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ROBUST A POSTERIORI ERROR ANALYSIS FOR ROTATION-BASED
FORMULATIONS OF THE ELASTICITY/POROELASTICITY COUPLING*

VERONICA ANAYA ', ARBAZ KHAN?#, DAVID MORA$, AND RICARDO RUIZ-BAIERY

Abstract. We develop the a posteriori error analysis of three mixed finite element formulations for rotation-based equations in
elasticity, poroelasticity, and interfacial elasticity-poroelasticity. The discretisations use H!-conforming finite elements of degree k+ 1
for displacement and fluid pressure, and discontinuous piecewise polynomials of degree k for rotation vector, total pressure, and elastic
pressure. Residual-based estimators are constructed, and upper and lower bounds (up to data oscillations) for all global estimators
are rigorously derived. The methods are all robust with respect to the model parameters (in particular, the Lamé constants), they
are valid in 2D and 3D, and also for arbitrary polynomial degree k > 0. The error behaviour predicted by the theoretical analysis
is then demonstrated numerically on a set of computational examples including different geometries on which we perform adaptive
mesh refinement guided by the a posteriori error estimators.

Key words. Mixed finite element method; linear poroelasticity; rotation-based formulations; interface problems; a priori and a
postertort error estimation.
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1. Introduction. The interaction between interstitial fluid flow and the deformation of the underlying
porous structure gives rise to a variety of mechanisms of fluid-structure coupling. In the specific case of Biot
poromechanics, this interaction occurs when the linearly elastic porous medium is saturated, and such problem
is relevant to a large class of very diverse applications ranging from bone healing to, e.g., petroleum engineering,
or sound isolation. We are also interested in the interface between elastic and poroelastic systems that are
encountered in hydrocarbon production in deep subsurface reservoirs (a pay zone and the surrounding non-pay
rock formation) [15], or in the study of tooth and periodontal ligament interactions [3].

Rotation-based formulations are found in applications to the modelling of non-polar media and helicoidal
motion (see, e.g., [6, 20, 25] and the references therein). The resulting theory has a similarity with vorticity-based
formulations for incompressible flow such as [5, 8, 12, 13, 18].

The schemes for elasticity and transmission elasticity-poroelasticity and their a priori error analysis have been
studied in [4] and [3], respectively. The solvability of the rotation-based poroelasticity has not been addressed
yet, and for sake of completeness we outline its analysis in Appendix A and Appendix B. The well-posedness
of the continuous problem is studied by grouping the unknowns with compatible regularity and realising that
the resulting problem is a mixed variational formulation that resembles the system introduced in [23, 27| that
describes the Biot equations in their displacement-pressure-total pressure formulation. Our analysis also discusses
the limit case when the specific storage coefficient goes to zero, and we observe that the continuous dependence
on data is robust with respect to the Lamé constants.

Our focus is on the design, analysis, and testing of a posteriori error estimators for these three rotation-
based models and discretisations. Robust a posteriori error estimators for Biot poroelasticity include the weakly
symmetric tensor reconstruction for total stress and Darcy flux from [9, 15], two fully mixed methods from [1]
(requiring the solution of auxiliary local problems), the guaranteed equilibrated bounds for fixed-stress splitting
scheme from [22] and for double-diffusive poroelasticity from [26], the robust residual a posteriori estimates for
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displacement-flux-pressure advanced in [24], and for displacement-elastic pressure-fluid pressure from [21]. We
follow the latter approach and construct residual-type error estimators. All the terms that conform the a posteriori
error estimators are easily fully computable locally. The derivation of the upper bounds for each of the terms
conforming the a posteriori estimators for rotation-based elasticity and rotation-based poroelasticity, is based on
exploiting scaling arguments and bubble function techniques. The results obtained for these two sub-problems are
then combined with estimates for the additional terms that appear in the transmission problem. As mentioned
above, in all cases a careful treatment of the model parameters is essential to maintain robustness with respect
to the sensible Lamé constants of the elastic and poroelastic media (going to infinity when the Poisson ratio
approaches 1/2).

The remainder of the manuscript has been structured in the following manner. Instead of grouping the contin-
uous results together and the error bounds separately for all problems, we have divided the analysis by type of
problem. Therefore, Section 2 defines the rotation-based elasticity problem, recalls the solvability and stability of
the continuous problem and of the mixed finite element discretisation, and provides the construction and analysis
of an a posteriori error estimator. An analogous presentation is given in Section 3 for the rotation-based Biot
equations. These results are then combined in Section 4 to treat the rotation-based transmission problem between
a poroelastic and an elastic sub-domain. A few examples are presented in Section 5, showing in particular that
mesh adaptivity steered by the a posteriori error estimators leads to an important reduction in the number of
degrees of freedom that are needed to reach a certain accuracy level, and the tests also indicate the sharpness
of the a posteriori error analysis. We also illustrate the use of the adaptive method in the simulation of a 3D
aquifer interface problem. Finally, in an appendix, we present the a priori error analysis of the rotation-based
poroelasticity problem.

2. Rotation-based linear elasticity. This section is devoted to deriving reliability and efficiency of a
residual a posteriori error estimator for a formulation of linear elasticity in terms of rotation, displacement, and
pressure. We start with preliminary results regarding the continuous and discrete formulations.

2.1. Continuous formulation. Let @ C R d € {2,3}, be a bounded Lipschitz domain with boundary
I := 09Q. Our starting point is the rotation-based elasticity problem, as proposed in [4]: Given an external force
fE, we seek the displacement w, the rotation w and the pressure p such that

VpE curlw 4+ Vp = & in Q, (2.1a
w—+vVpEcurlu=0 in Q, (

diva + (245 +AF)"1p =0 in Q, (2.1c
u=0 on T, (2.1d

where p® and AP are the Lamé coefficients (material properties of the solid, and here assumed constant). The
weak formulation of (2.1) is as follows: find (u,w,p) € H§(Q) x L(Q) x L?(Q) such that

—uP | curlv - w+ / pdive = —/ o Yo € Hy(Q), (2.2a)
Q Q Q
/w-O—\/,uE/0~cur1u:0 VO c L*(Q), (2.2b)
Q Q
/ divaug + (2p® + \F)~! / pg =10 Vg € L3(Q), (2.2¢)
Q Q

or more conveniently written in the form

BE((uvw7p)7 (U, 0, Q)) = —(fE,’U)(),Q,

where the multilinear form (having a subscript E, for elasticity) is
Bg((u,w,p), (v,0,q)) := —\/,uE/ curlv - w + / pdive + / w-0
Q Q Q
- \/,uE/ 0 - curlu +/ divug + (2u® + )\E)_l/ Pq.
Q Q Q

For the considered boundary conditions, the term div H} can control only the L? norm of the mean-value zero
part of p, and an additional contribution is needed to control the mean-value part of p (see, e.g., [23]). Thus we
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can decompose p into P,,p and py = p — Pp,p, where P,,p is the mean value part and pg is the mean value zero
part. This is required only in the incompressibility limit, as Herrmann’s problem approaches Stokes equations
and pressure (for u prescribed everywhere on the boundary) is no longer unique. This will be relevant also in the
case of rotation-based Biot equations in Section 3, below.

The well-posedness of the above variational problem is a direct consequence of the following result (see [14]).

THEOREM 2.1. For every (u,w,p) € H} () x L2(Q) x L2(Q), there exists (v,0,q) € H}(Q2) x L3(Q) x L(Q)
with (v, 8, ¢)ll < C1ll(u,w, p)ll such that

Be((u,w,p), (v,0,9)) > Call(u,w,p)ll?,

(8

where || (v, 0, q) (2u® + AE)_lHQH(Z),Q + (UE)_1||QO||%,Q~

Proof. Consider the decomposition p = pg + P,p. As a consequence of the inf-sup condition, for every
po € L3(Q) there exists vg € H}(Q) such that (po,divvg)on > C'Q(,uE)’lHpo||aQ and (uP)V2||vollia <

(1")~

= (¥ curlv|§ o +

1

Ca 1 €
Be((w,w,p), (v0,0,0)) > F”POH%,Q — Vi(w, curlvg)g o > (CQ - 26) FHPO”%,Q - 5”‘-"“%,0

Choosing v = —u, 8 = w and ¢ = p, we arrive at
B((u,w,p), (—u,w,p)) = w3 o + 26"+ A%) 7 |p§ o
Next, we can select v = 0, @ = —+/uE curlu and g = pF div u, which leads to

e

E E
/B 1% Iy 1
Bg((u,w,p), Ecurlu, y dlvu)) > 7” CUFIU”%,Q + ?H leUH%,Q - 5”“’”3,9 - WHPH(QLQ,

We can also take v = —u + 61vg, @ = w — do+/uE curlu, together with ¢ = p + Sou” div u, giving
Be((w,w,p), (v,0,q)) = Be((u,w,p), (—u,0,0)) + 6 Be((u,w, p), (v9,0,0)) — 52 B ((u,w, p), (0, v/ uE curl w, ¥ div u))

2 2

1\ 1 1 St
0 (Co— =) =lpolPey+ ——- (1 2 2.
+ 1< o 26) MEIIpo||O,Q+2ME+AE( 2uE+AE> 215,02

Choosing € = 1/Cq, 01 = 1/2¢ and J; = 1/2, we have

616 (52 E E
l—— | llw ||09+52 ||CU1”1U||OQ+52 ||d1VU||OQ

o (C%: 1
Bg((u,w,p), (v,0,q)) > min {29, 4} Il (w, w, p)II%,

and the assertion of the theorem can be established by obtaining

(v, 0, 9)1* = Il (—u + 6190, w — d2+/ iE curlu, p + o™ div ) 1? < 2/l(w, w, p)lI*. u|

2.2. Discrete spaces and Galerkin formulation. Let {7;},~0 be a shape-regular family of partitions
of the closed domain Q, conformed by tetrahedra (or triangles in 2D) K of diameter hx, with mesh size h :=
max{hx : K € Tp}. We specify for any k > 0 the finite-dimensional subspaces of the functional spaces for
displacement, pressure and rotation; as follows

V5, = {v, € C(QNHQ) : vn|x € P (K), VK € Tp},
Wy, :={0, e L(Q) : 04|r € Po(K)¢, VK € T}, Zp = {qn € L3(Q) : qu|r € Pu(K), VK € T}

The discrete weak formulation reads: find (wp,wn,pr) € Vi, X Wy, X Zj, such that

BE((uhuwh7ph)> (Ua 07 Q)) = _(fE7v)O,Q V(U>97Q) S Vh X Wh X Zh~ (23)
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In view of the comment above regarding pressure uniqueness in the nearly incompressible limit, we can either
add a real Lagrange multiplier to fix the mean value of pressure, or (for the specific case of discontinuous pressures),
simply add a jump stabilisation (from, e.g., [19]). Then, for k£ > 0, the modified discrete weak formulation of the
rotation based elasticity reads: find (up,wn, qn) € Vi X Wy, X Zjp, such that

BE((uh7wh7ph)7 (’07 07 q)) + :u’_l Z he /[[Ph]][[(J]] = _(.fEa 'U)O’Q V(U,H»Q) € Vh X Wh X Zh7 (24)
e€&(Th) ¢

where h, stands for the diameter of a given edge, [-] the edge jump, p > 0 is an stabilisation parameter and £(7p,)
denotes the set of all edges in Tj,.

By repeating the arguments in Theorem 2.1, we have that (2.3) and (2.4) are well-posed. In addition, by using
standard arguments, it is possible to establish the corresponding Céa’s estimate and the a priori estimates.

2.3. A posteriori error analysis. First we define the local elastic error estimator © x and the elastic data
oscillation Yg for each K € 7T}, as

h? he
0% = M—IE(HRlnaK =+ Z %HReH(Q),e + ||R2||3,K +

1

T h3 E E
1 ||R3||3,K7 TI%:M%HJ” _.fh||(2),K7

1
T E Q#E +A\E

ecdK w
where fg € L?(Q) is a piecewise polynomial approximation of FE. Moreover, the element-wise residuals are

R, = {f‘g —VpBcurlw, — Vpptx, Ro:i={wn — VpEcurluylg, Rs:= {divu, + 2u® + 1) "1p, )k,

and the edge residual is defined as

R, — %[[\/NEthn—&—phn]]e e€&(Tn)\T
© 0 ecl.

Finally, the global elastic residual error estimator © and the global elastic data oscillation term as

0% .= Z 0%, T?.= Z T2, (2.5)

KeTy, KeTy,
2.3.1. Reliability estimate. Using the Clément interpolation estimate, the following results hold:

R ViElo = @) ok S Villoliwg: b *ViE o = L®)oe S VAPl w- (2.6)

In next theorem, we discuss the reliability bound of the estimator ©. The Clément interpolation estimate and
the stability estimate are the main ingredients in the proof.

THEOREM 2.2 (Reliability estimate for the elasticity problem). Let (w,w,p) be the solution to (2.2) and
(wp,wp,pr) the solution to (2.3) (or (2.4)). Let ©, T be as in (2.5). Then

(w = wn, w — wn,p = pu)ll < Cra(© + ). (2.7)
Proof. Since (u — up,w — wp,p —pr) € HH(Q) x L2(2) x L%(Q), the stability Theorem 2.1 implies
Cill(w = up, w — wh,p — pu)lI> < Be((u — up,w — wi,p = pr), (v,60,9)),
with [I(v, 80, ¢)ll < Call(u — up,w — wp,p — pr)ll. Using the definition of the weak forms, it follows:

Be((u —upw — wp,p—pn), (v,0,q) = Be((u — up,w — wp,p —pr), (v —v5,0,q))

=—(f% = fh.v—vn)oq — (Fr,v — va)oo — Be((un,wn, pr), (v — v, 0. 9)).
Integration by parts, Cauchy-Schwarz inequality and the approximation results (c¢f. (2.6)), imply the bound
Br((u — un,w — wi.p — pn), (v,68,q) < C(O +1)li(v,0.9)l,

which, in turn, implies (2.7). 0
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2.3.2. Efficiency bounds. Let K € T, and counsider the interior polynomial bubble function by (positive
in the interior of K and vanishing on 0K). From [28], the following estimates hold:

0.5 S 103 0]lo, oxcvllo.re S [lvllo, 5 IV(bxv)llo,x < by lvllox, (2.8)

0]

where v is a scalar-valued polynomial function defined on K.

Each term defining O in terms of local errors are bounded using the following collection of results.

LEMMA 2.1. There holds:
R (W) RN S W) 2Rl £ = Frlloe + (1) 7 Hip — pallo,x + lw — whllo,x-

Proof. For each K € Ty, we can define {| = (u¥)"'h%4R1bx. We can then employ (2.8) to arrive at
Bl Rl S [ Ra () hiRabi) = [ R
K K
Recall that fE — V1P curlw — Vp = 0. We subtract this from the last term and then integrate using {|sgx = 0

B3, (1) R 2 < / (FE— F5) - ¢+ ViE / (@ — wp) - curl¢ + / (p—pr)V - C.
K K K

Then, Cauchy-Schwarz inequality gives
R (1) IR S (1) 2Rl £ = Frllo + 10— pallo,e + [l — wrllo, (1)1 V¢ o,k + (1) 2Rt 1€ llo,xc-
And the proof can be completed thanks to the following estimate

Y2V ¢,k + W) 2hMIC o, S (1) 2(IVC o,k + R lIC o)
< (W2 (¢ o = hue (1) V2R l0. k- o

LEMMA 2.2. There holds:

[R2lo.x S llw = whllox + v pF| curl(u — up) o x-

Proof. The constitutive relation w — /pf curlu = 0 implies that

[Rzllo,x = [[wn — VP curlup|jo,x = [[(wn — w) — v/ pE(curluy, — curlu)l|ox
0.k + VP curl(u — uy,)

S lw — wh| lo,x - 0

LEMMA 2.3. There holds:

(™) 7"+ e+ A% ) 7V2  Ryflo, e S VB div(w — un) o, + (265 + A) 72 (|p = pallo, -

Proof. Using the expression divu + (2u® + AF)~1p = 0, we have
o = (™) 71+ 26" + AH)TH V2| div s + (26" + A¥) " pallo,x
S VP div(w — wn)llo.x + (26" + X)) 7 |Ip = pallo.x - 0

(™)~ + 20+ A%) ) 2| Ry

Let e be an interior edge (or interior facet in 3D) shared by two elements K and K’'. We assume that b., the edge
polynomial bubble function on e, is positive in the interior of the patch P, formed by K U K’, and b, is zero on
the boundary of the patch. Then, also from [28], the following estimates hold:

lallo.c S 10 %allo.e:  beallox S ke *llalloe, IV Gelox S he'llallo. VK € P, (2.9)

where ¢ denotes the scalar-valued polynomial function defined on the edge e.

LEMMA 2.4. There holds:

(D7 he(u™) RGOV S D (W) 2ol = Frllo. + (%)™ 2o = pallo.x + llw — whllo.x)-
e€COK KeP,
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Proof. For e € £(Ty,) we define locally ¢, = (u®)"1h.R.b.. Therefore, relation (2.9) implies

Pl Rele 5 [ Re- () heReb) = [ R

Since [w x n]. =0 and [pn]. = 0, we have

/[[\/;T(wh— w)xXn+ (pp—p)nje- ¢, = Z/ \/>cur1wh—w )+ Vipn—p)) - €.

€ KeP,

+ Z / B(wy, —w) - curl¢, + (pn — )V - ¢€.)s

KEP,
where we have used integration by parts element-wise. Recalling that fE — V1P curlw — Vp = 0|, gives
RS X [ (s e VI [(wn—w)cuteot [(on-nvic)+ Y [ R
KeP, KeP.

From Cauchy-Schwarz inequality we can then infer that

he(W®) M IRel e S D ()7 2Rl FP = Fillo + (u®) 712

KeP,
(™) 2NV Cllore + (1) 2Rt 1€ ello,x)-

And the assertion of the lemma is proven after obtaining the bound
™)V (W) 2 Cello. S (W)Y 2Rt ICello e = he/? (1) ™2 Relloe- 0

Now, we are in position to state the efficiency of the proposed estimator ©.

)X

THEOREM 2.3 (Efficiency estimate for the elasticity problem). Let (u,w,p) be the solution to (2.2) and
(up,wn,pr) the solution to (2.3) (or (2.4)). Also, let ©,T be as in (2.5). Then:

O < Cogr(Il(w — wp, w — wp,p — pr) Il + T).
Proof. 1t suffices to combine Lemmas 2.1-2.4. ]

3. Rotation-based poroelasticity with total pressure. In this section we propose a mixed finite element
method for the approximation of linear poroelasticity equations, formulated in terms of displacement, rotation
vector, fluid pressure, and total pressure. Then, we will present an a posteriori error analysis.

3.1. Continuous formulation. We consider the steady poroelasticity equations written in terms of dis-
placement wu, fluid pressure p, rescaled total pressure ¢ := ap — (2uf + AF)divu, and rescaled rotation vector
w = \/E curlu, where a > 0 is the Biot-Willis parameter, and AP, uF are the Lamé constants. Moreover, st
is a smooth fluid source term, x is the permeability (isotropic and satisfying 0 < k1 < k(x) < ke < 00, for all
x € Q), cg > 0 is the storativity coefficient, g is gravity, f¥ is the external load, and &, p are the viscosity and
density of the pore fluid, respectively. The system reads

VP curlw 4+ Vo = fF in Q, (3.1a)

w—pPecurlu=0 in Q, (3.1b)

2" + XP) Lo+ divu — a(2uf + X)) 1p=0 in €, (3.1¢c)

[co+ (1" + A7) Hp — a2u” + A7) 1o — ¢ div [k(Vp — pg)] = " in Q, (3.1d)

and we assume that the domain is clamped and consider zero filtration flux on the boundary
u=0 on 09, KEY(Vp—pg) - m=0 on ON.

Testing each equation of (3.1a)-(3.1d), integrating by parts whenever adequate (see [16, Theorem 2.11]) and
applying the boundary conditions we obtain:

_\/lF/chrlv-w—i—/Qquivv:—/QfP
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/w-O—\/F/Onurlu:O, (3.2)
Q Q
"+ [ vt [ wdiva a3 [ o
a? ’
—[Co+m]/m+m/¢q /vap Vq——g Hg-Vq—/Qqu,
for each (v,0,7,q) € H(Q) x L2(2) x L2(Q2) x H(Q).

We can regard the rotation and the rescaled total pressure ¢ as a single unknown & := (w, ¢). This gives the
unsymmetric variational form: find (&, u,p) € H x V x Q such that

a(&,0) + by (8,u) —by(6,p) = 0 V6 € H, (3.3a)
by (@, v) = F(v) Vv eV, (3.3b)
b2(&,q) — c(p,q) = G(q) VgeQq, (3.3¢)

where 6 := (8,v), H := L2(Q) x L2(Q), V = = H}(Q), Q := H(Q), and the bilinear forms a : H x H — R,
bi :HXxV 2R bb:HxQ—-R,b3: HxQ—=R, c:QxQ — R, and linear functionals F' : V—>RG Q—>R

are specified in the following way

a(a,é);:/Qw 9+2P+AP/¢¢, b (6,v) = —/p /0 curl’v+/wdlvv b (6, p) == ﬁ/ﬂw,
2
— L _ — P — _ P
c(p,q) = [Co+2uP+Ap]/qu+£/QWp Vg, F(v): /Qf v, G(qg): 5 e Vg /Qs q.

Note that the displacement space Hq(curl, ) N Hy(div, Q) is algebraically and topologically equivalent to V if Q
is a polyhedral bounded domain with Lipschitz boundary [16, Lemma 2.5, Remark 2.7].

The formulation in (3.3) can be also written, more concisely, as
Bp((u,w,¢,p), (v,0,7,q)) = F(v) + G(q),
where the multilinear form (now having a subscript P, for poroelasticity), is defined as

BP((’M,UJ, d)vp)v (’U, 07¢7Q)) = 0,((.37 é) + bl(év ’LL) - b2(§7p) + bl((“_jvv> + b2((‘3a Q) - C(p7 q)

The following result will be useful in the next section.
THEOREM 3.1. For every (u,w,¢,p) € HY(Q) x L%(Q) x L2(Q) x HY(Q), there exists (v,0,1,q) € H} () x
L2(Q) x L*() x H'(Q) with ll(v, 0,%, ¢)lIl < Cull(w,w, ¢, p)ll such that

BP((U’7 w, ¢7p)7 ('U, 0, w’ q)) Z 02 ||| (’U/, w, ¢7p) |I|27

where

. 1 1
(v, 8,9, := p" (| curlw|[f o + || divol§ o) + |05 .o + MTDWOHg,Q + m”ﬁ’”%,ﬂ

o? 2 K 2
+ | co+ m lallo.0 + Hquno,n

Proof. Analogously as in the proof of Theorem 2.1, we have that there exists vy € H}(£2) such that

Cq 1 1 €
BP((u,wa¢’p)’ (’vo,0,0,0)) > MT”‘%H%,Q Y MP(W Curl'UO) (CQ - 2) F“¢0||g,ﬂ - 5”“‘)”%7(}

First we take v = —u, 0 = w, ¥ = ¢ and ¢ = —p. Consequently,
—p)) = w3 o + 27 + A7) oI5 o — 226" + A7) " (D, d)o0

BP((“’? w, ¢7p)a (_u7 w, ¢)7
+ (co +a?2u” + AT) T Ipl§ o + 15/€VDIE o
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Next, we choose v = 0, @ = —/uF curlu, ¢ = uf divu and ¢ = 0, and therefore

BP((uv W, ¢7p)a (Ov -V /~LP curlu, :U'P div u, O))
= WPl curlu|d o + 17|l divaull? o — Vi (w, curlu) + uF (217 + A7) (6, diva) — ap®(2uf + A7) (p, divu)
P 2
1

P

I 2 M Py 1 2 1 2 @ 2 2
> P | curl Y P d S 1 . .
= 9 chr u”O,Q ( (2,U,P )\P)> Hw H 1V’lL| 0,02 2” ||0,Q 2(2NP I )\p) ||pHO,Q 2(2/1'13 + )\p) ”(Z)HO,Q

Finally, we can take v = —u + 0,9, 8 = w — do/puf curlu, ¥ = ¢ + 6uF divu and ¢ = —p, to obtain

BP((U, W, (bap)z (’U, 03 11[}3 q)) = BP((U7 w, ¢7p)a (_ua W, ¢a _p)) =+ 5pr((u,w, d);p)v (UOa 07 07 0))
+ 62 Bp((u,w, ¢,p), (0, —/ P curlu, u” divu,0))

516 62
> _ .- 2=

1\ ¢ 1 1 0
+(Co 5 ) SrlnlBa+ s (5 %) 19l + In/€Tnli

P

2 MP52 2 H i 2
0.0+ 5 | curlulg o + 01 1_m [| divullg o

2¢ 2uP + AP\ 2

a2 1 62 2
+ | co+ m 57 9 P15,

Choosing € = 1/Cq, 61 = 1/2¢ and d; = 1/2, we have

. [CE 1
Be((u,w,¢,p), (v,0,1,q)) = min {49 4} l(w, w, ¢, p)II>.
And from that, the following estimate completes the proof
(v,8,%,9)lI” = ll(—u + 6100, w — 521/ p¥ curlu, ¢ + Gop” diva, —p)lI> < 2ll(w,w, ¢, p) I, O

3.2. Discrete spaces and Galerkin formulation. With the same notation as in Section 2.2, we specify
finite-dimensional for displacement, fluid pressure, rotations, and total pressure; as follows

Vi i={vn € CQ) NV :woplk € Pry1(K), VK € To},  Qui={an € C(Q)NQ: qu|x € Pry1(K), VK € Tp},
W, := {0, € L*(Q) : 0|k € Pr(K)?, VK € T}, Zn = {vbn € L*(Q) : ¢nlx € Pr(K), VK € Tp}. (3.4)

Then the discrete formulation consists in finding (wp, wn, ¢n, pr) € Vi, X Wy, X Zj, X Qp, such that

BP((uhvwhv d)h?ph)ﬂ (”U, 0) ’l/}? q)) = F(U) + G(q)V (35)
for all (v,0,1,q) € Vi x W, X Zp, x Qp. Likewise, for each k > 0, the modified (stabilised) discrete weak
formulation of the rotation based poroelasticity is: find (up, wn, dp,pr) € Vi X W}, X Zp, x Qp, such that

B(K’ga VQ)O,Q - (SPu q)O,Q7 (36)

BP((uh7wh7¢h7ph)7(U707¢7Q))+/1'_1 Z he/[[%]][W]] = _(fpvv)U,Q - 5

e€&(Thn)

for all (1’7971/)%]) € Vi x Wy x Zp, x Qh~

The analysis of the continuous and discrete formulations is not found in [4, 3]. For sake of completeness, we
outline it in the Appendix.

3.3. A posteriori error analysis. First, we define the poroelastic local error estimator ¥y as
h? h
Vi = S Rilgk + D FIReGe + (R & + pall Rsllg i + prl|Rallg i + D p2llRellf e
K e€OK e€OK

where the elemental residuals are defined as:

Ry = {f} — VP curlw, — Vorlk, Ro:={wn — P curluy )k,
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Ry = {divuy, + 2u” + 2 7)oy — au+ A7) 'pptk,
Ry :={s}, — (co+a* 2+ N)""pp + a@u” + A7) op + £ dive(Vpn — p8)]} i

and the edge residuals are defined as

)

R - JalViPwn xntginle e ETMNT o ST A(Von = p)le e € E(TH)\T
‘7o eel ’ T e k(Vpn — pg) eel

with the scaling constants taken as
pri=min{(co + a?(2u" + A°) )T RRER T, po = ER T he, pai= (7)) TN 26T A7)
On the other hand, the definition of the poroelastic oscillation term 'YK is as follows:
T = b (") ET = FR 1Sk + prlls™ = I -

Finally, the global residual error estimator and data oscillation terms are, respectively,

U2 = Z w2 2= Z T2 (3.7)

KeTy KeTy,

3.3.1. Reliability. In this section, we establish reliability of (3.7). The main ingredients are the stability
theorem and the interpolation estimate to establish the upper bound.

THEOREM 3.2 (Reliability for the Biot problem). Let (u,w, ¢,p) and (wp,wn, dp,pn) be the solutions of the
weak formulations (3.2) and (3.5) (or (3.6)), respectively. Then the following reliability bound holds

”l(u — Up,W — Wp, ¢ - ¢h7p 7ph)"| S CVrel(\IJ + 'Y\)v

where Cre > 0 is a positive constant independent of mesh size and parameters.

Proof. Since (u — up,w — wp, ¢ — ¢, p — pr) € HY(Q) x L2(Q) x L2(Q) x H(Q), then Theorem 3.1 implies
CQ'”(U’ — Up, W — Wh, ¢ - ¢h7p 7ph)|”2 < BP((U’ — Up, W — Wh, ¢ - ¢h7p 7ph), (’U, 03 T;Z)a q))a
with (v, 0,9, )l < Cill(uw — up,w — wp, ¢ — ¢, p — pr)ll. From the definition of B, it follows that

Bp((u — un,w — wh, & — ép,p— pn), (0,0,0,9)) = —(F* — 1. v —vp)oa — p& (g, V(2 — qn))og
+ (s = st a—an)oa — (Fr,v —v)oa + (shya — an)oa — Be((wn, wh, 6, pn),s (v — va, 0,99 — qn)).

Finally, applying integration by parts, Cauchy-Schwarz inequality and approximation results, yields

Bp((u —up,w — why ¢ — Gy 0 — pa), (0,0,9,9)) < C(V + T)lI(v, 0,7, ). O

3.3.2. Efficiency. The following lemmas provide upper bounds for each term defining W .
LEMMA 3.1. There holds:

hie (W) T PIRUE 0 S (W) 7 2Rl FT = Fillose + (1) 7216 — dnllo,re + |lw — wallo,x-

Proof. Tt follows from Lemma 2.1. 0
LEMMA 3.2. There holds:

[Rzlo.x S llw—whllox + VPl curl(u — up)llo x-

Proof. Tt follows from Lemma 2.2. 0
LEMMA 3.3. There holds:

,0(11/2||R3| 0.k S VRP|div(u —un)lox + 26" + A7) 216 — dnllox + a2u” + A7) T2 p — py,

0,K-
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Proof. Using the expression divu + (2uf + AF)71¢ — a(2uF + AF)~1p = 0, we have

0K = p;/QH divauy, + (20" + A7) o, — a2 +AP) T pnllo.x
S VP |l diviu —un)llox + 26" + A7) 726 = dullo, + a2u” +AT) TV p —py

1/2
oy % ||Rs|

0,K- 0

LEMMA 3.4. There holds:

hic (W) T2 Rl e S (o) 2118T = sillo.se + [co + a2+ A) T2 p = pulloxc + (5/6) 2V (0 = pn) o5

+ 26"+ AP) 2| p — B0,k -

Proof. For each K € T, we can take |x = (p1) ! R4bx. Then, invoking (2.8), we end up with

()M RallZ < /K Ra((p1)~" Rabic) = /K Ric.

Recall that s — [co + @?(2u + A) 7 Hp + a(2uf + AP)71¢ + ¢~ div[k(Vp — pg)]x = 0. We subtract this from the
last term, and then integrate using ¢|ox = 0, to obtain

(p1) MIRallg k¢ S /K (s = sP)¢ + [co + a®(2u+ )71 /K (p—pn)¢+E" /K KV (p —pp) - V¢
+a<2u+A)‘1/K(¢—¢h)c.

Then, Cauchy-Schwarz inequality gives

(p1) MRS i S((p) 2 1™ = sf llo,xc + [co + a® (2 + X) T2 p = pallo,re + €262V (p — pr)llo,x
+ (20" + X)) TV2d — dnllo,x) (/) 2V ¢ lo,x + (p1) T IC Nl0,x¢-

And the proof follows after noting that

K _ K _ — _
(E)l/zllVCllo,KHm) Y2¢llo.xe S (E)l/2hK1IIC|Io,K+p1 21¢llox) S (00) 7 2lI¢llo.ie = (p1)' [ Ralloxc. T

LEMMA 3.5. There holds:

(D he(@™) RGO S D0 (W) 2hic £ = Fillo + (1) 72116 = dnllo.x + [l = wallo,xe)-
ecOK KeP,
Proof. It readily follows from Lemma 2.4. ]
LEMMA 3.6. There holds:

(D plRel5 )2 S D (o) 2lls” = spllo,se + [eo + @*2p + X120 = pallo.se + (/€)Y (0 = i) 0,5
ecOK KeP,

+ 2"+ ATV — gy,

0,K)-

Proof. For e € E(T;,) we can locally choose ¢, = paR.b.. Then, from (2.9), we readily have that

palRel2, < / R. - (psReb) = / R.-C.. (3.8)

e e

And the weak form (3.2) leads to

a? o
/Q(fi/f)v(P —pn) - Van = (_[CO + m} /QPCIh + m /Q éqn)

+(g/ﬂf€g-th+/qu)—/Q(H/f)Vpthh,
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for all g5, € V3. We can next apply integration by parts and choose g, = ¢,. Then, from (3.8) we arrive at

plrdies Y [ Rt X [ we9@-m)-ve+ 3 [ (P = s,

KEP, KEP, KEP,
et ) 3 [ o-mt ot X [ 6- e
H Kep. K H KepP. 7K
And the proof is completed after applying Cauchy-Schwarz inequality. O

THEOREM 3.3 (Efficiency estimate for the Biot problem). Let (u,w, $,p) and (up,wp, ¢n,pr) be the solutions
to the formulations (3.2) and (3.5) (or (3.6)), respectively. Then the following efficiency bound holds.

U < Cop(Il(w — wp,w — why & — dnyp — p)ll + 1),

where Cog > 0 is a constant independent of mesh size and model parameters.

Proof. 1t is a direct consequence of combining Lemmas 3.1-3.6. 0
4. Rotation-based elasticity-poroelasticity interface problem.

4.1. Continuous formulation. Let €2 be now partitioned into non-overlapping and connected subdomains
QOF, QF representing zones composed by the non-pay rock (linearly elastic domain) and a reservoir (poroelastic
domain), respectively. We focus on the case where the reservoir is completely surrounded by the elastic subdomain,
such that the interface ¥ = 9QF NONF, coincides with the boundary of the pay zone. We consider that the normal
unit vector n on X points from QF to QF. The problem is stated as follows, which is as in [3], except for the
particular scaling used herein

VP curlw® + vt = fF in QF, (4.1a)
W' — /pP curlu’ =0 in QF, (4.1b)
(2uf + M) 1P + divu® — a(2uf + A7) P =0 in OF, (4.1c)
1
[co + (1" + A7) p" — a(2u” + A7) 1" — gdiv [k(Vp" — pg)] = s" in QF, (4.1d)
VB curl wP 4 VpP = fE in QF, (4.1e)
w — VB curlu® =0 in QF (4.1f)
diva® + (20" + AF)"1pF =0 in QF, (4.1g)
u® =0 on T, (4.1h)
uf =u®, VpPwb xn+¢tn = VpBEw® x n + pPn, g(Vpp —pg) n=0 on X. (4.1i)

The weak formulation of the rotation-based Biot’s poroelasticity in QF is as follows:

—\/ P curlv® - WP —l—/ PP dive’ — (VpPw® x n + pPn, o)y = —/ FE b,
QF QP QP

/ Wt 0Y — /P 6% - curlu® =0,
QP QP

(2MP +)\P)—1/ ¢P,(/}P +/ T/)P diVUP _ OZ(QMP +)\P)—1/ pP,(/)P — 0’
QP QF QP

o’ P P «@ P P K P
— - - — 2vpP vt = =L .VP_/ PP,
[C(]+ (2uP+/\P)] /Qpp ¢+ QMP—F)\P /QP¢ ¢ /QP{ p ¢ f QF g 1 QPS g

for each (vP, 0%, 9F, ¢F) € H (OF) x L2(QF) x L2(QP) x HY(QF). Similarly, for the equations of linear elasticity
in QF we get

—v/ B curlv® - WP —|—/ PP div o + (VpEw® x n 4+ pPn, o)y = —/ FE o,
QE QE QE
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/ Wb 0¥ — /P 0" - curlu® =0,
Qe o®

/ divufq® + (2u" + \F) 7! / pEg® =0,
Q QFE

for each ( B BE,qE) € HL(OF) x L2(QF) x L2(QF), where HL(QF) = {v € H}(QF) : v¥ = 0 on I'}. We define
@ = {w? ,qbp B pEY and write the weak formulation: find (Z? u,p’) € H XV x QP such that
a(@, @)+ b1(6,u) — b2(6,p") = 0 Ve cH,
b (&, v) = F(v Yo eV,
bs(&,4") — c(p”,¢") = F(") vg e Q,

where ? = (GP,wP, 0", ¢"). We define spaces as
H:=L*(0F) x L2(Q7) x L2(QF) x L2(QF), V:=H}(Q), QF:=HYQP),

and the bilinear forms a : HxH - R, by :HXxV 2R, by :HxQF - R, b3 : HxQF - R, ¢: QF x QF = R,
and linear functionals F : V — R, G : Q¥ — R are specified in the following way

= 1 1
5.0) = P'BP P P / EOE / E _E
(@, 0) /pr t o quﬁ Y+ _ o EoE P
P P P 3 E E E 3.
-V (7] -curl’v—l—/ Y dive — /i (7] -curlv+/ p- divw,
QP QP QB QB
@

PP « P P

2
P Py._ - pp, L P o, P
c(p,q )= [00+(2ﬂp+AP)}/ﬂpp q +£/QPKVP Vg,

F(v) :=— fFov— v, G(") =-L kg - Vq© —/ st
oP oF f QP QP

For the forthcoming analysis, we will consider the following (u®, u")—dependent norm (see, for instance, [16,
Remark 2.7] for the case of a single-physics domain) for the displacements:

[v]I3 == 17| eurlw|[§ oo + p"[| divvl|f gr + pP| curlv|§ ge + 1 divo|[§ ge,

and H will be endowed with the norm

1

WW ||0 or t HeE

16131 := 11675 or + pllwo

E ||QO ||0 oe T

Now, we write down the compact form of the weak formulation as follows:

Bi((&,u,p7), (6,0,4%)) = F(v) + G(g), (4.2)

where the multilinear form now has a subscript I (for interface problem), and it is defined as
%
3 u p 3 v q a(377)+b1(3au)_b2(07pp)+b1(3?v)+b3(3aqp)_c(ppaqp)'

We now turn our attention to the stability estimates. The following theorem will also be very useful in the
forthcoming analysis.

THEOREM 4.1. For every (@, u,p") € H x V x QF, there eaits (8,v,q") € Hx V x Q with (8, v,q")ll <
Chl (3, u, p*)ll such that

Bi((@,u,p"), (6,v,4")) > Call (@, u, pO)I,

where (8, 0,42 = [0l + 8 s + (o + gzey ) 147 1 g + 15/E(T4)I3 -
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Proof. Invoking the relevant inf-sup condition, for each p® € L2(QF) and ¢F € L2(QF), we can find vf €
H{(QF) and vf € H}(QF) such that

(divog, p™)oee > Caon /1P lps |15 .am, VP VG llo.0e < 1/V/ BB (PG 0,00,
(divwg, 6" )oar = Car /ulllé6 15 ars  VEP VG llo.0r < 1/3/ 1P l|0)

Hence, for vy € H}(2) such that vo|ge = v and vo|gr = vi, we have
BI((Z?,u,pP),(O,vo,O)) = 7\/MP/ wP.curlvOPJr/ o' divog — \/uP wE.curlvOE+/ p® div v
QP QP QF QF

1 1 P2 1 1 B2 €9 B €1 P
> (Car - 5 ) e leE T + (Cos = 5 ) slsB I e — 2Pl — ST oo

%
Selecting 68 = &, v=—uand ¢ = —p* we have

Bi((&,u,p"), (&, —u, —p")) = lw"[[3 ge + (26" + AF)~ 2u” + A7) 8715 or
— 202" + A7) (P, 6" )o,0r + (co + a?(2u" + AP) PTG o + [1(5/€)2 VD5 or -

Next, we take 31 = (—/uF curlu® P divul, —/pF curl u®, P divu®) € H, v = 0 and ¢© = 0. Then

—
BI((37 uapp)7 ( 0 1, 07 O))
= p[| curlu®([f ge + p® | dive®|[§ os — v/ pP(w", curlu®)g gs + 1/ (2" + A®) (p", divu™)g oo

T P eurluP 2 go + 17 | div P |2 e — VAP (P, curluP o gr + 1P (2u° + AP (67, divaP)o s
—ap® (2u" + A7) (P, dive®)g or

" P2 p©" Py 1ic 0. P12 1 @
2 & lleurlut[g e + (1 - (QﬂPJr)\P)> ol dive”flo gr — 5 S G
1 e E|2 pt oo E |2 L B2 " E|2
~ sy e+ B el B v g — S0P 1B 0 — ot I
i — — b b )
Then we can make the choice v = —u + §1vg, 0 = @+ 0,60, and q = —p , leading to

BI((37u,pP), (3 + 5231, —u + 01vg, —pY))

= Bi((&,u pP) (3 —u,—p")) + 81 Bi((@u. ). (0.v0,0)) + 5 Bi((@ u. "), (61,0,0))

0162 E I E " E 1 L g2
1-— T - = H ||0 OE + 62 || curlu HO QFE + 62 H divu ||0 QE + 61 CQE - % ﬁllpo ||079E

1 dopt E2 d1€1 P5 P
s (1—2ME+AE)H,@ T ) P
P

Iz . 1 1 1 1 &
+ 41 (1 - (2MP+>\P)> [ diva||§ e + (CQP - 2@) M7P||¢g||g,ﬂp + UP T AP ( 16" 115 or

1/2w,.P 2 o? 14 P2
+ 1(5/€) VD" g, 0r + Ot G FIA)\3 2 27 115,0p-

(2uP + AP 2

Assuming the values €; = e = min{1/Cqr,1/Cqr}, §1 = 1/2¢; and d2 = 1/2, we then have

— c?, C? 1
Bi((&,u,p"),(6,v,¢")) > min{min{ Z"Z f } : Z} (S, w, 7).

And finally, the proof concludes after realising that

_>
(6,0, "2 = (D + 828 1, —u+ 6100, —pP)IZ < 20(F, w, pP)I2. 0
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4.2. Discrete spaces and Galerkin formulation. Let {73 },>0 be a shape-regular family of partitions
of the closed domain 2, conformed by tetrahedra (or triangles in 2D) K of diameter hx, with mesh size h :=
max{hy : K € Tp}. In addition, we assume that the mesh is conforming with the interface. This is achieved,
for example, by generating conforming simplicial meshes for QF and for QF and requiring that they match on X
so that the union of the sub-domain meshes is a triangulation of QF U X U QF. We specify the finite-dimensional
subspaces for displacement, fluid pressure, rotations, and total pressure; as follows

Vi i={v, € COQ) NV :wvp|x € Poy1(K), VK € T}, QF :={q) € C(QP): ¢} |x € Pri1(K), VK € Tp},
WP = {0], c L*(0F): 0} |k € Pp(K)¢, VK € T}, WE:={0} ¢ L2(QF): 0} | € PL(K)?, VK € Tp.},
7y = {yp € L2(QF) : ) |k € Pu(K), VK € T}, ZF = {¢F e L2(QF) : |k € Pr(K), VK € Tp,}.

Define &y, := {wP oF WE pEY € WP x ZP x WE x ZE .= H),. The discrete weak formulation of the rotation
based elasticity is read as: find (3h,uh,p£) € Hy, x Vi, x QF such that

Bi((@n,un, o), (6,0,0%)) = F(v) + G(q), (4.3)

%
for all (6,v,¢") € Hy, x V}, x Q}. For each k > 0, the modified (stablized) discrete weak formulation of the
rotation based elasticity is read as: find (3;“ uh,pg) e H, x Vj, x Ql,j such that

Bi((@nwn o), (6,0, + Y Z— /e[[pEMqE}]Jr 3 Z— /emwwp]]:m)w(q), (4.4)

e€&(Tn)NOQE e€&(Th)NOP

for all (?,qu) eH, x Vi, xQF.

4.3. A posteriori error analysis. Let ©%, U2 and A2 be the elasticity estimator (cf. (2.5)), the poroe-
lasticity estimator (¢f. (3.7)) and the interface estimator (see below), respectively. Then we define

=2 ._ 2 2 2
2= > Ok+ > Ui+ > AL
KeT,NQE KeT,nQP e€&(Th)NE

where R
A? = he(u® + ") MRz F . + heén ™ Rs|l3 .

and
Ry i= {\/iPw) x n+ghn — VuPwl x n—pin}, Ry = (& (Vp} - pg) - n}.
Next we define the global data oscillations term Y as
- Y B+ Y T
KeTnnOQE KeT,nQP
where Y’K and ?K are the local data oscillations for elasticity and poroelasticity, respectively.

4.3.1. Reliability estimate. In this section, we prove the reliability bound for the interface estimator.

THEOREM 4.2 (Reliability for the transmission problem). Let (&, w,p") and (&, wn,pl) be the solutions of
the weak formulations (4.2) and (4.3) (or (4.4)), respectively. Then the following reliability bound holds

(S — Gy —un, pb — Pl < Crat(E + 1),

where Cre) > 0 is a positive constant independent of mesh size and parameters.

Proof. Since (3 - 3;“ u — up, pt — pg) € H x V x QF, then from stability theorem, we have
_>
C(2”|(3 - 3h7u - uhva _plf::)mZ S BI((3 - 3]17“’ - uh7pP - pl;)7 ( 0 , U, qP))7

with III(3, v,¢")Il < C1I(& — G, w — wp, p© — ph)Il. And from the definition of the continuous and discrete
weak forms, it follows that:

Bi((@ — @nu—wnp” —pb), (6,0,4"))
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= —(fP - .flf:;7 v — 'Uh)O,QP - (fE - f%w - ’Uh)(mE - g(’i% V(g — Qh))o,QP + (SP - 357(] - Qh)o,QP

p E v e
—(frn,v— ’Uh)o,QP — (v — Uh)o,QE + (51;»(1 - Qh)o,QP - BI((jh;uhapg)» (0,v— Uhaqp - (IE))
Applying integration by parts, Cauchy-Schwarz inequality and approximation results, yields

Bi((@ — @nw — un,p” — ), (6,0,¢") < CE+ 1), v,¢")lI. 0

4.3.2. Efficiency bound.
LEMMA 4.1. The following estimates are satisfied
O SIS —@nu—un,p” —p)ll+Y, SN —Gnu—wn,p” —pp)ll+ 7.
Proof. The first bound follows from Theorem 3.3, while the second one follows from Theorem 2.3. 0
LEMMA 4.2. There holds:

O hel® + i) RIS (D ()T hac 7 = R o+ )T 0" = Rl + w0 = wF o)
e€s e€X KeP.NQE

D ()il = o + (07) 67 = B lous + llw” — wF llox))-
KeP.NQP

Proof. For each e € £(T,) N'X, we locally define ¢, = (u® + u)~'h.Rgb,. Using (2.9) implies
B+ ) MR S [ R (64 0) e Rsb) = [ R G.
Integration by parts gives
[V~ ") % 0 P G~ VP (E ) x (6 n
= Y[ WiEeurlef W) V0E - gt 3D [ (Vi - o) cunt s 0F -7 ¢)

KeP.NQE KEP.NQE
+ > /(\//Fcurl(wg—wP)+V(¢IZ—¢p)~Ce+ > /(\/;F(wi—wP)-cur145+(¢£—¢P)v-ce).
Kep,naP * K Kep.naP ' K

Recall that f© — \/uP curlw® — VpP = 0|k and f¥ — /uF curl w® — VpP = 0|x. Then, we have

he
M”Rﬂaesmgm/j(((fg—fE)-CeJr\//F/K(wf—w)'CurlCeJr/K(pE—pE)V-C)
+ RY-¢, + RY ¢,
KE%%QE/K ' Ke%;wQP/K '
P fPy. P P _ ). curl P_Pv_>_

Next we can apply Cauchy-Schwarz inequality, leading to
he _ E E
ﬁ”REH%,e S Z (2| £5 — £

H H KeP.nQE
(™) 219 ¢,k + (1) 2R [ llo,x)

+ Y (W) TRl = Frllo + (D) T2 16" = dh o + W = whllo.x) %
KeP.nQP

(") 219 ¢llo,x + ()2 hiH 1€ llo,x)-
And the sought estimate is then a consequence of the bounds
W21 or + (™) 2 hi ok S (W) 2R IC o S R/ (1 + 1) 72| Relose
W) 219 o + (1) 2hi o S (W) 2R IC o S he!2 (1" + 1) 72 Refo.e- 0

0.5 + (1) 2P = pRllo.x + lw® — willo,x) X
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DoFs h ew T eu Tw e eff(©)
E=1,v=025k=0
114 0.3536 2.14e+0 0.00 2.64e+0 0.00 3.40e+0 0.249
418 0.1768 1.1le+0 0.95 1.40e+0 0.92 1.79e+0  0.248
1602 0.0884 5.6le-01 0.99 7.07e-01 0.98 9.02e-01  0.246
6274 0.0442 2.81e-01 1.00 3.54e-01 1.00 4.52e-01  0.245
24834 0.0221 1.40e-01 1.00 1.77e-01 1.00 2.26e-01  0.244
98818 0.0110 7.02e-02 1.00 8.85e-02 1.00 1.13e-01  0.244
E=1,v=025k=1
354 0.3536 5.33e-01 1.63 7.65e-01 1.51 9.32e-01 0.146
1346 0.1768 1.43e-01 1.90 2.09e-01 1.87 2.53e-01  0.151
5250 0.0884 3.67e-02 1.96 5.17e-02 2.02 6.34e-02 0.148
20738 0.0442 9.24e-03 1.99 1.28e-02 2.02 1.58e-02 0.146
82434 0.0221 2.32e-03 2.00 3.18e-03 2.01 3.93e-03  0.146
328706 0.0110 5.79e-04 2.00 7.93e-04 2.00 9.82e-04 0.146
E =105 v=0499, k=0
114 0.3536 6.43e+2 0.00 7.24e+2 0.00 9.68e+2 0.222
418 0.1768 3.19¢+2 1.01 4.02e+2 0.85 5.14e+2  0.247
1602 0.0884 1.6let+2 0.99 2.04e+2 0.98 2.60e+2 0.245
6274 0.0442 8.08e+1 1.00 1.02e+2 1.00 1.30e+2 0.244
24834 0.0221 4.04e+1 1.00 5.1le+1 1.00 6.5le+1 0.244
98818 0.0110 2.02e+1 1.00 2.55e+1 1.00 3.26e+1 0.244
E =105 1v=0499, k=1
354 0.3536 2.37e+2 0.00 4.18e+2 0.00 4.81e+2 0.172
1346 0.1768 4.14e+1 2.52 5.94e+1 2.82 7.24e+1 0.150
5250 0.0884 1.06e+1 1.97 1.49e+1 1.99 1.83e+1 0.148
20738 0.0442 2.67e+0 1.99 3.68e+0 2.02 4.55e+0 0.146
82434 0.0221 6.68e-01 2.00 9.17e-01 2.01 1.13e+0 0.146
328706 0.0110 1.67e-01 2.00 2.29e-01 2.00 2.83e-01 0.145

TABLE 5.1
Ezample 1A: Errors, convergence rates, and effectivity indexes under uniform mesh refinement. Smooth manufactured solutions
for the rotation-based elasticity problem.

LEMMA 4.3. The following bound holds

1/2
S AT SE - @hu— wnp” - pI+ T,

ec&(Th)NX

Proof. 1t follows straightforwardly from Lemma 3.6. O

THEOREM 4.3 (Efficiency estimate). Let (&, u,p?) and (D)h,uh,pl,j) be the solutions to (4.2) and (4.3) (or
(4.4)), respectively. Then, the following reliability bound holds

E < Cort(I(F — G hyuw —wn, p© — ph)ll + ),

where Cog > 0 is a constant independent of h and of the sensible model parameters.

Proof. The bound results from combining Lemmas 4.1-4.3. a

5. Computational examples. The accuracy of the three finite element discretisations and the robustness
of the corresponding a posteriori error estimators will be demonstrated in this section. As usual, such robustness
is quantified in terms of the effectivity index of a given computable indicator ® € {©, ¥, =}, i.e., the ratio between
the total actual error and the estimated error

eff(®) = (e, +ef +...)"/? /Py,

and eff is expected to remain constant independently of the number of degrees of freedom associated with each
mesh refinement. The direct solver UMFPACK is used for all linear systems, and the algorithms are implemented
in the FEniCS library [2], using multiphenics [7] for the handling of subdomains and incorporation of restricted
finite element spaces.

We start with a simple case of manufactured polynomial solutions on 2 = (0, 1)? where both displacement and
fluid pressure vanish on 0f2

7 sin? (7x) sin(my) c032(7ry) + p(z,y)/2A ) .

ply) =ay(l —z)(a—y), u(r,y)= (—77 sin(mx) cos(my) sin”(my) + p(x,y)/2\
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DoFs h eg rg eu T ep Tp e eff ()
E=1,v=025,k=1,k=0
139 0.3536 2.14e+0 - 2.64e+0 — 5.51e-02 — 3.40e+0 0.249

499 0.1768 1.11e+0 0.95 1.40e+0 0.92 2.91e-02 0.92 1.79e+0 0.248
1891 0.0884 b5.61e-01 0.99 7.07e-01 0.98 1.50e-02 0.96 9.02e-01  0.246
7363 0.0442 2.81e-01 1.00 3.54e-01 1.00 7.57e-03 0.98 4.52e-01 0.245
29059 0.0221 1.40e-01 1.00 1.77e-01 1.00 3.80e-03 0.99 2.26e-01  0.244
115459 0.0110 7.02e-02 1.00 8.85e-02 1.00 1.90e-03 1.00 1.13e-01  0.244
E=1,v=025rk=1k=1
435 0.3536 5.33e-01 — 7.65e-01 — 7.19e-03 — 9.32¢-01 0.146
1635 0.1768 1.43e-01 1.90 2.09e-01 1.87 1.96e-03 1.88 2.53e-01  0.151
6339 0.0884 3.67e-02 1.96 5.17e-02 2.02 5.11e-04 1.94 6.34e-02 0.148
24963 0.0442 9.24e-03 1.99 1.28e-02 2.02 1.30e-04 1.97 1.58e-02 0.146
99075 0.0221 2.32e-03 2.00 3.18e-03 2.01 3.29¢-05 1.99 3.93e-03  0.146
394755 0.0110 5.79e-04 2.00 7.93e-04 2.00 8.26e-06 1.99 9.82e-04 0.146
E=10%0v=0499, k=1, k=0
139 0.3536 6.43e+2 — 7.24e+2 — 5.10e-02 -~ 9.68e+2 0.222
499 0.1768 3.19e+2 1.01 4.02¢+2 0.85 2.85e-02 0.84 5.14e42  0.247
1891 0.0884 1.6let+2 0.99 2.04e+2 0.98 1.49¢-02 0.94 2.60e+2 0.245
7363 0.0442 8.08e+1 1.00 1.02e+2 1.00 7.55¢-03 0.98 1.30e+2  0.244
29059 0.0221 4.04e+1 1.00 5.1le+1 1.00 3.80e-03 0.99 6.5le+1  0.244
115459 0.0110 2.02e+1 1.00 2.55e+1 1.00 1.90e-03 1.00 3.26e+1 0.244
E=10%v=0499, k=1, k=1
435 0.3536 2.37e+2 — 4.18e+2 — 7.16e-03 — 4.8let2 0.172
1635 0.1768 4.14et+1 2.52 5.94e+1 2.82 1.96e-03 1.87 7.24e+1  0.150
6339 0.0884 1.06e+1 1.97 1.49e+1 1.99 5.11e-04 1.94 1.83e+1 0.148
24963 0.0442 2.67e+0 1.99 3.68e+0 2.02 1.30e-04 1.97 4.55e+0 0.146
99075 0.0221 6.68e-01 2.00 9.17e-01 2.01 3.29¢-05 1.99 1.13e+0 0.146
394755 0.0110 1.67e-01 2.00 2.29e-01 2.00 8.26e-06 1.99 2.83e-01  0.145
E=10%v=0499, k =10"12 k=0
139 0.3536 6.43e+2 — 7.24e+2 — 1.81e-03 — 9.68e+2 0.222
499 0.1768 3.19e+2 1.01 4.02¢+2 0.85 4.62e-04 1.97 5.14et+2  0.247
1891 0.0884 1.6le+2 0.99 2.04e+2 0.98 1.18¢-04 1.96 2.60e+2  0.245
7363 0.0442 8.08e+1 1.00 1.02e+2 1.00 3.02e-05 1.97 1.30e+2 0.244
29059 0.0221 4.04e+1 1.00 5.1le+1 1.00 7.72e-06 1.97 6.5le+1  0.244
115459 0.0110 2.02e+1 1.00 2.55e+1 1.00 2.00e-06 1.95 3.26e+1 0.244
E=10%v=0499, k =10"12, k=1
435 0.3536 2.37e+2 - 4.18¢+2 - 9.97e-04 - 4.8let2 0.172
1635 0.1768 4.14e+1 2.52 5.94e+1 2.82 3.60e-05 4.79 7.24e+1  0.150
6339 0.0884 1.06e+1 1.97 1.49e+1 1.99 5.40e-06 2.74 1.83e+1 0.148
24963 0.0442 2.67e+0 1.99 3.68e+0 2.02 1.15e-06 2.23 4.55e+0 0.146
99075 0.0221 6.68e-01 2.00 9.17e-01 2.01 2.73e-07 2.08 1.13e+0 0.146
394755 0.0110 1.67e-01 2.00 2.29e-01 2.00 6.69e-08 2.03 2.83e-01  0.145

TABLE 5.2
Ezample 1B: Errors (combining rotation and total pressure into &), convergence rates, and effectivity indexes under uniform
mesh refinement. Smooth manufactured solutions for the rotation-based Biot problem.

To ensure the zero boundary condition for displacement, we choose ¢ = 1. In the interface problem, we choose
a = 0.5 for fluid pressure. Unless specified otherwise, all parameters (except the Poisson ratio) are taken equal to
1. For the transmission problem the interface is the horizontal segment located on y = %, and the porous domain
is below the interface. A sequence of successively refined uniform meshes is constructed and exact and estimated
errors between these closed-form solutions and the finite element approximations (in this case focusing on the
first and second-order schemes, with £ = 0 and k = 1) are computed. The results are collected in Tables 5.1, 5.2,
5.3, where the convergence rates are computed as

r(y = log(e() /&) log(h/h)] ", (5.1)

where e, € denote errors generated on two consecutive meshes of size h and h.

The expected O(h**1) convergence is observed for all fields in their respective norms, accordingly to the theory
from [4, 3], and the effectivity index is close to constant for all mesh refinements. This same behaviour is seen
even when the elastic or the poroelastic material is nearly incompressible (setting F = 10°, v = 0.499) and when
the poroelastic material it is nearly impermeable (setting x = 10712), and we also note that the effectivity index
is slightly modified, but it is still constant and not affected by the different parameter scaling, again confirming
the robustness of the estimators. The variation in efficiency is natural as our analysis only focuses on h-adaptivity
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DoFs e p r, P eyP r4p e,p r,p ew Twu e, E T E epE TyE e eff(E2)
FE=FEP =1 18 =025 1=025,k=1,k=0
139 1.5258 0.1982 - 3.28e-02 0.00 2.6433 — 1.48e+0 1.86e-01 3.4036  0.281

499 0.7902 0.95 0.0833 1.25 1.33e-02 1.30 1.3992 0.92 7.73e-01 0.94 8.41e-02 1.14 1.7870 0.294
1891 0.3984 0.99 0.0365 1.19 6.37e-03 1.07 0.7071 0.98 3.91e-01 0.98 3.82¢-02 1.14 0.9023 0.298
7363 0.1995 1.00 0.0170 1.10 3.20e-03 0.99 0.3541 1.00 1.96e-01 1.00 1.77e-02 1.11 0.4519 0.298
29059 0.0998 1.00 0.0082 1.05 1.60e-03 1.00 0.1771 1.00 9.80e-02 1.00 8.48e¢-03 1.07 0.2260 0.298
115459 0.0499 1.00 0.0040 1.02 8.0le-04 1.00 0.0885 1.00 4.90e-02 1.00 4.15e-03 1.03 0.1130 0.298
EE=FEP =1, =025 =025, k=1,k=1
435 0.3750 —  0.0334 — 3.90e-03 - 0.7644 — 3.75e-01 - 3.62¢-02 — 0.9317 0.151
1635 0.1009 1.89 0.0073 2.20 1.08e-03 1.86 0.2092 1.87 1.01e-01 1.90 7.92¢-03 2.19 0.2534 0.154
6339 0.0259 1.96 0.0018 2.05 2.83e-04 1.93 0.0517 2.02 2.58e-02 1.96 1.90e-03 2.06 0.0634 0.150
24963 0.0065 1.99 0.0004 2.02 7.25¢-05 1.96 0.0128 2.02 6.51e-03 1.99 4.68e-04 2.02 0.0158 0.148
99075 0.0016 2.00 0.0001 2.01 1.83e-05 1.98 0.0032 2.01 1.63e-03 2.00 1.16e-04 2.01 0.0039 0.148
394755 0.0004 2.00 2.48e-05 2.01 4.62e-06 1.99 0.0008 2.00 4.08e-04 2.00 2.90e-05 2.00 0.0010 0.147
E® =10° EP =105, v =0.499, v¥ =0.499, k =1, k=0
139 450.02 —  66.730 — 2.14e-02 - 723.84 — 4.50e+2 — 6.67e+1 — 968.45 0.241
499 225.32 1.00 13.844 2.27 1.19e-02 0.85 402.24 0.85 2.25e+2 1.00 1.38e+1 2.27 513.55 0.293
1891 113.83 0.99 6.1821 1.16 6.24e-03 0.93 203.74 0.98 1.14e+2 0.99 6.18e+0 1.16 259.81 0.296
7363 57.065 1.00 2.8910 1.10 3.18e-03 0.97 102.12 1.00 5.7le+1 1.00 2.89e+0 1.10 130.22 0.297
29059 28.551 1.00 1.4069 1.04 1.60e-03 0.99 51.085 1.00 2.86e+1 1.00 1.4le+0 1.04 65.145 0.297
115459 14.277 1.00 0.6965 1.01 8.0le-04 1.00 25.543 1.00 1.43e+1 1.00 6.97e-01 1.01 32.575 0.297
EP =10°%, EP =10°, v® =0.499, v =0.499, k=1, k=1
435 14337 —  87.195 — 3.85e-03 - 41847 — 1.43e+2 - 872+l - 481.08 0.175
1635 29.208 2.30 2.0812 5.39 1.07e-03 1.84 59.380 2.82 2.92e+1 2.30 2.08e+0 5.39 72.394 0.153
6339 7.4723 1.97 0.3699 2.49 2.83e-04 1.93 14.911 1.99 7.47e+0 1.97 3.70e-01 2.49 18.283 0.150
24963 1.8825 1.99 0.0907 2.03 7.25e-05 1.96 3.6848 2.02 1.88e+0 1.99 9.07e-02 2.03 4.5477 0.148
99075 0.4716 2.00 0.0224 2.02 1.83e-05 1.98 0.9172 2.01 4.72e-01 2.00 2.24e-02 2.02 1.1345 0.148
394755 0.1180 2.00 0.0056 2.01 4.62e-06 1.99 0.2290 2.00 1.18e-01 2.00 5.57e-03 2.01 0.2834 0.147
E® =105, E¥ =10%, vF =0.499, v¥ = 0.499, k = 10712, k =0
139 450.02 -  66.730 — 8.47e-04 — 72384 — 4.50e+2 — 6.67e+1 — 968.45 0.241
499 22532 1.00 13.844 2.27 2.15e-04 1.98 402.24 0.85 2.25e+2 1.00 1.38e+1 2.27 513.55 0.293
1891 113.83 0.99 6.1821 1.16 5.59e-05 1.94 203.74 0.98 1.14e+2 0.99 6.18e+0 1.16 259.81 0.296
7363 57.065 1.00 2.8910 1.10 1.45¢-05 1.95 102.12 1.00 5.7le+1 1.00 2.89¢+0 1.10 130.22 0.297
29059 28.551 1.00 1.4069 1.04 3.79e-06 1.93 51.085 1.00 2.86e+1 1.00 1.4le+0 1.04 65.145 0.297
115459 14.277 1.00 0.6965 1.01 1.02e-06 1.90 25.543 1.00 1.43e+1 1.00 6.97e-01 1.01 32.575 0.297
E¥ =10°, EP =105, v® =0.499, v =0.499, k = 10712, k=1
435 14337 —  87.195 — 6.56e-04 — 41847 — 1.43e+2 — 872+1 — 481.08 0.175
1635 29.208 2.30 2.0812 5.39 2.18¢-05 4.91 59.380 2.82 2.92e+1 2.30 2.08¢+0 5.39 72.394 0.153
6339 7.4723 1.97 0.3699 2.49 3.41e-06 2.68 14.911 1.99 7.47e+0 1.97 3.70e-01 2.49 18.283 0.150
24963 1.8825 1.99 0.0907 2.03 7.81e-07 2.12 3.6848 2.02 1.88e+0 1.99 9.07e-02 2.03 4.5477 0.148
99075 0.4716 2.00 0.0224 2.02 1.90e-07 2.04 0.9172 2.01 4.72e-01 2.00 2.24e-02 2.02 1.1345 0.148
394755 0.1180 2.00 0.0056 2.01 4.71e-08 2.01 0.2290 2.00 1.18e-01 2.00 5.57e-03 2.01 0.2834 0.147

TABLE 5.3
Example 1C: Errors, convergence rates, and effectivity indexes under uniform mesh refinement. Smooth manufactured solutions
for the rotation-based interfacial elasticity/poroelasticity problem with k =0, 1.

based a posteriori error estimation (and an extension to hp-adaptivity based a posteriori error estimators might
help to overcome such a variation).

For the second and third examples, we employ adaptive mesh refinement consisting in the usual steps of solving,
then computing the local and global estimators, marking, refining, and smoothing. The marking of elements for
refinement follows the classical Dorfler approach [11]: a given K € Ty, is marked (added to the marking set
My, C T) whenever the local error indicator @y satisfies 3 vy, P2 > (X keT, 2., where 0 < ( < 1is a
user-defined parameter (meaning that one refines elements that contribute to a proportion ¢ of the total squared
error). Elements in M), are then refined (their diameter is halved) and an additional smoothing step is applied
before starting a new iteration of the algorithm. When computing convergence rates under uniform refinement,
we use the following modification to (5.1):

r(y = —2log(e.)/&()[log(DoF /DoF)] ~*.

The second example investigates again the accuracy of the three numerical methods but this time we use the
L-shaped domain = (—1,1)%\ (0,1)? and the transmission problem has the interface defined as the segment
going from the reentrant corner (0,0) to the bottom-left corner of the domain (-1, —1), and the porous domain
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Fic. 5.1. Ezample 2. Adaptively refined meshes (top) and approzimate solutions (bottom) for the Biot/elasticity problem.

DoFs e,P r p eyP ryp e,p r p ew T e E T E epE I,E e eff(E)
With uniform mesh refinement
157 8.56e-01 — 7.86e+0 — 1.36e+0 — 1.6le+0 — 9.86e-01 — 2.35e+0 — 8.246 0.071

575 3.80e-01 1.17 3.05e+0 1.37 3.64e-01 1.90 7.07e-01 1.19 4.15e-01 1.25 1.16e+0 1.02 4.199 0.151
2203 2.22e-01 0.77 1.74e+0 0.81 1.77e-01 1.05 3.92e-01 0.85 2.22e-01 0.90 6.19e-01 0.91 1.823 0.087
8627 7.72e-02 1.52 4.39e-01 1.99 4.10e-02 2.11 1.14e-01 1.78 5.98e-02 1.89 1.54e-01 2.01 0.765 0.091

34147 2.66e-02 1.54 1.09e-01 2.01 1.09e-02 1.92 3.45e-02 1.72 1.58e-02 1.92 4.10e-02 1.91 0.319 0.034
135875 1.97e-02 0.44 3.79e-02 1.53 3.64e-03 1.58 2.16e-02 0.68 7.28e-03 1.12 1.37e-02 1.58 0.248 0.152
With adaptive mesh refinement

157 8.57e-01 - 7.86e+0 — 1.36e+0 — 1.62e+0 — 9.87e-01 0.00 2.36e+0 — 8.239 0.081

551 3.79e-01 1.30 3.05e+0 1.51 3.65e-01 2.10 7.07e-01 1.32 4.17e-01 1.37 1.16e+0 1.13 3.201 0.081
1020 2.21e-01 1.75 1.74e+0 1.82 1.77e-01 2.36 3.91e-01 1.92 2.22e-01 2.04 6.18e-01 2.05 1.822 0.087
2307 7.36e-02 2.69 4.38¢-01 3.38 4.20e-02 3.52 1.11e-01 3.09 5.90e-02 3.25 1.53e-01 3.43 0.463 0.091
5779 1.81e-02 3.06 1.06e-01 3.10 1.21e-02 2.71 2.74e-02 3.04 1.45e-02 3.06 3.96e-02 2.94 0.112 0.089

20209 4.59e-03 2.19 2.67e-02 2.20 3.21e-03 2.12 6.94e-03 2.19 3.63e-03 2.21 1.02¢-02 2.18 0.028 0.089
70299 1.15e-03 2.22 6.69e-03 2.22 1.23e-03 1.54 1.74e-03 2.22 9.07e-04 2.22 2.56e-03 2.21 0.007 0.090

TABLE 5.4
Exzample 2: Errors, convergence rates, and effectivity indexes under uniform vs adaptive mesh refinement for the rotation-based
interfacial elasticity/poroelasticity problem on the L-shaped domain, with k = 1.

is the one above the interface. In addition to the singularity of the geometry, we use manufactured solutions with
sharp gradients near the reentrant corner

PPz, y) = exp(—25(a® + 9%),  w(z,y) = (exp(—50(z? + y?)), exp(—50(z* + ?)))".

It is expected that the convergence of the methods is hindered due to the lack of regularity of the exact solutions
whenever one follows a uniform mesh refinement. Such a slower error decay is clearly observed in the top half
of Table 5.4, while adaptive mesh refinement (with a Dorfler constant of ¢ = 0.001) yields asymptotic optimal
convergence evidenced on the bottom half of the table, where also one reaches much smaller errors using a fraction
of the degrees of freedom needed in the uniform case. Here we focus on the methods with & = 1, and samples
of adaptively refine meshes and approximate solutions are portrayed in Figure 5.1. In this case we have used the
following contrast of parameters between the subdomains ¢g = 0, a = 1, E¥ =10, E¥ =1, v® = 0.25, v¥ = 0.45,
E=1,k=10"3

The last test illustrates the use of mesh adaptivity guided by the a posteriori error estimator = on an interface
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FiG. 5.2. Ezample 3. Approzimate elastic rotation on a horizontally clipped elastic geometry (top), displacement on a diagonally
clipped domain (centre), and fluid pressure on a zoomed poroelastic domain (bottom); for three steps of adaptive refinement for the
Biot/elasticity application in fractured reservoirs.

elasticity /poroelasticity problem applied to oil reservoir poromechanics, similarly to the test in [15, Sect. 8.2] (see
also [17, 3]). In CO4 sequestration in deep subsurface reservoirs one is interested in the distribution of pressure
and displacement across the interface between the non-pay rock and the aquifer zones in the case where the
poroelastic domain is an array of thin-walled structures fully surrounded by an elastic region. The multi-domain
is the unit cube Q = (0,1)® m? and the aquifer array has a width of 0.015m. A well is represented by a localised
source st (x,y, z) = sp exp(—1000[(z — 0.5)2 + (y — 0.5)2 + (2 — 0.5)2]). This is an injection zone of relatively small
radius reaching the centre of the pay zone at (0.5,0.5,0.5). On the surface of the non-pay rock we impose the
sliding condition u - n = 0. The interfacial conditions are as in (4.1i). The simulation uses the following values
for the model parameters so = 0.5, ¢ = 1073, a = 0.75, E¥ =5.10%, EF =103, v® = 0.3, v = 0.45, £ = 1073,
k=10"",g = (0,0,-9.81)*.

Initial coarse meshes are constructed for both subdomains, then we solve the coupled transmission problem,
and then apply six steps of the iterative mesh refinement strategy based on the estimator =. To observe how the
adaptivity takes place on both elastic and poroelastic domains, we plot in Figure 5.2, samples of the approximate
solutions on the first three steps of adaptive mesh refinement. The concentration of amount of fluid near the
centre of the pay zone is seen in the first row, and we can also see the concentration of refinement near the
interface in all panels.
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Appendix A. Well-posedness analysis for rotation-based poroelasticity. The bilinear forms and the
linear functionals appearing in the variational problem (¢f. Section 3) of interest are all bounded by constants
independent of P and AP [3, 4]. In addition, we have the following result.

LEMMA A.l. Let (&, u,p) € HxV xQ, where & = (w, ¢), be a solution of the system (3.3a)-(3.3c), then there
exists a constant C' > 0, such that

0.0+ 1(5/6)pgllo.c + pi2(Is" o0}, (A1)

(e, w, ¢, Il < C{ (7)) /2| 7

, -1
where p; = min ((co + Wg‘ﬁp)) a(“/g)_1>~

Proof. Using Theorem 3.1 implies

Coll(u, w, ¢, p)lI> < Bp((u,w,¢,p), (v,0,1,q)) = F(v) + G(q),
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with [[(v,8,%, )l < Cill(w,w, d,p)ll, where C; and Cs are constants given in Theorem 3.1. And (A.1) results
from applying Cauchy-Schwarz inequality. ]

A.1. Solvability of the continuous problem. Let us rewrite (3.3a)-(3.3¢) as: find 4 := (&, u,p) € X :=
H x V x Q such that (S + 7)d = F, where the linear operators § : X — X*, 7 : X — X*, and F € X* are
defined as

(S(id), B) : = (3, 6) + bi(8,u) — b1 (&3, v) + ¢(p, q),
(T(i),8) : = —bs(6,p) — ba(&,q),  (F,¥) = —F(v) - Glg),
for all 4 := (W, u,p), ¥ := (5, v,q) € X, where (-,-) is the duality pairing between X and its dual X*.
LEMMA A.2. The operator S : X — X* is invertible.

Proof. First, for a given functional F := (Fgu, Fv, Fq), observe that establishing the invertibility of S is
equivalent to proving the unique solvability of the operator problem

S(ii) = F. (A.2)

Furthermore, proving unique solvability of (A.2) is in turn equivalent to proving the unique solvability of the two
following uncoupled problems: find (J,u) € H x V such that

a(@,8) + b1 (0, u) = Fg(f) V6 ecH, (A.3)
b1(&,v) = Fy(v) YveV, '

and: find p € Q, such that

c(p,q) = Fqolg) Vqe€Q, (A4)

where Fyi, Fyv, and F are the functionals induced by Fg, Fv, and Fq, respectively. The unique solvability of
(A.4) follows by virtue of the Lax-Milgram lemma, and the well-posedness of (A.3) follows from a straightforward
application of the Babuska-Brezzi theory. O

LEMMA A.3. The operator T : X — X* is compact.
Proof. We begin by defining the operator B : L2(2) — Q as

B gon =a@d + 3 [ qu Yee Qe LX),
Q
This operator is the composition of a compact injection and a continuous map and it is therefore compact. And

denoting by B* the adjoint of B, we infer that the following map is also compact

T(ﬁ) = ((07 _B(¢)v 0, O)? 0, —B*(p)). 0

LEMMA A 4. The operator (S+T) : X — X* is injective.
Proof. 1t is sufficient to show that the only solution to the homogeneous problem
a(@,0) + b1 (0,u) —by(6,p)= 0 V6 eH,
b1 (@B,v) =0 Vv eV,
by(W,q) —clp.g) = 0 VqeQ,
is the null-vector in X. Thus, from Lemma A.1, and the fact that F =G =0, wehaveu =0, =0,p=0. 0O

By virtue of Lemmas A.1, A.2, A.3, and A.4, and the abstract Fredholm alternative theorem, one straightfor-
wardly derives the main result of this section, stated in the upcoming theorem.

THEOREM A.1. There exists a unique solution (J,u,p) € H X V x Q, where & = (w, ), to (3.3a)-(3.3c).
Furthermore, there exists a positive constant C > 0, such that

|H(u,w,¢,p)||| < C{(NP)_l/QHfPHo,Q + H(H/f)l/QPQHO,Q + Pi/QHSPHo,Q},

-1
where p; = min ((CO + ﬁ) ,(H/€)1>,
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Appendix B. A priori error analysis for rotation-based poroelasticity. Denoting Wy, x Z;, := Hp,
a Galerkin scheme for (3.3a)-(3.3¢) is: find (&Dp, upn,prn) := (Wh, én), wr, o) € Hy x Vi, X Qp, such that

a(@n, 0n) + b1 (01, un) — ba(61,pr) = 0 V6, == (61, ¢n) € Hy, (B.1)
b1(&n,vn) = F(vp) Vv, € Vi, (B.2)
b3(&n, qn) — c(pn, an) = G(qn) Van € Qn. (B.3)

B.1. Stability of the discrete problem. All bilinear forms and functionals introduced in Section 3 pre-
serve stability on the discrete spaces. Also, a(:,-), and ¢(-,-) maintain coercivity on Hj;, and Q, respectively.
Such stability properties permit us to establish the well-posedness of (B.1)-(B.3).

THEOREM B.1. There exists a unique solution (&p,up,pp) € Hy X Vi X Qp, where &y, = (wp, ¢p,), to (B.1)-
(B.3). Furthermore, there exists a positive constant Csiar, > 0, independent of h, ut, A\¥, such that

lwns @n, b o)l < CLEE) Y21 oo + 11(5/€) 2 0gllo.0 + p1"* 1157 0.0}

where p1 = min((CO + ﬁ)_ly (“/f)_l)-

Proof. Tt follows as in the proof of Lemmas A.1 and A .4. ]

B.2. A priori error bounds. Approximation properties of the spaces in (3.4) (see, e.g., [L0]) produce the
following theoretical rate of convergence:

(w80 -3.6-dp-p) < CHERD ol g+ ViFfulsro + polblloc + pplpllerie).

2

where pg = \/1/uP + \/1/(2uF + AP, p, = max((co + mtmzey) /2 (k/€)Y/?), and C > 0.

THEOREM B.2. In addition to the hypotheses of Theorems A.1 and B.1, assume that there exists s > 0 such
that w € H*(Q), u € H'T*(Q), ¢ € H¥(Q), p € HT*(Q). Then, there exists Ceony > 0, independent of h and AT,
such that with the discrete spaces (3.4), there holds

l(w =, 0 = @i é = dnp = pu)l| < Coony R (|wlls.0 + Vil [ulls1,0 + poldlls.e + ppllpllsr.0)-
Proof. Using triangle inequality we can split the error into two parts
“|(u_uh7w _wh7¢_ (bhap_ph)l” < H|(’U1—’l~l/,w _&agb_ éap_ﬁ)"‘ + M(ﬁ_ ’LLh,L:J _wh>(5_ ¢h7ﬁ_ph)“| .

Then we can estimate the first term thanks to approximation results. To estimate the second term, we use the
stability result given in Theorem 3.1, then

Cl H|('& - ’U,}“(:J - wh7q~5_ ¢haﬁ_ph)"‘2 S BP(,&’ - Uh,(:) - whaqg_ ¢h7ﬁ_ph)7 (v767¢7Q))
S BP(fl‘_u;‘:’ _waé_ ¢7}5—P)7(’Ua97¢7@)»

with [|(v, 0%, 9)|| < Cs || (@ — wn, @ — wn, & — én. 5 — pn)

|. We can then invoke the continuity results to get

C1 m(ft—uh,@ —wp, ¢ — ¢h>15_ph)|H <G m(ﬁ— U, —w, ) — ¢a]5—]9)“|- o
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