
formulations for LAP solutions.

3.2 Complex contour integral method

In this subsection, we introduce the first method – the complex contour integral (CCI) method. To
guarantee that the CCI method works, we have to make the following assumption.

Assumption 6. Assume that k > 0 such that S−(k) ∩ S+(k) = ∅.

From [41], the positive valued k’s such that Assumptions 6 is satisfied is only a discrete set.

Remark 7. Assumption 6 is actually not necessary for the LAP. For purely periodic case, the CCI
method has been extended to the case without it in [41]. Concerning the length of this paper, we keep this
assumption to only focus on the most important part.

Suppose that Assumption 4 and 6 are satisfied. The main idea of the CCI method is to modify the
integral contour [−π, π] in (6) such that the points in S(k) are avoided. As the set S(k) is finite, from the
symmetry between S+(k) and S−(k) (see [41]), let

S+(k) =
{
α̂+

1 , . . . , α̂
+
N

}
and S−(k) =

{
α̂−1 , . . . , α̂

−
N

}
where α̂−j = −α̂+

j .

First let the disk with center α and radius δ > 0 be denoted by B(α, δ), and define

Dδ :=
[
(−π, π)× (0,+∞)

]
∪
[
∪Nj=1B

(
α̂+
j , δ

)]
\
[
∪Nj=1B

(
α̂−j , δ

)]
.

Define the new integral contour by:

Λ = ∂Dδ \
[
{−π, π} × R

]
.

With Assumption 4 and 6, we choose δ > 0 such that the following conditions are satisfied:

• any two disks do not have nonempty intersection;

• the closure of each disk only contains one exceptional value α̂±j .

Suppose the problem (1) has an LAP solution u ∈ HLAP (Ω), then u is also the unique LAP solution
of (2) with r := f − k2qu. In [41], the form of u is given explicitly. Note that although r depends on u,
when u is already a known LAP solution, we can still treat r as some fixed function that is compactly
supported in Ω0.

Theorem 8 (Theorem 7, [41]). Assumption 4 and 6 hold. Then the LAP solution for (2) is given by

u(x) :=

∫
Λ

eiαx1v(α, x) dα , x ∈ Ω. (7)

where v(α, ·) ∈ H1
per(Ω0) solves (4) for any fixed α ∈ Λ with g(x) = e−iαx1r(x)= (J r)(α, x).

Now we have to prove that with Assumption 2, 4 and 6, the problem (7) where v(α, ·) ∈ H1
per(Ω0)

solves (4) for any fixed α ∈ Λ with g(x) = e−iαx1
(
f(x)− k2q(x)u(x)

)
has a unique solution in HLAP (Ω),

given any compactly supported f ∈ L2(Ω0). Then the unique solution is the LAP solution for (1).
To describe the problem we first define the function space of the solution. Let X := L2

(
Λ;H1

per(Ω0)
)
.

From the definition of Λ, the curve can be parameterized as Λ := {s(t) := s1(t) + is2(t) : t ∈ [0, 1]} where
both s1 and s2 are real valued functions (for details we refer to Section 4.1). Then the norm of X is
defined as follows

‖ϕ‖X =

[∫ 1

0

∫
Ω0

[
|ϕ(s(t), x)|2 + |∇xϕ(s(t), x)|2

]
|s′(t)|dx dt

]1/2

.

6



Since v(α, ·) satisfies(4), assume ψ = ψ(α, x) and integrating the equation on both sides with respect
to α on the contour Λ, we arrive at the variational form of the problem.

The weak formulation is to find v ∈ X such that∫
Λ

〈A(α, k)v(α, ·), ψ(α, ·)〉 dα = −
∫

Λ

∫
Ω0

e−iαx1r(x)ψ(α, x) dx dα

for all ψ ∈ X. From Riesz representation theorem, there is an operator A defined in X such that

〈Aϕ,ψ〉X =

∫
Λ

〈A(α, k)ϕ(α, ·), ψ(α, ·)〉 dα , ∀w, ψ ∈ X.

As any α ∈ Λ is not an exceptional value, A(α, k) is always invertible. Thus A is invertible in X.
As r = f − k2qu, the variational formulation is written in the form:

〈Av, ψ〉X − k
2

∫
Λ

∫
Ω0

e−iαx1q(x)u(x)ψ(α, x) dx dα = −
∫

Λ

∫
Ω0

e−iαx1f(x)ψ(α, x) dx dα . (8)

For simplicity, define the following operators. Let

(Kv)(x) :=

∫
Λ

eiαx1v(α, x) dα , x ∈ Ω0.

From Riesz representation theorem, there is an operator T in H1
per(Ω0) such that

〈T ϕ,ψ〉 =

∫
Ω0

q(x)ϕ(x)ψ(x) dx , for any ϕ, ψ ∈ H1
per(Ω0).

As H1(Ω0) is compactly embedded in L2(Ω0), the operator T is also compact. Similarly, define L by:

〈Lϕ,ψ〉 =

∫
Ω0

ϕ(x)ψ(x) dx , for any ϕ ∈ L2(Ω0), ψ ∈ H1
per(Ω0).

Then L is bounded from L2(Ω0) to H1
per(Ω0). Thus (8) is equivalent to

(A− k2K∗T K)v = −K∗Lf. (9)

Now we study the property of the operator K. We begin with a classical Minkowski integral inequality.

Lemma 9 ( [13], Theorem 202). Suppose (S1, µ1) and (S2, µ2) are two measure spaces and F : S1×S2 → R
is measurable. Then the following inequality holds for any p ≥ 1[∫

S2

∣∣∣∣∫
S1

F (y, z) dµ 1(y)

∣∣∣∣p dµ 2(z)

]1/p

≤
∫
S1

(∫
S2

|F (y, z)|p dµ 2(z)

)1/p

dµ 1(y). (10)

Lemma 10. The operator K is bounded from L2(Λ;Hm(Ω0)) to Hm(Ω0) for any fixed non-negative
integer m. Especially, it is bounded from X to H1(Ω0).

Proof. First consider the case when m = 0. Given any w ∈ C∞(Λ × Ω0), then Kw is well defined and
uniformly bounded for any x ∈ Ω0. Recall the parameterization of Λ,

‖Kw‖L2(Ω0) =

[∫
Ω0

∣∣∣∣∫
Λ

eiαx1w(α, x)dα

∣∣∣∣2 dx

]1/2

=

[∫
Ω0

∣∣∣∣∫ 1

0

eis(t)x1w(s(t), x)s′(t)dt

∣∣∣∣2 dx

]1/2

.

Then from Lemma 9 (with p = 1) and the Cauchy-Schwartz inequality,

‖Kw‖L2(Ω0) =

[∫
Ω0

∣∣∣∣∫ 1

0

eis(t)x1w(s(t), x)s′(t)dt

∣∣∣∣2 dx

]1/2

≤
∫ 1

0

(∫
Ω0

|eis(t)x1w(s(t), x)|2|s′(t)|2 dx

)1/2

dt

≤
(∫ 1

0

∫
Ω0

|eis(t)x1w(s(t), x)|2|s′(t)|dx dt

)1/2(∫ 1

0

|s′(t)|dt
)1/2

≤ C‖w‖L2(Λ;L2(Ω0)).

7



From the density of C∞(Λ× Ω0) in L2(Λ;L2(Ω0)), the above inequality holds for all w ∈ L2(Λ;L2(Ω0)).
Thus K is bounded from L2(Λ;L2(Ωj)) to L2(Ωj). For m ≥ 1, the proof is similar thus is omitted. So K
is bounded from L2(Λ;Hm(Ω0)) to Hm(Ω0) and particularly it is bounded from X to H1(Ω0).

As A is invertible, K and T are bounded and T is compact, A − k2K∗T K is a Fredholm operator.
Thus it is invertible if and only if it is an injection. Then we obtain the well-posedness of the problem (9)
in the following theorem.

Theorem 11. With Assumption 2, the operator A− k2K∗T K is invertible. That is, given any compactly
supported f ∈ L2(Ω0), the problem (9) has a unique solution in X.

Proof. Suppose v is a solution of (9) with f = 0, i.e., (A− k2K∗T K)v = 0. Then u = Kv lies in H1(Ω0).
From [41], u = Kv is the LAP solution r = −k2qu in (2) thus it is the solution of (1) with f = 0 and
satisfies the radiation condition of Definition 1. From Assumption 2, u = 0. Thus v = 0, which implies
that A− k2K∗T K is injective thus is invertible. So the problem (9) is well-posed in the space X.

We have further regularity results for the solution v.

Corollary 12. With Assumption 2, given any compactly supported f ∈ L2(Ω0). The solution v depends
piecewise smoothly on α ∈ Λ and for fixed α, v(α, ·) ∈ H2

per(Ω0).

Proof. As for any α ∈ Λ, A(α, k) is invertible and Λ is a piecewise smooth curve, A(α, k) depends
piecewise smoothly on α from the perturbation theory. For each fixed α ∈ Λ, v(α, ·) ∈ H2

per(Ω0) from
interior regularity.

3.3 Decomposition method

In [18, 19] (also see [34], Chapter 5, paragraph 2), an explicit formulation of the radiation condition
is given for periodic open tubes in 3D. However, since the method is easily transferred to this case, we
introduce the decomposition method based on the definition without proofs. For simplicity, let

S(k) :=
{
β̂j : j ∈ J

}
where J is a finite set.

Although this set has already been introduced in previous subsections, we use different notations to
indicate the elements in this set, just to avoid confusions. For any fixed j, the Fredholm operator A(β̂j , k)

is not an injection, and the null space Ŷj := N (A(β̂j , k)) is finite dimensional with dimension mj . There

is an orthonormal eigensystem in Ŷj {
(λ`,j , ϕ̂`,j) : ` = 1, 2, . . . ,mj

}
(11)

such that ∫
Ω0

[
−i
∂ϕ̂`,j
∂x1

+ β̂jϕ̂`,j

]
ψ dx = λ`,jk

∫
Ω0

nϕ̂`,jψ dx for all ψ ∈ Ŷj (12)

with normalization

2k

∫
Ω0

nϕ̂`,jϕ̂`′,j dx = δ`,`′ for `, `′ = 1, 2, . . . ,mj . (13)

Note that from the dispersion diagram, the positive integer mj indicates the number of dispersion curves

that pass through the point
(
β̂j , k

2
)

. We can use the values of λ`,j to the direction of the eigenfunctions.

When λ`,j > 0 (< 0), the eigenfunction ϕ̂`,j propagates to the right (left) and β̂j ∈ S+(k) (S−(k)); when

λ`,j = 0, ϕ̂`,j is a standing wave thus β̂j ∈ S0(k) 6= ∅. Since Assumption 4 holds, λ`,j 6= 0 for all possible
` and j. In this case, it is possible that for some j ∈ J , λj,` > 0 and λj,`′ < 0 with ` 6= `′, which means
Assumption 6 is not necessary for the decomposition method.
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Let ϕ`,j := eiβ̂jx1 ϕ̂`,j , then ϕ`,j is a β̂j-quasi-periodic eigenfunction to the Helmholtz equation

∆ϕ`,j + k2nϕ`,j = 0 in Ω0; ϕ`,j = 0 on Σ0
±.

For each j ∈ J , let the space spanned by {ϕ`,j , ` = 1, 2, . . . ,mj} be denoted by Yj .
With above notations, we are prepared to recall the radiation condition which is equivalent, but more

explicit, compared to that defined in Definition 1.

Definition 13 (Theorem 3.7, [18]). Suppose Assumption 2 and 4 hold.The LAP solution u has a decom-
position u = u(1) + u(2) where u(1) ∈ H1(Ω) and u(2) has the form

u(2)(x) = ψ+(x1)
∑
j∈J

∑
λ`,j>0

f+
`,jϕ`,j(x) + ψ−(x1)

∑
j∈J

∑
λ`,j<0

f−`,jϕ`,j(x) (14)

for some f±`,j ∈ C defined by (see [19])

f±`,j = f`,j =
i

|λ`,j |

∫
Ω0

r ϕ`,j dx . (15)

and
ψ+(x1)→ 1 as x1 →∞, ψ+(x1)→ 0 as x1 → −∞; ψ−(x1) = ψ+(−x1).

To simplify the representation, we assume that supp(q) ⊂ (−1/2 + δ, 1/2− δ)× (0, 1) for a δ ∈ (0, 1/2),
we can choose proper ψ+ and ψ− such that ψ±(x1)q(x) = 0 for all x ∈ Ω. For example, we can choose

ψ+(x1) = 1 for x1 ≥ 1− δ

4
and ψ+(x1) = 0 for x1 ≤ 1− 3δ

4
.

Replacing u(2) by its decomposition 14 in (2), we easily arrive at the following equation for u(1):

∆u(1) + k2nu(1) =M(r), (16)

where

M(r) := r − (∆ + k2n)u(2) = r −
∑
j∈J

m∑
j=1

f`,j g`,j(x)

with the functions g`,j defined by:

g`,j(x) = (∆ + k2n(x))
[
ψ±(x1)ϕ`,j(x)

]
= 2(ψ±(x1))′

∂ϕ`,j
∂x1

(x) + (ψ±(x1))
′′
ϕ`,j(x) when ± λ`,j > 0.

From the property of ψ±, supp (g`,j) ⊂ Ω0 for all j and `, thus M(r) is also compactly supported in Ω0.
It is easily checked that M is a bounded linear operator in L2 (Ω0) and ran(M) is orthogonal to Yj for
any j ∈ J . For details we refer to Theorem 4.4 in [19].

Let v(β, x) :=
(
J u(1)

)
(β, x). Since u(1) decays exponentially as |x1| → ∞, v(β, ·) ∈ H1

per(Ω0) exists
for all β ∈ [−π, π] and depends analytically on β in the interval (and also extend analytically to a small
neighbourhood of [−π, π]). For any fixed β, it is the unique solution of (4) with r replaced by M(r).

Similarly to the CCI method, the weak formulation for the problem is to find v ∈ L2((−π, π);H1
per(Ω0))

such that ∫ π

−π
〈A(β, k)v(β, ·), ψ(β, ·)〉 dβ − k2

∫
Ω0

M
(
qu(1)

)(∫ π

−π
eiβx1ψ(β, x) dβ

)
dx

= −
∫
Ω0

M(f)

(∫ π

−π
eiβx1ψ(β, x) dβ

)
dx .

(17)

Define the operator B by:

〈Bv, ϕ〉 =

∫ π

−π
〈A(β, k)v(β, x), ϕ(β, x)〉 dβ , for all v, ϕ ∈ L2((−π, π);H1

per(Ω0)).
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Then with the definition of T and L in the previous section, the variational form (17) is now equivalent
to (

B − k2JMT J−1
)
v = −JMLf. (18)

As A(β, k) is self-adjoint for real valued β, B is also self-adjoint. Thus the space L2((−π, π);H1
per(Ω0))

has the following decomposition:

L2((−π, π);H1
per(Ω0)) = ran(B)⊕ ker(B) and ran(B)⊥ ker(B),

and B is an isomorphism from Y := ran(B) to itself. Moreover, ker(B) =
⊕

j∈J Ŷj . Since ran(M) is

orthogonal to all Yj , ran(JM) is orthogonal to Ŷj , which implies that ran(JM) ⊂ Y . Thus the operator
B − k2JMT J−1 is an endomorphism of Y . As T is compact, the operator JMT J−1 is a compact
operator with range in Y . As B is invertible in Y , B − k2JMT J−1 is a Fredholm operator. Thus we
arrive at the well-posed result of (18).

Theorem 14. Under assumption 2 and 4, then the operator B − k2JMT J−1 is invertible in Y . Given
any compactly supported f ∈ L2(Ω0), the problem (18) has a unique solution in Y .

When v is the unique solution of (18), then u satisfies the radiation condition introduced in Definition
13. Thus it is the LAP solution for the problem (1).

Finally, we have to introduce a special technique for solving (18) numerically. Since A(β, k) is not

invertible in H1
per(Ω0) when β = β̂j , it is difficult to deal with such a point. To this end, we modify the

formulation to avoid the singularities. Note that v(β, ·) depends analytically on β in (−π − δ, π + δ) ×
(−2σ, 2σ) for sufficiently small δ, σ > 0. From Cauchy integral formula,∮

Cσ

eiβx1v(β, x) dβ = 0,

where Cσ is the boundary of the rectangle [−π, π] × [0, σ] which is oriented counter-clockwise. On the
other hand, eiβx1v(β, ·) is 2π-periodic with respect to the real part of β, this implies that the integrals on
the left- and right edges cancel. Thus∫ π

−π
eiβx1v(β, x) dβ =

∫ π

−π
ei(β+iσ)x1v(β + iσ, x) dβ

where v(β + iσ, ·) solves (4) with parameter β + iσ. In the numerical schemes, to avoid the singularities
we always replace β by β + iσ in the variational formulation (17).

4 Numerical schemes

In this section, we introduce two numerical schemes based on the two representations. For both methods,
the periodic problems (4) are computed several times. So we briefly recall the finite element method for
these problems at the very beginning.

Let Mh be a family of regular curved and quasi-uniform meshes which cover the domain Ω0. We also
assume that the number and heights of nodal points on the left and right boundaries of Ω0 are the same,
hence we can define functions that can be extended to periodic ones on the meshes. By omitting nodal
points on the right boundary, we assume that the points xj (j = 1, 2, . . . ,M ′) be all the nodal points,
where M ′ is a positive integer. Let M > M ′ be a positive integer and xj (j = M ′+1, . . . ,M) the points on
the right boundary. Let {ζj : j = 1, 2, . . . ,M ′} be the family of piecewise linear and globally continuous
basis functions that vanish on Σ0

± defined on the meshes Mh, and ζj(x`) = δj,` where j, ` = 1, 2, . . . ,M ′

and where δj,` is the Kronecker delta function. Define the function ζj on Γ1 by the value on Γ0, then it is
also extended periodically to Ω as a 1-periodic function. Then we define the finite dimensional subspace:

Vh := span
{
ζj : j = 1, 2, . . . ,M ′

}
⊂ H1

per(Ω0).

Then the solutions v(α, ·) are approximated in the finite dimensional subspace Vh.
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In the next subsections, we introduce the two numerical methods based on formulations of the LAP
solution by the complex contour integral and decomposition method. To simplify the process, we require
the further assumption.

Assumption 15. Assume that for any element α ∈ S(k), there is only one dispersion curve passing
through (α, k2).

Note that although Assumption 15 is not necessary for both methods, the set with all the positive
wave numbers such that Assumption 15 does not hold is only a zero set.

4.1 The CCI method

First we recall the variational form for the CCI method, i.e., find v ∈ X such that∫
Λ

〈A(α, k)v(α, ·), ψ(α, ·)〉 dα − k2

∫
Λ

∫
Ω0

e−iαx1q(x)u(x)ψ(α, x) dx dα

= −
∫

Λ

∫
Ω0

e−iαx1f(x)ψ(α, x) dx dα

(19)

u(x) =

∫
Λ

eiαx1v(α, x) dα . (20)

In this subsection, we focus of the discretization of the curve Λ. The modified integral contour Λ is
composed of a finite number of intervals and semicircles, then the first step is to parameterize Λ piecewisely:

Λ = ∪Qj=1

{
sj(t) = s1

j (t) + is2
j (t) : t ∈ Ij

}
,

where Ij are closed bounded intervals. For each fixed j = 1, 2 . . . , Q, s1
j and s2

j are real smooth functions
on the interval Ij . With a proper parameterization, let the intervals I1, . . . , IQ be

I1 = (0, a1), I2 = (a1, a2), . . . , Ij = (aj−1, aj), . . . , IQ = (aQ−1, aQ) = (aQ−1, 1),

then
Λ =

{
s(t) = s1(t) + is2(t) : t ∈ [0, 1]

}
where s1 = s1

j and s2 = s2
j in each Ij , respectively. Since the trapezoidal rule converges much faster for

smooth periodic functions than nonperiodic smooth functions (see [39]), we require

s
(m)
j (aj−1) = s

(m)
j (aj) = 0, ∀ j = 1, 2, . . . , Q and m = 1, 2.

Then s′(t) is smooth in [0, 1] and it can be extended to a periodic smooth function in R. For details of
this technique we refer to Section 9.6 in [22].

Replacing α by s(t) in the equations (19)-(20) and letting ṽ(t, x) := v(s(t), x)s′(t), we arrive at the
following equivalent equations:∫ 1

0

〈A(s(t), k)ṽ(t, ·), ψ(t, ·)〉 dt − k2

∫ 1

0

∫
Ω0

e−is(t)x1q(x)u(x)ψ(t, x)s′(t) dx dt

= −
∫ 1

0

∫
Ω0

e−is(t)x1f(x)ψ(t, x)s′(t) dx dt ,

(21)

u(x) =

∫ 1

0

eis(t)x1 ṽ(t, x) dt . (22)

The variational problem is to seek ṽ ∈ X̃ := L2
(
(0, 1);H1

per(Ω0)
)

such that (21)-(22) hold for all test

function ψ ∈ X̃. From Corollary 12, ṽ ∈ C∞per
(
[0, 1];H2

per(Ω0)
)
.
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Now we discretize the system (21)-(22). As the finite element discretization in the domain Ω0 has
already been introduced at the beginning of this section, we only introduce the trigonometric interpolation
in the domain [0, 1]. Let N be a positive integer and the uniformly distributed nodal points be

t0 = 0; tj =
j

N
∀ j = 1, 2, . . . , N.

Suppose N is an even number, then let us introduce the basic functions:

ξ`(t) :=
1

N

N/2∑
m=−N/2+1

exp (i2πm(t− t`)) , ` = 1, 2, . . . , N.

It is well known that

ξ`(t`′) = δ`,`′ and

∫ 1

0

ξ`(t)ξ`′(t) dt =
1

N
δ`,`′ .

Now we are prepared to discretize the system (21)-(22) in the finite dimensional space:

X̃N,h := Vh
⊕

Vh
⊕
· · ·
⊕

Vh︸ ︷︷ ︸
N spaces

.

Let ṽN,h ∈ X̃N,h be the approximation of ṽ of the form:

ṽN,h(t, x) =

N∑
`=1

M∑
j=1

v̂`,jξ`(t)ζj(x),

then

uN,h(x) =

M∑
j=1

ûjζj(x) where ûj =
1

N

N∑
`=1

eis(t`)x1 v̂`,j . (23)

With the test function ψ(t, x) = ξ`′(t)ζj′(x), (21)-(22) is discretized as:

1

N
δ`,`′

M ′∑
j=1

v̂`,j 〈A(t`, k)ζj , ζj′〉 −
k2

N

M ′∑
j=1

ûj

(∫
Ω0

e−is(t`′ )x1q(x)ζj(x)ζj′(x) dx

)
s′(t`′)

= − 1

N

(∫
Ω0

e−is(t`′ )x1f(x)ζj′(x) dx

)
s′(t`′).

(24)

With (23) we also get the approximation of u, i.e., uN,h, at the same time.
Finally the system (23)-(24) is summarized by the following system:

A1 0 · · · 0 C1

0 A2 · · · 0 C2

...
...

. . .
...

...
0 0 · · · AN CN
B1 B2 · · · BN I




V1

V2

...
VN
U

 =


F1

F2

...
FN
0

 , (25)

where Vj = (v̂1,j , . . . , v̂M,j)
>

and U = (û1, . . . , ûM )
>

. Aj comes from the first term of (24), Cj comes
from the second term of (24), Bj comes from (23), Fj comes from the right hand side. The size of this
system is (N + 1)M × (N + 1)M . Note that U is treated as an additional unknown vector just for a
simpler representation of the linear system. Then the final task is to solve the linear sparse system with
the size (N + 1)M × (N + 1)M .
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4.2 The decomposition method

We introduce the decomposition method in this subsection. Since Assumption 15 holds, mj = 1 for all
j ∈ J , so we abbreviate the notations λ`,j , ϕ`,j , g`,j as λj , ϕj , gj . First we define

f0(x) :=M(f) = f −
∑
j∈J

i

|λj |

[∫
Ω0

f(x)ϕj dx

]
gj(x). (26)

We simplify the second term in (17):∫
Ω0

M
(
qu1
) ∫ π

−π
eiβx1ψ(β, x) dβ dx =

∫
Ω0

u(1)(x)θ(x;ψ) dx

where θ(x;ψ) = q(x)M∗
[∫ π
−π e

iβx1ψ(β, x) dβ
]

and M∗ is the adjoint operator of M defined as:

M∗(f) = f(x) +
∑
j∈J

i

|λj |
ϕj(x)

[∫
Ω0

gj(y)f(y) dy .

]

From the variational form (17) (note that β is already replaced by β + iσ):∫ π

−π
〈A(β + iσ, k)v(β+iσ, ·), ψ(β+iσ, ·)〉 dβ − k2

∫
Ω0

u(1)(x)θ(x;ψ) dx

= −
∫ π

−π

∫
Ω0

e−i(β+iσ)x1f0(x)ψ(β+iσ, x) dx dβ ;

(27)

u(1)(x) =

∫ π

−π
ei(β+iσ)x1v(β + iσ, x) dβ . (28)

To discretize (27)-(28), the first step is to approximate the exceptional values β̂j and the corresponding
systems {(λj , ϕ̂j)}. This implementation is carried out by the following two steps. The first step is to find
all the real eigenvalues and corresponding eigenspaces of the quadratic pencil A(α, k) = A1 +k2A4 +αA2 +
α2A3 (see (5)). The operators are discretized by the finite element method and let Ah1 , A

h
2 , A

h
3 , A

h
4 , B

h
1 , B

h
2

be the corresponding matrices. A standard way to solve above quadratic eigenvalue problem is to solve
the following linearized problems:

Bh1W
h = λBh2W

h, (29)

where

Bh1 :=

(
Ah1 + k2Ah4 0

0 I

)
, Bh2 =

(
−Ah2 −Ah3
I 0

)
.

By solving this problem, we find all the eigenvalues and eigenfunctions{(
β̂hj , ϕ̂

h
j

)
: j ∈ Jh

}
.

We normalize the function ϕ̃hj by

2k

∫
Ω0

n(x)ϕ̂hj (x)ϕ̂hj (x) dx = 1.

Since the discretized matrices approximate the exact ones when h → 0, for sufficiently small h > 0,
Jh = J and ∣∣∣β̂hj − β̂j∣∣∣ = O(h2),

∥∥ϕ̂hj − ϕ̂j∥∥H1
per(Ω0)

= O(h)

hold for all j ∈ J . For details of the error estimation we refer to [1,7,21]. When Assumption 15 no longer
holds, we refer to the Appendix for details.
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Using (12) we also get the parameter λhj . Let ϕhj (x) := eiβ̂hj x1 ϕ̂hj (x), then the system
{

(λhj , ϕ
h
j )
}

for

fixed j ∈ J is the numerical approximation of (11) with the following convergence result:∣∣λhj − λj∣∣ = O(h2),
∥∥ϕhj − ϕj∥∥H1(Ω0)

= O(h). (30)

With these values and functions, we get the function θh(x;ψ) by replacing λj , ϕj by λhj , ϕhj .

Now we are prepared to discretize the system (27)-(28) with θ(x;ψ) replaced by θh(x;ψ), and f0(x)

replaced by fh0 (x). The related solutions are denoted by vh(β, x) and u
(1)
h (x). With this substitution, u

reads:
u(x) = u

(1)
h (x) + u

(2)
h (x) (31)

where u
(1)
h solves

∆u
(1)
h + k2nu

(1)
h =

∑
j∈J

i

|λhj |

∫
Ω0

f(x)ϕhj (x) dx ghj (x)

and ghj is defined in the same way as gj replacing ϕj by ϕhj . Let g be a complex valued smooth function
defined in [0, 1] such that g(t) = Re (g(t)) + iσ and

Re (g(0)) = −π and Re (g(1)) = π, g(m)(0) = g(m)(1) = 0 for all m = 1, 2, . . . .

Replace β + iσ by g(t) in (27)-(28) and θ(x;ψ) by θh(x;ψ), and define ṽ(t, x) := vh(g(t), x)g′(t), then
ṽ ∈ C∞per

(
[0, 1];H2

per(Ω0)
)
. We arrive at the variational form for ṽ, i.e., find ṽ ∈ L2

(
(0, 1);H1

per(Ω0)
)

such that ∫ 1

0

〈A(g(t), k)ṽ(t, ·), ψ(t, ·)〉 dt − k2

∫
Ω0

u
(1)
h (x)θh(x;ψ) dx

= −
∫ 1

0

∫
Ω0

e−ig(t)x1fh0 (x)ψ(t, x)g′(t) dx dt ;

(32)

u
(1)
h (x) =

∫ 1

0

eig(t)x1 ṽ(t, x) dt . (33)

Here fh0 is defined in (26) by replacing ϕj by ϕhj .
We use the same discretization as in the CCI method and consider the discretized problem in the space

X̃N,h, where ṽN,h ⊂ X̃N,h is given by:

ṽN,h =

N∑
`=1

M∑
j=1

v̂`,jξ`(t)ζj(x).

Then

u
(1)
N,h =

M∑
j=1

ûjζj(x) where ûj =
1

N

N∑
`=1

eig(t`)x1 v̂`,j (34)

With the test function ψ(t, x) = ξ`′(t)ζj′(x), we get the discretized form of the system (32)-(33):

1

N
δ`,`′

M∑
j=1

v̂`,j 〈A(t`, k)ζj , ζj′〉 − k2
M∑
j=1

ûj

(∫
Ω0

ζj(x)θ(x; ξ`′(t)ζj′(x)) dx

)

= − 1

N

(∫
Ω0

e−ig(t`′ )x1fh0 (x)ζj′(x) dx

)
g′(t`′).

(35)
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As in the CCI method, we approximate u
(1)
h by u

(1)
N,h with coefficients defined by (34). Finally the

system (34)-(35) is summarized by the following system:
Ã1 0 · · · 0 C̃1

0 Ã2 · · · 0 C̃2

...
...

. . .
...

...

0 0 · · · ÃN C̃N
B̃1 B̃2 · · · B̃N I




V1

V2

...
VN
U

 =


F̃1

F̃2

...

F̃N
0

 , (36)

where Ãj comes from the first term of (35), C̃j comes from the second term of (35), B̃j comes from (34),

F̃j comes from the right hand side. The size of this system is (N + 1)M × (N + 1)M .

4.3 Error estimations

In the last part of this section, we present the error estimations for both algorithms. Since both solutions
w̃(t, x) of (21)-(22) and the solution ṽ(t, x) of (32)-(33) lie in the space C∞per

(
[0, 1];H2

per(Ω0)
)
, we can use

the error estimation given in [40]. The first result is the error estimation of the interpolation in the finite

dimensional space X̃N,h. Combining equation (32) in [40] and (46) in [28], we have the following results.

Theorem 16. Suppose v ∈ C∞per
(
[0, 1];H2

per(Ω0)
)

and vN,h is the interpolation of v in the subspace X̃N,h.
Then

min
vN,h∈X̃N,h

‖v − vN,h‖L2([0,1];H1
per(Ω0)) ≤ C

(
N−n + h

)
‖v‖C∞per([0,1];H2

per(Ω0)),

where n can be any positive integer and C depending on ‖v‖Cn([0,1];H2
per(Ω0)) .

This implies that the interpolation decays super algebraically with respect to the parameter 1/N but
linearly with respect to h. With this result, we get the error estimations for finite element solutions of the
variational problems (21)-(22) and (32)-(33).

Theorem 17 (Theorem 4, [40]). Let w̃ be the exact solution of (21)-(22) and w̃N,h be the finite element
solution of the corresponding discretized form (23)-(24). Let ṽ be the exact solution of (32)-(33) and ṽN,h
be the finite element solution of (34)-(35). For sufficiently small h > 0 and sufficiently large positive
integer N , we have the following error estimations:

‖w̃ − w̃N,h‖L2([0,1]×Ω0) ≤ Ch
(
N−n + h

)
‖w̃‖C∞per([0,1];H2

per(Ω0)); (37)

‖ṽ − ṽN,h‖L2([0,1]×Ω0) ≤ Ch
(
N−n + h

)
‖ṽ‖C∞per([0,1];H2

per(Ω0)) (38)

where C is a parameter depending on n.

For both methods, we get the original solution from (23), and the error is also easily obtained:

‖u− uN,h‖L2(Ω0) ≤ Ch
(
N−n + h

)
‖ṽ‖C∞per([0,1];H2

per(Ω0)); (39)∥∥∥u(1)
h − u

(1)
N,h

∥∥∥
L2(Ω0)

≤ Ch
(
N−n + h

)
‖ṽ‖C∞per([0,1];H2

per(Ω0)). (40)

For the CCI method, the final error estimation is already obtained by (39). Then in the following, we
mainly focus on the decomposition method.

Recall (30), we have the error bound
∥∥∥u(1) − u(1)

h

∥∥∥
L2(Ω0)

≤ O(h), which converges only linearly with

respect to h. However, recall (31),

u(x) = u
(1)
h (x) + u

(2)
h (x)

and the numerical solution is given by

uN,h = u
(1)
N,h(x) + u

(2)
h (x).

Finally we get the error estimate for the decomposition method:

‖u− uN,h‖L2(Ω0) =
∥∥∥u(1)

h − u
(1)
N,h

∥∥∥
L2(Ω0)

≤ Ch
(
N−n + h

)
‖ṽ‖C∞per([0,1];H2

per(Ω0)). (41)
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5 Numerical examples

In this section, we give some numerical examples to show the efficiency of both methods. For both cases,
we apply the same finite element discretization for quasi-periodic problem (4), and the meshsize h is chosen
as 0.005, 0.01, 0, 02, 0, 04. The parameter N is chosen as 4, 8, 16, 32, 64.

We show numerical results for two different examples. For both examples, f and q are the same. f is
already defined in Remark 2, and q is defined by:

q(x) =


0, |x− b0| > 0.15;

2, 0.1 < |x− b0| < 0.15;

2ζ(|x− b0|; 0.1, 0.15), otherwise.

where b0 = (0.2, 0.2)>. In Example 1, the periodic refractive index n = n1 is defined also in Remark 2,
while in Example 2,

n(x) = n2(x) = 3 + sin(4πx1).

The wave number is chosen as
√

17 in Example 1 and
√

12 in Example 2. We plot the dispersion diagrams
for both examples in Figure 4. From the diagrams we get the set of exceptional values: For Example 1,

S(k) =
{
− 0.9577, 0.9577

}
and S−(k) =

{
− 0.9577

}
, S+(k) =

{
0.9577

}
;

while for Example 2,

S(k) =
{
− 1.0326, 1.0326

}
and S−(k) =

{
1.0326

}
, S+(k) =

{
− 1.0326

}
.

Note that since the above results are numerical, they are not exact. Based on the exceptional values, we
also show the integral contour Λ in Figure 5.

(a) (b)

Figure 4: Dispersion diagrams: Example 1 in (a) and Example 2 in (b). Blue dots are points in S+(k)
and purple squares are points in S−(k).

(a) (b)

Figure 5: Integral contour Λ: Example 1 in (a) and Example 2 in (b). Red dots exceptional values.
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5.1 The convergence of exceptional values

First, we show the convergence of the approximated exceptional values with respect to the meshsize h. As
the convergence of eigenfunctions and λh`,j are similar, they are omitted here. For h = 0.04, 0.02, 0.01, 0.005,
we compute the exceptional values and the positive ones are listed in Table 1.

h = 0.04 h = 0.02 h = 0.01 h = 0.005

Example 1 0.8982 0.9435 0.9549 0.9577
Example 2 1.0738 1.0387 1.0337 1.0326

Table 1: Positive exceptional values computed with different h’s.

If the values at h = 0.005 is treated as “exact”, then we plot the relative error with respect to the
parameter h in logarithmic scales in the first picture in Figure 6. From the plot, the slope of the red curve
is about 2.2 and that of the blue one is about 2.6, which corresponds to (and even a little faster than) the
convergence of the finite element method. Thus the convergence rates for the exceptional values are even
faster than expected, i.e., O(h2).

5.2 Numerical results

In this section, we focus on the numerical results obtained by the proposed methods. For both exam-
ples, we use a completely different method given in [6] to produce “exact solutions”. In the computa-
tion we use Lagrangian element with meshsize 0.005 and an extrapolation technique with data points
0.001, 0.0005, 0.00025, and the solution is denoted by uexa. Then the error is estimated as:

errN,h =
‖uN,h − uexa‖L2(Ω0)

‖uexa‖L2(Ω0)
.

For the decomposition method, the parameter σ is chosen to be 0.2. For the relative errors with different
examples and methods we refer to Table 2-5. From the four tables, the relative errors decrease as h gets
smaller and N gets larger, but the decrease stops at the level of 3 × 10−3. This may due to the lack of
accuracy of the “exact solutions”.

h = 0.04 h = 0.02 h = 0.01 h = 0.005

N = 16 1.98E−1 1.85E−1 1.80E−1 1.78E−1
N = 32 8.87E−2 5.26E−2 4.30E−2 4.06E−2
N = 64 6.21E−2 1.96E−2 7.54E−3 4.60E−3
N = 128 6.12E−2 1.87E−2 6.60E−3 3.82E−3
N = 256 6.12E−2 1.87E−2 6.60E−3 3.82E−3

Table 2: Relative error for Example 1, CCI method.

h = 0.04 h = 0.02 h = 0.01 h = 0.005

N = 16 7.89E−2 2.00E−2 5.42E−3 3.13E−3
N = 32 8.27E−2 2.05E−2 5.44E−3 3.09E−3
N = 64 8.38E−2 2.08E−2 5.44E−3 3.05E−3
N = 128 8.36E−2 2.08E−2 5.44E−3 3.05E−3
N = 256 8.36E−2 2.08E−2 5.44E−3 3.05E−3

Table 3: Relative error for Example 1, decomposition method.
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h = 0.04 h = 0.02 h = 0.01 h = 0.005

N = 16 6.87E−2 4.63E−2 4.28E−2 4.22E−2
N = 32 4.80E−2 1.51E−2 7.07E−3 5.78E−3
N = 64 4.71E−2 1.36E−2 4.67E−3 2.98E−3
N = 128 4.71E−2 1.36E−2 4.69E−3 3.02E−3
N = 256 4.71E−2 1.36E−2 4.69E−3 3.02E−3

Table 4: Relative error for Example 2, CCI method.

h = 0.04 h = 0.02 h = 0.01 h = 0.005

N = 16 9.01E−2 8.04E−2 7.92E−2 7.92E−2
N = 32 4.92E−2 3.25E−2 3.05E−2 3.03E−2
N = 64 3.71E−2 1.11E−2 4.83E−3 3.84E−3
N = 128 3.70E−2 1.08E−2 4.11E−3 2.92E−3
N = 256 3.70E−2 1.08E−2 4.12E−3 2.94E−3

Table 5: Relative error for Example 2, decomposition method.

Now let’s turn to the convergence rate. For both examples and methods, we study the dependence of
the errors on h and N separately. To study the dependence on h, we fix a large N , i.e., N = 256 and let
the solutions with h = 0.005 be the “exact” ones. Then we show the relative errors

err256,h =
‖u256,h − u256,0.005‖L2(Ω0)

‖u256,0.005‖L2(Ω0)

in Table 6. To study the dependence on N , we fix h = 0.005 and let the solutions with N = 256 be
“exact” ones. Then we show the relative errors

errN,0.005 =
‖uN,0.005 − u256,0.005‖L2(Ω0)

‖u256,0.005‖L2(Ω0)
.

in Table 7. We also plot the data in logarithmic scales in Figure 6. (b) shows the dependence on h and (c)
shows the dependence on N . In Figure 6 (b), the four curves are almost straight and the slopes are almost
2. This shows that the convergence rate with respect to h is about O(h2). In (c), the curves are no longer
close to straight ones and the slopes get faster as logN gets larger. This implies that the convergence rate
is super-algebraic. Both results coincide with the error estimations given in Theorem 17.

Example 1 (CCI) Example 1 (D) Example 2 (CCI) Example 2 (D)

h = 0.04 5.96E−2 8.32E−2 4.54E−2 3.55E−2
h = 0.02 1.60E−2 2.00E−2 1.18E−2 9.11E−3
h = 0.01 3.35E−3 3.98E−3 2.34E−3 1.79E−3

Table 6: Relative errors with different h’s for fixed N = 256.

Example 1 (CCI) Example 1 (D) Example 2 (CCI) Example 2 (D)

N = 16 1.76E−1 1.17E−4 4.28E−2 8.02E−2
N = 32 3.87E−2 5.52E−5 5.82E−3 3.13E−2
N = 64 1.37E−3 4.06E−6 1.16E−4 3.71E−3
N = 128 1.57E−6 4.94E−8 4.30E−8 4.47E−5

Table 7: Relative errors with different N ’s for fixed h = 0.005.

Finally, we also show the error between the two different methods with the same parameters. Since
the super-algebraic convergence of both algorithms with respect to N is already shown, we fix N = 256
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and compute the relative errors for different h’s:

errh,256 =

∥∥∥uCCI256,h − uD256,h

∥∥∥
L2(Ω0)∥∥∥uCCI256,h

∥∥∥
L2(Ω0)

where uCCIN,h and uDN,h are numerical results obtained from the CCI method and decomposition method,
respectively. The relative errors are shown in Table 8. The data are also plotted in logarithmic scales in
(d) in Figure 6. For Example 1, the slope of the curve is about 1.8 and for Example 2, the slope is about
1.9. The results also correspond to the error analysis of the finite element method and the convergence of
exceptional values shown in (a) in Figure 6. Moreover, since the solutions for both methods coincide with
each other, we can trust both algorithms.

h = 0.04 h = 0.02 h = 0.01 h = 0.005

Example 1 5.08E−2 1.76E−2 4.80E−3 1.25E−3
Example 2 1.25E−2 3.44E−3 8.68E−4 2.20E−4

Table 8: Relative error between two methods.

(a) (b)

(c) (d)

Figure 6: Convergence of exceptional values (a), relative errors depend on h (b) and N (c).
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6 Conclusion

In the last section of this paper, we compare the two algorithms. Both methods have second order
convergence with respect to the meshsize and converge super algebraically with respect to the number
of nodal points on [0, 1]. The computational complexity is also similar with the same parameters. Both
methods need to be computed by two steps. In the first step, the exceptional values and eigenfunctions
are computed, where a normalization process is needed for the decomposition method. Note that, the
computation of the normalization is so small that it can be omitted, since mj is always a very small
number. In the second step, we need to solve the linear system (25) for the CCI method, and (36) for the
decomposition method. Both matrices are of the same type and size, so the computational complexities
and time are also similar.

Both methods also have their advantages and disadvantages. The CCI method requires the additional
Assumption 6 which is not necessary for the LAP process and the decomposition method. Fortunately
this only excludes a discrete subset of (0,+∞). The propagating modes are not obtained from the CCI
method. But for the CCI method, we don’t need very accurate approximations for the exceptional values.
On the other hand, the decomposition method needs good approximations for the exceptional values, but
it does not need Assumption 6 and the propagating modes are also computed directly. Moreover, due to
the corners on the contour in Figure 5, the error from the complex contour discretization is expected to be
larger than the decomposition method for the same N . Since both algorithms converge super-algebraically
with respect to the parameter N , they are very efficient and we can choose either algorithm according to
different settings and requirements.

Appendix

6.1 Smooth and analytic functions in Banach spaces

First we recall definitions of smooth and analytic functions with values in Banach spaces.

Definition 18. Suppose F is a map from an open set U ⊂ CN into a complex Banach space X. Then

• F is analytic at z0 ∈ U if there is an R > 0 and a series {fn : n ∈ N} ⊂ X such that

F (z) =

∞∑
n=0

(z − z0)n

n!
fn

converges uniformly for z ∈ B(z0, R) ∩ U where B(z0, R) is the disk with center z0 and radius R.

• F is smooth at z0 ∈ U if its Fréchet derivative exists for any order.

With Definition 18, we can easily define spaces Cω([a, b];Hs(Ω0)), C∞([a, b];Hs(Ω0)) where the func-
tions depend analytically or smoothly on the first variable. The space C∞per([a, b];H

s(Ω0)) is the subspace
of C∞([a, b];Hs(Ω0)) with an additional periodic condition on the first variable.

We introduce the Floquet-Bloch transform. For a function ϕ ∈ C∞0 (Ω), define the transform

(Jϕ)(α, x) := (2π)−1/2
∑
j∈Z

ϕ

(
x+

(
j
0

))
e−iα(x1+j).

It is easily checked that with fixed α ∈ R, (Jϕ)(α, ·) is 1-periodic in x1-direction. For fixed x ∈ Ω0,
eiαx1(Jϕ)(α, x) is 2π-periodic in α. The properties of the transform are recalled in the following theorem.
For details we refer to [23,27].

Theorem 19. The Floquet-Bloch transform is extended to an isometry between Hs(Ω) and
L2((−π, π);Hs

per(Ω0)) for any s ∈ R and its inverse transform is:

(
J−1ψ

)
(x) =

1

2π

∫ π

−π
ψ(α, x)eiαx1 dα .
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Moreover, the adjoint operator of J with respect to the inner product of L2((−π, π);L2(Ω0)), denoted by
J ∗, equals to J−1.
Jϕ depends analytically on α if and only if ϕ decays exponentially when |x1| → ∞.
Note here the subscript per is to indicate that the function is periodic with respect to x1.

6.2 Normalization of the eigensystem

In this subsection, the Assumption 15 no longer holds. Then by solving (29), we find all eigenvalues and
eigenfunctions {(

β̂hj , ϕ̃
h
`,j

)
: j ∈ Jh, ` = 1, 2, . . . ,mj

}
,

where mj is a positive integer. Then we normalize the system to get the eigenfunction ϕ̂h`,j such that it
satisfies (12) and (13). The eigenfunctions are of the form

ϕ̂h`,j(x) =

mj∑
`′=1

cj`,`′ ϕ̃
h
`′,j(x) (42)

where the coefficients cj`,`′ ∈ C. Thus the problem is then to find out the approximated eigenvalues λh`,j
and coefficients cj,h`,`′ for all `, `′ = 1, 2, . . . ,mj . From (12), for fixed ` = 1, 2, . . . ,mj ,

mj∑
`′=1

cj,h`,`′

(∫
Ω0

[
−i

∂

∂x1
ϕ̃h`′,j + β̂jϕ̃

h
`′,j

])
ϕ̃h`′′,j dx = λh`,j

mj∑
`′=1

cj,h`,`′

(
k

∫
Ω0

ϕ̃h`′,jϕ̃
h
`′′,j dx

)
holds for any `′′ = 1, 2, . . . ,mj . Let

aj`,`′ =

∫
Ω0

[
−i

∂

∂x1
ϕ̃h`′,j + β̂jϕ̃

h
`′,j

]
ϕ̃h`,j dx ; bj`,`′ = k

∫
Ω0

ϕ̃h`′,jϕ̃
h
`,j dx ,

then 
aj1,1 aj1,2 · · · aj1,mj
aj2,1 aj2,2 · · · aj2,mj

...
... · · ·

...

ajmj ,1 ajmj ,2 · · · ajmj ,mj



cj,h`,1
cj,h`,2

...

cj,h`,mj

 = λh`,j


bj1,1 bj1,2 · · · bj1,mj
bj2,1 bj2,2 · · · bj2,mj

...
... · · ·

...

bjmj ,1 bjmj ,2 · · · bjmj ,mj



cj,h`,1
cj,h`,2

...

cj,h`,mj

 .

By solving this generalized eigenvalue problem, we get all the coefficients cj,h`,`′ and eigenvalues λh`,j . Then

the function ϕ̂h`,j is obtained directly by (42). Finally, we normalize the functions ϕ̂h`,j by

2k

∫
Ω0

n(x)ϕ̂h`,j(x)ϕ̂h`,j(x) dx = 1.
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