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Abstract. We propose a controllability method for the numerical solution of time-harmonic Maxwell’s equa-3
tions in their first-order formulation. By minimizing a quadratic cost functional, which measures the deviation4
from periodicity, the controllability method determines iteratively a periodic solution in the time domain. At each5
conjugate gradient iteration, the gradient of the cost functional is simply computed by running any time-dependent6
simulation code forward and backward for one period, thus leading to a non-intrusive implementation easily inte-7
grated into existing software. Moreover, the proposed algorithm automatically inherits the parallelism, scalability,8
and low memory footprint of the underlying time-domain solver. Since the time-periodic solution obtained by9
minimization is not necessarily unique, we apply a cheap post-processing filtering procedure which recovers the10
time-harmonic solution from any minimizer. Finally, we present a series of numerical examples which show that11
our algorithm greatly speeds up the convergence towards the desired time-harmonic solution when compared to12
simply running the time-marching code until the time-harmonic regime is eventually reached.13
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1. Introduction. Efficient numerical methods for electromagnetic wave propagation are cen-16

tral to a wide range of applications in science and technology [4, 20]. For wave phenomena with17

harmonic time dependence, governed by a single angular frequency ω > 0, the electromagnetic18

wave field satisfies time-harmonic Maxwell’s equations in a domain Ω ⊂ R3: Given a current19

density j : Ω→ C3, we seek two vector fields e,h : Ω→ C3 such that20

(1.1a)

{
iωεe+ σe+ ∇× h = j,

iωµh−∇× e = 0,
21

inside the computational domain Ω, where the first-order tensors ε, σ and µ are the permittivity,22

conductivity and permeability of the medium in Ω. At the boundary ∂Ω of Ω, divided into two23

disjoint sets ΓP and ΓI, we impose the boundary conditions24

(1.1b)

{
e× n = 0 on ΓP,

e× n+Zhτ = g on ΓI,
25

where n stands for the outward unit normal to ∂Ω and hτ := n × (h × n). Here, the first-order26

tensor Z, defined on ΓI, describes a surface impedance while g : ΓI → C3 typically represents27

incident electromagnetic field. The PEC condition on ΓP corresponds to the surface of a perfectly28

conducting material whereas the impedance boundary condition on ΓI either models the bound-29

ary of an imperfect conductor or corresponds to an approximation of the Silver-Müller radiation30

condition [12]. Note that ΓP or ΓI may be empty.31

In heterogeneous media with intricate geometries, Galerkin discretizations based on variational32

formulations of (1.1), such as curl-conforming finite elements or discontinous Galerkin (DG) meth-33

ods [30, 34], probably are the most flexible and competitive approaches currently available. If ω34

is “large” and the computational domain spans many wavelengths, resolving the wavelength and35

limiting dispersion errors requires the use of highly refined meshes coupled with high-order ele-36

ments [10, 32]. Hence, the high-frequency regime typically leads to large, sparse, indefinite and37
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ill-conditioned linear systems which need to be solved numerically by direct or iterative meth-38

ods. Although considerable progress has been achieved over the past decades [2, 3], the parallel39

implementation of scalable direct solvers remains a challenge when the number of unknowns is40

large. On the other hand, the design of robust and efficient preconditioners for iterative solvers is41

a delicate task [13]. Recent developments include domain decomposition [6, 30], shifted-laplacian42

[16], and sweeping [42] preconditioners. Still, the efficient solution of 3D time-harmonic Maxwell’s43

equations with hetereogeneous coefficients remains to this day a formidable challenge, especially44

in the high-frequency regime.45

To avoid these difficulties, we instead transform (1.1) back to the time-domain and consider46

its time-dependent counterpart47

(1.2)


εĖ + σE + ∇×H = J in R+ × Ω,

µḢ −∇×E = 0 in R+ × Ω,

E × n = 0 on R+ × ΓP,

E × n+ZHτ = G on R+ × ΓI,

48

with time-harmonic forcing J(t,x) := Re
{
j(x)eiωt

}
, G(t,x) := Re

{
g(x)eiωt

}
, and initial condi-49

tions E|t=0 = E0 and H|t=0 = H0 yet to be specified. The key advantage of this strategy is that50

it only requires the solution of a time evolution problem for which efficient numerical schemes,51

such as finite differences [40, 43] or DG [15, 23, 27] discretizations coupled with explicit time inte-52

gration, can be utilized. As these algorithms are inherently parallel with a low memory footprint,53

they are extremely attractive on modern computer architectures.54

In this context, a simple and common approach follows from the limiting amplitude principle55

[35], which states under suitable assumptions that the solution of (1.2) “converges” to the time-56

harmonic solution in the sense that E(t,x) → Re
{
e(x)eiωt

}
and H(t,x) → Re

{
h(x)eiωt

}
as57

t→ +∞. Thus, to solve (1.1) one can simply simulate time-dependent Maxwell’s equations for a58

“sufficiently long” time and eventually extract the time-harmonic solution. However, as the final59

simulation time required to obtain an accurate approximation may be very large, especially near60

resonances or in the presence of trapping geometries, the usefulness of this approach is somewhat61

limited [5].62

Both controllability methods and fixed-point iterations have been proposed to accelerate con-63

vergence and determine initial conditions (E0,H0) which render the time-dependent solution64

T -periodic with period T := 2π/ω. Inspired by the seminal work in [31], controllability methods65

(CM) [8, 9] reformulate the controllability problem as a minimization problem for a quadratic66

cost functional J(E0,H0), which measures the misfit between (E0,H0) and the time-dependent67

solution (E(T ),H(T )) after one period. Then, the functional J is minimized by a conjugate gradi-68

ent (CG) iteration, which leads to the combined controllability method-CG algorithm, or CMCG69

for short. Alternatively, fixed-point iterations determine the T -periodic solution by applying a70

judicious filtering operator at each iteration to achieve convergence [36, 38]. As the convergence71

of fixed-point iterations can be slow near resonances or in the presence of trapping geometries, an72

outer CG or GMRES Krylov subspace method must be applied, depending on boundary conditi-73

tions.74

When using the controllability approach, one faces two central questions: efficient computation75

of the gradient J ′ and uniqueness of the time-periodic solution. As early work on CMCG methods76

was restricted to scattering problems from acoustics [8, 9] or electromagnetics [7] in second-order77

formulation, the computation of J ′ always required the solution of a strongly elliptic (coercive)78

problem. In [25, 26], a higher-order version was presented for the Helmholtz equation in stan-79

dard second-order formulation, which combines spectral FE in space with classical fourth-order80

RungeKutta (RK) time integration. To avoid solving that additional elliptic problem at each CG81

iteration, the controllability method was later applied to the Helmholtz equation in first-order82

formulation [29] using Raviart-Thomas FE for the spatial discretization; due to the lack of avail-83

able mass-lumping, however, the mass-matrix then needed to be inverted at each time-step during84

the time integration. By combining a first-order formulation with a DG discretization, a scalable85
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parallel formulation was recently derived [22], which completely avoids the need for solving any86

elliptic problem or inverting the mass-matrix.87

In general, the T -periodic solution of (1.2) is not unique and hence does not necessarily88

yield the desired (unique) time-harmonic solution of (1.1). For sound-soft acoustic scattering,89

where Dirichlet and impedance conditions are imposed on distinct parts of the boundary, the T -90

periodic solution in fact is unique and the one-to-one correspondence is therefore immediate. For91

other boundary-value problems, however, such as sound-hard scattering or problems in bounded92

physical domains, the periodic solution is generally no longer unique, as it may contain additional93

(T -periodic) spurious modes. Two ideas have been proposed as a remedy to extend the CMCG94

approach to arbitrary boundary conditions. First, uniqueness can be restored by modifying J ,95

though at a small price in the computation of its gradient [5, 24]. Alternatively, a cheap filtering96

operator can be applied as a post-processing step to any minimizer of J , which removes any97

spurious modes [22, 41] and thus restores uniqueness using the original cost functional J .98

Here we propose a CMCG method for time-harmonic Maxwell’s equations (1.1) in their first99

order formulation, which completely avoids the solution of any elliptic problem, and combine it100

with a post-processing filtering step to guarantee uniqueness, regardless of the boundary con-101

ditions. Moreover, thanks to a DG discretization in space, the mass-matrix is automatically102

block-diagonal. Hence, the resulting CMCG algorithm is inherently parallel and scalable but also103

guaranteed to converge to the time-harmonic solution starting from any initial guess, as long as104

time-harmonic Maxwell’s equations (1.1) are well-posed for the frequency ω under consideration.105

The remainder of this work is organized as follows. We provide a formal description of the106

algorithm and a discussion of our key theoretical results in Section 2. As the mathematical frame-107

work required to rigorously define and analyze Maxwell’s equations is rather involved, the precise108

description and preliminary results are postponed to Section 3. Section 4 contains the bulk of109

the theory, where we carefully analyze the relation between the time-harmonic and time-periodic110

solutions. Here, our contributions are twofold. On the one hand, we identify configurations of111

boundary conditions and right-hand sides for which the unique time-periodic solution coincides112

with the time-harmonic solution. On the other hand, we show that the filtering procedure intro-113

duced in [22, 41] always recovers the time-harmonic solution from any minimizer, as long as (1.1)114

is well-posed. In Section 5, we describe in detail our CMCG method and establish its convergence115

toward the time-harmonic solution. In Section 6, we present various numerical experiments high-116

lighting the performance of the proposed CMCG algorithm. Here, we benchmark the proposed117

CMCG algorithm against the limiting amplitude principle, where pure time-marching (without118

controllability) is utilized, as both methods are non-invasive and easily integrated with any exist-119

ing time-marching code; in contrast, efficient preconditioners typically require an important and120

dedicated implementation effort. Finally, we provide in Section 7 some concluding remarks.121

2. Main results. Throughout this work, we adopt the notation U = (e,h) for a time-122

harmonic electromagnetic field, while the calligraphic font U = (E,H) is reserved for time-123

dependent fields. It is easily seen that if U is a time-harmonic field solution to (1.1) with right-124

hand side j and g, then U (t,x) := Re{U(x)eiωt} is the solution of time-dependent Maxwell’s125

equations (1.2) with right-hand side J(t,x) := Re{j(x)eiωt}, G(t,x) := Re{g(x)eiωt}, and initial126

condition U0 := ReU .127

The CMCG algorithm hinges on an idea that is essentially the converse of the above statement.128

Namely, we seek an initial condition U0 such that the resulting time-dependent field U (with right-129

hand sides J and G as above) is time-periodic, with period T := 2π/ω. Let Pj,g,ω : U0 → U (T )130

denote the (affine) operator mapping the initial condition U0 to the solution U of (1.2) with131

time-harmonic right-hand sides J and G evaluated at time T . Then, the “controllability method”132

corresponds to solving (linear) equation Pj,g,ωU0 = U0.133

At this point, three main questions arise. First, if the time-dependent solution with initial134

condition U0 is periodic, can we ensure that U0 = ReU , where U is the corresponding frequency-135

domain solution? Second, can we design an efficient algorithm to solve for Pj,g,ωU0 = U0? Finally,136

can we prove the convergence of this algorithm?137
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2.1. The structure of periodic solutions. Our first set of results characterizes those initial138

conditions U0 such that U0 = Pj,g,ωU0. In essence, we establish that139

U0 = Re

[p, q] + U +
∑
|`|≥2

U`

 ,140

where U is the unique time-harmonic solution, p and q are two curl-free fields with p × n =141

q × n = 0 on ΓI, and for all |`| ≥ 2, U` is any time-harmonic solution with frequency `ω and142

vanishing right-hand sides. Thus, if time-harmonic problem (1.1) is well-posed for all multiples143

`ω of ω, then we simply have U0 = Re ([p, q] + U), which holds whenever the problem features144

dissipation (suppσ 6= ∅ and/or |ΓI| > 0). Moreover, we show that if both U0 and j are orthogonal145

to curl-free fields, then p = q = 0, so that U0 = ReU . In fact, if Ω is simply connected, we have146

p = ∇p and q = ∇q for two scalar functions p and q, while the condition on U0 and j simply147

means that they are divergence-free.148

Our second set of results concerns the post-processing of periodic solutions by the filtering149

operator150

(2.1) Fj,g,ωU0 :=
2

T

∫ T

0

U (t)e−iωtdt,151

where U is the solution to time-dependent Maxwell’s equations (1.2) with initial condition U0152

and right-hand sides J and G. Note that Fj,g,ω may be easily computed “on the fly” during153

time-marching while computing Pj,g,ω without storing the time-history of U (t). Then, our key154

result states that U = Fj,g,ωU0 for any initial condition U0 satisfying U0 = Pj,g,ωU0, as long as155

time-harmonic problem (1.1) is well-posed for the frequency ω.156

In fact, we prove the slightly stronger result that for any initial condition U0, Fj,g,ωU0 solves157

time-harmonic Maxwell’s equations with a modified right-hand side, where the misfit (I−Pj,g,ω)U0158

is added to the physical source terms. This result enables us to control the error U −Fj,g,ωU0 by159

the misfit U0 − Pj,g,ωU0. It is also central for subsequently analyzing the convexity of the cost160

functional.161

2.2. The CMCG algorithm. To determine an initial condition U0 that leads to a time-162

periodic solution, i.e. U0 = Pj,g,ωU0, we minimize the “energy functional”163

J(U0) :=
1

2
‖U (T )−U0‖2ε,µ =

1

2
‖(I − Pj,g,ω)U0‖2ε,µ164

which measures the (ε,µ-weighted) L2(Ω)-misfit between the initial condition and the solution165

after one period. Since Pj,g,ω is an affine operator, it can be decomposed as Pj,g,ωU0 = PωU0 +G ,166

where G := Pj,g,ω0 and the operator Pω := P0,0,ω, which corresponds to the propagation of the167

initial condition U0 a time T with zero right-hand side, is now linear. Hence168

J(U0) =
1

2
‖(I − Pω)U0 − G ‖2ε,µ,169

is a standard quadratic functional.170

The gradient is given by171

J ′(U0) = (I − P ?ω)(I − Pω)U0 − G ?, G ? := (I − P ?ω)G ,172

where P ?ω denotes the adjoint of Pω, which actually maps the final condition WT to W (0) by173

back-propagation. In practice the action of Pω and P ?ω on any U0 is simply obtained by solving174

(1.2) numerically in the time-domain for one period. Hence, after the initialization step described175

in Algorithm 2.1, we simply compute the gradient of J by one forward and one backward solve as176

listed in Algorithm 2.2.177

Once we have an efficient algorithm to compute J ′, we may choose any quadratic minimization178

algorithm [11]. Here, we employ the conjugate gradient method, resulting in Algorithm 2.3. Note179
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Algorithm 2.1 Initialization

Require: right-hand sides j and g
1: compute G = Pj,g,ω0 by time-marching for one period
2: compute GT = P ?ωG by back-propagating over one peroid
3: set G ? = G − GT
4: return G ?

Algorithm 2.2 Gradient evaluation

Require: real-valued eletromagnetic field U0, precomputed G ?

1: compute UT = PωU by time-marching for one period
2: set WT = UT −U0.
3: compute W0 = P ?ωWT by back-propagation over one period
4: set J ′(U0) = WT −U0 − G ?.
5: return J ′(U0)

that in practice the evaluation of the scalar product (U0,V0)ε,µ simply amounts to computing180

VTMU, where M is the mass matrix arising from space discretization, and U (resp. V) is the181

discrete vector of degrees of freedom representing U0 (resp. V0).182

2.3. Convexity of the functional and convergence. Finally, we address the convexity of183

the energy functional, which immediately relates to the convergence of the CMCG algorithm. It184

has been previously established that J is strongly convex for the case of sound-soft scattering by185

a convex obstacle, but that it is not necessarily so for general geometries [5]. Here, we show that186

J is strongly convex in an appropriate sense as long as time-harmonic problem (1.1) is well-posed,187

thereby ensuring the convergence of the proposed algorithm. To do so, we introduce a second188

filtering operator FωU0 := F0,0,ωU0 that is defined as (2.1), but with right-hand sides j = g = 0.189

Our key result is that J is continuous, uniformly-Lipschitz and strictly convex on the space of190

initial conditions modulo the kernel of Fω. This quotient space is only used as a technical tool191

in the proofs, and, in practice, if U
(`)

0 is the initial condition at iteration ` in the CG algorithm,192

then Fj,g,ωU
(`)

0 → U for any initial guess U
(0)

0 .193

3. Settings and preliminary results. This section provides the mathematical framework194

needed to rigorously anayze the CMCG algorithm.195

3.1. Domain and coefficients. We consider time-harmonic Maxwell’s equations set in a196

Lipschitz domain Ω ⊂ R3. The boundary Γ := ∂Ω of Ω is partitioned into two relatively open197

disjoint subsets ΓP and ΓI. We assume that ΓP ∩ ΓI = ∅, which is not mandatory, but simplifies198

the analysis. Figure 3.1.1 presents a possible configuration.199

To avoid the proliferation of necessary notation to handle both two and three-dimensional200

problems at the same time, we restrict our theoretical investigations to three-dimensional domains201

However, our analysis also applies to two-dimensional problems in any polarization with natural202

modifications. For the sake of simplicity, we also avoid dealing with boundary sources in our203

theoretical analysis, and focus on volumic sources. Still, our numerical experiments show, that204

our CMCG method applies equally well with both types of sources.205

We consider three measurable symmetric tensor-valued functions ε,µ,σ : Ω → S(R3) which206

respectively represent the electric permittivity, the magnetic permeability, and the conductivity207

of the material contained in Ω. These tensors are assumed to be uniformly bounded. We require208

that ε and µ are uniformly elliptic in Ω. For the conductivity, we assume that σ = 0 outside some209

set Ωσ ⊂ Ω with Lipschitz boundary Γσ := ∂Ωσ with σ uniformly elliptic in Ωσ.210

On ΓI, we consider a symmetric tensor-valued “impedance” function Z : ΓI → S(R3) which is211

assumed to be measurable with respect to the surface measure, uniformly bounded and elliptic.212

We also assume that Z is tangential, i.e., for all ξ ∈ R3 and a.e. x ∈ ΓI, ξ ·n(x) = 0 implies that213

Z(x) · ξ = 0. Finally, Y := Z−1 denotes the inverse of Z.214
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Algorithm 2.3 CMCG Algorithm

Require: right-hand sides j and g, initial guess U
(0)

0 , tolerance δ, maximum iteration `max

1: compute G ? from j and g with Algorithm 2.1

2: compute J ′ = J ′(U
(0)

0 ) with Algorithm 2.2
3: set R(0) = J ′, D (0) = J ′

4: for ` = 0, . . . , `max − 1 do
5: if ‖R(`)‖ε,µ ≤ δ‖R(0)‖ε,µ then

6: return U
(`)

0

7: end if
8: compute A = J ′(D (`)) + G ? with Algorithm 2.2
9: set α = ‖R(`)‖2ε,µ/(D (`),A )ε,µ

10: set U
(`+1)

0 = U
(`)

0 + αD (`)

11: set R(`+1) = R(`) − αA
12: set β = ‖R(`+1)‖2ε,µ/‖R(`)‖2ε,µ
13: set D (`+1) = R(`) + βD (`)

14: end for
15: return U

(`max)
0

ΓP

Ω

ΓI

Fig. 3.1.1: Example of boundary condition settings

3.2. Functional spaces. If K = R or C, L2(Ω,K) denotes the space of measurable square215

integrable functions mapping Ω to K [1]. Similarly, L2(ΓI,K) is the space of functions from ΓI to K216

that are square integrable with respect to the surface measure of ΓI. For vector-valued functions,217

we write L2(Ω,K) :=
(
L2(Ω,K)

)3
and L2(ΓI,K) :=

(
L2(ΓI,K)

)3
. We denote by (·, ·)Ω and (·, ·)ΓI

218

the inner-products of these spaces. If φ is a measurable essentially bounded tensor, we employ219

the notations ‖ · ‖2φ,Ω = (φ·, ·)Ω and ‖ · ‖2φ,ΓI
= (φ·, ·)ΓI

. As usual, H1(Ω) stands for the first-order220

Sobolev space [1]. If γ ⊂ ∂Ω is a relatively open subset, H1
γ(Ω,K) is the subset of functions of221

H1(Ω,K) with vanishing trace on γ.222

For the analysis, we also need Sobolev spaces of vector-valued functions with “well-defined”223

curl, denoted by H(curl,Ω,K) :=
{
v ∈ L2(Ω,K) |∇× v ∈ L2(Ω,K)

}
, see [18]. Following [14],224

we can define the tangential trace of a function v ∈ H(curl,Ω,K) on ΓP and ΓI, and introduce225

X (Ω,K) :=
{
v ∈H(curl,Ω,K) | vτ |ΓI ∈ L

2(ΓI,K)
}

and XΓP(Ω,K) := {v ∈ X (Ω,K) | vτ |ΓP = 0}.226

To simplify the discussion below, we finally introduce the product spaces L(Ω) := L2(Ω,C)×227

L2(Ω,C), L (Ω) := L2(Ω,R)×L2(Ω,R), V (Ω) := XΓP(Ω,C)×X (Ω,C) and V (Ω) := XΓP(Ω,R)×228

X (Ω,R). In the remaining of this work, we follow the convention introduced above: if Y (Ω) is a229
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space of complex-valued electromagnetic fields, Y (Ω) always denotes its real-valued counterpart.230

The spaces L and L are equipped with the inner product231

(3.1) ([v,w], [v′,w′])ε,µ := (εv,v′)Ω + (µw,w′)Ω232

for all [v,w], [v′,w′] ∈ L(Ω) and the associated norm ‖ · ‖2ε,µ = (·, ·)ε,µ, while we introduce the233

energy norm234

|||[v,w]|||2 := ω2‖v‖2ε,Ω + ‖vτ‖2Y ,ΓI
+ ‖∇× v‖2µ−1,Ω + ‖σv‖2ε−1,Ω(3.2)235

+ ω2‖w‖2µ,Ω + ‖wτ‖2Z,ΓI
+ ‖∇× h‖2ε−1,Ω236

237

for all [v,w] ∈ V (Ω). We also introduce the subspace238

VI(Ω) := {[e,h] ∈ V (Ω) | e× n+Zhτ = 0 on ΓI} ,239

of fields satisfying impedance condition (1.1b) on ΓI.240

Finally, if Y (Ω) is any of the aforementioned real-valued spaces, then C0(0, T ; Y (Ω)) and241

C1(0, T ; Y (Ω)) contain functions from [0, T ] to Y (Ω).242

3.3. Variational formulation. We introduce the sesquilinear form243

(3.3) a([e,h], [v,w]) := (σe,v) + (Y eτ ,vτ )ΓI
+ (Zhτ ,wτ )ΓI

+ (h,∇× v)− (e,∇×w)244

for all [e,h], [v,w] ∈ V (Ω). Then, the weak formulation of (1.1) is: Find [e,h] ∈ V (Ω) such that245

iω([e,h], [v,w]) + a([e,h], [v,w]) = (j,v) + (Y g × n,vτ )ΓI
+ (Zg,wτ )ΓI

246

for all [v,w] ∈ V (Ω). By using integration by parts, we easily verify that247

(3.4) a([v,w], [e,h]) = a([e,−h], [v,−w])248

for all [v,w], [e,h] ∈ VI(Ω).249

3.4. Well-posedness. Throughout this work, we assume that the time-harmonic problem250

under consideration is well-posed for the chosen angular frequency ω.251

Assumption 3.1 (Well-posedness). For all φ ∈ L(Ω), there exists a unique Sωφ ∈ V (Ω)252

such that253

(3.5) iω(Sωφ,w)ε,µ + a(Sωφ,w) = (φ,w)ε,µ ∀w ∈ V (Ω).254

In addition, the stability estimate255

(3.6) |||Sωφ||| ≤ Cstab‖φ‖ε,µ256

holds true.257

In (3.6), Cstab is a dimensionless constant that depends on the frequency ω, the shape of the258

boundaries ΓP and ΓI, and the physical coefficients ε, µ and σ. Unless the entire domain contains259

a conductive material (i.e. Ωσ = Ω), the stability constant will increase with the frequency. In260

the most favorable case of a non-trapping configuration [28, 33], we have261

Cstab '
ωdΩ

c
,262

where c := 1/
√
εmaxµmax is the (minimal) wavespeed and dΩ is the diameter of the computational263

domain. If λ := c/ω denotes the wavelength, Cstab is actually proportional to the number of264

wavelengths Nλ := dΩ/λ across Ω. The stability constant can however exhibit “arbitrarily bad”265

behaviour in more complicated geometries (close to a resonance frequency when Ωσ := ∅ and266

ΓI := ∅ for instance). We also mention that when considering two-dimensional geometries, the267
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two possible polarizations are equivalent to scalar Helmholtz problems, for which a vast body of268

literature is now available (see, e.g., [19] and the references therein).269

For future references, we note that the “converse” estimate to (3.6), namely270

(3.7) ‖φ‖ε,µ ≤ |||Sωφ||| ,271

holds true, as can be seen from the strong form of time-harmonic Maxwell’s equations (1.1) and272

definition (3.2) of the energy norm.273

We finally observe that in view of (3.4), the operator S?ω defined for all φ ∈ L(Ω) by the274

variational equation275

iω(w, S?ωφ)ε,µ + a(w, S?ωφ) = (w, φ)ε,µ ∀w ∈ L(Ω),276

has a very similar structure to SΩ. In particular, (3.6) and (3.7) hold true for S?ω too.277

3.5. Time-harmonic solution. Henceforth, we consider a fixed right-hand side ψ ∈ L(Ω),278

and denote by U ∈ V (Ω) the associated solution satisfying279

(3.8) iω(U,w) + a(U,w) = (ψ,w)ε,µ ∀w ∈ V (Ω),280

whose existence and uniqueness follows from Assumption 3.1.281

3.6. Time-dependent solutions. Although existence and uniqueness results for the time-282

dependent Maxwell’s equations (1.2) are fairly standard, we provide some detail here, since the final283

controllability method seeks an initial condition lying only in the space L (Ω), so that solutions284

to (1.2) can only be defined in a very weak sense.285

Following Sections 4.3.1 and 5.2.4 of [4], we introduce the unbounded operator286

A : VI(Ω) 3 [e,h]→ [ε−1σe+ ε−1∇× h,−µ−1∇× e] ∈ L (Ω).287

Then Hille-Yosida’s theorem [4, Theorem 4.3.2] shows that for all U0 ∈ VI(Ω) and F ∈ C1(0, T,L (Ω)),288

there exists a unique U ∈ C1(0, T,L (Ω)) ∩ C0(0, T,VI(Ω)) such that289

(3.9)

{
U̇ (t) +AU (t) = F (t) t ∈ [0, T ],

U (0) = U0,
290

and the estimate291

(3.10) ‖U (T )‖ε,µ ≤ ‖U0‖ε,µ +

∫ T

0

‖F (t)‖ε,µdt292

holds true. Owing to the regularity of U , simple manipulations then show that we can rewrite293

the first line of (3.9) as294

(3.11) (U̇ (t), v)ε,µ + a(U (t), v) = (F (t), v)ε,µ ∀t ∈ [0, T ]295

for all v ∈ V (Ω).296

So far, we have defined solutions to (1.2) in a variational sense for sufficiently smooth initial297

data U0 ∈ VI, where the link between (3.5) and (3.11) is clear. This is not entirely sufficient298

since as previously explained, the functional framework for the controllability method is set in299

L (Ω). By density of VI(Ω) in L (Ω) however, estimate (3.10) enables us to define, for any fixed300

F , the operator U0 → U (T ) for all U0 ∈ L (Ω) by continuity, thereby defining a continuous affine301

operator mapping L (Ω) into itself. This observation is linked to the fact that when F := 0, the302

operator A is the infinitesimal generator of a C0 semigroup on L (Ω), see [37].303

Although U (T ) can be defined for rough initial data U0 ∈ L (Ω), the corresponding solution304

U only solves (3.9) in a very weak sense as we only have U ∈ C0(0, T ; L (Ω)). In particular,305

(3.11) does not hold. In the proofs below, we circumvent this difficulty by establishing our results306
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first for initial data in VI(Ω), and then extend them to the general case by continuity owing to the307

dense inclusion VI(Ω) ⊂ L (Ω).308

Finally, we note that in view of (3.4), for all U0 ∈ VI(Ω), there exists a unique U ? ∈309

C1(0, T ; L (Ω)) ∩ C0(0, T,VI(Ω)) such that310

(3.12) (v, U̇ ?(t))ε,µ + a(v,U ?(t)) = 0 ∀t ∈ [0, t]311

and U ?(0) = U0. Here, we can also extend the notion of (weak) solutions to (3.12) to any312

U0 ∈ L (Ω), as for (3.11).313

4. Properties of time-periodic solutions. Here, we introduce the key operators at in-314

volved in the controllability method. We also discuss in detail the link between periodic solutions315

to time-dependent Maxwell’s equations (1.2) and the time-harmonic solution to (1.1).316

4.1. Key operators. First, we introduce the filtering and propagator operators, which are317

the building blocks of the energy functional and the associated CMCG method.318

4.1.1. Filtering. Let T := ω/(2π) denote the period associated with the frequency ω. The319

filtering operator Fω is defined by320

(4.1) FωU :=
2

T

∫ T

0

U (t)e−iωtdt321

for all U ∈ C0(0, T ; L (Ω)). Clearly, Fω continuously maps C0(0, T ; L (Ω)) into L(Ω) and322

C0(0, T ; V (Ω)) into V (Ω). In addition, when U ∈ C1(0, T ; L (Ω)), integration by parts easily323

shows that324

(4.2) FωU̇ = iωFωU +
ω

π
[[U ]]T ,325

where, for W ∈ C0(0, T,L (Ω)), we have introduced the notation [[W ]]T := W (T )−W (0).326

4.1.2. Propagators. Following the discussion in Section 3.6, if U0 ∈ VI(Ω) and φ ∈ L(Ω),327

there exists a unique element U ∈ C1(0, T ; L (Ω)) ∩ C0(0, T ; VI(Ω)) such that328

(4.3)

{
(U̇ (t), v)ε,µ + a(U (t), v) = (Re(φ eiωt), v)ε,µ ∀v ∈ V , t ∈ (0, T )

U (0) = U0,
329

and we define forward propagator Pφ,ωU0 := U (T ). When φ := 0, we simply write Pω := P0,ω.330

Similarly, we define a backward propagator. For WT ∈ VI(Ω), there exists a unique element331

W ∈ C1(0, T,L (Ω)) ∩ C0(0, T,VI(Ω)) such that332

(4.4)

{
−(v, Ẇ (t))ε,µ + a(v,W (t)) = 0 ∀v ∈ V , t ∈ (0, T )

W (T ) = WT ,
333

and we set P ?ωWT := W (0). Notice that W is indeed well-defined, since the change of variable334

t̃ := T − t transforms (4.4) into (3.12). Together with (3.4), this remark shows that the same335

time-stepping algorithm may be used to compute Pφ,ω and P ?ω simply by changing the sign of the336

magnetic field.337

Again, while the above definitions of Pφ,ω and P ?ω require VI(Ω)-regularity of the initial data,338

semigroup theory allows us to extend the definitions of Pφ,ω and P ?ω as operators continuously339

mapping L (Ω) into itself [37].340

Next, we remark that Pω is linear, whereas Pφ,ω is affine, since341

(4.5) Pφ,ωU0 = PωU0 + Pφ,ω0 ∀U0 ∈ L (Ω).342

Lemma 4.1. The operator P ?ω is the adjoint of Pω for the L (Ω) inner-product, i.e.343

(4.6) (PωU0,WT )ε,µ = (U0, P
?
ωWT )ε,µ344

for all U0,WT ∈ L (Ω).345
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Proof. We only need to show (4.6) in VI(Ω); the general case follows by density. Hence, we346

consider U0,WT ∈ VI(Ω) and denote by U ,W ∈ C1(0, T,L (Ω)) ∩ C0(0, T,VI(Ω)) the associated347

solutions to (4.3) and (4.4). Owing to the time-regularity of U and W , integration by parts shows348

that349 ∫ T

0

(U̇ (t),W (t))ε,µdt = [(U (t),W (t))ε,µ]
T
0 −

∫ T

0

(U (t), Ẇ (t))ε,µdt,350

which we rewrite as351

(4.7)

∫ T

0

(U̇ (t),W (t))ε,µdt+

∫ T

0

(U (t), Ẇ (t))ε,µdt = (PωU0,WT )ε,µ − (U0, P
?
ωWT )ε,µ.352

The left-hand side of (4.7) vanishes, since353

354 ∫ T

0

(U̇ (t),W (t))ε,µdt+

∫ T

0

(U (t), Ẇ (t))ε,µdt355

=

∫ T

0

(U̇ (t),W (t))ε,µ + a(U (t),W (t))dt+

∫ T

0

(U (t), Ẇ (t))ε,µ − a(U (t),W (t))dt356
357

which is zero due to (4.3) and (4.4).358

4.1.3. Filtering of initial conditions. If U0 ∈ L (Ω) and φ ∈ L(Ω), we introduce the359

notation Fφ,ωU0 := FωU , where U ∈ C0(0, T,L (Ω)) solves (4.3) in a weak sense, see 3.6. For360

φ := 0, we simply write FωU0 := F0,ωU0.361

4.1.4. Energy functional. Let J : L (Ω)→ R denote the “energy functional”362

(4.8) J(U0) :=
1

2
‖Pψ,ωU0 −U0‖2ε,µ ∀U0 ∈ L (Ω).363

Using (4.5), we can rewrite (4.8) as364

(4.9) J(U0) =
1

2
‖(I − Pω)U0 − G ‖2ε,µ ∀U0 ∈ L (Ω),365

where G := Pψ,ω0. Note that J is continuous over L (Ω) thanks to the discussions in Sections 3.6366

and 4.1.2.367

4.2. Structure of the minimizers. For U , the (unique) time-harmonic solution to (3.8),368

U0 := ReU is a minimizer of J since J(U0) = 0. However, depending on the boundary conditions,369

and properties of the right-hand sides, U0 may not be the only minimizer of J . In this section, we370

analyze the properties satisfied by the minimizers of J and exhibit the structure of the minimization371

set. We also identify situations in which the minimizer of J is unique.372

The starting point of our analysis is the following model decomposition result.373

Lemma 4.2 (Modal decomposition). Let U0 ∈ VI(Ω) satisfy J(U0) = 0. Then, we have374

(4.10) U0 = Re

U0 + U +
∑
`≥2

U`

 ,375

where U0 ∈ ker a, U is the unique solution to (3.8), and for ` ≥ 2, U` is an element of V (Ω)376

satisfying377

(4.11) i`ω(U`, v) + a(U`, v) = 0 ∀v ∈ V (Ω).378

Proof. Since the proof closely follows along the lines of [41, Theorem 6], we omit details for379

the sake of brevity. Consider U0 ∈ VI(Ω) such that J(U0) = 0, and let U ∈ C1(0, T,L (Ω)) ∩380
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C0(0, T,VI(Ω)) be the solution to (4.3) with initial condition U0 and right-hand side ψ. By381

assumption, J(U0) = 0 since U is T -periodic. Hence, we can expand U in Fourier series as382

(4.12) U (t) = Re

∑
`≥0

U`e
i`ωt

 ∀t ∈ (0, T )383

where384

(4.13) U0 :=
1

T

∫ T

0

U (t)dt ∈ V (Ω), U` :=
2

T

∫ T

0

U (t)e−i`ωtdt, ` ≥ 1,385

Then, we obtain (4.10) by setting t = 0 in (4.12). After multiplying (4.3) by e−i`ωt and integrating386

over (0, T ), we see that U0 ∈ ker a, U1 = U , and that U` satisfies (4.11) for ` ≥ 2.387

Equipped with Lemma 4.2, we need a further understanding of the kernel388

ker a := {u ∈ V (Ω) | a(u, v) = 0 ∀v ∈ V (Ω)}389

and the space390

K(Ω) :=

{
[e,h] ∈ V (Ω)

∣∣∣∣∣ e× n = h× n = 0 on ΓI

∇× e = ∇× h = 0 in Ω

}
391

will play an important role. To characterize its structure, we introduce the set of gradients G(Ω) :=392

∇H1
Γ(Ω,C) × ∇H1

ΓI
(Ω,C) and its orthogonal complement (with respect to the (·, ·)ε,µ inner-393

product) Z(Ω) := G⊥(Ω), which consists of divergence-free functions. Then, we have K(Ω) =394

G(Ω) ⊕ H(Ω), where H(Ω) := K(Ω) ∩ Z(Ω) is a “cohomology” space associated with Ω. The395

structure of H(Ω) is well-characterized [14]. In particular, it is finite-dimensional, and even trivial396

when Ω is simply-connected. Similar properties hold for the real-valued counterparts of these397

spaces.398

Lemma 4.3 (Characterization of ker a). We have399

ker a = {[e,h] ∈ K(Ω) | e = 0 on Ωσ} .400

Proof. Let W := [e,h] ∈ V (Ω). For all smooth, compactly supported, vector valued-function401

φ ∈ D(Ω), we have402

a([e,h], [φ, 0]) = (σe,φ) + (h,∇× φ) = 0, a([e,h], [0,φ]) = −(e,∇× φ) = 0,403

which implies that ∇× h = −σe and ∇× e = 0. As a consequence, we have404

0 = Re a([e,h], [e,h])405

= (σe, e) + (Y eτ , eτ )ΓI
+ (Zhτ ,hτ)ΓI

+ (h,∇× e)− (e,∇× h)406

= 2(σe, e) + (Y eτ , eτ )ΓI
+ (Zhτ ,hτ)ΓI

,407408

from which we conclude that e × n = h × n = 0 on ΓI and e = 0 in Ωσ. This last equality also409

implies that ∇× h = 0.410

The first key result of this section applies to the case where the time-harmonic problem is well-411

posed for all multiplies `ω of the original frequency ω. It is an immediate consequence of Lemmas412

4.2 and 4.3 and of the decomposition of K(Ω) discussed above, so that its proof is omitted.413

Theorem 4.4 (Decomposition for well-posed problems). Assume that time-harmonic equa-414

tions (3.5) are well-posed for all frequencies `ω, ` ∈ N?. Then, we have415

U0 = Re ([∇p,∇q] + θ + U)416

where p ∈ H1
Γ(Ω,C) and q ∈ H1

ΓI
(Ω,C) and θ ∈ H(Ω).417
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Next, we show that if the right-hand side of the problem satisfies suitable conditions, the418

“stationary part” U0 of the minimizer must vanish.419

Theorem 4.5 (Decomposition of divergence-free minimizers). Assume that ψ ∈ K⊥(Ω) and420

that U0 ∈ V (Ω) ∩K ⊥(Ω). Then, we have421

U0 = Re

U +
∑
`≥2

U`

 .422

Proof. Let U be the time domain solution with initial condition U0, and introduce [E0,H0] :=423

U0 and [E,H] := U . For any test functions [v,0], [0,w] ∈ K (Ω), we have424

(εĖ,v)Ω̃σ
= (µḢ,w)Ω = 0,425

which implies that [E(t),H(t)] ∈ K ⊥(Ω). Therefore, U0 ∈ K⊥(Ω). It follows that U0 ∈ K(Ω) ∩426

K⊥(Ω) and hence, vanishes.427

We finally observe that if the assumptions of Theorems 4.4 and 4.5 are both satisfied, we428

indeed have U0 = ReU . Since K ⊥(Ω) = Z (Ω) ∩H ⊥(Ω), we see that the assumptions on U0429

and ψ in the statement of (4.5) mean that these fields are divergence-free and orthogonal to the430

(finite-dimensional) space H (Ω). Note that this last requirement is null for simply connected431

domains, since H (Ω) = {0} in this case. Similarly to [22, Theorem 1] in the acoustic case, it is432

always possible to explicitly compute the time independent components [∇p,∇q] and θ by solving433

Poisson problems.434

4.3. Filtering of periodic solutions. In the previous section, we exhibited the structure435

of the minimizing set of J using Fourier theory. As the filtering operator essentially selects one436

specific Fourier mode, modal decomposition (4.10) can be used to show how filtering acts on437

minimizers of J . In fact, this technique was used in [22] to show that for any minimizer U0 of J ,438

we recover the time-harmonic solution U after filtering.439

Here, we develop an alternate proof technique, that actually does not rely on the development440

of the previous section. This idea appears to be new, and enables to quantify how well initial441

conditions U0 leading to “approximately periodic” time-dependent solution approximate the time-442

harmonic solution U after filtering. The proof improves similar concepts used in [41, Theorem 10]443

for the acoustic Helmholtz equation formulated using a second-order in time framework.444

Theorem 4.6 (Alternate characterization of filtered solutions). Let φ ∈ L(Ω). Then, for all445

U0 ∈ L (Ω), we can characterize FωU0 as the unique element of V (Ω) such that446

(4.14) iω(Fφ,ωU0, v)ε,µ + a(Fφ,ωU0, v) = (φ, v)ε,µ +
ω

π
(U0 − PωU0, v)ε,µ447

for all v ∈ V (Ω). As a direct consequence, we have448

(4.15) |||U − Fψ,ωU0||| ≤
ω

π
Cstab‖(I − Pψ,ω)U0‖ε,µ.449

for all U0 ∈ V (Ω).450

Proof. We first discuss the case where U0 ∈ VI(Ω). Thus, let U be as in (4.3) with initial451

condition U0 and right-hand side φ ∈ L(Ω). For all v ∈ V (Ω), we have452

(4.16)
2

T

∫ T

0

{
(U̇ , v)ε,µ + a(U , v)

}
e−iωtdt =

2

T

∫ T

0

(Re(φeiωt), v)ε,µe
−iωtdt.453

Since ε,σ,µ and v are time-independent, we can write454

2

T

∫ T

0

{
(U̇ , v)ε,µ + a(U , v)

}
e−iωtdt = (FωU̇ , v)ε,µ + a(FωU , v),455
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and (4.2) shows that456

2

T

∫ T

0

{
(U̇ , v)ε,µ + a(U , v)

}
e−iωtdt = iω(FωU , v)ε,µ + a(FωU , v) +

ω

π
( [[U ]]T , v)ε,µ.457

Similarly, since φ is time-independent, we have458

2

T

∫ T

0

(Re(φ eiωt), v)ε,µe
−iωtdt = (φ, v)ε,µ,459

and as a result460

iω(FωU , v)ε,µ + a(FωU , v) = (φ, v)ε,µ −
ω

π
( [[U ]]T , v)ε,µ,461

so that (4.14) follows whenever U0 ∈ VI(Ω), recalling that Fφ,ωU0 := FωU and [[U ]]T := Pφ,ωU0−462

U0.463

For the general case where U0 ∈ L (Ω), we first observe that we may equivalently rewrite464

(4.14) as465

(4.17) Fφ,ωU0 = Sω

(
φ+

ω

π
(I − Pω)U0

)
.466

At that point, identity (4.17) is already established in VI(Ω). But then, since (4.17) involves467

continuous operators from L(Ω) into itself, the density of VI(Ω) into L(Ω) implies the general468

case.469

To conclude the proof, letting φ = ψ and recalling the definition (3.8) of U , we obtain470

iω(U − Fψ,ωU0, v)ε,µ + a(U − Fψ,ωU0, v) =
ω

π
((Pψ,ω − I)U0, v)ε,µ,471

so that (4.15) follows from (3.6).472

Using (3.5), we may rewrite (4.14) in compact form as473

(4.18) FωU0 =
ω

π
Sω ◦ (I − Pω)U0 ∀U0 ∈ L (Ω).474

Taking again advantage of the similarity between the original and adjoint problems, we can also475

show that476

(4.19) FωWT =
ω

π
S?ω ◦ (I − P ?ω)WT ∀WT ∈ L (Ω).477

Stability estimate (4.15) is of particular interest, since it shows that filtering “nearly periodic”478

solutions yields good approximations of the time-harmonic solution. It also suggests that the479

misfit U0−Pψ,ωU0 may be used as a stopping criterion for iterative methods, but the dependency480

on the frequency must be taken into account.481

5. Controllability Method. In this section, we build upon the results of the previous sec-482

tion to introduce our controllability method, that we couple with a conjugate gradient minimization483

algorithm.484

We seek an initial condition U0 ∈ L (Ω) satisfying Pψ,ωU0 = U0, or maybe more explicitly,485

such that486

(5.1) (I − Pω)U0 = G ,487

where Pψ,ω, Pψ and G are respectively introduced at (4.3), (4.5) and (4.9). Clearly, U0 := ReU488

is one solution to (5.1) but it may not be unique. Nevertheless, we always have U = Fψ,ωU0.489

In addition, estimate (4.15) implies that for any approximate solution U0 to (5.1), FωU0 is an490

approximate solution to (3.8).491
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5.1. The conjugate gradient method. After space discretization, (5.1) corresponds to492

a finite-dimensional linear system. In principle, the matrix corresponding to Pω could therefore493

be (approximately) assembled by running a time-domain solver for one period for every possible494

initial conditions. However, this approach is prohibitively expensive in practice. Instead, we opt495

for the matrix-free conjugate gradient iteration, which only requires evaluating PωU0 for a limited496

number of initial conditions.497

We thus reformulate controllability equation (5.1) as the optimization problem498

(5.2) min
U0∈L (Ω)

J(U0),499

where J is the energy functional introduced in (4.8). From (4.9), we recall that J corresponds to a500

“standard” quadratric form and, as result, its gradient and Hessian are easily derived. The proof501

of the result below is omitted, as it follows from standard algebraic manipulations.502

Theorem 5.1 (Structure of the energy functional). For all U0,V0 ∈ L (Ω), we have503

J(U0 + V0) = J(U0) + Re((I − P ?ω)(I − Pω)U0 − (I − P ?ω)G ,V0)ε,µ504

+
1

2
((I − Pω)V0, (I − Pω)V0)ε,µ.505

506

It follows that507

(5.3) J ′(U0) = (I − P ?ω)(I − Pω)U0 − (I − P ?ω)G508

and509

(5.4) (J ′′(U0)) (V0,V0) = ‖(I − Pω)V0‖2ε,µ.510

Next, we show that J is continuous, uniformly Lipschitz, and strongly convex over the quotient511

space L (Ω)/ kerFω. These properties ensure the uniqueness of the minimizer of J up to an element512

of kerFω and also implies the convergence of gradient-based algorithms [11].513

Theorem 5.2 (Convexity of energy functional). For U0 ∈ L (Ω), we have514

(5.5) J(U0) =
1

2

∥∥∥π
ω
S−1
ω FωU0 − G

∥∥∥2

ε,µ
.515

In addition, for all U0,V0 ∈ L (Ω), the estimates516

(5.6) ‖J ′(U0)− J ′(V0)‖ε,µ ≤
ω2

π2
|||Fω(U0 − V0)|||517

and518

(5.7) (J ′′(U0)) (V0,V0) ≥ π2

ω2

1

C2
stab

|||FωV0|||2519

hold true.520

Proof. Identity (5.5) is a direct consequence of (4.14). Then, estimate (5.6) follows from (5.3),521

characterizations (4.18) and (4.19) of (I − Pω) and (I − P ?ω), and the continuity estimate (3.7).522

Finally, we obtain convexity estimate (5.7) from (5.4), (4.14) and (3.6).523

This result is to be compared with [5, Theorem 3], where a convexity result is established under524

specific assumptions on the spectrum. The use of the filtering allows to bypass this limitation.525

In practice, it is not necessary to introduce the quotient space L (Ω)/ kerFω. Indeed, a careful526

examination of standard convergence proofs (see, e.g., [11, Theorem 8.4.4]) shows that properties527

(5.6) and (5.7) are sufficient to ensure the convergence of Fψ,ωU
(`)

0 to U starting from any initial528
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guess U
(0)

0 ∈ L (Ω), where U
(`)

0 denotes a minimizing sequence. In addition, a reduction factor529

of the form530 ∣∣∣∣∣∣∣∣∣U − Fψ,ωU
(`+1)

0

∣∣∣∣∣∣∣∣∣ ≤ (1− C−4
stab

) ∣∣∣∣∣∣∣∣∣U − Fψ,ωU
(`)

0

∣∣∣∣∣∣∣∣∣531

can be obtained.532

Among the possible gradient descent techniques, we select the usual CG iteration (see [11,533

Section 8.5]) to solve (5.2).534

5.2. Discretization. In our computations, we use an upwind-flux discontinuous Galerkin535

method to discretize Maxwell’s equations (4.3) and (4.4) in space, while explicit Runge-Kutta536

schemes are employed for time integration. We restrict our numerical experiments to two-dimensional537

examples, and the required notation is briefly presented below.538

5.2.1. Two-dimensional setting. Here, we consider two-dimensional Maxwell’s equations539

in a bounded domain Ω ⊂ R2. Specifically, we consider three-dimensional Maxwell’s equations540

(1.1) in the domain Ω × I for some interval I, under the assumption that the electromagnetic541

field (e,h) does not depend on the third space variable. There are two uncoupled polarizations,542

and we focus on the “transverse magnetic” case where h = (h1,h2, 0) and e = (0, 0, e3). The543

other polarization can be dealt with similarly by swapping the roles of h and e. Employing the544

notation h for the 2D vector gathering the magnetic field component and e for the only non-zero545

component of the electric field. This, time-harmonic Maxwell’s equations reduce to546

(5.8)


iωεe+ σe+ curlh = j in Ω,

iωµh− curl e = 0 in Ω,

e = 0 on ΓP,

e+ Zhτ = g on ΓI,

547

where ε, σ, µ and Z are now scalar-valued functions, and the two-dimensional curl operators are548

given by549

curlv = ∂1v2 − ∂2v1 curl v = (∂2v,−∂1v)550

for any vector-valued and scalar-valued function v and v.551

The corresponding time-domain Maxwell’s equations are given by552

(5.9a)

{
εĖ + σE + curlH = J,

µḢ − curl E = 0,
553

in Ω and554

(5.9b)

{
E = 0 on ΓP,

E + ZH × n = G on ΓI,
555

for all t ∈ [0, T ].556

5.2.2. Discontinuous Galerkin discretization. Following [15, 27], we discretize (5.9) with557

a first-order discontinuous Galerkin (DG) method. The computational domain Ω is thus parti-558

tioned into a mesh Th consisting of triangular elements K. For any element K ∈ Th, ρK denote559

the diameter of the largest circle contained in K.560

For the sake of simplicity, we assume that Th is conforming in the sense that the intersection561

K+ ∩K− of two distinct elements K± ∈ Th is either empty, a single vertex, or a full face of both562

elements. Note that the considered DG method is very flexible, and can, in principle, accommodate563

non-conforming meshes with hanging nodes and/or different types of elements.564

Next, we denote by Fh the set of faces associated to Th, and we assume that each boundary565

face F ∈ Fh with F ⊂ ∂Ω either entirely belongs to ΓI or ΓP. The sets FI,h,FP,h ⊂ Fh gather566
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16 T. CHAUMONT-FRELET, M.J. GROTE, S. LANTERI, AND J.H. TANG

those faces respectively lying in ΓI and P, whereas Fint,h gathers the remaining “interior” faces.567

We associate with each face F ∈ Fh a fixed normal unit normal vector nF chosen such that568

nF = n when F ⊂ ∂Ω. For internal faces, the orientation is arbitrary. We also employ the569

notation tF for the unit tangential to F obtained from nF by a +π/2 rotation.570

For a given integer q ∈ N, Pq(Th) stands for scalar-valued functions v : Ω→ R such that v|K571

is a polynomial of degree less than or equal to q for all K ∈ Th. Note that the elements of Pq(Th)572

are, in general, discontinuous across the faces F ∈ Fh of the mesh. Similarly Pq(Th) is the space573

of vector-valued functions v := (v1,v2) : Ω→ R2 such that v1,v2 ∈ Pq(Th).574

If v ∈ Pq(Th) and F ∈ Fint,h, the notations575

{{v}}F := v+|F + v−|F [[v]]F := v+|F (n+ · nF ) + v−|F (n− · nF )576

stand for the usual average and jump of v across F , where we used v± := v|K± and n± = nK± ,577

for any to elements K− and K+ of Th such that F = ∂K− ∩ ∂K+. For external faces, we simply578

set {{v}}F := [[v]]F := v|F . In addition, if w ∈ Pq(Th) the same notations have to be understood579

component-wise.580

Given Eh,0 ∈ Pq(Th) and Hh,0 ∈ Pq(Th), the semi-discrete DG scheme consists in finding581

Eh(t) ∈ Pq(Th) and Hh(t) ∈ Pq(Th) by solving the system of ODE for t ∈ (0, T ),582

(5.10){
(εĖh(t), vh)Ω + (σEh(t), vh)Ω + (Hh(t), curl vh)Ω + (Ĥh(t)× nF , [[vh]])Fh

= (J(t), vh)

(µḢh(t),wh)Ω + (Eh(t), curlwh)Ω + (Êh(t), [[wh]]× nF )Fh
= 0

583

for all vh ∈ Pq(Th) and wh ∈ Pq(Th), with initial conditions Eh(0) = Eh,0 and Hh(t) = Hh,0. In584

(5.10), (·, ·)Fh
:=
∑
F∈Fh

(·, ·)F , while Êh(t) and Ĥh(t) are the upwind “numerical fluxes”585

Êh|F :=
1

{{Yflux}}

(
{{YfluxEh}}F +

1

2
[[Hh]]F × nF

)
Ĥh|F :=

1

{{Zflux}}

(
{{ZfluxHh}}F −

1

2
[[Eh]]F tF

)
,586

where Zflux :=
√
µ/ε, Yflux = 1/Zflux, whenever F ∈ Fint,h. For the remaining faces, we set587

Êh|F := 0 Ĥh|F := −Y EhtF +Hh588

when F ∈ FP,h and589

Êh|F :=
1

2
(Eh + ZHh × n+G) Ĥh|F :=

Y

2
(ZHh − EhtF −GtF )590

if F ∈ FI,h. This choice introduces some numerical dissipation, leading to stable discretizations591

when coupled with Runge-Kutta time-integration.592

To simplify further discussions, we introduce the compact notation Uh(t) := (Eh(t),Hh(t)),593

and we denote by Uh(t) the coefficients of Uh(t) expanded in the nodal basis of Pq(Th), to rewrite594

(5.10) as595

MU̇h(t) + KUh(t) = Re
(
MJeiωt

)
,596

where M and K are the usual mass and stiffness matrices. A key asset of DG discretizations is597

that M is block-diagonal, so that the inverting M−1 is cheap. Hence, we may reformulate the598

above ODE system as599

(5.11) U̇h(t) = Φ(t,Uh(t)), Φ(t,Uh(t)) := Re
(
Jeiωt

)
+ BUh(t), B := M−1K.600

5.3. Time integration scheme. We integrate (5.11) using a standard second-order explicit601

Runge-Kutta (RK2) method with P1 elements, or a fourth-order explicit Runge-Kutta (RK4)602

method with P3 elements. Both are stable under a “CFL condition” on the time-step δt:603

(5.12) δt ≤ cq min
K∈Th

(
√
µKεKρK) ,604
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Algorithm 5.1 Explicit second-order Runge-Kutta (RK2) method

Require: Uh,m an approximation of Uh(tm), m ≥ 0
1: Kh,1 := Φ(tm,Uh,m)
2: Kh,2 := Φ(tm + (δt/2),Uh,m + (δt/2)Kh,1)
3: return Uh,m+1 := Uh,m + δtKh,2

Algorithm 5.2 Explicit fourth-order Runge-Kutta (RK4) method

Require: Uh,m an approximation of Uh(tm), m ≥ 0
1: Kh,1 := Φ(tm,Uh,m)
2: Kh,2 := Φ(tm + (δt/2),Uh,m + (δt/2)Kh,1)
3: Kh,3 := Φ(tm + (δt/2),Uh,m + (δt/2)Kh,2)
4: Kh,4 := Φ(tm + δt,Uh,m + δtKh,3)
5: return Uh,m+1 := Uh,m + (δt/6)

(
Kh,1 + 2Kh,2 + 2Kh,3 + Kh,4

)
where the constant cq only depends on the polynomial degree q and the shape-regularity of the605

mesh. In our computations, we use c1 := 0.24 and c3 := 0.12, which we empirically found to be606

near the stability limit.607

We thus select a time-step δt := T/M , where M is the smallest positive integer such that608

(5.12) holds, and iteratively compute approximation Uh,m to Uh(tm) for 1 ≤ m ≤ M , where609

tm := mδt. Since there are no “physical” initial conditions, we are free to choose the initial610

condition as piecewise polynomial function and therefore, there are no requirements to interpolate611

or project the initial condition to define Uh,0 and the associated dof vector Uh,0. We either use612

the RK2 or the RK4 scheme to compute Uh,m+1 from Uh,m. Both time integration schemes are613

standard but for the sake of completeness, there are briefly listed in Algorithms 5.1 and 5.2.614

5.4. Implementation of the filtering. In this section, we briefly discuss the implementa-615

tion of the filtering operator Fω defined in (4.1). For the RK2 scheme, we may simply employ the616

trapezoidal rule617

(5.13) FωUh '
δt

2

M∑
m=1

(
Uh,m−1e

−iωtm−1 + Uh,me−iωtm
)
,618

since it is second-order accurate. The situation is slightly more delicate for the RK4 scheme,619

as employing (5.13) would deteriorate the convergence rate of the method. Instead, we employ620

a method based on Hermite interpolation. This method is especially efficient, because the RK621

algorithm computes the vectors Φ(t,Uh,m) anyways which are natural approximations to U̇h,m.622

We thus let623

Ih,m(t) := Uh,m−1p00(t) + Uh,mp01(t) + Φ(tm−1,Uh,m−1)p10(t) + Φ(tm,Uh,m)p11(t),624

where the Hermite polynomials pij are the only elements of P3(tm−1, tm) satisfying p
(`)
ij (tm+k) =625

δikδj` for 0 ≤ k, ` ≤ 1. Since Hermite polynomials are explicitly available, we can evaluate626

ξij :=

∫ tm

tm−1

pij(t)e
−iωtdt627

analytically, which yields628

FωUh '
M∑
m=1

∫ tm

tm−1

Ih,m(t)e−iωt(5.14)629

= Uh,m−1ξ00 + Uh,mξ01 + Φ(tm−1,Uh,m−1)ξ10 + Φ(tm,Uh,m)ξ11.630631
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We emphasize that (5.13) and (5.14) only require the solutions Uh,m−1 and Uh,m. In fact, we632

can easily reformulate the above formula to only require Uh,m at a single time, and this readily633

compute FωUh on the fly.634

6. Numerical examples. This section presents several numerical examples in two and three635

space dimensions, where we compare our CMCG algorithm against a limiting amplitude principle,636

where “naive” time-stepping is employed until convergence. The latter algorithm is denoted by637

FW (for full wave). We utilize the DG method described in Section 5 in both cases, so that a fair638

measure of the cost is the number of periods that need to be simulated to reach a given accuracy639

level. We chose to start both algorithm with U
(0)

0 = 0 in all the considered experiments. It is640

known that this strategy is not optimal, since transient right-hand sides generally improves the641

perfomance of FW, and the convergence of CMCG can be accelerated, if it is applied after a642

“run-up” phase of a few FW iterations (see, e.g. [8, 41]). Nevertheless, we restrict ourselves to643

zero initialization for a fair comparison.644

Another question we address is the comparison of the solution obtained after convergence645

of the CMCG or FW method against the solution given by the same DG discretization in the646

frequency domain. In this case we solve the linear system (iωM + K)Uh = MJh with the direct647

solver implemented in the software package MUMPS [2, 3]. We use the notation FS (frequency648

solver) to refer to this solution. This is a subtle point because the CMCG and the FW algorithm649

will converge to (slightly) different approximations, due to the error from time discretization.650

Whenever the exact solution is available, we chose the mesh Th and polynomial degree q so651

that the FS relative error, measured as652

error := ‖U − Uh‖ε,µ/‖U‖ε,µ,653

where U is the exact solution and Uh the FS solution, is of the order of a few percent, which seems654

realistic for typical applications. For the CMCG and FW method, the main figure of merit is then655

the relative error656

error := ‖U − Fψ,ωU
(`)

0,h ‖ε,µ/‖U‖ε,µ,657

where U
(`)
h,0 is the current iterate in the CMCG or FW algorithm. Specifically U

(`)
h,0 denotes the658

solution obtained after ` iterations of the CMCG algorithm, or the solution in the FW algorithm659

after simulating ` periods. Note that CMCG requires twice as many time-periods to compute U
(`)
h,0660

as FW, which is accounted for in the graphs below. In the last experiment, where the analytical661

solution is not available, we monitor662

error := ‖Uh − Fψ,ωU
(`)

0,h ‖ε,µ/‖Uh‖ε,µ,663

when comparing CMCG against FW.664

In all examples we set σ := 0, µ := 1, and Z := 1. For θ ∈ [0, 2π), we denote by dθ :=665

(cos θ, sin θ) the direction associated with θ and ξθ(x) := eiωd·x (x ∈ R2) is the plane wave666

travelling along the direction d.667

Sometimes, we employ structured meshes based on Cartesian grids. In this case, an “N ×M668

Cartesian mesh” is obtained by starting from a grid of N ×M rectangles and then dividing each669

rectangle into four triangles by joining each of its vertices with its barycentre.670

6.1. Plane wave in free space. In this experiment, we set θ = 45o and consider the671

propagation of a plane wave, traveling along the direction dθ in the square Ω := (0, 1)2. A Silver-672

Müller absorbing boundary condition is imposed on the whole boundary, so that ΓI := ∂Ω and673

ΓP := ∅. We set ε := 1, j := 0 and g = ∇ξθ ·n+iωξθ. The solution then reads (e,h) := (ξθ, ξθd
⊥),674

with d⊥ := (− sin θ, cos θ).675

We consider the two frequencies ω = 10π and 40π. We employ a 32× 32 Cartesian meshes in676

both cases with P1 elements for ω = 10π, and P3 elements for ω = 40π. Figure 6.1.1 shows the677

evolution of the error. In this particular experiment, FW outperforms CMCG. When using P1678
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Fig. 6.1.1: Convergence in the plane-wave experiment

elements, the error achieved by both FW and CMCG is indistinguishable from the FS error. On679

the other hand, the error slightly increases in both FW and CMCG when using P3 elements.680

6.2. Half open waveguide. We now consider a rectangular domain Ω := (0, 4) × (0, 1),681

where the bottom, top and left sides are perfectly conducting, while an impedance boundary682

condition is imposed on right side. Hence, we have ΓP := (0, 4) × {0, 1} ∪ {0} × (0, 1) and683

ΓI := {4} × (0, 1). Then, we solve (5.8) with ε := 1, j := 0, g := ξθ and θ = 30o.684

We obtain a semi-analytical solution by first performing the Fourier expansion685

(6.1) e =
∑
n≥0

en(x1) sin(nπx2),686

given the top and bottom “Dirichlet-like” boundary conditions. Then, en can be analytically found687

as the solution of linear ordinary differential equation with constant coefficients. In practice, we688

truncate the expansion (6.1) at n = 50. h is easily recovered by (analytically) differentiating (6.1).689

First, we consider ω = 2π with a 64× 16 Cartesian mesh and P1 elements. Then, for ω = 6π690

we use P3 elements on a 32× 8 Cartesian mesh.691

Figures 6.2.1 shows the convergence history of the FW and CMCG solver. CMCG converges692

significantly faster than FW. In particular, for ω = 6π, the FW solver does not reach convergence693

within 1000 simulated periods. As in the previous experiment, CMCG achieves the same accuracy694

than FS for P1 elements, while the error is slightly increased for P3 elements.695

6.3. Cavity problem. We next consider an interior problem in a closed cavity Ω := (0, 1)2696

surrounded by a conducting material. We thus set ΓP := ∂Ω and ΓI := ∅. We apply a source697

j := 1 and set g := 0. This problem features resonances at frequencies ω2
r,n,m := (n2 + m2)π2,698

for all n,m ≥ 0, with associated eigenmodes un,m := sin(nπx1) sin(mπx2). Again, we obtain a699

semi-analytical solution by truncating the Fourierexpansion.700

We examine the behaviour of FW and CMCG when the frequency ω is relatively far or close701

to a resonant frequency ωr. Hence, for a fixed resonant frequency ωr, we consider a frequency of702

the form ωδ := ωr +
√

2πδ with δ = 1/8 or 1/64. We first take ωr := 3
√

2π with P1 elements and703

a 32× 32 Cartesian mesh. Then, we use P3 elements on an 8× 8 Cartesian mesh for ωr := 5
√

2π.704

Figures 6.3.1 and 6.3.2 depict the convergence history of FW and CMCG. The FW algorithm705

fails to converge even in the favorable case where δ = 1/8. The CMCG algorithm converges in all706

cases, and the convergence rate is only slightly affected for the smaller value of δ.707

6.4. Dipole source in a trapping medium. In this numerical experiment, we simulate708

the electromagnetic field generated by a dipole source inside a body G ⊂ Ω := (−1, 1)2. We set709
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Fig. 6.2.1: Convergence in the half open waveguide experiment
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Fig. 6.4.1: Imaginary part of the electric field in the square (left) and circular (right) traps
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Fig. 6.4.2: Convergence in the square (left) and circular (right) trap experiments

ΓP := ∅ and ΓI := ∂Ω. The permittivity is not constant, and instead, we assume that710

ε(x) :=

∣∣∣∣∣ 4 if x ∈ G,
1 otherwise,

711

this choice is made so that G traps rays: Snell’s law ensures that rays crossing the interface712

with incident angle less that 60o are totally reflected inside the G. We model the dipole with713

j(x) := exp
(
−|x− c|2/s2

)
where s := 0.05 and c ∈ G is the dipole localization. We consider714

two configurations. In the first case, the trapping body G := [−0.5, 0.5]2 is squared, c := (0.25, 0)715

and ω := 10π. In the second case G := {x ∈ R2 | |x| < 0.5} is a disk, c := (
√

2/4, 1/2 −
√

2/4)716

and ω := 20π. We employ unstructured meshes generated with GMSH [17]. For the square case,717

we impose a maximum element size h = 0.05 leading to a 3636 elements mesh. For the circular718

trap, the condition h = 0.02 leads to a 22294 triangles mesh. In both cases, P3 elements are used719

respectively resulting in 109k and 668k degrees of freedom. Figure 6.4.1 represents the solutions720

while Figure 6.4.2 shows the behaviour of the error. Again, CMCG clearly outperforms FW.721

6.5. Three-dimensional experiments. We conclude this section with several (small-scale)722

3D experiments, whose set-up closely follows the settings from the first three 2D experiments. The723

DG discretization corresponds to the three-dimensional counterpart of the 2D case presented in724

Section 5.2.2; see [15, 27] for further details. We opt for P1 elements using the RK2 integrator725

of Algorithm 5.1, and set c1 := 0.20 in the CFL condition for the time step (this value is slightly726

smaller than in 2D). All the meshes are obtained by first dividing the domain into cubes and then727
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Fig. 6.5.1: 3D plane wave example
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splitting each cube into 24 tetrahedra (we first build six pyramids joining the center of the cube728

to each face, and then split each pyramid into 4 tetrahedra).729

First, we consider the propagation of the plane wave730

(6.2a) E(x) := pe−iωd·x,731

where732

(6.2b) d = (cos(θ), sin(θ) cos(φ), sin(θ) sin(φ)) p =
1

sin(θ)
(0, sin(θ) sin(φ),− sin(θ) cos(φ))733

with θ := 60o and φ := 30o in the cube Ω := (0, 1)d. The domain is surrounded by an impedance734

boundary condition, i.e. ΓI := ∂Ω. We select a 16 × 16 × 16 mesh and the frequency ω := 3π.735

The associated convergence history is shown in Figure 6.5.1. As in the 2D case, FW outperforms736

CMCG for this very simple problem in unbounded three-dimensional space without any internal737

resonances.738

Next, we consider a half-open waveguide Ω := (0, 4) × (0, 1)2 with ΓI := {4} × (0, 1)2 and739

ΓP := ∂Ω \ ΓI. The incident wave corresponds to the three-dimensional plane-wave (6.2) with740

θ := 80o and φ := 30o. The (semi-) analytical solution is obtained with an approach similar741

to (6.1) for the 2D case. Figure 6.5.3b shows the convergence history of the FW and CMCG742

solver for a 48 × 12 × 12 mesh and the frequency ω := 2π. As in the 2D case, CMCG converges743

significantly faster than FW. In Figure 6.5.3a we also display the electromagnetic energy of the744

numerical solution.745

Finally, we consider a closed cavity experiment in 3D with Ω := (0, 1)3 and ΓP := ∂Ω. Here746

we extend the previous 2D problem from Section 6.3 in the x3 direction by setting747

J(x1,x2,x3) = (j(x1,x2), 0, 0) E(x1,x2,x3) = (e(x1,x2), 0, 0),748

where j and e are the previous two-dimensional right-hand side and solution. We set the frequency749

ω := ωr +
√

2πδ with ωr = 3
√

2π and δ := 1/8, and perform the computation using a 16× 16× 16750

mesh. As shown in Figure 6.5.2, the CMCG rapidly converges while the FW method fails to751

converge, thus corroborating previous results in the 2D case.752

In summary, the performance of CMCG in 3D parallels that previously observed in 2D: CMCG753

performs slightly worse than FW for a plane wave in open space, but CMCG clearly outperforms754

FW in the presence of more complex geometries or boundary conditions, as for the waveguide or755

the closed cavity.756

7. Conclusion. We have proposed a controllability method (CM) to solve Maxwell’s equa-757

tions in the frequency-domain in their first-order formulation. By minimizing a quadratic cost758

functional J using a conjugate gradient iteration (CG), the CMCG method determines a time-759

periodic solution in the time-domain. At each CG iteration, the gradient J ′ is computed simply by760
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Fig. 6.5.3: 3D waveguide experiment

running a time-domain solver forward and backward over one period, without the need for solving761

any additional linear system. Hence, our CMCG algorithm automatically inherits the parallelism,762

scalability, and low memory footprint of the underlying DG time-domain solver. The full CMCG763

Algorithm 2.3 is listed in Section 2.2.764

In general, there exist several time-periodic solutions to Maxwell’s equations, distinct from765

the desired time-harmonic solution, so that the minimizer of J may not be unique. To remove766

those spurious modes and thus extract the time-harmonic solution from any minimizer, we apply a767

cheap filtering operator computed “on the fly” as a final post-processing step. In Theorem 4.6, we768

establish that J combined with the filtering operator is strongly convex in an appropriate sense,769

which ensures the convergence of the CMCG method to the desired time-harmonic solution from770

any initial guess. In Section 4.3, we also show that nearly periodic solutions already provide good771

approximations to the time-harmonic solution after filtering. Hence, by monitoring the misfit, the772

CG iteration may be stopped as soon as the desired accuracy has been reached.773

The CMCG method inherits all the numerical errors already present in any spatial discretiza-774

tion of the time-harmonic Maxwell equations. Moreover, the CMCG approach includes the errors775

due to time-discretization and to the stopping criterion in the CG iteration. As long as these776

two additional sources of error decrease at least as fast as all other numerical errors present in777

the spatial discretization, the CMCG method will retain the overall optimal rate of convergence778

with respect to the mesh size h. In fact, comparison with a direct frequency-domain solver shows779

that the additional error due to time discretization is hardly visible for the low-order P1-RK2780

discretization and very small for the higher order P3-RK4 discretization.781

In our numerical experiments, we also compare the CMCG method against the limiting ampli-782

tude principle, where one simply lets the time-domain solver run until the time-harmonic regime783

is reached. For simple plane wave propagation in unbounded space, the limiting amplitude prin-784

ciple in fact slightly outperforms CMCG. For all other examples however, CMCG significantly785

outperforms the approach based on the limiting amplitude principle. For the cavity experiment in786

Section 6.3, in particular, the convergence of CMCG is hardly affected by the trapping geometry,787

whereas the limiting amplitude principle based approach utterly fails.788

Our CMCG method is non-intrusive and easily integrated into any existing time-domain code.789

It is not limited to DG discretizations; thus, we expect similar performance using solvers based790

on finite differences [40, 43] or generalized finite differences based on discrete exterior calculus791

(DEC) [39]. Although we have only used simple first-order Silver-Müller absorbing boundary792

conditions in our computations, the CMCG approach immediately extends to other more accurate793

absorbing conditions or perfectly matched layers [41]. In the presence of complex geometry and794

local mesh refinement, local time-stepping methods permit to overcome the stringent local CFL795
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stability condition without sacrificing explicitness [21, 24]. The CMCG approach can also compute796

solutions for multiple frequencies in “one shot”, that is at the cost of a single solve, as proposed797

in [41].798
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