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Abstract

For time-dependent problems with high-contrast multiscale coeffi-
cients, the time step size for explicit methods is affected by the mag-
nitude of the coefficient parameter. With a suitable construction of
multiscale space, one can achieve a stable temporal splitting scheme
where the time step size is independent of the contrast [16]. Con-
sider the parabolic equation with heterogeneous diffusion parameter,
the flow rates vary significantly in different regions due to the high-
contrast features of the diffusivity. In this work, we aim to introduce a
multirate partially explicit splitting scheme to achieve efficient simula-
tion with the desired accuracy. We first design multiscale subspaces to
handle flow with different speeds. For the fast flow, we obtain a low-
dimensional subspace for the high-diffusive component and adopt an
implicit time discretization scheme. The other multiscale subspace will
take care of the slow flow, and the corresponding degrees of freedom
are treated explicitly. Then a multirate time stepping is introduced
for the two parts. The stability of the multirate methods is analyzed
for the partially explicit scheme. Moreover, we derive local error es-
timators corresponding to the two components of the solutions and
provide an upper bound of the errors. An adaptive local temporal re-
finement framework is then proposed to achieve higher computational
efficiency. Several numerical tests are presented to demonstrate the
performance of the proposed method.

1 Introduction

Modeling of flow and transport in complicated porous media in various phys-
ical and engineering applications encounters problems with multiscale fea-
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tures. In particular, the properties of the underlying media, such as thermal
diffusivity or hydraulic conductivity, have values across different magnitudes.
This poses challenges in the numerical simulation since the high contrast fea-
ture of the heterogeneous media introduces stiffness for the system. In terms
of temporal discretization, the time-stepping depending on the magnitude
of the multiscale coefficient is needed for explicit schemes. For the spa-
tial discretization, multiscale methods including multiscale Finite Element
Methods[26, 24], variational multiscale method [37], heterogeneous multiscale
methods[23], localized orthogonal decomposition [40, 35, 34], Gamblets[44]
and many others are introduced to handle the issue. The multiscale model re-
duction methods include both local [26, 2, 1, 5, 25] and global [36, 11, 7, 10, 8]
approaches to reduce computational expenses. The idea is to construct re-
duced order models to approximate the full fine-scale model and achieve
efficient computation. Among these methodologies, the family of generalized
multiscale finite element methods (GMsFEM) [24, 14, 17, 18] are proposed
to effectively address multiscale problems with high-contrast parameters. It
first formulates some local problems on coarse grid regions to get snapshot
bases that can capture the heterogeneous properties, and then designs appro-
priate spectral problems to get important modes in the snapshot space. The
GMsFEM approach shares some similarities with multi-continuum methods.
The basis functions can recognize the high-contrast features such as channels
that need to be represented individually. The convergence of the GMsFEM
depends on the eigenvalue decay, and the small eigenvalues correspond to the
high permeable channels.

To construct multiscale method such that the convergence is independent
of the contrast and linearly decreases with respect to mesh size under suitable
assumptions, the constraint energy minimizing GMsFEM (CEM-GMsFEM)
was initiated[15, 12]. This approach begins with a suitable choice of auxiliary
space, where some local spectral problems in coarse blocks are solved. The
auxiliary space includes the minimal number of basis functions to identify
the essential information of the channelized media. Then it will be used to
compute the solutions of constraint energy minimizing problem in some over-
sampling coarse regions to handle the non-decaying property. The resulting
localized solutions form the multiscale space.

To adapt the CEM-GMsFEM for flow-based upscaling, the nonlocal mul-
ticontinuum upscaling method (NLMC) [13] is proposed by modifying the
above framework. The idea is to use simplified auxiliary space by assum-
ing that each separate fracture network within a coarse grid block is known.
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The auxiliary bases are piecewise constants corresponding to fracture net-
works and matrix, which are called continua. Then the local problems are
formulated for each continuum by minimizing the local energy subject to
appropriate constraints. This construction returns localized basis functions
which can automatically identify each continuum. Further, due to the prop-
erty of the NLMC basis, this approach will provide non-local transmissibili-
ties which describe the transfer among coarse blocks in an oversampled region
and among different continua.

Consider the time-dependent problem with high-contrast coefficients, there
have been various approaches to handle multiscale stiff systems [3, 6, 27, 30,
39, 45]. Recently, a temporal splitting method is combined with the spa-
tial multiscale method [16] to produce a contrast-independent partially ex-
plicit time discretization scheme. It splits the solution of the problem into
two subspaces which can be computed using implicit and explicit methods,
instead of splitting the operator of the equation directly based on physics
[48, 49, 51, 38, 41]. The multiscale subspaces are carefully constructed. The
dominant basis functions stem from CEM-GMsFEM which have very few
degrees of freedom and are treated implicitly. The additional space as a
complement will be treated explicitly. It was shown that with the designed
spaces, the proposed implicit-explicit scheme is unconditionally stable in the
sense that the time step size is independent of the contrast. Following a
similar idea in [16], in this work, we will propose a multirate time-stepping
method for the multiscale flow problem.

Multirate time integration method has been studied extensively in the
past decades. Based on different splittings of the target equation, multiple
time stepping is utilized in different parts of the system according to compu-
tational cost or complexity of the physics. By partitioning the state variables
into fast/active and slow/latent components, the multirate scheme with auto-
matic step-size was introduced for linear multistep methods in [31], and some
self-adjusting multirate time stepping strategy was studied for stiff ODEs was
discussed in [46]. To handle the coupling between active and latent compo-
nents and improve stability, schemes based on Runge–Kutta methods [31, 33]
and Rosenbrock-Wanner methods [32] were proposed. In these approaches,
the partition of the system is done in advance before performing a macro-
step. To realize dynamic partitioning, multirate extrapolation methods were
investigated [28]. Besides many applications, the multirate schemes were also
favored in the simulation of PDEs including hyperbolic conservation laws and
parabolic problems [19, 21, 42, 43]. The solutions of the parabolic equations
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may have some localized properties in space and time due to geometric fea-
tures of the domain and boundaries, or the effects of the source term, thus
adaptive time refinement schemes combined with local adaptivity in space
are attractive approaches [22, 29, 47, 50]. In these works, some nested or
composite grids were usually utilized. The difficulties that arise at the inter-
face between local regions were treated carefully, and the time discretization
was implicit or locally implicit. There are many other multirate approaches
to improve efficiency when solving multiscale parabolic problems [4, 9, 20].
In this work, we split the solution of the parabolic equation into fast and slow
components based on multiscale space construction and employ a partially
explicit scheme to solve the splitting system with adaptive multirate time
stepping.

One key of our approach is to integrate the multirate approach with
multiscale space construction. Due to the high contrast property of the co-
efficients, the solutions pass through different regions of the porous medium
with different speeds in the flow problem. Different from the previous ap-
proach [16], where the multiscale basis functions are formulated for dominant
features (the first space) and complementary information (the second space),
we propose to design multiscale spaces in different regions to handle the fast
(the first space) and slow (the second space) components of the flow sepa-
rately. We remark that, in the previous approach, the problem can still be
solved with the basis in the first space only, and the second space provides
additional information to reduce the approximation error. However, in our
approach, bases from both the first space and the second space are required
to solve the problem. We use the simplified auxiliary space containing piece-
wise constant functions as in the NLMC framework. We only keep the basis
representing the high-diffusive region in the first space and adopt an implicit
time discretization scheme. The second space consists of bases representing
the remaining region, it will take care of the slow flow and the corresponding
degrees of freedom are solved explicitly. Next, we introduce a multirate ap-
proach where different time step sizes are employed in the partially explicit
splitting scheme, such that different parts of the solution are sought with
time steps in line with the dynamics. We start with a coarse step size for
both equations and refine local coarse time blocks based on some error esti-
mators. With a finer discretization, the accuracy of the approximation can
be improved. We analyze the stability of the multirate methods for all four
cases when we use coarse or fine time step size alternatively for the implicit
and explicit parts of the splitting scheme. It shows that the scheme is stable
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as long as the coarse time step size satisfies some suitable conditions inde-
pendent of the contrast. Moreover, we propose an adaptive algorithm for the
splitting scheme by deriving error estimators based on the residuals. The
two error estimators corresponding to the two components of the solutions
can provide an upper bound of the errors. Compared with uniform refine-
ment, an adaptive refining algorithm can enhance the efficiency significantly.
Several numerical examples are presented to demonstrate the effectiveness of
the proposed adaptive method.

The paper is organized as follows. In Section 2, we describe the problem
setup and the partially explicit scheme. The construction of the multiscale
spaces is discussed in Section 3. In Section 4, the multirate method is pre-
sented, the subsection 4.1 is devoted to the stability analysis and the subsec-
tions 4.2-4.3 present the adaptive algorithm. Numerical tests are shown in
Section 5. A conclusion is drawn in Section 6.

2 Problem Setup

Consider the parabolic equation

du

dt
−∇ · (κ∇u) = f on Ω× (0, T ]

u = 0 on ∂Ω× (0, T ]

u = u0 on ∂Ω× {0}

where κ ∈ L∞(Ω) is a heterogeneous coefficient with high contrast, that is,
the value of the conductivity/permeability in different regions of κ can differ
in magnitudes.

The weak form of the problem is to seek u(t, ·) ∈ V = H1
0 (Ω) such that

(
∂u

∂t
, v) + a(u, v) = (f, v), ∀v ∈ V, t ∈ (0, T ]

u(0, ·) = u0

where a(u, v) =

ˆ
Ω

κ∇u · ∇v.

Now consider a coarse spatial partition TH of the computational domain
Ω, we will construct suitable multiscale basis functions on TH and form a
multiscale space VH which is a subspace of V . Let τ be the time step size.
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The discretization in the space VH with implicit backward Euler scheme in
time reads (

uk+1
H − ukH

τ
, v

)
+ a(uk+1

H , v) = (fk+1, v), ∀v ∈ VH (1)

where N = T
τ

is the number of time steps, ukH = uH(tk), and tk = kτ . It is
well-known that this implicit scheme is unconditionally stable.

Suppose the multiscale space VH can be decomposed into two subspaces

VH = VH,1 + VH,2,

then a partial explicit temporal splitting scheme [16] is to find ukH,1 ∈ VH,1
and ukH,2 ∈ VH,2, for all k satisfying(

uk+1
H,1 − ukH,1

τ
, v1

)
+

(
ukH,2 − uk−1

H,2

τ
, v1

)
+a(uk+1

H,1 +ukH,2, v1) = (fk+1, v1), (2)(
uk+1
H,2 − ukH,2

τ
, v2

)
+

(
ukH,1 − uk−1

H,1

τ
, v2

)
+ a((1− ω)ukH,1+ωuk+1

H,1 + ukH,2, v2)

= (fk+1, v2),
(3)

∀v1 ∈ VH,1,∀v2 ∈ VH,2, where ω ∈ [0, 1] is a customized parameter. In the
case ω = 0, the two equations are decoupled, and can be solved simultane-
ously. In the case ω = 1, the second equation depends on the solution uk+1

H,1 ,
thus the two equations will be solved sequentially.

The solution at time step n+1 will be un+1
H = un+1

H,1 +un+1
H,2 . It was proved in

[16] that under appropriate choices of the multiscale spaces VH,1 and VH,2, the
above implicit-explicit scheme resulted from the temporal splitting method
for multiscale problems are stable with time step independent of contrast. In
[16], the dimension of VH,1 is low and it contains some dominant multiscale
basis functions, the second space VH,2 includes additional bases representing
the missing information. In this paper, we will construct multiscale spaces
corresponding to different time scales, where the fast and slow parts of the
solution are treated separately.

3 Construction of multiscale spaces

In this section, we will present the construction of multiscale spaces. We will
first discuss the basis construction for VH,1 based on the contraint energy min-
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imizing GMsFEM (CEM-GMsFEM) [15] and the nonlocal multicontinuum
method (NLMC)[13, 54].

3.1 The idea of CEM-GMsFEM

To start with, we introduce some notations for the fine and coarse discretiza-
tion of the computational domain Ω. Let T H be a coarse partition with mesh
size H.Denote by {Ki} (i = 1, · · · , Nc) the set of coarse blocks in T H , and
K+
i is an oversampled region with respect to each Ki, where the oversam-

pling part contains a few layers of coarse blocks neighboring Ki. Let V (Ki)
be the restriction of V = H1

0 (Ω) on Ki.
Under the framework of CEM-GMsFEM, one first constructs an auxiliary

space. Consider the spectral problem

ai(φ
(i)
aux,k, v) = λiksi(φ

(i)
aux,k, v), ∀v ∈ V (Ki), (4)

where λik ∈ R and φ
(i)
aux,k ∈ V (Ki) are corresponding eigenpairs, and

ai(u, v) =

ˆ
Ki

∇u · ∇v, si(u, v) =

ˆ
Ki

κ̃uv,

with κ̃ =
∑

j κ|∇χj|2, and χj denotes the multiscale partition of unity func-
tion. Upon solving the spectral problem, we arrange the eigenvalues of (4) in
an ascending order, and select the first li eigenfunctions to form the auxiliary
basis functions. Define V

(i)
aux := span{φ(i)

aux,k, 1 ≤ k ≤ li}, where 1 ≤ i ≤ Nc

and Nc is the number of coarse elements. Then the global auxiliary space
Vaux =

⊕
i V

(i)
aux. We note that the auxiliary space needs to be chosen ap-

propriately in order to get good approximation results. That is, the first
few basis functions corresponding to small eigenvalues (representing all the
channels) have to be included in the space.

Define a projection operator πi : L2(Ki) 7→ V
(i)

aux as

πi(u) =

li∑
k=1

si(u, φ
(i)
aux,k)

si(φ
(i)
aux,k, φ

(i)
aux,k)

φ
(i)
aux,k, ∀u ∈ V,

and π : L2(Ω) 7→ Vaux such that π =
∑N

i=1 πi. Define the null space of π to
be Ṽ :

Ṽ = {v ∈ V | π(v) = 0}.
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Let the global basis ψ
(i)
glo,j be the solution of the optimization problem

ψ
(i)
glo,j = argmin{a(v, v) | v ∈ V0(K+

i ), s(v, φ
(i)
aux,k) = 1

and s(v, φ
(i′)
aux,k′) = 0 ∀i′ 6= i, k′ 6= k},

where V0(K+
i ) denotes the space of all functions in V (K+

i ) with a vanishing

trace on the boundary of K+
i . Define Vglo = span{ψ(i)

glo,j, 1 ≤ i ≤ Nc, 1 ≤
j ≤ li}. It can be seen that Vglo is a-orthogonal to Ṽ , that is

a(ψ
(i)
glo,j, v) = 0, ∀v ∈ Ṽ .

Then the CEM multiscale basis ψ
(i)
cem,j is a localization of ψ

(i)
glo,j, and is also

computed using the auxiliary space V
(i)

aux. The idea is to solve the constraint
energy minimization problem in a localized region K+

i

a(ψ
(i)
cem,j, w) + s(w, µ

(i)
j ) = 0, ∀w ∈ V (K+

i ),

s(ψ
(i)
cem,j, ν) = s(φ

(i)
aux,j, ν), ∀ν ∈ V (i)

aux,
(5)

where φ
(i)
aux,j ∈ V

(i)
aux is an auxiliary basis.

The multiscale space is then Vcem := span{ψ(i)
cem,j, 1 ≤ j ≤ li, 1 ≤ i ≤

Nc}, it is an approximation to the global space Vglo.
Note that the construction of CEM basis which we have presented here is

general and can handle complex heterogeneous permeability field κ (with high
contrast). In this work, we assume κ is a fractured media, where the value
of κ in the background region (called matrix) and in the fractured region are
constants with high contrast, and the configuration of the highly permeable
fractures in the domain is explicitly known. This assumption is reasonable
in many real applications, thus we can consider a simplified construction of
the basis functions in this case.

3.2 Construction of multiscale spaces VH,1 and VH,2 based
on NLMC

The domain Ω for the media with fracture networks can be represented as
follows

Ω = Ωm

s⊕
l=1

dlΩf,l
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where the subscripts m and f denote the matrix and fractures correspond-
ingly. In the fracture regions Ωf,l, the scalar dl denotes the aperture, and
s is the number of discrete fracture networks. The permeabilities of matrix
and fractures usually differ in magnitudes. In this setting, the constraint
energy minimizing basis can be constructed via NLMC [13, 54] and the re-
sulting basis functions can separate the continua such as matrix and fracture
automatically. To be specific, for a given coarse block, we use constants for
each separate fracture network, and then a constant for the matrix to form
the simplified auxiliary space. Specifically, for any coarse block Ki, we write
Ki = Ki,f ∪Ki,m where Ki,f is the high-contrast channelized region, and Ki,m

is its complement in Ki. Denote by Ki,f = {Ωf,j ∩ Ki 6= ∅,∀l = 1, · · · , s}
the set of discrete fractures/channels, we write Ki,f := {f (i)

j , j = 1, · · · ,mi},
and mi is the number of non-connected fractures in Ki. We then define two
auxiliary spaces

V
(i)

aux,1 = span{φ(i)
aux,k |φ

(i)
aux,k = 0 in Ki,m, φ

(i)
aux,k = δjk in f

(i)
j , k = 1, · · · ,mi}

V
(i)

aux,2 = span{φ(i)
aux,0 |φ

(i)
aux,0 = 1 in Ki,m, φ

(i)
aux,0 = 0 in Ki,f}

(6)
Consider an oversampled region K+

i of the coarse block Ki, following a

similar idea as in CEM-GEMsFEM, the NLMC basis ψ
(i)
m are obtained by

minimizing the energy a(ψ
(i)
m , ψ

(i)
m ), with the constraints corresponding to the

previously defined simplified auxiliary spaces (6). That is to find ψ
(i)
m ∈

V0(K+
i ) and µ

(j)
0 , µ

(j)
n ∈ R from the following localized constraint energy

minimizing problem

a(ψ(i)
m , v) +

∑
Kj⊂K+

i

µ(j)
0

ˆ
Kj,m

v +
∑

1≤n≤mj

µ(j)
n

ˆ
f
(j)
n

v

 = 0, ∀v ∈ V0(K+
i ),

ˆ
Kj,m

ψ(i)
m = δijδm0, ∀Kj ⊂ K+

i ,

ˆ
f
(j)
n

ψ(i)
m = δijδmn, ∀f (j)

n ∈ Fj, ∀Kj ⊂ K+
i .

(7)

The NLMC basis functions are then {ψ(i)
m , 0 ≤ m ≤ mi, 1 ≤ i ≤ Nc}. We

remark that the resulting basis separates the matrix and fractures automat-
ically, and have spatial decay property[15, 13, 54]. Furthermore, because the
local auxiliary basis are constants within fractures and the matrix, the so-
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lution variables on the coarse level obtained using NLMC basis is physically
meaningful, they denote the solution averages in each continuum (fracture/
channel) in each coarse region.

One choice of the two multiscale spaces is to let VH,1 = span{ψ(i)
m , 1 ≤

m ≤ mi, 1 ≤ i ≤ Nc} and VH,2 = span{ψ(i)
0 , 1 ≤ i ≤ Nc}. In this work, we

further want to include the constant basis in the second space VH,2. Thus we
perform an additional step to slightly modify the definition of two spaces.
Denote the average of all NLMC basis by

ψ̄ :=
1

L

Nc∑
i=1

mi∑
m=0

ψ(i)
m , (8)

where L =
∑N

i=1mi.

Let ψ̃(i)
m = ψ(i)

m −
s(ψ

(i)
m , ψ̄)

s(ψ̄, ψ̄)
ψ̄, 0 ≤ m ≤ mi, 1 ≤ i ≤ Nc. To simplify the

notation, we omit the double scripts in ψ̃
(i)
m and denote the set of basis by

{ψ̃k, k = 1, · · · , L}.
Finally, we define the space VH,1 as follows:

VH,1 = span{ψ̃k, 1 ≤ k ≤ L− 1}. (9)

The basis functions corresponding to the matrix and the basis ψ̄ will be
included in the second subspace VH,2, that is

VH,2 = span{ψ̄, ψ(i)
0 , 1 ≤ i ≤ Nc}. (10)

We note that we take away the last basis in VH,1 to remove linear depen-
dency between the two spaces. By this construction, VH,1 contains basis rep-
resenting the high contrast fractures/channels only, and VH,2 contains basis
representing the background matrix and the constant basis. This separates
the slow and fast flow regions of the media.

In this work, the simplified basis construction works well for the fractured
media. We remark that in heterogeneous media, the spaces VH,1 and VH,2
can be enriched to enhance the approximation of the solutions. The spatial
enrichment will be investigated in our future work.
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4 Multirate time stepping for partially ex-

plicit scheme

Based on the multiscale spaces constructed in Section 3, we introduce a mul-
tirate time stepping partially explicit temporal splitting scheme. Consider
the coarse time step size ∆T and fine time step size ∆t, where ∆T = m∆t.
Denote by the fine partition of the time domain (0, T ] by

0 = t0 < t1 < · · · < tN−1 = T.

The coarse partition of the time domain (0, T ] is formed by

0 = T0 < T1 < · · · < T(N−1)/m = T.

Further, we write each coarse time interval (Tk, Tk+1] = ∪nk+1−1
j=nk

(tj, tj+1]
where nk = km.

The multirate scheme is then defined as follows. In each coarse interval
(Tk, Tk+1], we are seeking for unk+1 = u

nk+1

1 + u
nk+1

2 given the solution at the
previous coarse time step unk = unk

1 + unk
2 . The two equations will take the

time steps in the following four cases: using coarse time step size in both (2)
and (3) (coarse-coarse), using coarse time step size in (2) and using fine time
step size in (3) (coarse-fine), using coarse time step size in (2) and using fine
time step size in (3) (fine-coarse), using fine time step size in (2) and using
fine time step size in both (2) and (3) (fine-fine).

Case 1 (coarse-coarse): Coarse time step size for (2), coarse time step size
for (3). That is, take τ = ∆T in both equations, let ū

nk+1

H,1 = (1 − ω)unk
H,1 +

ωu
nk+1

H,1 :(
u
nk+1

H,1 − u
nk
H,1

∆T
, v1

)
+

(
unk
H,2 − u

nk−1

H,2

∆T
, v1

)
+ a(u

nk+1

H,1 + unk
H,2, v1) = 0,(

u
nk+1

H,2 − u
nk
H,2

∆T
, v2

)
+

(
unk
H,1 − u

nk−1

H,1

∆T
, v2

)
+ a(ū

nk+1

H,1 + unk
H,2, v2) = 0,

(11)

∀v1 ∈ VH,1,∀v2 ∈ VH,2.
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Case 2 (coarse-fine): Coarse time step size for (2), fine time step size for
(3), let ū

nk+1

H,1 = (1− ω)unk
H,1 + ωu

nk+1

H,1 :(
u
nk+1

H,1 − u
nk
H,1

∆T
, v1

)
+

(
unk
H,2 − u

nk−1

H,2

∆T
, v1

)
+ a(u

nk+1

H,1 + unk
H,2, v1) = 0,(

un+1
H,2 − unH,2

∆t
, v2

)
+

(
unk
H,1 − u

nk−1

H,1

∆T
, v2

)
+ a(ū

nk+1

H,1 + unH,2, v2) = 0,

(12)

∀v1 ∈ VH,1,∀v2 ∈ VH,2, and for n = nk, nk + 1, · · · , nk+1 − 1.

Case 3 (fine-coarse): Fine time step size for (2), coarse time step size for
(3)(

un+1
H,1 − unH,1

∆t
, v1

)
+

(
unk
H,2 − u

nk−1

H,2

∆T
, v1

)
+ a(un+1

H,1 + unk
H,2, v1) = 0,(

u
nk+1

H,2 − u
nk
H,2

∆T
, v2

)
+

(
unk
H,1 − u

nk−1

H,1

∆T
, v2

)
+ a(ū

nk+1

H,1 + unk
H,2, v2) = 0,

(13)

∀v1 ∈ VH,1,∀v2 ∈ VH,2, and for n = nk, nk + 1, · · · , nk+1 − 1.

Case 4 (fine-fine): Fine time step for (2), fine time step for (3). That is,
take τ = ∆t in both equations, let ūn+1

H,1 = (1− ω)unH,1 + ωun+1
H,1 :(

un+1
H,1 − unH,1

∆t
, v1

)
+

(
unH,2 − un−1

H,2

∆t
, v1

)
+ a(un+1

H,1 + unH,2, v1) = 0,(
un+1
H,2 − unH,2

∆t
, v2

)
+

(
unH,1 − un−1

H,1

∆t
, v2

)
+ a(ūn+1

H,1 + unH,2, v2) = 0,

(14)

∀v1 ∈ VH,1,∀v2 ∈ VH,2, and for n = nk, nk + 1, · · · , nk+1 − 1

We remark that in the global scheme, since the above four cases may occur
alternatively, if cases 1-3 are chosen in one coarse time interval and case 4 is
chosen in the following interval, unH,i will not be defined at the fine time steps
in the previous macro-step. In this case, we use the linear interpolation of
the nearest two coarse time step solutions u

nk+1

H,i , u
nk
H,i to define intermediate

time step solutions unH,i for nk < n < nk+1.
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4.1 Stability for different cases

Consider a coarse time block (Tk, Tk+1], the stability of the multirate method
for the above mentioned four cases is proved in this subsection.

Let γ be a constant such that

γ = sup
v1∈VH,1,v2∈VH,2

(v1, v2)

‖v1‖‖v2‖
< 1. (15)

We remark that γ can be estimated from the given spaces.
For case 1 and case 4 defined in section 4.3, following a similar proof in

[16], the partially explicit scheme (2)-(3) is stable if

τ sup
v∈VH,2

‖v‖2
a

‖v‖2 ≤
1− γ2

2− ω
,

and τ = ∆T for case 1, τ = ∆t for case 4.
We will show the stability for case 2 and 3 in the following.

4.1.1 Stability for case 2

Use the coarse time step for uH,1 and use the fine time step for uH,2,

Lemma 1. The multirate partially explicit scheme in (12) satisfies the sta-
bility estimate

γ2∆T

2

2∑
j=1

‖
u
nk+1

H,j − u
nk
H,j

∆T
‖2+

1

2
‖unk+1

H ‖2
a ≤

γ2∆T

2

2∑
j=1

‖
unk
H,j − u

nk−1

H,j

∆T
‖2+

1

2
‖unk

H ‖
2
a.

if

∆T sup
v∈VH,2

‖v‖2
a

‖v‖2
≤ (1− γ2)m

m+ 1−mω
. (16)

Proof. The equations in (12) can be written as(
u
nk+1

H,1 − u
nk
H,1 + unk

H,2 − u
nk−1

H,2 , v1

)
= −∆Ta(u

nk+1

H,1 + unk
H,2, v1), (17)(

m(un+1
H,2 − u

n
H,2) + unk

H,1 − u
nk−1

H,1 , v2

)
= −∆Ta((1−ω)unk

H,1+ωu
nk+1

H,1 +unH,2, v2).
(18)

13



Take v1 = u
nk+1

H,1 − u
nk
H,1 in (17), take v2 = un+1

H,2 − unH,2 in (18) and sum
over n = nk, nk + 1, · · · , nk+1− 1. Then for the left hand side of (17), we get(

u
nk+1

H,1 − u
nk
H,1 + unk

H,2 − u
nk−1

H,2 , u
nk+1

H,1 − u
nk
H,1

)
≥ ‖unk+1

H,1 − u
nk
H,1‖

2 − γ‖unk
H,2 − u

nk−1

H,2 ‖‖u
nk+1

H,1 − u
nk
H,1‖

≥ 1

2
‖unk+1

H,1 − u
nk
H,1‖

2 − γ2

2
‖unk

H,2 − u
nk−1

H,2 ‖
2

For the left hand side of (18), we have

nk+1−1∑
n=nk

(
m(un+1

H,2 − u
n
H,2) + unk

H,1 − u
nk−1

H,1 , un+1
H,2 − u

n
H,2

)
≥

nk+1−1∑
n=nk

m‖un+1
H,2 − u

n
H,2‖2 − γ2

2
‖unk

H,1 − u
nk−1

H,1 ‖
2 − 1

2
‖unk+1

H,2 − u
nk
H,2‖

2

≥ m

2

nk+1−1∑
n=nk

‖un+1
H,2 − u

n
H,2‖2 − γ2

2
‖unk

H,1 − u
nk−1

H,1 ‖
2

since −1

2
‖unk+1

H,2 − u
nk
H,2‖

2 ≥ −m
2

nk+1−1∑
n=nk

‖(un+1
H,2 − u

n
H,2)‖2.

Sum up the right hand side of (17) and (18), we have

−∆Ta(u
nk+1

H,1 + unk
H,2, u

nk+1

H,1 − u
nk
H,1)− (1− ω)∆Ta(unk

H,1, u
nk+1

H,2 − u
nk
H,2)

− ω∆Ta(u
nk+1

H,1 , u
nk+1

H,2 − u
nk
H,2)−∆T

nk+1−1∑
n=nk

a(unH,2, u
n+1
H,2 − u

n
H,2)

=−∆Ta(u
nk+1

H,1 , u
nk+1

H,1 − u
nk
H,1) + ∆Ta(unk

H,2, u
nk
H,1)−∆Ta(u

nk+1

H,1 , u
nk+1

H,2 )

+ (1− ω)∆Ta(u
nk+1

H,1 − u
nk
H,1, u

nk+1

H,2 − u
nk
H,2)−∆T

nk+1−1∑
n=nk

a(unH,2, u
n+1
H,2 − u

n
H,2)

=: RHS
(19)

14



Note that for the terms in RHS in the above inequalities, we have

− a(u
nk+1

H,1 , u
nk+1

H,1 − u
nk
H,1)=− 1

2

(
‖unk+1

H,1 ‖
2
a + ‖unk+1

H,1 − u
nk
H,1‖

2
a − ‖u

nk
H,1‖

2
a

)
,

nk+1−1∑
n=nk

a(unH,2, u
n+1
H,2 − u

n
H,2)=− 1

2

nk+1−1∑
n=nk

(
‖unH,2‖2

a + ‖un+1
H,2 − u

n
H,2‖2

a − ‖un+1
H,2 ‖

2
a

)
= −1

2

(
‖unk

H,2‖
2
a − ‖u

nk+1

H,2 ‖
2
a +

nk+1−1∑
n=nk

‖un+1
H,2 − u

n
H,2‖2

a

)
,

a(u
nk+1

H,1 − u
nk
H,1, u

nk+1

H,2 − u
nk
H,2) ≤ 1

2

(
‖unk+1

H,1 − u
nk
H,1‖

2
a + ‖unk+1

H,2 − u
nk
H,2‖

2
a

)
.

Substitute these into the left of (19) and regroup terms, we get

RHS ≤ −∆T

2
‖unk+1

H ‖2
a +

∆T

2
‖unk

H ‖
2
a +

∆T

2

nk+1−1∑
n=nk

‖un+1
H,2 − u

n
H,2‖2

a

− ω∆T

2
‖unk+1

H,1 − u
nk
H,1‖

2
a +

(1− ω)∆T

2
‖unk+1

H,2 − u
nk
H,2‖

2
a.

Combine the results, we have

γ2

2

2∑
j=1

‖unk+1

H,j − u
nk
H,j‖

2 +
1− γ2

2
‖unk+1

H,1 − u
nk
H,1‖

2 +
m(1− γ2)

2

nk+1−1∑
n=nk

‖un+1
H,2 − u

n
H,2‖2

+
∆T

2
‖unk+1

H ‖2
a ≤

∆T (m+ 1−mω)

2

nk+1−1∑
n=nk

‖un+1
H,2 − u

n
H,2‖2

a +
∆T

2
‖unk

H ‖
2
a

+
γ2

2

2∑
j=1

‖unk
H,j − u

nk−1

H,j ‖
2

where we use the fact that ‖unk+1

H,2 − u
nk
H,2‖

2
a ≤ m

nk+1−1∑
n=nk

‖un+1
H,2 − u

n
H,2‖2

a.

As long as

∆T (m+ 1−mω)

2

nk+1−1∑
n=nk

‖un+1
H,2 − u

n
H,2‖2

a ≤
m(1− γ2)

2

nk+1−1∑
n=nk

‖un+1
H,2 − u

n
H,2‖2

15



we have

γ2

2

2∑
j=1

‖unk+1

H,j − u
nk
H,j‖

2 +
∆T

2
‖unk+1

H ‖2
a ≤

γ2

2

2∑
j=1

‖unk
H,j − u

nk−1

H,j ‖
2 +

∆T

2
‖unk

H ‖
2
a.

Thus the stability condition is

∆T sup
v∈VH,2

‖v‖2
a

‖v‖2
≤ (1− γ2)m

m+ 1−mω
.

We remark that, the stability condition becomes ∆t sup
v∈VH,2

‖v‖2
a

‖v‖2
≤ (1− γ2)

if ω = 1, which means we only need the fine time step size (for the explicit
part) to satisfy the condition to ensure stability.

4.1.2 Stability for case 3

Lemma 2. The multirate partially explicit scheme in (13) satisfies the sta-
bility estimate

γ2∆T

2

2∑
j=1

‖
u
nk+1

H,j − u
nk
H,j

∆T
‖2+

1

2
‖unk+1

H ‖2
a ≤

γ2∆T

2

2∑
j=1

‖
unk
H,j − u

nk−1

H,j

∆T
‖2+

1

2
‖unk

H ‖
2
a.

if

∆T sup
v∈VH,2

‖v‖2
a

‖v‖2
≤ (1− γ2)

m−mω + 1
. (20)

Proof. The equations in (13) can be written as(
m(un+1

H,1 − u
n
H,1) + unk

H,2 − u
nk−1

H,2 , v1

)
= −∆Ta(un+1

H,1 + unk
H,2, v1), (21)(

u
nk+1

H,2 − u
nk
H,2 + unk

H,1 − u
nk−1

H,1 , v2

)
= −∆Ta((1− ω)unk

H,1 + ωu
nk+1

H,1 + unk
H,2, v2),

(22)
Take v1 = un+1

H,1 − unH,1 in (21) and sum over n = nk, nk + 1, · · · , nk+1− 1,

also take v2 = u
nk+1

H,2 − u
nk
H,2 in (22) .

16



For the left hand side of (21), we have

nk+1−1∑
n=nk

(
m(un+1

H,1 − u
n
H,1) + unk

H,2 − u
nk−1

H,2 , un+1
H,1 − u

n
H,1

)
=

nk+1−1∑
n=nk

m‖un+1
H,1 − u

n
H,1‖2 +

(
unk
H,2 − u

nk−1

H,2 , u
nk+1

H,1 − u
nk
H,1

)
≥ 1

2
‖unk+1

H,1 − u
nk
H,1‖

2 − γ2

2
‖unk

H,2 − u
nk−1

H,2 ‖
2

For the left hand side of (22), we have

(
u
nk+1

H,2 − u
nk
H,2 + unk

H,1 − u
nk−1

H,1 , u
nk+1

H,2 − u
nk
H,2

)
≥ 1

2
‖unk+1

H,2 −u
nk
H,2‖

2−γ
2

2
‖unk

H,1−u
nk−1

H,1 ‖
2

Sum up the right hand side of (21) and (22), we have

−∆T

nk+1−1∑
n=nk

a(un+1
H,1 , u

n+1
H,1 − u

n
H,1) + (1− ω)∆Ta(u

nk+1

H,1 − u
nk
H,1, u

nk+1

H,2 − u
nk
H,2)

−∆T
(
a(unk

H,2, u
nk+1

H,1 − u
nk
H,1)+a(u

nk+1

H,1 , u
nk+1

H,2 − u
nk
H,2)+a(unk

H,2, u
nk+1

H,2 − u
nk
H,2)
)

≤−∆T

2

nk+1−1∑
n=nk

‖un+1
H,1 − u

n
H,1‖2

a −
∆T

2
‖unk+1

H,1 ‖
2
a +

∆T

2
‖unk

H,1‖
2
a

−∆Ta(unk
H,2, u

nk
H,1) + ∆Ta(u

nk+1

H,1 , u
nk+1

H,2 )

+
(1− ω)∆T

2m
‖unk+1

H,1 − u
nk
H,1‖

2
a +

m(1− ω)∆T

2
‖unk+1

H,2 − u
nk
H,2‖

2
a

+
∆T

2

(
‖unk

H,2‖
2
a + ‖unk+1

H,2 − u
nk
H,2‖

2
a − ‖u

nk+1

H,2 ‖
2
a

)
≤−ω∆T

2m
‖unk+1

H,1 − u
nk
H,1‖

2
a −

∆T

2
‖unk+1

H ‖2
a +

∆T

2
‖unk

H ‖
2
a

+
(m−mω + 1)∆T

2
‖unk+1

H,2 − u
nk
H,2‖

2
a

≤− ∆T

2
‖unk+1

H ‖2
a +

∆T

2
‖unk

H ‖
2
a +

(m−mω + 1)∆T

2
‖unk+1

H,2 − u
nk
H,2‖

2
a.
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Combine the results, we have

γ2

2

2∑
i=1

‖unk+1

H,i − u
nk
H,i‖

2 +
1− γ2

2

2∑
i=1

‖unk+1

H,i − u
nk
H,i‖

2 +
∆T

2
‖unk+1

H ‖2
a

≤ γ2

2

2∑
i=1

‖unk
H,i − u

nk−1

H,i ‖
2 +

∆T

2
‖unk

H ‖
2
a +

(m−mω + 1)∆T

2
‖unk+1

H,2 − u
nk
H,2‖

2
a

The stability estimate is then obtained by using the stability condition (20).

To this end, we formulate the main theorem as follows.

Theorem 4.1. Let 0 = T0 < T1 < · · · < T(N−1)/m = T be a coarse partition
of the time domain (0, T ], and ∆T be the coarse time step size. Using the
multirate time stepping in all coarse block (Tk, Tk+1] (k = 0, · · · , (N−1)/m−
1), we will obtain a stable scheme if

∆T sup
v∈VH,2

‖v‖2
a

‖v‖2
≤ (1− γ2)

for ω = 1.

This result can be easily obtained by Lemma 1 and Lemma 2.
Remark : We know that the time step size of explicit methods for the

parabolic equation scales as H2/max(κ), where κ is the diffusion coefficient.
With the construction of basis for VH,2 in section 3.2, we can demonstrate

that the term supv∈VH,2

‖v‖2a
‖v‖2 in the stability condition is contrast independent.

To illustrate the idea, we consider a simplified case, let Ki be a square coarse
element with only one vertical channel in the middle of the block. Let K1

i,m

be the region on the left of the channel Ki,f , and K2
i,m be the region on

the right of the channel Ki,f . Let (x1, y1) and (x2, y2) be the coordinates
of the bottom-left and top-right vertices in K2

i,m. Define a bubble function
Bi(x, y) ∈ C∞0 (Ki) such that

Bi(x, y) = 0 in Ki,f ∪K1
i,m,

Bi(x, y) =
64

H4
(x− x1)(x2 − x)(y − y1)(y2 − y).

Then we have ‖Bi‖L∞ = 1, and ‖∇Bi‖L∞ ≤ CH−1.
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We now show that ‖w‖a(Ki) ≤ DH−1‖w‖L2(Ki) for w ∈ VH,2(Ki). Take
w ∈ VH,2(Ki), we have

ai(w, v) + µ
(i)
1

ˆ
Ki,f

v + µ
(i)
2

ˆ
Ki,m

v = 0, ∀v ∈ V0(Ki)

ˆ
Ki,f

w = 0,

ˆ
Ki,m

w = πi(w),

where πi is the projection from L2(Ki) to Vaux,2(Ki). Thus we have

ai(w,w) = −µ(i)
2

ˆ
Ki,m

w ≤ C1‖µ(i)
2 ‖L2(Ki)‖w‖L2(Ki).

On the other hand, let v = Biµ
(i)
2 with Bi defined above, we have

‖µ(i)
2 ‖2

L2(Ki)
≤ C2

ˆ
Ki,m

Bi(µ
(i)
2 )2

= −C2ai(w,Biµ
(i)
2 )

≤ C3‖w‖a(Ki)‖Biµ
(i)
2 ‖a(Ki)

≤ DH−1‖w‖a(Ki)‖µ
(i)
2 ‖L2(Ki).

Combine the results, we have ‖w‖a(Ki) ≤ DH−1‖w‖L2(Ki).
We remark that this idea can be extended to more general Ki with one

smooth channel in it by appropriate coordinate transformation.
As for the constant γ, we can observe that it is strictly less than 1. Let

v1 ∈ VH,1 and v2 ∈ VH,2, and P : L2 → Vaux,1 +Vaux,2 be a projection operator
such that P (v) =

∑
i

1
|Ki,m|

´
Ki,m

v +
∑

j
1

|Kj,f |

´
Kj,f

v, then we have

(v1, v2) = (Pv1, Pv2) + ((I − P )v1, (I − P )v2) = ((I − P )v1, (I − P )v2),

since (Pv1, Pv2) = 0. Thus,

(v1, v2)

‖v1‖L2‖v2‖L2

=
((I − P )v1, (I − P )v2)

‖v1‖L2‖v2‖L2

≤ ‖(I − P )v1‖L2

‖v1‖L2

‖(I − P )v2‖L2

‖v2‖L2

< 1

since ‖(I − P )vi‖2
L2 < ‖(I − P )vi‖2

L2 + ‖Pvi‖2
L2 = ‖vi‖2

L2 . Actually, since vi
solves the constraint minimizing problem with the energy a(vi, vi) minimized,
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v1 and v2 then minimizes the oscillation in the fractured region and matrix
region, respectively. On the other hand, Pvi is the piecewise constant repre-
senting the average of vi in the corresponding region. Thus, ‖(I −P )vi‖L2 is

relatively small compared with ‖Pvi‖L2 , and
‖(I−P )vi‖L2

‖vi‖L2
should be away from

1.
We remark that our proposed method provides an adaptive time refine-

ment strategy which focuses on the case when the temporal error is large
(for example, at the short-time simulation period or when the source term
is changing). In the long term simulation, the spatial error will dominate no
matter which time discritization scheme is employed. To satisfy the stabil-
ity condition, the time step size in our partially explicit scheme should be
suitably coupled to the mesh parameter. Though the purely implicit scheme
without splitting is unconditionally stable, the proposed multirate approach
still has some advantages: (1) If the temporal error is large, a smaller time
step size is needed to reduce the error. In this case, the partially explicit
scheme is computational faster compared with the purely implicit scheme.
(2) If the temporal error is relatively small compared with the spatial error,
our error indicators will decide not to refine the time step size. As long as
the coarse time step size satisfy the stability condition, the partially explicit
scheme is preferable in terms of computational efficiency. (3) If a very large
time step is employed, one can still use the proposed splitting method with
implicit discretization in both equations. In this case, the stability can be
proved in a similar fashion, and the multirate method we designed can still
be employed to reduce the error.

4.2 Adaptive multirate algorithm based on the resid-
ual

In this section, we will propose a new adaptive multirate algorithm to select
a suitable time step size for the implicit-explicit scheme. The idea is to derive
an error indicator based on residuals, the indicators will give an estimate of
the errors if we use coarse time discretization for both equations in implicit-
explicit scheme (2)-(3). Then one can adaptively refine the time step size
for the part whose error is large. We first show the derivation of the error
estimators, and then present our main adaptive algorithm. Let U(t) be
the piecewise linear function with U(T n) = unH = unH,1 + unH,2 such that on
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(Tn, Tn+1]

U(t) = unH +
t− Tn

∆T
(un+1

H − unH),

and F (t) be the piecewise constant such that on each time interval (Tn, Tn+1],
it is equal to the L2-projection of fn+1 onto the multiscale space VH , i.e.

(F (t), v) = (fn+1, v)

for all v ∈ V .
We introduce the space

Xn = L2((Tn, Tn+1];H1(Ω))

and define

(u, v)Xn =

ˆ Tn+1

Tn

(ˆ
Ω

uv +

ˆ
Ω

κ∇u · ∇v
)
dt,

‖v‖Xn =

(ˆ Tn+1

Tn

(
‖v‖2 + ‖v‖2

a

)
dt

) 1
2

,

where ‖v‖2
a = ‖κ∇v‖2. We remark that the space Xn is a common choice of

space for parabolic problems, and ‖v‖Xn is the associated norm [52].
Define a constant γx depending on VH,1 and VH,2 as

γx = sup
v1∈L2((Tn,Tn+1];VH,1),

v2∈L2((Tn,Tn+1];VH,2)

(v1, v2)Xn

||v1||Xn ||v2||Xn

< 1. (23)

Let the integral of the residual over the time interval (Tn, Tn+1] be

ˆ Tn+1

Tn

(R(U(t)), v)dt =

ˆ Tn+1

Tn

(f(t), v)dt−
ˆ Tn+1

Tn

(U ′(t), v)dt−
ˆ Tn+1

Tn

a(U(t), v)dt,

and define two dual norms of the residual

Rv = sup
v∈L2((Tn,Tn+1];VH),

‖v‖Xn=1

ˆ Tn+1

Tn

(R(U(t)), v)dt,

Rx = sup
v∈Xn,‖v‖Xn=1

ˆ Tn+1

Tn

(R(U(t)), v)dt,

then we have the following estimates.
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Theorem 4.2. Define the following error indicators
Type 1:

ηn1 =

√
∆T

3
(‖un+1

H,1 − u
n
H,1‖a + γ‖un+1

H,2 − u
n
H,2‖a) + ∆T

3
2‖∂2

t u
n+1
H,2 ‖,

ηn2 = γ
√
Cω∆T‖un+1

H,1 − u
n
H,1‖a +

√
∆T

3
‖un+1

H,2 − u
n
H,2‖a + ∆T

3
2‖∂2

t u
n+1
H,1 ‖.

(24)
Type 2:

ηn1 =

√
∆T

3
(‖un+1

H,1 − u
n
H,1‖a + γ‖un+1

H,2 − u
n
H,2‖a) + ∆T

3
2‖∂2

t u
n+1
H,2 ‖a∗ ,

ηn2 = γ
√
Cω∆T‖un+1

H,1 − u
n
H,1‖a +

√
∆T

3
‖un+1

H,2 − u
n
H,2‖a + ∆T

3
2‖∂2

t u
n+1
H,1 ‖a∗ .

(25)

where Cω = (
1

3
+ ω2 − ω), and γ is the constant defined in (15).

Then there exists constant D1, D2 such that

Rv ≤ D1(1−γx)−
1
2

(
(ηn1 )2 + (ηn2 )2

) 1
2 +D2‖f(t)−F (t)‖L2((Tn,Tn+1],L2(Ω)) (26)

Proof. By definition, we have

ˆ Tn+1

Tn

(R(U(t)), v)dt =

ˆ Tn+1

Tn

[
(f(t), v)− (fn+1, v)− (U ′(t), v)− a(U(t), v)+(

un+1
H,1 − unH,1

∆T
, v1

)
+

(
unH,2 − un−1

H,2

∆T
, v1

)
+ a(un+1

H,1 + unH,2, v1)+(
un+1
H,2 − unH,2

∆T
, v2

)
+

(
unH,1 − un−1

H,1

∆T
, v2

)
+ a((1− ω)unH,1 + ωun+1

H,1 + unH,2, v2)

]
dt.

By the definition of U(t), we have U ′(t) =
un+1
H −unH

∆T
, then

(U ′(t), v)−

(
un+1
H,1 − unH,1

∆T
, v1

)
−

(
un+1
H,2 − unH,2

∆T
, v2

)

=

(
un+1
H,1 − unH,1

∆T
, v2

)
+

(
un+1
H,2 − unH,2

∆T
, v1

)
.
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Further, we have

un+1
H,1 + unH,2 − U(t) =

Tn+1 − t
∆T

(un+1
H,1 − u

n
H,1)− t− Tn

∆T
(un+1

H,2 − u
n
H,2),

(1− ω)unH,1 + ωun+1
H,1 + unH,2 − U(t)

=(ω − Tn+1 − t
∆T

)(un+1
H,1 − u

n
H,1)− t− Tn

∆T
(un+1

H,2 − u
n
H,2).

Thus, we can write

ˆ Tn+1

Tn

(R(U(t)), v))dt =

ˆ Tn+1

Tn

[
(f(t), v)− (fn+1, v) + (R1, v1) + (R2, v2)

]
dt

where

ˆ Tn+1

Tn

(R1, v1)dt =

ˆ Tn+1

Tn

[
T n+1 − t

∆T
a(un+1

H,1 − u
n
H,1, v1)− t− Tn

∆T
a(un+1

H,2 − u
n
H,2, v1)]dt

−
ˆ Tn+1

Tn

∆T

(
un+1
H,2 − 2unH,2 + un−1

H,2

∆T 2
, v1

)
dt

ˆ Tn+1

Tn

(R2, v2)dt =

ˆ Tn+1

Tn

(
ω − T n+1 − t

∆T

)
a(un+1

H,1 − u
n
H,1, v2)dt

−
ˆ Tn+1

Tn

t− T n
∆T

a(un+1
H,2 − u

n
H,2, v2)dt

−
ˆ Tn+1

Tn

∆T

(
un+1
H,1 − 2unH,1 + un−1

H,1

∆T 2
, v2

)
dt.

Integrate from Tn to Tn+1, we get

ˆ Tn+1

Tn

(R1, v1)dt ≤ C1

√
∆T

3
‖un+1

H,1 − u
n
H,1‖a

(ˆ Tn+1

Tn

‖v1‖2
adt

) 1
2

+ C2γ

√
∆T

3
‖un+1

H,2 − u
n
H,2‖a

(ˆ Tn+1

Tn

‖v1‖2
adt

) 1
2

+ C3∆T
3
2E(∂2

t u
n+1
H,2 , v1),

(27)
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ˆ Tn+1

Tn

(R2, v2)dt ≤ C ′1γ

√
(
1

3
+ ω2 − ω)∆T‖un+1

H,1 − u
n
H,1‖a

(ˆ Tn+1

Tn

‖v2‖2
adt

) 1
2

+ C ′2

√
∆T

3
(‖un+1

H,2 − u
n
H,2‖a

(ˆ Tn+1

Tn

‖v2‖2
adt

) 1
2

+ C ′3∆T
3
2E(∂2

t u
n+1
H,1 , v2),

(28)
where γ is defined in (15).

In the above inequalities, ∂2
t (u

n+1
H,i ) =

un+1
H,i −2unH,i+u

n−1
H,i

∆T 2 , which stands for
the approximation of second derivative with respect to time, and we have

E(∂2
t u

n+1
H,2 , v1) = ‖∂2

t u
n+1
H,2 ‖

2

(ˆ Tn+1

Tn

‖v1‖2dt

) 1
2

,

E(∂2
t u

n+1
H,1 , v2) = ‖∂2

t u
n+1
H,1 ‖

2

(ˆ Tn+1

Tn

‖v2‖2dt

) 1
2

to derive the first type of indicators η1, η2 as defined in (24), or

E(∂2
t u

n+1
H,2 , v1) = ‖∂2

t u
n+1
H,2 ‖a∗

(ˆ Tn+1

Tn

‖v1‖2
adt

) 1
2

,

E(∂2
t u

n+1
H,1 , v2) = ‖∂2

t u
n+1
H,1 ‖a∗

(ˆ Tn+1

Tn

‖v2‖2
adt

) 1
2

to derive the second type of indicators η1, η2 in (25). Here || · ||a∗ is the dual
norm.

Add the two inequalities in (27) and (28) together and by the definition
of Xn norm, for both types of indicators, we have

ˆ Tn+1

Tn

(R1, v1)dt+

ˆ Tn+1

Tn

(R2, v2)dt ≤ Cηn1 ‖v1‖Xn + C ′ηn2 ‖v2‖Xn

≤ D1

(
(ηn1 )2 + (ηn2 )2

) 1
2
(
‖v1‖2

Xn
+ ‖v2‖2

Xn

) 1
2

≤ D1(1− γx)−
1
2

(
(ηn1 )2 + (ηn2 )2

) 1
2 ‖v‖Xn ,

where ηn1 and ηn2 are defined in (24) or (25). In the last step of the above
derivation, we use the fact that

(v1, v2)Xn ≤ γx‖v1‖Xn‖v2‖Xn
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by the definition (23), which indicates

‖v1 + v2‖2
Xn
≥ ‖v1‖2

Xn
+ ‖v2‖2

Xn
− 2γx‖v1‖Xn‖v2‖Xn

≥ (1− γx)
(
‖v1‖2

Xn
+ ‖v2‖2

Xn

)
.

Finally, take the sup with respect to v ∈ Xn, we have the following
estimate

Rx ≤ D1(1− γx)−
1
2

(
(ηn1 )2 + (ηn2 )2

) 1
2 +D2‖f(t)− F (t)‖L2((Tn,Tn+1],L2(Ω)).

It is obvious that Rv ≤ Rx. On the other hand, we observe that

ˆ Tn+1

Tn

(R(U(t)), v))dt =

ˆ Tn+1

Tn

(R(U(t)), v−Πv))dt+

ˆ Tn+1

Tn

(R(U(t)),Πv))dt,

where Π : H1
0 (Ω)→ VH is a projection operator. Thus

sup
v∈Xn

´ Tn+1

Tn
(R(U(t)), v)dt

‖v‖Xn

≤ sup
v∈L2((Tn,Tn+1];V ⊥H )

´ Tn+1

Tn
(R(U(t)), v)dt

‖v‖Xn

+ sup
v∈L2((Tn,Tn+1];VH)

´ Tn+1

Tn
(R(U(t)), v)dt

‖v‖Xn

,

this implies

Rx ≤ sup
v∈L2((Tn,Tn+1];V ⊥H )

´ Tn+1

Tn
(R(U(t)), v)dt

‖v‖Xn

+Rv.

We assume that the space VH provides a good approximation to V , then the
supremum term over L2((Tn, Tn+1];V ⊥H ) will be relatively small compared to
Rv.

Remark : In this work, we considered the fractured/channelized media
with high contrast, and we assume the proposed multiscale space VH is good
enough to approximate solutions in space. Our aim is to handle the error in
the time discretization effectively via a multirate approach. For more general
model problems with highly heterogeneous permeabilities, we will consider
enriching the spatial approximation by constructing additional multiscale
basis in our future work.
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Remark : We defined two types of error indicators, the difference between
the two lies in the norm of the term ∂2

t u
n+1
H,1 . Both types have advantages

and disadvantages. For type 1, the computation of the indicators is more
straightforward, but we may need different scales of the threshold parameters
for δ1 and δ2 in practice (this can be observed in the numerical examples in
section 5. On the other hand, for type 2, the threshold parameters for δ1

and δ2 can be chosen consistently, but the computation for the dual norm of
∂2
t u

n+1
H,i is less straightforward.

4.3 Main algorithm

In this part, we present the adaptive multi-time-step algorithm. At the be-
ginning of the procedure, we solve the problem at the coarse time resolution.
The coarse time step size is set to guarantee the stability of the scheme. Then
we conduct refinement for the part of the equations (2)-(3) to the fine time
resolution according to the error indicators and user-defined thresholds. If
needed, the refinement will be implemented inside the current coarse block,
and the solutions at the newest coarse time instance will be replaced. Then
the time grid will be set back to the coarse resolution for both equations and
the solver will march forward. The procedure will be performed iteratively
until the simulation is done.

In the following, the fine time step size is ∆t, the coarse time step size
is ∆T , and ∆T = m∆t. The total number of coarse time steps is N . Let
dim(VH,1) = d1, dim(VH,2) = d2, dim(Vh) = D, and let Ψ1 ∈ RD×d1 and
Ψ2 ∈ RD×d2 be the matrices whose columns are the bases of VH,1, VH,2,
respectively. Let Mf and Af be the fine scale mass matrix and stiffness
matrix, define the following coarse scale matrices

MH,1 = ΨT
1MfΨ1, AH,1 = ΨT

1AfΨ1,

MH,2 = ΨT
2MfΨ2, AH,2 = ΨT

2AfΨ2,

MH,12 = ΨT
1MfΨ2, AH,12 = ΨT

2AfΨ2,

F n
H,1 = ΨT

1 f
n, F n

H,2 = ΨT
2 f

n

Let Un
1,H and Un

2,H be the coarse scale solution at time step n. Then the
matrix equations can be displayed as

(MH,1 + τAH,1)Uk+1
H,1 = MH,1U

k
H,1+MH,12(Uk−1

H,2 −U
k
H,2)−τAH,12U

k
H,2+τF k+1

H,1 ,
(29)
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MH,2U
k+1
H,2 = (MH,2 − τAH,2)Uk

H,2 +MT
H,12(Uk−1

H,1 − U
k
H,1)

− (1− ω)τATH,12U
k
H,1 − ωτATH,12U

k+1
H,1 + τF k+1

H,2 .
(30)

Our proposed method can be summarized in the algorithm 1.

5 Numerical examples

In this section, we will present some numerical tests and demonstrate the
performance of the proposed algorithm. Consider the parabolic equation on a
unit square domain Ω = [0, 1]×[0, 1]. Let the coarse mesh size beH = 0.1 and
the fine mesh size be h = 0.01. We apply zero Dirichlet boundary conditions
and zero initial conditions in the following examples. The reference solutions
are computed using an even finer time discretization with Crank-Nicolson
scheme, and the spatial discretizations were as discussed in Section 3. We
expect that our method has the spatial convergence rate O(H) in the energy
norm since the space VH = VH,1 +VH,2 is originated from NLMC [15, 13, 54],
and the temporal convergence rate is O(∆T ). Please refer to appendix A for
a sketch of proof for spatial error.

5.1 Example 1: time-independent smooth source term

In the first example, we use a smooth source term f(x, y) = 2π2 sin(πx) sin(πy) exp(−(x−
0.5)2 − (y − 0.5)2). The configuration of the permeability field can be found
in Figure 1. The value of permeability is 104 in the channel, and 1 in the
background.

The total simulation time T = 0.05. The coarse time step size is ∆T =
10−4 and the fine time step size is ∆t = 10−5. We use the Crank-Nicolson
scheme with δt = 10−6 to compute reference solutions. The comparison of
solutions at the different time steps are presented in Figure 2, where we have
reference solutions on the left column, and the solutions on the right column
are obtained from our proposed method to adaptively refine temporal mesh
based on residuals.

The errors (evaluated at coarse time instances) are shown in Figure 3
for type 1 when we take δ1 = 1.5 × 10−4, δ2 = 5 × 10−6, and we compare
the results using uniform fine time discretization, using uniform coarse time
discretization and using adaptive time refinement discretization, correspond-
ingly. The refinement indicators in the right of Figure 3 demonstrate that
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Algorithm 1 Adaptive multirate algorithm for partially explicit temporal
splitting scheme

1: procedure Adaptive multirate(Thresholds δ1, δ2, Initial condition
u0)

2: Define matrices Ψ1 ∈ RD×d1 , Ψ1 ∈ RD×d2 using multiscale basis in
VH,1, VH,2

3: for all k = 1 : m do
4: τ ← ∆t
5: Solve equation (1)

6: U0
H,1 ← ΨT

1 u0, U0
H,2 ← ΨT

2 u0

7: U1
H,1 ← ΨT

1 u
m
H , U1

H,2 ← ΨT
2 u

m
H

8: for all k = 1 : N − 1 do
9: τ ← ∆T

10: Solve equations (29) - (30)
11: Save Uk+1

H,1 and Uk+1
H,2

12: Compute ηk1 , ηk2 from (24) or (25)
13: if ηk1 > δ1 and ηk2 < δ2 then
14: Ũ0

H,1 ← Uk
H,1

15: Replace k with j, denote Ũ j
H,1 = U j

H,1 in (29)
16: for all j = 1 : m do
17: Solve equation (29) with τ = ∆t

18: Replace Uk+1
H,1 with Ũm+1

H,1

19: else if ηk1 < δ1 and ηk2 > δ2 then
20: Ũ0

H,2 ← Uk
H,2

21: Replace k with j, let Ũ2
H,j = U2

H,j in (30)
22: for all j = 1 : m do
23: Solve equation (30) with τ = ∆t

24: Replace Uk+1
H,2 with Ũm+1

H,2

25: else if ηk1 > δ1 and ηk2 > δ2 then
26: Ũ1

H,0 ← U1
H,k, Ũ

2
H,0 ← U2

H,k

27: Replace k with j, let Ũ1
H,j = U1

H,j in (29) and Ũ2
H,j = U2

H,j in
(30)

28: for all j = 1 : m do
29: Solve equations (29)-(30) with τ = ∆t

30: Replace Uk+1
H,1 with Ũm+1

H,1

31: Replace Uk+1
H,2 with Ũm+1

H,2

32: uNH,1 ← Ψ1U
N
H,1, uNH,2 ← Ψ2U

N
H,2

33: return uNH = uNH,1 + uNH,2 28
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Figure 1: Example 1, left: permeability field, right: source term.

the algorithm automatically chooses different time step for the two equa-
tions (2) and (3). We note that the error history of our proposed method
decays fast at first and chooses to refine the time step for both equations
in the partially explicit scheme. Then the algorithm gets back to coarse for
equation (2) and still refines equation (3) for a while. Finally, it stabilizes
to the coarse-coarse case at the latter part of the simulation. The num-
ber of refined coarse blocks is around 92/477. The average mean L2 error
across all time steps is 0.0104% and the energy error is 0.0568%. As a refer-
ence, the fine-fine errors are L2/energy errors are 0.0074%/0.0323%, and the
coarse-coarse errors are 0.0764%/0.33041%, correspondingly. Similar results
are obtained in Figure 10 for the second type of error indicators, and in this
case, δ1 = δ2 = 5× 10−6. We remark that, the thresholds need to be chosen
differently for different types in order to get desirable results. We can see
from Figure 9 and 10 that, when we use δ1 = δ2 = 5 × 10−6 for both types,
type 2 performs well, but the thresholds are too small for type 1 such that
it is over-refined. If we use δ1 = 1.5 × 10−4, δ2 = 5 × 10−6 for both types,
as seen from Figure 3 and 11, type 1 performs well, but the thresholds are
too large for type 2 such that the errors are closer to coarse + coarse case.
During this finite-time simulation, our method outperforms the coarse-coarse
method in terms of accuracy. Moreover, it converges to the fine-fine case fast
and is computationally much cheaper.

In the end, we show the mean errors when we choose different threshold
parameters δ1, δ2 in Table 1. We observe that as δ decreases, the errors are
getting closer to the fine-fine case.

29



Reference

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

ti
m

e
 s

te
p

 =
 5

0

Algorithm 1

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Reference

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

ti
m

e
 s

te
p

 =
 5

0
0

Algorithm 1

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Figure 2: Example 1, the comparison of solutions at different time steps. Left:
reference solutions, right: solutions obtained from the proposed algorithm.
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Figure 3: Example 1, using type 1 error indicators. δ1 = 1.5 × 10−4, δ2 =
5 × 10−6. Left and middle: error history, right: refinement history for two
equations. The number of refined steps for the first equation is 92, for the
second equation is 477. The mean L2 error is 0.0104%, and the energy error
is 0.0568%.
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Mean errors (L2/energy error)

δ2

δ1 1× 10−4 2× 10−4 5× 10−4

5× 10−6 (0.0086/ 0.0442) (0.0113/ 0.0693) (0.0199/ 0.1496)
1× 10−5 (0.0109/ 0.0507) (0.0113/ 0.0759) (0.0220/ 0.155)
1× 10−4 (0.0164/ 0.0627) (0.0259/ 0.0979) (0.0508/ 0.2069)
5× 10−4 (0.0449/ 0.1520) (0.0442/ 0.1512) (0.0558/ 0.2091)

# of refinement steps (for eqn. (2)/ for eqn. (3))

δ2

δ1 1× 10−4 2× 10−4 5× 10−4

5× 10−6 (145, 477) (62, 477) (9, 477)
1× 10−5 (145, 253) (62, 254) (9, 254)
1× 10−4 (190, 146) (75, 76) (10, 16)
5× 10−4 (191, 26) (93, 26) (19, 10)

Table 1: Example 1, top: average error over all time steps using type 1
error indicators with different error thresholds, the errors are in percentage;
bottom: the number of refinement steps for equation (2)/ for equation (3),
respectively. References: fine-fine errors are 0.0074/0.0323; coarse-coarse
errors are 0.0764/ 0.33041.
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Figure 4: Example 2, left: permeability field, right: source term.

5.2 Example 2: time-independent singular source term

In the second example, the configuration of the permeability field and the
point source term f(x, y) can be found in Figure 4. Similar to before, the
conductivity is 104 in the channel and 1 in the background.

We set the total simulation time to be T = 0.02. The number of coarse-
scale time steps is 2000 and the number of fine-scale time steps is 20000.
Again, the reference solutions are computed at a finer time scale with 200000
steps using the Crank-Nicolson scheme. The comparison of solutions at dif-
ferent time steps computed from different combinations of time scales is pre-
sented in Figure 5.

The errors at coarse time instances are shown in Figure 6 when we use
the first type of error indicators, similar behavior can be observed when we
use the second type of error indicators. We can see that the errors of our
proposed method decays fast and are similar to the fine-fine time step size for
the partially explicit scheme. The refinement indicators in the right of Figure
6 demonstrate that to get comparable results, we only need 36 refining steps
for the implicit part and 639 refining steps for the explicit part.

In the end, we show the mean errors when we choose different threshold
parameters δ1 and δ2 in Table 2 for type 1, and Table 3 for type 2. For both
types of indicators, we observe that as δ decreases, the errors are getting
closer to the fine-fine case, and one needs more refinement steps. Note that
for the results in Table 3, we use the same thresholds for δ1 and δ2. The
numerical results show that for the first type of indicators, the refinement
of the two equations may not be carried out simultaneously. However, for
the second type of error indicator, the refinement of the two equations is
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Figure 5: Example 2, the comparison of solutions at different time steps. Left:
reference solutions, right: solutions obtained from the proposed algorithm.
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Figure 6: Example 2, using type 1 error indicators. Left: error history, right:
refinement history for two equations. The number of refined steps for the
first equation is 111, for the second equation is 1999. The mean L2 error is
0.0124%, and the energy error is 0.0124%.
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Mean errors (L2/energy error)

δ2

δ1 5× 10−9 7.5× 10−9 1× 10−8

1× 10−12 (0.0135/ 0.0126) (0.0147/ 0.0136) (0.0273/ 0.0227)
1× 10−11 (0.0145/ 0.0138) (0.0157/ 0.0148) (0.0281/ 0.0238)
3× 10−11 (0.0212/ 0.0217) (0.0223/ 0.0226) (0.0339/ 0,0308)
5× 10−11 (0.0244/ 0.0254) (0.0254/ 0.0263) (0.0364/ 0.0339)

# of refinement steps (for eqn. (2), for eqn. (3))

δ2

δ1 5× 10−9 7.5× 10−9 1× 10−8

1× 10−12 (37,1999) (24,1999) (16,1999)
1× 10−11 (37,1120) (24,1120) (16,1120)
3× 10−11 (37,279) (24,279) (16,278)
5× 10−11 (37,166) (24,167) (16,167)

Table 2: Example 2, top: average error over all time steps using type 1
error indicators with different error thresholds, the errors are in percentage;
bottom: the number of refinement steps for equation (2)/ for equation (3),
respectively. References: fine-fine errors are 0.0122/0.0091 (%); coarse-coarse
errors are 0.1243/0.0921 (%).

consistent. Moreover, in both types, the errors are more sensitive to the
refinement in the second equation (explicit part).

5.3 Example 3: time-dependent discontinuous source
term

In the last example, we consider a point source term where the location
of the point changes during the simulation. The total simulation time to be
T = 0.2. In the first half of the time interval, f(x, y) = 1 at (x, y) = (0.3, 0.5)
and f(x, y) = 0 elsewhere. In the second half of the time interval, f(x, y) = 1
at (x, y) = (0.3, 0.11) and f(x, y) = 0 elsewhere. The number of coarse scale
time steps is still 2000 and the number of fine scale time steps is 20000. The
permeability is the same as in Example 2.

The comparison of solutions at different time steps using different schemes
is presented in Figure 7.

The errors at coarse time instances are shown in Figure 8 for the first type
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δ1 = δ2 (in · × 10−11) 1 1.5 2 3 5

Mean L2 errors 0.0149 0.0174 0.0196 0.0230 0.0278
Mean energy errors 0.0142 0.0172 0.0198 0.0237 0.0291
# of refinement steps (96, 984) (69,588) (45, 372) (31, 217) (24,113)

Table 3: Example 2, using type 2 error indicators with different error thresh-
olds. The average errors (in percentage) over all time steps, and the number
of refinement steps for equation (2), for equation (3), respectively.

of the indicators, and the behavior for the second type is similar as before,
so we omit the results in this example. We can see that at the beginning, the
scheme requires refinement. Then when the errors get smaller, the refinement
is deactivated and we can obtain good results without refinement. In the
middle of the simulation, when the discontinuity of the source term occurs,
there is a jump in the error, and the indicators change from “not refine”
to “refine” automatically. Then similar processes happen. This shows our
algorithm is reliable for complicated source terms.

We also present the mean errors when we choose different threshold pa-
rameters δ1 and δ2 in Table 4 for type 1, and Table 5 for type 2. In this
example, we observe again that only a few refinement steps are needed in
the first equation (implicit part), and the errors are more sensitive to the
refinement in the second equation. Using around 3 refinement steps in the
first equation and 470 steps in the second equation, the average errors are
already close to the fine-fine case.

We remark that in the above numerical examples, the average run-time of
one time step using an implicit scheme without splitting is around 0.0013 sec-
ond with MATLAB direct solver, and the average run-time of one time step
using our splitting method with partially explicit scheme is around 0.0009
second. This completes the numerical section.

6 Conclusion

We presented a multirate method and an adaptive algorithm with some error
estimators to solve parabolic equations with multiscale diffusivity coefficients
satisfying the accuracy requirement and at a reduced computational cost.
We first constructed some multiscale spaces based on CEM-GMsFEM and
NLMC, and then adopted appropriate multirate temporal splitting schemes.
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Figure 7: Example 3, the comparison of solutions at different time steps.
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Figure 8: Example 3, left: error history, right: refinement history for two
equations using the first type of indicators. The number of refined steps for
the first equation is 180, for the second equation is 1137. The mean L2 error
is 0.041%, and the energy error is 0.132%.

Mean errors (L2/energy error)

δ2

δ1 1× 10−8 2× 10−8 3× 10−7

3× 10−10 0.0461/ 0.1412 0.0461/ 0.1413 0.0461/ 0.1416
1× 10−9 0.0525/ 0.1532 0.0557/ 0.1595 0.0557/ 0.1597
5× 10−9 0.0621/0.1706 0.0622/ 0.1715 0.0769/ 0.1988
1× 10−8 0.0883/0.2162 0.0883/ 0.2162 0.0855/ 0.2153

# of refinement steps (for eqn. (2), for eqn. (3))

δ2

δ1 1× 10−8 2× 10−8 3× 10−7

3× 10−10 (180,470) (108, 470) (3, 470)
1× 10−9 (209, 248) (167, 182) (3,182)
5× 10−9 (265, 112) (167, 108) (3, 32)
1× 10−8 (265, 14 ) (168, 14) (6, 13)

Table 4: Example 3, top: average error over all time steps using type 1
error indicators with different error thresholds, the errors are in percentage;
bottom: the number of refinement steps for equation (2), for equation (3),
respectively. References: fine-fine errors are 0.0403/0.1308 (%); coarse-coarse
errors are 0.0950/0.2323 (%).
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δ1 = δ2 (in · × 10−10) 1 3 5 7 10

Mean L2 errors 0.0412 0.0464 0.0501 0.0529 0.0565
Mean energy errors 0.1322 0.1402 0.1489 0.1544 0.1612
# of refinement steps (264,1094) (89,451) (43,303) (25,232) (13,170)

Table 5: Example 3, using type 2 error indicators with different error thresh-
olds. The average errors (in percentage) over all time steps, and the number
of refinement steps for equation (2), for equation (3), respectively.

To be specific, the degrees of freedom corresponding to the fast component
(the high permeable regions) are handled implicitly, here the dimension of the
multiscale subspace is small. Then the multiscale basis that corresponds to
the slow flow are constructed and this part is treated explicitly. We started
with a coarse time step size for both implicit and explicit parts, and es-
timated the errors using some locally computable estimators to determine
whether the temporal mesh needs to be refined. The process is carried out
adaptively. Several numerical tests were performed. The results showed that
with reduced computational effort, we can get reliable and accurate approxi-
mations. Currently, we use a two-level time step size, future work includes the
development of multiple level schemes and space-time adaptive algorithms.

A Spatial convergence

In this section, we give an estimate of the spatial error for the semi-discretization
system.

Denote by V = H1
0 (Ω). Let u(t, ·) ∈ V be the solution of

(
∂u

∂t
, v) + a(u, v) = (f, v),

u(0, ·) = u0,
(31)

for all v ∈ V , t ∈ (0, T ].

Furthermore, let VH = span{ψ(i)
m , 0 ≤ m ≤ mi, 0 ≤ i ≤ Nc} be the

localized NLMC space where ψ
(i)
m are defined in (7), and uH ∈ VH be the

solution of

(
∂uH
∂t

, v) + a(uH , v) = (f, v),

uH(0, ·) = u0,
(32)
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for all v ∈ VH , t ∈ (0, T ].

Let ψ
(i)
m,glo ∈ V0(Ω) be the global NLMC basis, which are computed form

the following constraint energy minimizing problem

a(ψ
(i)
m,glo, v) +

∑
Kj⊂Ω

µ(j)
0

ˆ
Kj,m

v +
∑

1≤n≤mj

µ(j)
n

ˆ
f
(j)
n

v

 = 0, ∀v ∈ V0(K+
i ),

ˆ
Kj,m

ψ
(i)
m,glo = δijδm0, ∀Kj ⊂ Ω,

ˆ
f
(j)
n

ψ
(i)
m,glo = δijδmn, ∀f (j)

n ∈ Fj, ∀Kj ⊂ Ω,

(33)

where µ
(j)
0 , µ

(j)
n ∈ R are Lagrange multipliers.

The global NLMC space is then defined as Vglo = span{ψ(i)
m,glo, 0 ≤ m ≤

mi, 0 ≤ i ≤ Nc}. Let Rglo : V → Vglo be the projection operator such that
for any u ∈ V

a(Rglo, v) = a(u, v), ∀v ∈ Vglo,

and RH : V → VH be the operator such that for any u ∈ V

a(RH , v) = a(u, v), ∀v ∈ VH .

Define the operator A : D(A)→ L2(Ω) such that for any u ∈ D(A),

(Au, v) = a(u, v), ∀v ∈ V.

Following a similar proof as presented in [54, 53], we have the following
lemmas

Lemma 3. Let u ∈ D(A), then we have

‖u−Rglou‖a ≤ CH‖Au‖L2(κ−1),

‖u−Rglou‖ ≤ CH2κ
− 1

2
min‖Au‖L2(κ−1).

(34)

where ‖v‖2
L2(κ−1) =

´
Ω
κ−1v2.

Lemma 4. If the oversampling size is in O(log(max(κ)
H

)), then we have

‖u−RHu‖a ≤ CH‖Au‖L2(κ−1),

‖u−RHu‖ ≤ CH2κ
− 1

2
min‖Au‖L2(κ−1).

(35)
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Theorem A.1. Let u(t, ·) be the solution of (31) and uH(t, ·) be the solution
of (32), we have

‖u(T, ·)− uH(T, ·)‖2 +

ˆ T

0

‖u− uH‖2
adt ≤ Cκ−1

minH
2

(
‖u0‖2 +

ˆ T

0

‖f‖2dt

)
.

Proof. Take v = ∂u
∂t

in (31) and integrate over (0, T ), we get

ˆ T

0

‖∂u
∂t
‖2dt+

1

2

ˆ T

0

d

dt
‖u‖2

adt =

ˆ T

0

(f,
∂u

∂t
)dt ≤ 1

2

ˆ T

0

‖f‖2dt+
1

2

ˆ T

0

‖∂u
∂t
‖2dt,

this implies

1

2

ˆ T

0

‖∂u
∂t
‖2dt+

1

2
‖u(T, ·)‖2

a ≤ C(‖u0‖2
a +

ˆ T

0

‖f‖2dt). (36)

Similarly, take v = ∂uH
∂t

in (32) and integrate over (0, T ), we have

1

2

ˆ T

0

‖∂uH
∂t
‖2dt+

1

2
‖uH(T, ·)‖2

a ≤ C(‖u0‖2
a +

ˆ T

0

‖f‖2dt). (37)

On the other hand, from equations (31) and (32), we have

(
∂(u− uH)

∂t
, v) + a(u− uH , v) = 0,

for all v ∈ VH . Then we have

(
∂(u− uH)

∂t
, uH) +a(u−uH , uH) = (

∂(u− uH)

∂t
, RHu) +a(u−uH , RHu) = 0.

Thus

1

2

d

dt
‖u− uH‖2 + ‖u− uH‖2

a = (
∂(u− uH)

∂t
, u−RHu) + a(u− uH , u−RHu)

≤
(
‖∂u
∂t
‖+ ‖∂uH

∂t
‖
)
‖u−RHu‖+

1

2
‖u− uH‖2

a +
1

2
‖u−RHu‖2

a,
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integrate over (0, T ), we get

1

2
‖u(T, ·)− uH(T, ·)‖2 +

1

2

ˆ T

0

‖u− uH‖2
adt

≤
ˆ T

0

(
‖∂u
∂t
‖+ ‖∂uH

∂t
‖
)
‖u−RHu‖dt+

1

2

ˆ T

0

‖u−RHu‖2
adt

≤
(ˆ T

0

(‖∂u
∂t
‖+ ‖∂uH

∂t
‖)2dt

) 1
2
(ˆ T

0

CH4κ−1
min‖Au‖2

L2(κ−1)dt

) 1
2

+
1

2

ˆ T

0

CH2‖Au‖2
L2(κ−1)dt

≤ Cκ−1
minH

2(‖u0‖2
a +

ˆ T

0

‖f‖2dt),

using (36),(37) and the fact that Au = f − ∂u
∂t

. This completes the proof.

B Comparison of results between two types

of indicators

In the following, we consider example 1, and present the results for both type
1 and type 2 indicators when δ1 = δ2 = 5× 10−6. Additionally, we also show
results for type 2 when δ1 = 1.5 × 10−4, δ2 = 5 × 10−6, this is to compare
with the results in Figure 3 with the same sets of thresholds.
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