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Abstract. A Dirichlet k-partition of a domain is a collection of k pairwise disjoint open sub-
sets such that the sum of their first Laplace–Dirichlet eigenvalues is minimal. In this paper, we
propose a new relaxation of the problem by introducing auxiliary indicator functions of domains
and develop a simple and efficient diffusion generated method to compute Dirichlet k-partitions for
arbitrary domains. The method only alternates three steps: 1. convolution, 2. thresholding, and
3. projection. The method is simple, easy to implement, insensitive to initial guesses and can be
effectively applied to arbitrary domains without any special discretization. At each iteration, the
computational complexity is linear in the discretization of the computational domain. Moreover, we
theoretically prove the energy decaying property of the method. Experiments are performed to show
the accuracy of approximation, efficiency and unconditional stability of the algorithm. We apply the
proposed algorithms on both 2- and 3-dimensional flat tori, triangle, square, pentagon, hexagon, disk,
three-fold star, five-fold star, cube, ball, and tetrahedron domains to compute Dirichlet k-partitions
for different k to show the effectiveness of the proposed method. Compared to previous work with
reported computational time, the proposed method achieves hundreds of times acceleration.
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1. Introduction. For d ≥ 2, let Ω be either an open bounded domain in Rd
with Lipschitz boundary or a closed, smooth, d-dimensional manifold. For k ≥ 2
fixed, the Dirichlet k-partition problem for Ω is to choose a k-partition, i.e., k disjoint
quasi-open sets Ω1,Ω2, . . . ,Ωk ⊆ Ω, that attains

(1.1) min
Ω=∪`∈[k]Ω`

∑
`∈[k]

λ1(Ω`), where λ1(D) := min
u∈H1

0 (D)
‖u‖2=1

E(u).

Here, E(u) =
∫
D
|∇u|2 dx is the Dirichlet energy and λ1(D) is the first Dirichlet

eigenvalue of the Laplace operator, −∆, on D with Dirichlet boundary conditions
imposed on ∂D.

The existence of optimal partitions in the class of quasi-open sets was proved
in [6]. The properties of optimal partitions including the regularity of the partition
interfaces and the asymptotic behavior as k →∞ have been investigated in [7, 17, 5].
The consistency of Dirichlet partitions has been rigorously studied in [21]. Dirichlet
partitions have been applied into the study of Bose–Einstein condensates [1, 2, 8] and
models for interacting agents [11, 12, 8, 13, 14].

The development of efficient numerical methods for finding such partitions at-
tracts much attention in recent years, especially when the dimension is high or num-
ber of partitions is large. Essentially, this is an interface related optimization problem
subject to global constraints, numerical considerations usually start with the repre-
sentation of interfaces. Corresponding numerical methods are mainly developed along
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2 D. WANG

the directions of phase field based approaches [15], level set based approaches [10],
and other optimization based approaches [5].

Along the direction of phase field based approaches, following [7], for fixed ε > 0,
problem (1.1) can be relaxed to minimizing a relaxed energy,

(1.2) Eε(u) =
∑
`∈[k]

1

2

∫
Ω

|∇u`|2 dx+
1

4ε2

∫
Ω

Fk(u) dx.

over fields that take values in Rk where u = (u1, u2, · · · , uk), [k] denotes the set
{1, 2, · · · , k}, and

Fk(u) =
∑

i 6=j∈[k]

u2
iu

2
j .

Then the minimization reads

min
u∈H1(Ω,Rk)

Eε(u)(1.3)

s.t.

∫
Ω

u2
` dx = 1, ∀` ∈ [k].

Note that the penalty term in the objective functional tries to penalize that the
support of each function u` has no overlap with others. Based on this, in [15], Du
and Lin proposed an efficient normalized gradient descent method to approximately
find the minimizer of (1.2). The method is initialized with an initial condition u0 ∈
H1(Ω,Rk) and alternates the following three steps until convergence. In the first step,
the Cauchy problem for the gradient flow of the first term in Eε, i.e.,

(1.4) ∂tu(x, t) = ∆u(x, t),

is computed until time τ > 0, with initial condition, u(x, t = 0) = u0(x). Let
ũ`(x) = u`(x, τ) for ` ∈ [k]. In the second step, for each x ∈ Ω, the following system
of ordinary differential equations is solved until time τ ,

(1.5)
d

dt
u` =

1

ε2

∑
j 6=`

u2
j

u`, ` ∈ [k],

with initial condition given by u`(x, t = 0) = ũ`(x). This is precisely the gradient flow
of the second term of the relaxed energy. Numerically, this system is solved using the
Gauss-Seidel method. Let û`(x) = u`(x, τ) for ` = [k]. Finally, in the third step, each
component of u is normalized to satisfy the L2(Ω) norm constraint, i.e.,

(1.6) u` =
û`
‖û`‖2

.

In this method, the small parameter ε thickens the interface between any two parti-
tions, restricting the mesh size and making the convergence relatively slow. Recently,
a scalar auxiliary variable (SAV) approach [25, 26] shows its great advantage on solv-
ing systems of gradient flow and a SAV based method for preserving global constraints
is proposed in [9] to solve (1.3). However, in such a specific class of problems, the
solution of interest is the minimizer instead of the dynamics from an initial guess to
the minimizer. The method takes a lot of iterations to converge to the minimizer and
seems to be difficult to find regular solutions, especially when k is large.
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To accelerate the convergence, Wang and Osting [31] proposed a diffusion gen-
erated method to compute Dirichlet partitions approximately. The main novelty in
the method is replacing the second step of Du and Lin’s method (i.e., (1.5)) by direct
projection to make Fk(u) = 0. This is based on the observation that any solution
satisfies that ∪` supp(u`) = Ω by the monotonicity of Dirichlet eigenvalues (and also
the relaxed energy). To be more precise, for each x, the projection is simply done by
comparing the values among (u1, u2, · · · , uk), keeping the largest one and projecting
other values to 0. This approach dramatically accelerates the speed of convergence
from random initial guesses based on the numerical observations. It can simply and
quickly find Dirichlet k-partitions in 4-dimensional space with different k even on a
laptop. However, it alternates a diffusion step, a projection step, and a normalization
step. No theoretical guarantee could be provided on the convergence or energy decay-
ing properties. In addition, the results presented in [31] are limited to periodic cases
or closed surfaces, it is not obvious on how to effectively extend to arbitrary domains
with Dirichlet boundary conditions.

Another approach, developed first in [5], is based on a Schrödinger operator re-
laxation of (1.1) and was further used in [3, 4]. The idea here is to replace the shape
optimization problem for a partition Ω = ∪`Ω` in (1.1) with the following relaxed
optimization problem for a collection of functions {ϕ`}`∈[k]:

(1.7) min
{ϕ`}∈K

∑
`∈[k]

λα1 (ϕ`).

Here, the constraint set is given by

(1.8) K =

{
{ϕ`}`∈[k] :

∑
`

ϕ`(x) = 1 and ϕ`(x) ∈ [0, 1] a.e. x ∈ Ω

}
.

For α > 0, λα1 (φ) is defined as the first eigenvalue for the Schrödinger operator −∆ +
1
α (1− φ) by

(1.9) λα1 (φ) := min
u∈H1(Ω)
‖u‖2=1

1

2

∫
Ω

|∇u|2 +
1

2α
(1− φ)u2 dx.

It was shown that if φ = χD where χD denotes the indicator function of domain
D, then λα1 (φ) → λ1(D) as α → 0 [5] (see also in [24]). Furthermore, the objective
functional in (1.7) is concave with respect to ϕ, so the minimum in (1.7) is attained at
extreme points of K, which are exactly indicator functions of domain, giving partition
solutions. One could interpret the second term in (1.9) as a penalty term to penalize
the support of u to be the region where φ = 1 if φ is an indicator function of a domain.

In this paper, we propose a novel relaxation to the Dirichlet partition problem.
Instead of considering the relaxation using the Schrödinger operator, we propose to
approximate λ1(φ) using a small τ as follows

λτ1(φ) = min
v∈L2(Ω)
‖v‖2=1

1

τ
− 1

τ

∫
Ω

φ|e τ2 ∆v|2 dx

where e
τ
2 ∆v denotes the solution at t = τ/2 of the following free space heat diffusion

equation:

(1.10)

{
∂tu = ∆u,

u(x, t = 0) = v(x)
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which can also explicitly be written by

u(x, τ/2) = Gτ/2 ∗ v, Gτ (x) =
1

(4πτ)d/2
exp(−|x|

2

4τ
).

Based on the new relaxed problem, we derive a novel and simple iterative method
for finding the approximate solution. The method only alternates three steps: 1.
convolution, 2. thresholding, and 3. projection. Because of the use of auxiliary
functions, it can be applied into Dirichlet partition problems in arbitrary domains.
The convolution is between a free-space heat kernel and a function with finite support,
it can be efficiently computed using the fast Fourier transform (FFT) even for the
cases of arbitrary domains by simply extending to a relatively larger square domain.
Furthermore, we rigorously prove the unconditional stability of the proposed method.
In other words, each iteration in the proposed algorithms enjoys the energy decaying
property.

The paper is organized as follows. In Section 2, we describe the new relaxation of
the Dirichlet k-partition problem and some basic properties of the relaxed objective
functional. We derive the algorithm in Section 3 and describe the detail of implemen-
tation in Section 4. We show the performance of the proposed algorithm via extensive
numerical experiments in Section 5 and draw some conclusions and future discussions
in Section 6.

2. New relaxation of the problem. Let d ≥ 2 and Ω ∈ Rd be a bounded
open connected set. For every open (or quasi-open) subset A ⊂ Ω we denote by λA1
the first Dirichlet eigenvalue of the Laplace operator:

(2.1)

{
−∆u = λA1 u in A,

u = 0 on ∂A.

This can be understood in a weak sense to find u ∈ H1
0 (A) such that,

(2.2) ∀v ∈ H1
0 (A),

∫
A

∇u · ∇v dx = λA1

∫
A

uv dx.

The eigenvalue can now be given by the minimum principle:

(2.3) λA1 = min
u∈H1

0 (A)

∫
A
|∇u|2 dx∫
A
|u|2 dx

Using the fact ∫
A

|∇u|2 dx =

∫
A

−u∆u dx,

a simple expansion

(2.4)

{
e
τ
2 ∆u = u+ τ

2 ∆u+ o(τ) τ → 0,

|e τ2 ∆u|2 = |u|2 + τu∆u+ o(τ) τ → 0,

and
∫
A
|u|2 dx = 1, one can obtain an approximation to λτ,A1 through

(2.5) λτ,A1 = min
u∈H1

0 (A)
‖u‖2=1

∫
A

|∇u|2 dx = min
u∈H1

0 (A)
‖u‖2=1

1

τ
− 1

τ

∫
A

|e τ2 ∆u|2 dx+ o(1) τ → 0.
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Let φ : Ω→ {0, 1} be a bounded variation function, we further consider a relaxed
problem:

(2.6) λτ1(φ) = inf
v∈L2(Ω)
‖v‖2=1

1

τ
− 1

τ

∫
Ω

φ|e τ2 ∆v|2 dx.

Remark 2.1. 1. In the relaxation, we also relax the space for v from H1
0 (Ω) to

L2(Ω).
2. Furthermore, we note that when φ = χA, the direct relaxation using φ in the form

inf
v∈H1

0 (Ω)
‖v‖2=1

∫
Ω

φ|∇v|2 dx or inf
v∈L2(Ω)
‖v‖2=1

∫
Ω

φ|∇v|2 dx

would obviously attain the global minimum value 0 at many choices of v ∈ H1
0 (Ω)

satisfying ‖v‖2 = 1. For example, one can simply take ṽ ∈ H1
0 (Ω) satisfying ‖ṽ‖2 = 1

and supp(ṽ) ∈ Ω \ Ā where Ā is the closure of A.

Denote

B = {u = (u1, u2, · · · , uk)|u ∈ L2(Ω,Rk), ‖u`‖2 = 1},

we propose a new relaxation to problem (1.1) by

(2.7) inf
ϕ∈K

inf
u∈B

Eτ (ϕ, u) :=
k

τ
−
∑
`∈[k]

1

τ

∫
Ω

ϕ`|e
τ
2 ∆u`|2 dx.

We first list some properties of Eτ (ϕ, u) in the following lemma.

Lemma 2.2. Assume τ > 0, then the following properties hold for the functional
Eτ (ϕ, u) defined in (2.6).

(i) Eτ (ϕ, u) is nonnegative for any (ϕ, u) ∈ K ×B.
(ii) Given ϕ, Eτ (ϕ, u) is continuous with respect to u on L2(Ω;Rk).

(iii) Eτ (ϕ, u) is concave with respect to u on L2(Ω;Rk).
(iv) The Fréchet derivative of Eτ (ϕ, u) with respect to u` ∈ L2(Ω;R) is

δEτ (ϕ, u)

δu`
= −2

τ
e
τ
2 ∆(ϕ`e

τ
2 ∆u`).

Proof. (i) For any (ϕ, u) ∈ K × B and ` ∈ [k], ϕ`(x) ∈ [0, 1] and ‖u`‖ = 1,
we then have

−1

τ

∫
Ω

ϕ`|e
τ
2 ∆u`|2 dx ≥−

1

τ

∫
Ω

|e τ2 ∆u`|2 dx

≥− 1

τ
‖e τ2 ∆‖2‖u`‖22 ≥ −

1

τ
‖u`‖22 = −1

τ

and thus we have Eτ (ϕ, u) ≥ 0.
(ii) Let u, v ∈ L2(Ω,Rk), direct calculation using the fact that ‖e τ2 ∆u‖2 ≤ ‖u‖2
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yields

|Eτ (ϕ, u)− Eτ (ϕ, v)| =
∑
`∈[k]

1

τ

∫
Ω

ϕ`
∣∣|e τ2 ∆v`|2 − |e

τ
2 ∆u`|2

∣∣ dx
=
∑
`∈[k]

1

τ

∫
Ω

ϕ`
∣∣(e τ2 ∆(u` + v`)

) (
e
τ
2 ∆(u` − v`)

)∣∣ dx
≤1

τ

∑
`∈[k]

‖u` + v`‖2‖u` − v`‖2

≤2
√
k

τ
‖u− v‖2,

implying the continuity in the L2 topology.
(iii) This can be proved by a direct computation.
(iv) ∀v ∈ L2(Ω,Rk) with vi = 0 (i 6= `), direct computation yields〈

δEτ (ϕ, u)

δu`
, v`

〉
= lim
ε→0

Eτ (ϕ, u+ εv)− Eτ (ϕ, u)

ε

= −2

τ

∫
Ω

(ϕ`e
τ
2 ∆u`)e

τ
2 ∆v` dx

= −2

τ

∫
Ω

(e
τ
2 ∆(ϕ`e

τ
2 ∆u`))v` dx

=

〈
−2

τ
e
τ
2 ∆(ϕ`e

τ
2 ∆u`), v`

〉
.

Here, the second to the last equality is by the fact that the operator e
τ
2 ∆

forms a semi-group, that is,〈
e
τ
2 ∆f, g

〉
=
〈
f, e

τ
2 ∆g

〉
.

In the follows, we first discuss the existence of the solution of the relaxed problem
(2.7) for given ϕ.

Theorem 2.3 (Existence of u). For a given ϕ ∈ K and τ > 0, the problem (2.7)
admits at least one solution u ∈ B.

Proof. Denote

B̃ = {ũ = (ũ1, ũ2, · · · , ũk)|u = (u1, u2, · · · , uk) ∈ L2(Ω,Rk),

ũ` =
e
τ
2 ∆(φe

τ
2 ∆u`)

‖e τ2 ∆(φe
τ
2 ∆u`)‖2

, ‖u`‖2 ≤ 1}

and cl(B̃)H1(Ω,Rk) as the closure of B̃ in H1(Ω,Rk). Here, we use the fact that ũ` is a

smooth function and its H1 norm is bounded. Because H1(Ω,Rk) is compactly em-
bedded in L2(Ω,Rk) and cl(B̃)H1(Ω,Rk) is a closed and bounded subset in H1(Ω,Rk),

cl(B̃)H1(Ω,Rk) is then compact in L2(Ω,Rk). In addition, because Eτ (ϕ, u) is contin-

uous on L2(Ω,Rk), there exists at least one u? ∈ cl(B̃)H1(Ω,Rk) such that

Eτ (ϕ, u?) = inf
u∈cl(B̃)

H1(Ω,Rk)

Eτ (ϕ, u).
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Furthermore, it is straightforward to see ‖u?‖2 = 1 because the concavity of Eτ (ϕ, u)
and convexity of cl(B̃)H1(Ω,Rk). In other words, the minimum value occurs at the
extreme points of the set.

For any v = (v1, v2, · · · , vk) ∈ B but not in cl(B̃)H1(Ω,Rk), denote

v̂` =
e
τ
2 ∆(φe

τ
2 ∆v`)

‖e τ2 ∆(φe
τ
2 ∆v`)‖2

,

we have

−
〈
e
τ
2 ∆(φe

τ
2 ∆v`), v`

〉
≥ −

〈
e
τ
2 ∆(φe

τ
2 ∆v`), v̂`

〉
(2.8)

and thus

−
〈
e
τ
2 ∆(φe

τ
2 ∆v`), v`

〉
≥ −

〈
e
τ
2 ∆(φe

τ
2 ∆v`), v`

〉
− 2

〈
e
τ
2 ∆(φe

τ
2 ∆v`), v̂` − v`

〉
≥ −

〈
e
τ
2 ∆(φe

τ
2 ∆v̂`), v̂`

〉
.(2.9)

The last inequality comes from the fact that the graph of the linearization of a concave
functional locates above its graph. We then have Eτ (ϕ, v) ≥ Eτ (ϕ, v̂). This implies
that the minimum value can always be attained in cl(B̃)H1(Ω,Rk).

The existence of ϕ can be argued as follows.

Theorem 2.4 (Existence of ϕ). Problem (2.7) admits at least one solution ϕ ∈ K.

Proof. From Lemma 2.2(i), we have

inf
ϕ∈K

Eτ (ϕ, u) ∈ [0,
1

τ
].

Let {ϕn}∞n=1 ∈ K be a minimizing sequence, from the weak∗L∞(Ω) sequential com-
pactness of K, we have that there exists a subsequence, which we continue to denote

by {ϕn}∞n=1 and ϕ? ∈ K, such that ϕn
w∗−L∞
⇀ ϕ?. Then, because of the fact that

|e τ2 ∆u`|2 ∈ L1(Ω,R), we have∑
`∈[k]

∫
Ω

ϕn` |e
τ
2 ∆u`|2 dx→

∑
`∈[k]

∫
Ω

ϕ?` |e
τ
2 ∆u`|2 dx

implying the infimum attains at ϕ?.

Furthermore, because of the form of the objective functional, one could arrive
that at least one solution of ϕ gives partition functions. In other words, there exists
at least one solution of ϕ whose entries are indicator functions of domains.

Theorem 2.5. Denote

K̃ = {ϕ = (ϕ1, ϕ2, · · · , ϕk)|ϕ` : Ω→ {0, 1} measurable and
∑
`∈[k]

ϕ` = 1 a.e. Ω}.

(2.7) admits at least one solution in K̃.

Proof. Assume ϕ is an optimal solution and not in K̃. We assume there exists an
ε > 0, a measurable set A ⊂ Ω, and i 6= j ∈ [k], such that 0 < |A| < |Ω| and

ϕi(x), ϕj(x) ∈ (ε, 1− ε) ∀x ∈ A.
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Considering an arbitrary Ã ⊂ A with a positive measure,

ψm(x, t) = ϕm(x) + t(δm,i − δm,j)χÃ(x)

for m = 1, 2, · · · , k. Then we have∑
m

ψm(x, t) = 1 and ψm(x, t) ≥ 0

for t ∈ (−ε, ε) so that ψm(·, t) ∈ K. Then, we have

dEτ (ϕ, u)

dt
=

1

τ

∫
Ω

χÃ(|e τ2 ∆uj |2 − |e
τ
2 ∆ui|2) dx.

Because ϕ is an optimal solution, the first order necessary condition gives that∫
Ω

χÃ(|e τ2 ∆uj |2 − |e
τ
2 ∆ui|2) dx = 0, ∀Ã ⊂ A with a positive measure

implying that
|e τ2 ∆uj(x)|2 = |e τ2 ∆uj(x)|2, a.e. in A.

This immediately leads us that ϕi(x) = 1 ∀x ∈ A or ϕj(x) = 1 ∀x ∈ A can give the
same value of Eτ (ϕ, u).

If there exists some Ã ⊂ A with positive measure that∫
Ω

χÃ(|e τ2 ∆uj |2 − |e
τ
2 ∆ui|2) dx 6= 0.

It then quickly implies that ψm(x, 0) can not be an optimal solution which contradicts
with the assumption.

Now, we focus on the situation on when ϕ ∈ K̃. For any entry in ϕ denoted by φ,
when φ = χA is the indicator function of a set A ⊂ Ω , one can intuitively treat λτ1(φ)
as an approximation to λ1(A). The following two lemmas show that as τ becomes
small the minimizer u corresponding to λτ1(φ) becomes strongly localized on A and
the approximation is exact in the limit that τ → 0.

Lemma 2.6. Given φ = χA where A is a measurable set with positive measure
and finite perimeter. Define

uτ := arg min
v∈L2(Ω,R)
‖v‖2=1

−
∫

Ω

φ|e τ2 ∆v|2 dx.

Then, uτ ≥ 0, ∀x ∈ Ω (or uτ ≤ 0, ∀x ∈ Ω) and limτ→0

∫
Ω

(1− φ)uτ dx = 0.

Proof. Without loss of generality, we prove the non-negativity of uτ . If not, we
write uτ = uτ+ − uτ− where

uτ+(x) = max{0, uτ (x)}, uτ− = uτ+ − uτ .

Writing ũτ = uτ+ + uτ−, we have ‖ũτ‖2 = 1, e
τ
2 ∆uτ+ ≥ 0, and e

τ
2 ∆uτ− ≥ 0. Thus,

|e τ2 ∆uτ (x)| ≤ |e τ2 ∆ũτ (x)|
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and

−
∫

Ω

φ|e τ2 ∆uτ |2 dx ≥ −
∫

Ω

φ|e τ2 ∆ũτ |2 dx.

This implies the positivity of uτ .
We then prove limτ→0

∫
Ω

(1− φ)uτ dx = 0.
Because ‖uτ‖2 = 1, we have

‖φe τ2 ∆uτ‖2 ≤ 1 and ‖e τ2 ∆(φe
τ
2 ∆uτ )‖2 ≤ 1

using the fact that ‖e τ2 ∆‖ ≤ 1.
Then, similar to (2.8) and (2.9), we have

−
〈
e
τ
2 ∆(φe

τ
2 ∆uτ ), uτ

〉
≥ −

〈
e
τ
2 ∆(φe

τ
2 ∆ûτ ), ûτ

〉
where

ûτ =
e
τ
2 ∆(φe

τ
2 ∆uτ )

‖e τ2 ∆(φe
τ
2 ∆uτ )‖2

.

Because uτ is the optimal solution, the following equality holds

−
〈
e
τ
2 ∆(φe

τ
2 ∆uτ ), uτ

〉
− 2

〈
e
τ
2 ∆(φe

τ
2 ∆uτ ), ûτ − uτ

〉
= −

〈
e
τ
2 ∆(φe

τ
2 ∆ûτ ), ûτ

〉
,

which gives 〈
φe

τ
2 ∆(ûτ − uτ ), e

τ
2 ∆(ûτ − uτ )

〉
= 0.

That is,

e
τ
2 ∆ûτ = e

τ
2 ∆uτ a.e. in A

and

e
τ
2 ∆(φe

τ
2 ∆uτ ) = e

τ
2 ∆(φe

τ
2 ∆ûτ ) = νûτ in Ω

where

ν = ‖e τ2 ∆(φe
τ
2 ∆uτ )‖2.

In [20], when the perimeter or surface area of the set A is finite and ψ : Rd → R is
continuous with compact support, it was rigorously proved that

lim
τ→0

√
2π

τ

∫
Rd

(1− φ)e
τ
2 ∆(φψ) dx =

∫
Γ

ψ dΓ

where Γ is the boundary of the set A. It follows that

lim
τ→0

∫
Ω

(1− φ)e
τ
2 ∆(φψ̂) dx = lim

τ→0

∫
Ω

(1− φ)ûτ dx = 0

by denoting ψ̂ = e
τ
2 ∆ûτ and thus

lim
τ→0

∫
Ω

(1− φ)uτ dx = 0.

Lemma 2.7. Given A ⊂ Ω an open set with positive measure, λτ1(χA) ≤ λ1(A)
and limτ→0 λ

τ
1(χA) = λ1(A).
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Proof. We first prove the boundedness of λτ1(χA). As shown in the proof of
Lemma 2.6, λτ1(χA) can be written by

λτ1(χA) = min
γ

1− γ
τ

s.t. e
τ
2 ∆(φe

τ
2 ∆u) = γu in Ω,

‖u‖2 = 1.

Denote by ũ the unit eigenfunction corresponding to the first eigenvalue λ1(A) of
−∆ in A with Dirichlet boundary condition and extended by 0 in Ω \A;

−∆ũ = λ1(A)ũ in A,

ũ = 0 in Ω \A.

Direct calculation yields e
τ
2 ∆ũ = e−λ1(A)τ/2ũ which is still supported in A. Hence,

e
τ
2 ∆(φe

τ
2 ∆ũ) = e

τ
2 ∆(e−λ1(A)τ/2ũ) = e−λ1(A)τ ũ.

That is, ũ satisfies the constraint with γ = e−λ1(A)τ . It implies that

λτ1(χA) ≤ 1− e−λ1(A)τ

τ
≤ λ1(A).

In addition, straightforward calculation yields,

dλτ1(φ)

dτ
=− 1

τ2
+

1

τ2
〈φe τ2 ∆u, e

τ
2 ∆u〉 − 1

τ
〈φe τ2 ∆u, e

τ
2 ∆∆u〉

≤ − 1

τ2
+

1

τ2
〈φe τ2 ∆u, e

τ
2 ∆(I − τ∆)u〉

≤ − 1

τ2
+

1

τ2
〈e τ2 ∆u, e

τ
2 ∆(I − τ∆)u〉

=− 1

τ2
+

1

τ2
〈u, eτ∆(I − τ∆)u〉 ≤ − 1

τ2
+

1

τ2
‖eτ∆(I − τ∆)‖ ≤ 0.

It is easy to check that the equality holds only when supp(e
τ
2 ∆u) ⊂ A, e

τ
2 ∆(I −

τ∆)u ⊂ A and u is a constant function, which can not happen. Hence
dλτ1 (φ)
dτ < 0.

Consequently, limτ→0 λ
τ
1(χA) exists and limτ→0 λ

τ
1(χA) ≤ λ1(A).

For the reverse inequality, for the sequence

uτ = arg min
v∈L2(Ω,R)
‖v‖2=1

1

τ
− 1

τ

∫
Ω

φ|e τ2 ∆v|2 dx,

Lemma 2.6 implies that there exists a ũ such that uτ → ũ after possibly passing to a
subsequence and

∫
Ω

(1− φ)ũ dx = 0. We then observe that ũ is in the admissible set
of the following minimization problem

min
v∈L2(Ω,R)
‖v‖2=1∫

Ω
(1−φ)vdx=0

1

τ
− 1

τ

∫
Ω

|e τ2 ∆v|2 dx

which indicates that

lim
τ→0

λτ1(χA) ≥ lim
τ→0

1− e−λ1(A)τ

τ
= λ1(A).
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Fig. 1. A diagram for the main idea on approximating a convex energy using a concave energy
by keeping values on the constraint set. See Section 2.

In Figure 1, we give a simple demonstration of the main idea on approximating
a convex energy using a concave energy by keeping values on the constraint set.
Considering the constraint set being a circle, for a convex energy as shown in the left,
one could calculate the gradient direction which makes the iteration moves inside the
convex hull of the constraint set, then an artificial projection to the circle is necessary
which may make the energy either increasing or decreasing slowly. However, the
optimization is essentially only on the boundary. If one can find a relaxation to a
concave approximation as shown in the right, the problem can immediately be relaxed
to minimizing a concave functional on a convex set, this can be done efficiently by
linear sequential programming owing to the fact that the graph of a concave functional
always locates under its linearization. Here, we assume the constraint set has a very
important feature: the constraint set is exactly the extreme set of its convex hull.
Many algorithms can be connected to this idea, for example, the threshold dynamics
method [16] whose constraint set is {0, 1}n which are the extreme points of its convex
hull [0, 1]n. It has been applied into many interface related problems such as wetting
dynamics [34, 35], image segmentation [19, 30, 33], foam bubbles [28] and surface
reconstruction [27]. Some other related work on diffusion generated methods for
target-valued harmonic maps can be referred to [22, 23, 32] where the constraint set
is n× n orthogonal matrix group O(n).

3. Derivation of the algorithm. In this section, for any fixed k, we focus on
the numerical method for the following minimization problem

min
ϕ∈K
u∈B

Eτ (ϕ, u) =
k

τ
−
∑
`∈[k]

1

τ

∫
Ω

ϕ`|e
τ
2 ∆u`|2 dx.

We simply use an alternating direction method of minimization to minimize the energy
functional with respect to u = (u1, u2, · · · , uk) and ϕ = (ϕ1, ϕ2, · · · , ϕk). To be
specific, start with an initial guess u0, we compute the sequence

ϕ0, u1, ϕ1, u2, ϕ2, · · · , ϕn, un, · · ·

by

ϕn = min
ϕ∈K

Eτ (ϕ, un)(3.1)

un+1 = min
u∈B

Eτ (ϕn, u)(3.2)
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To solve (3.1), it’s easy to see that the problem is linear in ϕ` and it can be solved
in a pointwise manner by a simple comparison among k values at any x ∈ Ω. That
is, for each x,

(3.3) ϕn+1
` (x) =

{
1 if ` = min{arg maxi∈[k] |e

τ
2 ∆un` (x)|2},

0 otherwise.

We then quickly have the following lemma by a direct calculation.

Lemma 3.1. The ϕn+1 computed using (3.3) satisfies

Eτk (ϕn+1, un) ≤ Eτk (ϕ, un), ∀ϕ ∈ K.

To solve (3.2), we note that the functional is quadratic and strictly concave with
respect to u`. Furthermore, we note that u` are individual to each other, hence (3.2)
can be further relaxed to update u` independently,

un+1
` = min

u`∈L2(Ω,R)
‖u`‖2≤1

1

τ
−
∫

Ω

1

τ
ϕn` |e

τ
2 ∆u`|2 dx.(3.4)

The following lemma shows the equivalence between problem (3.2) and problem
(3.4).

Lemma 3.2.

min
u∈B

Eτk (ϕn, u) = min
u∈L2(Ω,Rk)
‖u`‖2≤1

Eτk (ϕn, u).

Proof. If c = ‖u`‖2 < 1 for some ` ∈ [k], write ũ = (u1, u2, · · · , u`/c, · · · , uk), we
have

Eτk (ϕn, ũ)− Eτk (ϕn, u) = −1− c2

c2
1

τ

∫
Ω

ϕ`|e
τ
2 ∆u`|2 dx ≤ 0

where the equality holds only when∫
Ω

ϕ`|e
τ
2 ∆u`|2 dx = 0,

which is impossible for a minimizer. Hence, the minimizer for

min
u∈L2(Ω,Rk)
‖u`‖2≤1

Eτk (ϕn, u)

can be attained in B.

Then, problem (3.4) can be solved by the sequential linear programming approach.
That is, we consider

un+1
` = arg min

u∈L2(Ω,Rk)
‖u`‖2≤1

L
un`
τ (u)(3.5)

where

L
un`
τ (u) = Eτk (ϕn, un) +

∑
`∈[k]

〈
u` − un` ,−

2

τ
e
τ
2 ∆(ϕn` e

τ
2 ∆un` )

〉
.

The following lemma shows that the minimization problem (3.5) can then be done
by a simple projection step.
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Lemma 3.3. The minimum value of problem (3.5) attains at

un+1
` =

e
τ
2 ∆(ϕn` e

τ
2 ∆un` )

‖e τ2 ∆(ϕn` e
τ
2 ∆un` )‖2

.

Proof. By rewriting (3.5) and dropping constant terms with respect to u, problem
(3.5) is equivalent to

un+1
` = arg min

u`∈L2(Ω,Rk)
‖u`‖2≤1

〈
u`,−

2

τ
e
τ
2 ∆(ϕn` e

τ
2 ∆un` )

〉
.

This is a direct consequence of the constraint ‖u`‖2 = 1 and a simple projection.

When updating u, one can simply iterate one step to find a solution giving a
smaller value in problem (3.4) or iterate to a stationary solution of u for fixed ϕn

before updating ϕn+1. These are summarized into the following two algorithms (i.e.,
Algorithm 3.1 and Algorithm 3.2), respectively.

Algorithm 3.1 An iterative method for approximating the solution of problem (2.7).

Input: Let Ω be a given domain, τ > 0, tol > 0, and u0 ∈ B.
Output: ϕn: representing the partition
Set s = 1
while ‖ϕs+1 − ϕs‖2 ≥ tol do

1. Diffusion Step. Compute u∗` = e
τ
2 ∆us` .

2. Update ϕ. Update ϕ by:

ϕs`(x) =

{
1 if ` = min{arg maxi∈[k] |u∗` (x)|2},
0 otherwise.

3. Update u. Update u by:

us+1
` =

e
τ
2 ∆(ϕs`e

τ
2 ∆us`)

‖e τ2 ∆(ϕs`e
τ
2 ∆us`)‖2

Set s = s+ 1
end while

Intuitively, for Algorithms 3.1 and 3.2, a relatively large τ may make the algorithm
be insensitive to initial guesses and a relatively small τ could increase the accuracy
of the method, especially in u. Based on these observations, we propose adaptive in
time algorithms corresponding to Algorithms 3.1 and 3.2 in Algorithms 3.3 and 3.4.

Based on the derivation of above algorithms, we have the following theorem to
guarantee that the updating sequence decreases the energy functional (i.e., uncondi-
tionally stable) and converges in finite steps.

Theorem 3.4. For any given τ > 0, considering the sequence (ϕs, us) (s =
0, 1, 2, · · · ) generated from Algorithms 3.1 or 3.2, we have

Eτ (ϕs+1, us+1) ≤ Eτ (ϕs, us).

Proof. From Lemma 3.1, we have

Eτ (ϕs+1, us) ≤ Eτ (ϕs, us).
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Algorithm 3.2 An iterative method for approximating the solution of problem (2.7).

Input: Let Ω be a given domain, τ > 0, tol > 0, and u0 ∈ B.
Output: ϕn: representing the partition
Set s = 0
while ‖ϕs+1 − ϕs‖2 ≥ tol do

1. Diffusion Step. Compute u∗` = e
τ
2 ∆us` .

2. Update ϕ. Update ϕ by:

ϕs`(x) =

{
1 if ` = min{arg maxi∈[k] |u∗` (x)|2},
0 otherwise.

3. Update u. Set ûs,0 = us and m = 0,
while ‖ûs,m+1 − ûs,m‖ ≥ tol do

ûs,m+1
` =

e
τ
2 ∆(ϕs`e

τ
2 ∆ûs,m` )

‖e τ2 ∆(ϕs`e
τ
2 ∆ûs,m` )‖2

.

Set m = m+ 1.
end while
Set us+1 = ûs,m.
Set s = s+ 1.

end while

Algorithm 3.3 An adaptive in time algorithm for Algorithm 3.1.

Input: Let Ω be a given domain, τ > 0, tol > 0, and u0 ∈ B.
Output: ϕn: representing the partition
Set r = 0
while ‖ϕr+1 − ϕr‖2 ≥ tol do

Run Algorithm 3.1 and output ϕr and ur.
Set r = r + 1 and τ ← τ/2.

end while

Algorithm 3.4 An adaptive in time algorithm for Algorithm 3.2.

Input: Let Ω be a given domain, τ > 0, tol > 0, and u0 ∈ B.
Output: ϕn: representing the partition
Set r = 0
while ‖ϕr+1 − ϕr‖2 ≥ tol do

Run Algorithm 3.2 and output ϕr and ur.
Set r = r + 1 and τ ← τ/2.

end while

Combining Lemma 3.3 and the concavity of Eτ (ϕ, u) with respect to u yields

Eτ (ϕs+1, us) ≥ Lu
n

τ (ϕs+1, us+1) ≥ Eτ (ϕs+1, us+1)

where the last inequality comes from the fact that the linearization of a concave
functional always locates above the functional. Thus we have

Eτ (ϕs+1, us+1) ≤ Eτ (ϕs, us).
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The equality holds only when us+1 = us and ϕs+1 = ϕs. Because the energy func-
tional has a low bound, the algorithm converges to a stationary solution in finite
steps.

4. Implementation and discussion on boundary conditions. In this sec-
tion, we discuss the implementation of the algorithm on flat tori and with Dirichlet
boundary conditions on arbitrary domains.

Note that in the algorithm, the only thing we need to compute is e
τ
2 ∆u for a given

u. In the follows, we discuss it into two cases.
1. Periodic boundary conditions: In the case where we consider Ω as flat

tori ([−π, π]d) , we write e
τ
2 ∆u = Gτ/2 ∗ u where

Gτ/2 =
1

(2πτ)d/2
exp(−|x|

2

2τ
).

Because of the periodic boundary condition, we simply compute it by

e
τ
2 ∆u = F−1(exp(−|ξ|2τ/2)F(u))

where F is the Fourier transform, ξ is the spectral variable, and F−1 is
the inverse Fourier transform. These can be done efficiently by using the
fast Fourier transform (FFT). Note that exp(−|ξ|2τ/2) here is the Fourier

transform of 1
(πτ)d/2

exp(− |x|
2

2τ ).

2. Dirichlet boundary conditions: In the case where we consider Ω as arbi-
trary domains with Dirichlet boundary conditions, we consider an extension
of Ω to Ω̃ with Ω̃ being relatively large and square (See Figure 2 for a dia-
gram). The values of u and ϕ are extended from Ω to Ω̃ simply by assigning
0 in Ω̃\Ω. In each iteration, we only update ϕ in the domain Ω which can be
simply done by introducing an indicator function of Ω in the computational
domain Ω̃. To be more precise, we use ψ to denote the indicator function of
the domain and in the update of ϕn` , we simply set ϕn` = ϕn` ψ.
We note that this does not break the energy decaying property of the al-
gorithm. The proposed algorithm does not need a special discretization for
the specific domain, one could compute the Dirichlet k-partition in a fixed
computational domain for arbitrary shapes by only introducing one auxiliary
indicator function ψ.

5. Numerical experiments. In this Section, we demonstrate the diffusion gen-
erated method in Algorithms 3.1-3.4 on flat tori and arbitrary domains. All methods
were implemented in MATLAB and results reported below were obtained on a laptop
with a 2.7GHz Intel Core i5 processor and 8GB of RAM.

If there is no other statement, for all computational results, we set the computa-
tional domain as [−π, π]d and use a random initial guess for k-partition (i.e. u0) as
follows.
Step1. Generate k random points (seeds), x` (` ∈ [k]), in the computational domain.
Step2. Compute the Voronoi cell around each seed, A` (` ∈ [k]), and denote

u0
` =

χA`
(
∫

Ω
χA` dx)1/2

.

Remark 5.1. If we consider the cases of Dirichlet boundary conditions in arbitrary
domains, we restrict k random seeds in the specific domain instead of the whole
computational domain.
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Fig. 2. A diagram for the extension of a computation domain from Ω to Ω̃.

5.1. Accuracy on the computation of the first eigenvalue and eigen-
function. In the first experiment, we check the computation accuracy of the pro-
posed algorithm for computing the first eigenvalue and eigenfunction when ϕ is fixed
as ϕ = χA with A = [−π/2, π/2]2 ⊂ [−π, π]2. We then solve

u = arg min
v∈B

Eτ (χA, v)

by the Step 3 in Algorithm 3.2 associated with an adaptive in time technique. To
make no confusion, we write the scheme in the follows.

Algorithm 5.1 A scheme to approximate the first eigenvalue and eigenfunction of a
fixed domain with Dirichlet boundary conditions.

Input: Let A ⊂ Ω be a given domain, τ > 0, tol > 0, and u0 ∈ B.
Output: un: approximating the first eigenfunction,
1
τ −

1
τ

∫
Ω
χA|e

τ
2 ∆un|2 dx: approximating the first eigenvalue.

Set s = 0
while τ ≥ tol do

Set ûs,0 = us and m = 0,
while ‖us,m+1 − us,m‖2 ≥ tol do

ûs,m+1 =
e
τ
2 ∆(χAe

τ
2 ∆ûs,m)

‖e τ2 ∆(χAe
τ
2 ∆ûs,m)‖2

.

Set m = m+1.
end while
Set τ ← τ

2 .
Set us+1 = ûs,m.
Set s = s+ 1.

end while

The exact solution of the first eigenvalue and the corresponding eigenfunction
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(with unit L2(Ω) norm) in A with the zero Dirichlet boundary condition is written by

λ1(A) = 2, uA1 (x, y) =

{
2
π cosx cos y if (x, y) ∈ [−π/2, π/2]2,

0 otherwise.
(5.1)

We first check the accuracy of the new approximation

1

τ
− 1

τ

∫
Ω

χA|e
τ
2 ∆u|2 dx

to the first eigenvalue when u = uA1 . Table 1 lists the approximate eigenvalue com-
puted with different τ . One can observe that the computed eigenvalue converges to
the exact value 2 as τ goes to 0 from below. This verifies the motivation of the new
proposed approximation and is consistent with Lemma 2.7. We note that this fact is
also similar to those in [5, 24].

Table 1
Approximate eigenvalues computed on Ω with different τ = 2−4- 2−15. See Section 5.1.

τ 2−4 2−5 2−6 2−7 2−8 2−9

Approximate λ1 1.8801 1.9388 1.9691 1.9845 1.9922 1.9961

τ 2−10 2−11 2−12 2−13 2−14 2−15

Approximate λ1 1.9980 1.9990 1.9995 1.9998 1.9999 1.9999

We then apply Algorithm 5.1 onto the computational domain [−π, π]2 discretized
by 64×64, 128×128, 256×256, 512×512 and 1024×1024 uniform grid points. Figure 3
shows the approximated solution of the eigenfunction and the difference between the
approximate solution and the exact solution (5.1), computed on 512× 512 discretized
mesh. We observe that the support of the approximate eigenfunction is almost in
[−π/2, π/2]2 and is consistent with the exact solution. Table 2 lists the eigenvalues
computed on different discretization with different values of tol. It is clear that the
eigenvalue converges to the exact value 2 with a finer mesh and a smaller τ .

Fig. 3. Left: the approximate eigenfunction in [−π/2, π/2]2. Right: The error compared to the
exact solution (5.1). See Section 5.1.

To check the convergence of the relaxation to the exact eigenvalue for arbitrary
domains in a same computational domain (i.e., [−π, π]2), we apply Algorithm 5.1 to
consider the approximate eigenvalues in the following several domains: 1. a rotated
square domain, 2. a rectangle domain, 3. an equilateral triangle domain, 4. a disk
domain, and 5. a three quarter disk domain as displayed in Figure 4. For the domain
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Table 2
The approximate eigenvalue computed on Ω with different discretization and different tol =

10−3-10−7. See Section 5.1.

XXXXXXXXXXtol
Resolution

64× 64 128× 128 256× 256 512× 512 1024× 1024

10−3 1.7725 1.8514 1.8863 1.9023 1.9100
10−4 1.7938 1.8881 1.9342 1.9543 1.9631
10−5 1.7970 1.8945 1.9463 1.9727 1.9852
10−6 1.7972 1.8949 1.9472 1.9746 1.9890
10−7 1.7972 1.8950 1.9473 1.9749 1.9896

Fig. 4. Five general domains to check the convergence of approximate eigenvalue as τ → 0.
See Section 5.1.

Table 3
The approximate eigenvalue for different domains. See Section 5.1.

PPPPPPPPτ
Domain

rotated square rectangle triangle disk 3/4 disk

10−3 1.9285 4.6713 5.0156 2.2657 4.3111
10−4 1.9737 4.8693 5.2237 2.3195 4.5068
10−5 1.9877 4.9274 5.2872 2.3360 4.5667
10−6 1.9910 4.9384 5.3008 2.3397 4.5791
10−7 1.9915 4.9397 5.3025 2.3402 4.5806

Reference solution 2 5 16/3 2.3438 4.6182

where the exact solution is not available, we set the reference solution by the solution
computed from finite element method with very fine meshes. In all experiments, we
use 1024 × 1024 uniform grids to discretize the computational domain. In Table 3,
we list the approximate value obtained by different tol and observe that for general
domains, the approximate values converge to the exact values as τ → 0 from below,
which is consistent with the fact we proved in Lemma 2.7 and also shows that the
relaxation and approximation is insensitive to the domain of consideration.

5.2. Verification on energy decaying and comparisons among Algo-
rithms 3.1-3.4. In this section, we perform a careful study on the energy decaying
properties for Algorithms 3.1-3.4. For this study, we simply choose k = 3 with a
random initial guess. Consider the computational domain discretized by 256 × 256
grid points and use τ = 1/4 for Algorithms 3.1-3.2 with the random initial guess
as shown in the middle of Figure 5. One can observe that Algorithm 3.1 takes 66
iterations to converge while Algorithm 3.2 only takes 29 iterations. This is consistent
with the fact that Algorithm 3.2 always finds the stationary solution for un+1 when
ϕn is given while Algorithm 3.1 only iterates one step along the descent direction.
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However, what is interesting, both algorithms converge to the same stationary solu-
tion and Algorithm 3.1 only takes 0.27 seconds CPU time while Algorithm 3.2 takes
2.52 seconds CPU time. One can understand this by that even Algorithm 3.2 only
takes 29 iterations, in each iteration, it takes many more steps for u to converge.

Fig. 5. Left: The energy curve with respect to the number of iterations for Algorithms 3.1-3.2.
Middle: An initial guess for 3-partition. Right: The converged solution (same for Algorithm 3.1
and Algorithm 3.2). See Section 5.2.

Furthermore, we check the energy decaying properties of Algorithms 3.3-3.4 with
an initial τ = 1/4 and tolτ = 10−4. Because adaptive in time techniques are used,
we compute the approximate energy in two ways: 1. using the adaptive τ and 2.
using a fixed relatively small τ = 10−4. Figure 6 list the energy decaying curve of
Algorithms 3.3 and 3.4. If we use a fixed τ to calculate the energy, the approximate
energy is monotonically decaying (See the left in Figure 6). If we use varying τ to
compute the approximate energy, one can observe that in the iteration of each τ , the
approximate energy is decaying but the energy jumps to a large value at the iteration
when τ is halved. This is also consistent with the observation from Tables 1 and 2
that the energy converges to the exact value from below (See the middle in Figure 6).
In the right of Figure 6, we plot the change between two iterations of ϕ, one can see
that as τ decreases, the partition becomes stationary. In particular, we observe that
an initial τ = 1/4 can already efficiently find the stationary solution and decreasing τ
only refines the solution a bit but computes the approximate energy more accurately.

Fig. 6. Left: Energy decaying curves with respect to iterations when using τ = 10−4 to calcu-
late the approximate energy, Middle: Energy decaying curves with respect to iterations when using
the adaptive values of τ to calculate the approximate energy, Right: Change in ϕ with respect to
iterations. See Section 5.2.

5.3. Acceleration by adaptive in time techniques. In this section, we check
the advantage of adaptive in time techniques through two experiments from a same
initialization: 1.) adaptive in time for τ changes in [1/4, 1/8, 1/16, 1/32, 1/64], 2.) fix
τ = 1/64 without adaptive in time. In Figure 7, we list the snapshots at different
iterations for both experiments and observe that both converge to the same solution.
In the first row, snapshots at iteration 67, 77, 85, 88, 90 correspond to stationary so-
lutions at different τ = 1/4, 1/8, 1/16, 1/32, and 1/64. One can observe that in the
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sense of partition, using large τ can achieve almost same result as that obtained from
small τ , but it accelerate the convergence dramatically. For instance, using a large
time step τ = 1/4 gives a similar solution after 10 iterations while using τ = 1/64
requires about 80 iterations.

1 10 20 67 77 85 88 90

1 81 161 241 321 401 481 601

Fig. 7. First row: snapshots at different iterations in adaptive in time for τ changing in
[1/4, 1/8, 1/16, 1/32, 1/128], second row: snapshots at different iterations for a fixed τ = 1/64. See
Section 5.3.

5.4. k-partition for a 2-dimensional periodic domain. In this section, we
simply apply Algorithm 3.3 on the calculation of k-partitions for periodic domains in
2-dimensional spaces. In Figure 8, we list the solution of k-partition for k = 4 − 12,
14− 16, 18, 20, 23− 25, 28, 30 and 36. In all results, we discretize the domain with
2562 grid points, set an initial τ = 1/4 and tolτ = 1/128, and start with random initial
guesses. From our experimental observation, all experiments converge in fewer than
about 2-3 hundreds steps and take about 2-75 seconds CPU time in average. Here,
the average CPU time is the average CPU time of 10 experiments with individually
independent random initial guesses for a fixed k. More precisely, the 4-partition case
only takes 2 seconds and even the 36-partition computation only takes 75 seconds.
All reported results are consistent with the results in [31]. Besides, we observe that
for most k, especially when k is large, we get hexagon structures. This tessellation
for Dirichlet partition is also consistent with the conjecture proposed in [7]. For
k = 5,7,10, irregular structures are observed and periodic extensions are plotted in
Figure 9.

5.5. k-partition for 2-dimensional arbitrary domains.. In this section, we
compute the Dirichlet k-partition in arbitrary domains. We treat the domain as a
subset of the computational domain [−π, π]2 and discretize the computational domain
by 5122 uniform grid points.

In Figure 10, we list k-partitions in an equilateral triangle domain for k = 2− 10,
12, 13, 15, 21, 28, 36, and 45. For k = 2 − 10, the results are consistent with the
results presented in [4, 10]. For k > 10, we select regular structures we observe to

list in Figure 10. In particular, when k = n(n+1)
2 , n = 1, 2, · · · , one can see very

regular structures with hexagon tessellations in the interior layer of the partition (for
example, k = 10, 15, 21, 28, 36, and 45). For all reported k in Figure 10, the average
CPU time for each computation is less than hundred seconds starting with random
initial guesses. For small k (e.g. k < 10), the computation only takes about 2 seconds.

Figure 11 lists the Dirichlet k-partitions in a square domain, a pentagon do-
main, a regular hexagon domain, a disk domain, a three-fold domain, and a five-fold
domain for k = 2 − 10. All results agree with the computational results in [10]
and [4] for the reported cases. However, all average computational time is less than
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k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k =14
5.06 8.95 10.48 18.44 16.81 20.56 24.67 28.77 32.81 42.20

k =15 k = 16 k=18 k = 20 k =23 k = 24 k =25 k=28 k = 30 k=36
46.72 51.81 62.33 73.01 89.94 95.88 101.91 120.10 132.47 327.67

Fig. 8. k-partitions in a periodic domain for k = 4− 12, 14− 16, 18, 20, 23− 25, 28, 30 and
36 together with corresponding approximate eigenvalues. See Section 5.4.

Fig. 9. Periodic extensions of k-partitions with k = 5, 7, 10. See Section 5.4.

30 seconds starting with random initial guesses. In particular, the computational
time of the level set based method proposed in [10] for the five-fold star cases for
k = 3 − 10 are 23, 27, 31, 35, 40, 44, 49 and 54 minutes respectively with a 1002 dis-
cretization of the domain. However, we find the same results with random initial
guesses (with the computational domain [−π, π]2 discretized by 5122 grid points)
only in 5.8, 9.2, 9.5, 5.4, 18.4, 15.8, 20.8, 19.1 seconds, respectively. It achieves more
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k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9
20.45 35.72 61.16 87.71 113.76 148.74 184.59 220.78

k=10 k=12 k=13 k=15 k=21 k=28 k=36 k=45
256.33 342.54 385.97 473.18 768.24 1142.01 1592.94 3379.16

Fig. 10. k-partitions in a triangle domain for k = 2− 10, 12, 13, 15, 21, 28, 36, and 45. The
table lists all approximate eigenvalues. See Section 5.5.

than 100 times acceleration. The corresponding approximate values are listed in the
table in Figure 11.

5.6. k-partition for a 3-dimensional periodic domain. In this section, we
show the efficiency of the proposed algorithm for a 3-dimensional periodic domain.
In all experiments, we discretize the periodic computational domain [−π, π]3 by 1283

uniform grid points and simply fix τ = π/16.
For k = 4 and initialization using a random tessellation, we obtain a partition

of a 3D flat torus by four identical rhombic dodecahedron structures as displayed in
Figure 12 with the approximate eigenvalue 6.96. The result agrees with those reported
in [31, 10]. The CPU time for this experiment without parallel computing is only 60
seconds and the CPU time reported in [10] for the same case with a 1003 uniform
discretization is 588 minutes.

For k = 8, we obtain the well-known Weaire–Phelan structure which is a structure
representing a foam of equal-sized shapes as shown in the second and third row of
Figure 13. Among eight partitions, two regions have the first type of shape which
consists of 12 pentagonal faces while the other six regions are the second type of
shape which has 2 hexagonal faces surrounded by 12 pentagonal faces. The overall
packing is shown in the first row of Figure 13. The approximate eigenvalue is 21.97.
The CPU time for this computation from a random initialization with a 1283 uniform
discretization is only 374 seconds while the time reported in [10] is 1246 minutes for
a 1003 discretization.

For k = 16, we obtain the well-known Kelvin Structure which consists of 16 ex-
actly same shapes as shown in Figure 14 with the approximate eigenvalue 69.65. This
shape is usually called truncated octahedron which is a space-filling convex polyhe-
dron with 6 square faces and 8 hexagonal faces. The CPU time for this computation
from a random initialization with 1283 uniform discretization is only 656 seconds.
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Approximate
eigenvalues k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k =10

Square 13.91 26.90 41.69 64.35 87.31 112.78 139.03 172.64 200.69
Petagon 11.84 23.25 38.08 54.67 74.08 98.30 123.78 151.43 179.79
Hexgon 9.29 18.33 35.52 52.78 71.70 89.89 115.59 142.47 169.15

Disk 9.17 18.33 20.48 45.27 61.69 79.72 100.26 124.67 148.40
Three-fold star 9.29 16.28 29.40 44.12 58.81 79.05 100.08 121.51 143.37
Five-fold star 10.69 20.39 31.62 43.17 58.09 78.46 98.62 120.13 142.30

Fig. 11. Computed k-partition in a square domain, a pentagon domain, a regular hexagon
domain, a disk domain, a three-fold star domain, and a five-fold star domain for k = 2−10 together
with corresponding approximate eigenvalues. See Section 5.5.

Fig. 12. Left: A periodic extension on the 4-partition in a 3-dimensional flat torus. Middle:
The rhombic dodecahedron structure. Right: The xy-view of the rhombic dodecahedron structure.
The approximate eigenvalue is 6.96. The CPU time is 60 seconds. See Section 5.6.

5.7. k-partition in arbitrary 3-dimensional domains. In this section, we
consider the k-partition in several 3-dimensional domains to show the performance
of the proposed method in 3-dimensional arbitrary domains with Dirichlet boundary
conditions. In all following experiments, we set the computational domain as [−π, π]3
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Fig. 13. First row: The 8-partition for a periodic cube with three different views. Second and
third row: Two types of shapes. The shape in the second row consists of 12 pentagonal faces and the
shape in the third row has 2 hexagonal faces surrounded by 12 pentagonal faces. The approximate
eigenvalue is 21.97. The CPU time is 374 seconds. See Section 5.6.

Fig. 14. The 16-partition for a periodic cube with different views and the shape of the truncated
octahedron. Left to right: the 16-partition for a periodic cube, the xy-view of the structure (same as
the yz-view), the xz-view of the structure, the truncated octahedron, and the xy-view of the truncated
octahedron (same as the xz- and yz- views). The approximate eigenvalue is 69.65. The CPU time for
this computation from a random initialization with 1283 uniform discretization is only 656 seconds.
See Section 5.6.

discretized by 1283 uniform grid points and τ = π/16. We consider the following
three domains: [−π/2, π/2]3 ⊂ [−π, π]3, a ball centered at the origin with radius π/2,
and a regular tetrahedron centered at the origin with radius of circumsphere 3π/4.
We mainly compare the results with the results computed from the method in [5] and
reported by Bogosel1.

In Figure 15, we list the k-partitions in a cube for k = 3 − 6, 8, 9 and 14 with
some dissections to expose the interior shapes. All results agree with those reported

1http://www.cmap.polytechnique.fr/∼beniamin.bogosel/eig part3D.html

http://www.cmap.polytechnique.fr/~beniamin.bogosel/eig_part3D.html
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by Bogosel. The approximate eigenvalues are 23.23, 33.62, 48.02, 62.20, 95.41, 117.07,
and 244.02. The CPU time to obtain these results from random initial guesses are
64, 41, 157, 108, 57, 233, 368 seconds, respectively.

k=3 k=4 k=5 k=6 k=8 k=9 k=14
23.23 33.62 48.02 62.20 95.41 117.07 244.02

Fig. 15. First row: 3 − 6-partitions, second row: a dissection of 6-partition, 8-partition, 9-
partition, and a dissection of 9-partition, third row: 14-partition and dissections of the 14-partition.
The table lists the approximate eigenvalues for different k. The CPU time to obtain these results
from random initial guesses are 64, 41, 157, 108, 57, 233, 368 seconds, respectively. See Section 5.7.

Figure 16 lists the optimal k-partition in a ball with k = 3, 4, 6, 12, 13, and
15. The approximate eigenvalues are 31.68, 49.07, 92.95, 285.36, 320.59, and 405.72,
respectively. For k = 3, 4, 6, 12, and 13, all results agree with the results reported
by Bogosel. The 13-partition is very regular and composed of one interior region
and 12 regions that are on the boundary. Interestingly, the interior bubble is very
similar to a regular dodecahedron as shown in Figure 16. Furthermore, we observe
that the 15-partition is also very regular and is composed of one interior region and
14 regions on the boundary. The interior shape is very similar to the truncated
hexagonal trapezohedron that appears in the Weaire–Phelan structure similar to the
second shape showed in Figure 13. The shapes on the boundary consist of twelve
rounded truncated pentagonal trapezohedron and two rounded truncated hexagonal
trapezohedron as shown in Figure 16. These results are also similar to the optimal
structure of foam bubbles in the sense of minimizing the total surface area reported
in [28]. The CPU time for k = 3, 4, 6, 12, 13, and 15 are 20, 41, 193, 296, 143, and 388
seconds, respectively.

When the domain is a tetrahedron, we list the results for k = 2, 4, 10, and 20
in Figure 17. For k = 2, 4, 10, and 20, we recover the results in 14, 14, 97, and 244
seconds with approximate eigenvalues 24.02, 58.71, 254.21, and 776.74, respectively.
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k=3 k=4 k=6 k=12 k=13 k=15
31.68 49.07 92.95 285.36 320.59 405.72

Fig. 16. The optimal k-partition in a ball with k = 3, 4, 6, 12, 13, and 15 and dissections of 13-
partition and 15-partition to expose the interior shapes. The table lists the approximate eigenvalues.
The CPU time for k = 3, 4, 6, 12, 13, and 15 are 20, 41, 193, 296, 143, and 388 seconds, respectively.
See Section 5.7.

Fig. 17. Left to right, top to bottom: The optimal k-partition (obtained by the proposed method)
in a tetrahedron with k = 2, 4, 10, the dissection of 10-partition, the 20-partition, three dissections
of the 20-partition. The CPU time for k = 2, 4, 10, and 20 are 14, 14, 97, and 244 seconds and the
approximate eigenvalues are 24.02, 58.71, 254.21, and 776.74, respectively. See Section 5.7.

6. Conclusion and discussions. In this paper, we proposed a new relaxation
of Dirichlet k-partition problems in arbitrary domains and derived a novel algorithm
for computing Dirichlet k−partitions. The algorithm is very efficient and insensitive
to domains. We theoretically proved the monotonically decaying property of the
approximate energy. Numerical results show that the proposed method can achieve
more than hundreds of times acceleration.

To our knowledge, this is the first paper on relaxing the Dirichlet k-partition via
using concave functionals and auxiliary indicator functions. A rigorous proof of the
convergence of the new approximation as τ → 0 is needed for the theoretical guarantee
of the new approximation. Besides, in this work, we compute the convolution using
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FFT by an extension of the domain of interest. Because the values out of the domain
are all 0, one can also implement the algorithm by fast Multipole methods or Non-
uniform fast Fourier transform based approaches [18, 29] to further accelerate the
algorithm. These are out of the scope of this work and will be reported elsewhere.

Acknowledgement. D. Wang would like to thank Shihua Gong, Shingyu Le-
ung, Yutian Li, Braxton Osting and Xiao-Ping Wang for helpful suggestions and
discussions.

REFERENCES

[1] W. Bao, Ground states and dynamics of multicomponent Bose–Einstein condensates, Multi-
scale Modeling & Simulation, 2 (2004), pp. 210–236, https://doi.org/10.1137/030600209.

[2] W. Bao and Q. Du, Computing the ground state solution of Bose–Einstein condensates by a
normalized gradient flow, SIAM Journal on Scientific Computing, 25 (2004), pp. 1674–1697,
https://doi.org/10.1137/s1064827503422956.

[3] B. Bogosel, Efficient algorithm for optimizing spectral partitions, Applied Mathematics and
Computation, 333 (2018), pp. 61–75, https://doi.org/10.1016/j.amc.2018.03.087.

[4] B. Bogosel and B. Velichkov, A multiphase shape optimization problem for eigenvalues:
Qualitative study and numerical results, SIAM Journal on Numerical Analysis, 54 (2016),
pp. 210–241, https://doi.org/10.1137/140976406.

[5] B. Bourdin, D. Bucur, and E. Oudet, Optimal Partitions for Eigenvalues, SIAM Journal
on Scientific Computing, 31 (2010), pp. 4100–4114, https://doi.org/10.1137/090747087.

[6] D. Bucur, G. Butazzo, and A. Henrot, Existence results for some optimal partition prob-
lems, Adv. Math. Sci. Appl., 8 (1998), pp. 571–579.

[7] L. A. Cafferelli and F. H. Lin, An Optimal Partition Problem for Eigenvalues, J. Sci.
Comp., 31 (2007), pp. 5–18, https://doi.org/10.1007/s10915-006-9114-8.

[8] S.-M. Chang, C.-S. Lin, T.-C. Lin, and W.-W. Lin, Segregated nodal domains of two-
dimensional multispecies Bose–Einstein condensates, Physica D: Nonlinear Phenomena,
196 (2004), pp. 341–361, https://doi.org/10.1016/j.physd.2004.06.002.

[9] Q. Cheng and J. Shen, Global constraints preserving scalar auxiliary variable schemes for
gradient flows, SIAM Journal on Scientific Computing, 42 (2020), pp. A2489–A2513, https:
//doi.org/10.1137/19m1306221.

[10] K. Chu and S. Leung, A level set method for the dirichlet k-partition problem, Journal of
Scientific Computing, 86 (2021), https://doi.org/10.1007/s10915-020-01368-w.

[11] M. Conti, S. Terracini, and G. Verzini, Nehari’s problem and competing species systems,
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