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A conservative low rank tensor method for the Vlasov dynamics

Wei Guo1 and Jing-Mei Qiu2

Abstract. In this paper, we propose a conservative low rank tensor method to approximate

nonlinear Vlasov solutions. The low rank approach is based on our earlier work [17]. It takes

advantage of the fact that the differential operators in the Vlasov equation are tensor friendly,

based on which we propose to dynamically and adaptively build up low rank solution basis by

adding new basis functions from discretization of the differential equation, and removing basis

from a singular value decomposition (SVD)-type truncation procedure. For the discretization,

we adopt a high order finite difference spatial discretization together with a second order strong

stability preserving multi-step time discretization.

While the SVD truncation will remove the redundancy in representing the high dimensional

Vlasov solution, it will destroy the conservation properties of the associated full conservative scheme.

In this paper, we develop a conservative truncation procedure with conservation of mass, momentum

and kinetic energy densities. The conservative truncation is achieved by an orthogonal projection

onto a subspace spanned by 1, v and v2 in the velocity space associated with a weighted inner prod-

uct. Then the algorithm performs a weighted SVD truncation of the remainder, which involves

a scaling, followed by the standard SVD truncation and rescaling back. The algorithm is further

developed in high dimensions with hierarchical Tucker tensor decomposition of high dimensional

Vlasov solutions, overcoming the curse of dimensionality. An extensive set of nonlinear Vlasov

examples are performed to show the effectiveness and conservation property of proposed conser-

vative low rank approach. Comparison is performed against the non-conservative low rank tensor

approach on conservation history of mass, momentum and energy.
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1 Introduction

The Vlasov-Poisson (VP) system is known as a fundamental model in plasma physics which de-

scribes the dynamics of dilute charged particles due to self-induced electrostatic forces from a

statistical viewpoint. The numerical challenges of realistic Vlasov simulations include the high-

dimensionality of the phase space, features with multiple scales in time and in phase space, preser-

vation of physical invariants, among many others.

The Particle-In-Cell method employs a collection of sampled macro particles to represent the

distribution function and is widely used for the plasma simulations mainly due to its distinct

dimension-independent rate of convergence [4, 2]. On the other hand, such a method suffers the

inherent statistical noise, and hence may fail to accurately capture the physics of interest. For

example, if the resolution of the tail of the distribution function is desired, a noise-free grid-based

deterministic method is a better choice. Over the past two decades, the development of deterministic

Vlasov solvers has attracted lots of research interest, see e.g. [12]. Meanwhile, a conventional

deterministic Vlasov simulation in a realistic and high-dimensional setting is prohibitively expensive

because of the curse of the dimensionality and the associated huge computational and storage cost.

Several dimension reduction techniques have been developed in the literature to alleviate the curse

of dimensionality for the Vlasov equation and other high-dimensional partial differential equations

(PDEs). One such example is the sparse grid approach [29, 32, 15], which can effectively reduce the

computational complexity and is well-suited for the problems with moderately high dimensions.

For the Vlasov simulations, we mention the sparse grid semi-Lagrangian (SL) method [24] and

the sparse grid discontinuous Galerkin method [16, 30]. Recently, the tensor approach emerges as

a promising tool for feasible high-dimensional simulations. Such an approach aims to extract the

underlying low rank structure of the data with advanced tensor decomposition, potentially breaking

the curse of dimensionality. The popular tensor formats include the canonical polyadic (CP) format

[21, 3, 20, 22], Tucker format [31, 5], hierarchical Tucker (HT) format [19, 14], and tensor train

(TT) format [27, 25, 26]. There are several pioneering works employing low rank tensor approach

for nonlinear simulations, including the low rank SL method in the TT format [23], a low rank

method with the CP format based on the underlying Hamiltonian formulation [7], a dynamical low

rank method proposed in [9, 11] for which the dynamical low rank approximation of the Vlasov

solution is evolved on the low rank manifold using a tangent space projection, and a dynamical

2



tensor approximations for high dimensional linear and nonlinear PDEs based on functional tensor

decomposition and dynamic tensor approximation [6].

With the existing understanding of the low rank solution structure for the Vlasov dynamics, as

well as the observation that the differential operator in the Vlasov equation can be represented in

the tensorized form, in [17], we developed a low rank tensor approach to dynamically and adaptively

build up low rank solution basis, by adding new basis functions from discretization of the PDE and

then removing basis from an singular value decomposition (SVD)-type truncation procedure. In

particular, we start from a low rank solution in a tensor format and add additional basis by applying

the well-established high order finite difference upwind method coupled with the strong-stability-

preserving (SSP) multi-step time discretizations [13]; the solutions are being further updated by

an SVD-type truncation to remove redundant bases. We further generalize the algorithm to high-

dimensional cases with the HT decomposition, which attains a storage complexity that is linearly

scaled with the dimension, overcoming the curse of dimensionality. An issue associated with the

low rank algorithm in [17] is the loss of mass conservation in the SVD truncation step. In fact, it

is well-known that the VP system conserves mass, momentum, and energy locally by respecting a

set of macroscopic moment equations. The high order finite difference scheme with an SSP multi-

step time integrator can be shown to locally preserve the macroscopic mass and momentum, i.e.

when taking moments of the kinetic scheme, one will arrive at a consistent and locally conservative

discretization of the corresponding macroscopic equations. Here “locally conservative” means that

the scheme can be written in a flux difference form, where the fluxes represent the amount of

macroscopic quantities transported between neighboring computational cells. However, the SVD

truncation in the low rank algorithm would destroy local and global conservation property of the

original numerical scheme.

There exist several techniques developed to correct the conservation errors for low rank methods

in various settings. In [23], the low rank solution is rescaled so that the total mass is conserved,

and a similar mass correction technique is proposed in [28] for a dynamical low rank method.

In [1], moment fitting is applied to the low rank solution so that the corrected moments match

those solved from the macroscopic fluid equations. In [10], a dynamical low rank method with

Lagrangian multipliers is developed to improve conservation properties for the total mass and

momentum as well as local projected moment equations. More recently, along the same line, the
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truly local conservation of mass, momentum, and energy is attained for the dynamical low rank

method [8]. The idea is to fix certain basis functions in the dynamical low rank approximation

and employ a modified Petrov–Galerkin formulation which is compatible with the remainder of the

approximation.

Inspired by the recent work in [8], in this paper, we develop a novel locally mass, momentum and

energy conservative truncation algorithm under the framework of the low rank tensor approach [17].

In particular, we apply an orthogonal projection operator to the low rank solution in a weighted

inner product spaces of phase variables, to extract exactly the first few moments (i.e. the mass,

momentum and kinetic energy density functions) of the low rank solution after the “add basis” step;

a weighted SVD truncation is then applied to the remainder of the projection. Such a truncation

is called “conservative truncation” throughout the paper. We further develop the conservative

truncation algorithm for the 2D2V VP system with the HT tensor format using a dimension tree

that separates the spatial and phase variables. For high order HT tensors, an additional projection

step is needed, after the high order SVD (HOSVD) truncation of the remaining term, to ensure

conservation of macroscopic variables from the first few moments. The low rank tensor algorithm

with the conservative projection is theoretically proved and numerically verified to be locally mass

and momentum conservative.

This paper is organized as follows. In Section 2, we introduce the kinetic Vlasov model and

the corresponding macroscopic conservation laws. In Section 3, we first review the low rank tensor

approach for the 1D1V Vlasov equation in Section 3.1; then we introduce the orthogonal projection

at the continuous level to extract exactly the first few moments of Vlasov solution in Section 3.2; we

further extend such an orthogonal projection to the discrete level and develop the main conservative

truncation algorithm in Section 3.3. In Section 4, we develop the conservative truncation algorithm

for the 2D2V Vlasov model, and show that the low rank algorithm locally conserves the mass

and momentum at the macroscopic level. In Section 5, we present an extensive set of 1D1V and

2D2V numerical results to demonstrate the effectiveness and the conservation properties of the low

rank tensor algorithm. We conclude the main contributions of the paper and comment on future

directions in Section 6.
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2 The kinetic Vlasov model and the corresponding macroscopic
systems

We consider the VP system

∂f

∂t
+ v · ∇xf +E(x, t) · ∇vf = 0, (2.1)

E(x, t) = −∇xφ(x, t), −△xφ(x, t) = ρ(x, t)− ρ0, (2.2)

which describes the probability distribution function f(x,v, t) of electrons in collisionless plasma.

Here E is the electric field, and φ is the self-consistent electrostatic potential. f couples to the long

range fields via the charge density, ρ(x, t) =
∫

Ωv

f(x,v, t)dv, where we take the limit of uniformly

distributed infinitely massive ions in the background. The VP system describes the movement of

electrons due to self-induced electric field E determined by the Poisson equation.

The Vlasov dynamics are well-known to conserve several physical invariants. In particular, let

mass density: ρ(x, t) =

∫

Ωv

f(x,v, t)dv, (2.3)

current density: J(x, t) =

∫

Ωv

f(x,v, t)vdv, (2.4)

kinetic energy density: κ(x, t) =
1

2

∫

Ωv

v2f(x,v, t)dv, (2.5)

energy density: e(x, t) = κ(x, t) +
1

2
E(x)2. (2.6)

Then, by taking a few first moments of the Vlasov equation, the following conservation laws of

mass, momentum and energy can be derived

ρt +∇x · J = 0 (2.7)

∂tJ+∇x · σ = ρE (2.8)

∂te+∇x ·Q = 0, (2.9)

where σ(t,x) =
∫

Ωv

(v ⊗ v)f(x,v, t)dv and Q(x, t) = 1
2

∫

Ωv

vv2f(x,v, t)dv. It is well-known that

the local conservation property of numerical schemes is critical to capture correct entropy solutions

of hyperbolic systems such as macroscopic equations (2.7)-(2.9).

3 A low rank tensor approach for the Vlasov dynamics with local

conservation

For simplicity of illustrating the basis idea, we only discuss a 1D1V example in this section.
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3.1 Review of a low rank tensor approach for Vlasov dynamics [17]

The low rank tensor approach [17] is designed based on the assumption that our solution at time t

has a low-rank representation in the form of

f(x, v, t) =

r∑

l=1

Ä
Cl(t) U

(1)
l (x, t)U

(2)
l (v, t)

ä
, (3.1)

where
¶
U

(1)
l (x, t)

©r
l=1

and
¶
U

(2)
l (v, t)

©r
l=1

are a set of time-dependent low rank unit length orthog-

onal basis in x and v directions, respectively, Cl is the coefficient for the basis U
(1)
l (x, t)U

(2)
l (v, t),

and r is the representation rank. (3.1) can be viewed as a Schmidt decomposition of functions in

(x, v) by truncating small singular values up to rank r.

We assume a finite difference discretization of f on a truncated 1D1V domain of [xmin, xmax]×

[−vmax, vmax] with uniform Nx ×Nv grid points

xgrid : xmin = x1 < · · · < xi < · · · < xNx = xmax, (3.2)

vgrid : −vmax = v1 < · · · < vj < · · · < vNv = vmax. (3.3)

The numerical solution f ∈ R
Nx×Nv , as an approximation to point values of the solution on the

grids (3.2)-(3.3), has the corresponding low-rank counterpart to (3.1) as

f =

r∑

l=1

Ä
Cl U

(1)
l ⊗U

(2)
l

ä
, (or element-wise: fij =

r∑

l=1

ClU
(1)
l,i U

(2)
l,j ), (3.4)

where U
(1)
l ∈ R

Nx and U
(2)
l ∈ R

Nv can be viewed as approximations to corresponding basis func-

tions in (3.1). (3.4) can also be viewed as an SVD of the matrix f ∈ R
Nx×Nv . The associated

storage cost is O(rN), where we assume N = Nx = Nv.

Our low rank tensor approach adaptively updates low-rank basis and associated coefficients by

two steps: an adding basis step by conservative hyperbolic solvers and a removing basis step via

an SVD-type truncation. We consider a simple first order forward Euler discretization of 1D1V

Vlasov equation (2.1) to illustrate the main idea. We assume the solution in the form of (3.4) with

superscript n for the solution at tn.

1. Add basis and obtain an intermediate solution fn+1,∗. A forward Euler discretization of (2.1)

gives

fn+1,∗ = fn −∆t(v∂x(f
n) + En∂v(f

n)). (3.5)
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Here the electric field En is solved by a Poisson solver. Thanks to the tensor friendly form

of the Vlasov equation, at the fully discrete level, fn+1,∗ can be represented in the following

low-rank format:

fn+1,∗ =
rn∑

l=1

Cn
l

îÄ
U

(1),n
l ⊗U

(2),n
l

ä
−∆t

Ä
DxU

(1),n
l ⊗ v ⋆U

(2),n
l + En ⋆U

(1),n
l ⊗DvU

(2),n
l

äó
,

(3.6)

where Dx and Dv represent high order locally conservative upwind discretization of spatial

differentiation terms, and ⋆ denotes an element-wise multiplication operation. For example

the discretization of DxU
(1),n
l ⊗ v ⋆U

(2),n
l follows

D+
x U

(1),n
j ⊗ v+ ⋆U

(2),n
j +D−

x U
(1),n
j ⊗ v− ⋆U

(2),n
j , (3.7)

where D+
x and D−

x are a fifth order finite difference discretization of positive and negative

velocities respectively, with v+ = max(v, 0) and v− = min(v, 0). Similarly, the discretization

of En ⋆U
(1),n
l ⊗DvU

(2),n
l follows

En,+ ⋆U
(1),n
j ⊗D+

v U
(2),n
j +En,− ⋆U

(1),n
j ⊗D−

v U
(2),n
j (3.8)

where D+
v and D−

v are a fifth order upwind finite difference discretization of positive and

negative velocities respectively, with E+ = max(E, 0) and E− = min(E, 0).

2. Remove basis of fn+1,∗ to update solution fn+1. Since the number of basis has increased in

a single step update, we perform an SVD-type truncation to remove redundant bases with

a prescribed threshold ε. The truncation step has no guarantee of any mass, momentum or

energy conservation property. The removing basis step costs O(r2N + r3), where r is the

SVD rank of the numerical solution.

In this two-step process, both the basis and coefficients are updated. Extensions to schemes with

high order spatial and temporal discretizations and to high dimensional problems, are developed

in [17]. The low rank approach [17] is built upon the classical high order methods for conservation

laws and kinetic equations, yet it optimizes the computational efficiency by dynamically building

low rank global basis and updating the corresponding coefficients via a SVD truncation procedure.

While the SVD truncation significantly reduces the computational storage and CPU time, it also

destroys the conservation property in the truncation step.
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3.2 An orthogonal projection with mass, momentum and energy conservation

To preserve the local mass, momentum and energy in the truncation step, following a similar idea in

[8], we define a weighted inner product space and the associated norm for functions in v as follows,

L2
w(R) = {f : R → R : ‖f‖w < ∞}.

where

〈f, g〉w =

∫

f(v)g(v)w(v)dv, ‖f‖w =
»

〈f, f〉w. (3.9)

The weight function w(v) is chosen to have exponential decay so that N
.
= span(1, v, v2) ⊂ L2

w(R).

For example, we can take w(v) = exp(−v2/2). Now we are ready to define an orthogonal decom-

position of f with respect to the subspace N .

In the context of Vlasov dynamics, we consider f(x, v) with a v-direction projection. We first

scale function

f̃ =
1

w(v)
f. (3.10)

Then we find PN (f̃) ∈ N s.t.

∫

PN (f̃(x, v))g(v)w(v)dv =

∫

f̃(x, v)g(v)w(v)dv =

∫

f(x, v)g(v)dv, ∀g ∈ N. (3.11)

By taking g = 1, v, v2, PN (f̃(x, v))w(v) preserves the mass density ρ(x), current density J(x)

and kinetic energy density κ(x) of f defined in (2.3)-(2.5). In fact, we have the conservative

decomposition of f as in the following Proposition.

Proposition 3.1. Let w(v) = exp(−v2/2) and the weighted inner product defined as in (3.9).

f ∈ L2
w(R) can be decomposed as

f = w(v)(PN (f̃) + (I − PN )(f̃))
.
= w(v)(f̃1 + f̃2)

.
= f1 + f2, (3.12)

where f1 admits an explicit representation

f1 = w(v)f̃1 = w(v)(c1 + c2v + c3(v
2 − c)), (3.13)

with c = 〈1,v2〉w
〈1,1〉w , c1 =

ρ(x)
‖1‖2w , c2 =

J(x)
‖v‖2w , and c3 =

2κ(x)−ρ(x)c
‖v2−c‖2w , and ρ(x), J(x) and κ(x) are as defined

in (2.3)-(2.5). f1 preserves the mass, momentum and kinetic energy density of f , while f2 has zero

mass, current and kinetic energy density.
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Proof. We first compute c, so that {1, v, v2 − c} is a set of orthogonal basis. By taking g =

1, v, v2−c in (3.11), we can determine the constants c1, c2, and c3. By construction of the orthogonal

projection, f1 preserves the mass, momentum and kinetic energy density of f , while f2 has zero of

them.

3.3 Low rank truncation with mass, momentum and energy conservation

Similar to the weighted inner product (3.9), the projection operator (3.11) and the conservative

decomposition of f in (3.12), we define their corresponding discrete analogue. Consider f ,g ∈ R
Nv ,

where f and g can be viewed as function values of f and g at vgrid (3.3), respectively. We define

the standard l2 inner product as

〈f ,g〉 = hv
∑

j

fjgj , (3.14)

where hv is the mesh size in v-direction, serving as the quadrature weights for the uniform vgrid.

We also define weighted inner product and the associated norm as

〈f ,g〉w =
∑

j

fjgjwj, ‖f‖w =
»

〈f , f〉w (3.15)

w ∈ R
Nv with wj = w(vj)hv is the quadrature weights for v-integration with weight function w(v).

Correspondingly, we let

l2
w
= {f ∈ R

Nv : ‖f‖w < ∞}.

We denote 1v ∈ R
Nv the vector of all ones, v and v2 ∈ R

Nv the coordinates and coordinates square

of vgrid (3.3), respectively. Consider the subspace N .
= span{1v ,v,v2} ⊂ l2w, a conservative low

rank truncation of numerical solution f ∈ R
Nx×Nv written in the low rank form of (3.4) can be

obtained from steps below.

1. Compute macroscopic quantities of f . We compute the discrete macroscopic charge,

current and kinetic energy density ρ, J and κ ∈ R
Nx by quadrature

Ñ
ρ

J

κ

é
=

r∑

l=1

Cl

∞
U

(2)
l ,

Ñ
1v
v
1
2v

2

é∫
U

(1)
l . (3.16)

They are the discrete analog of (2.3), (2.4) and (2.6), i.e.

ρ(i) = 〈f(i, :),1v〉, J(i) = 〈f(i, :),v〉, κ(i) = 〈f(i, :), 1
2
v2〉, i = 1, · · · , Nx.
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2. Scale. Similar to (3.10), we scale f as

f̃ =
1

w
⋆ f =

r∑

l=1

Å
Cl U

(1)
l ⊗

Å
1

w
⋆U

(2)
l

ãã
. (3.17)

3. Project. We perform an orthogonal projection of f̃ with respect to the inner product (3.15)

onto subspace N , i.e.

〈PN (f̃ ),g〉w = 〈f̃ ,g〉w, ∀g ∈ N . (3.18)

Similar to Proposition 3.1, w ⋆ PN (f̃ ) preserves the mass, momentum and kinetic energy

densities in the discrete sense. We show below in Proposition 3.2 a conservative decomposition

of f .

Proposition 3.2. f can be decomposed as

f = w ⋆ (PN (f̃) + (I − PN )(f̃))
.
= w ⋆ (f̃1 + f̃2)

.
= f1 + f2 (3.19)

where f1 can be represented as a rank three tensor

f1 = w ⋆ f̃1 =
3∑

k=1

Mk ⊗ (w ⋆Vk), (3.20)

where V1 = 1v, V2 = v, and V3 = v2 − c1v , and c = 〈1v ,v2〉w
‖1v‖2w ,

M1 =
ρ

‖1v‖2w
, M2 =

J

‖v‖2
w

, M3 =
2κ− cρ

‖v2 − c1v‖2w
. (3.21)

ρ, J and κ are the discrete mass, momentum and kinetic energy density of f as in (3.16). f1

preserves the discrete mass, momentum and kinetic energy density of f , while f2 has zero of

them, i.e. 〈f2(i, :),1v〉 = 〈f2(i, :),v〉 = 〈f2(i, :),v2〉 = 0, i = 1, · · · , Nx.

Proof. The proof follows in the same manner as Proposition 3.1, but considering the discrete

weighted inner product and the associated norm (3.15).

4. Truncate in l2w. To ensure the conservation in the truncation process, we propose to perform

an SVD truncation of f̃2 in the decomposition (3.19) with respect to the weighted inner

product (3.15). Because of the weight function, we scale f̃2 by
√
w ⋆ f̃2, where

√· is in

the element-wise sense and ⋆ is for the element-wise multiplication. Then, a standard SVD

truncation procedure is applied, denoted as Tε(
√
w ⋆ f̃2). Here and below, ε is truncation

10



threshold. Lastly, we rescale Tε(
√
w ⋆ f̃2) back and obtain the truncated f̃2. Such a weighted

truncation writes

T w

ε (f̃2) =
1√
w

⋆ Tε(
√
w ⋆ f̃2). (3.22)

In summary, f2 is truncated to

w ⋆ T w

ε (f̃2) =
√
w ⋆ Tε(

√
w ⋆ f̃2) =

√
w ⋆ Tε(

1√
w

⋆ f2).

5. Update. We obtain the low rank truncation of f with local mass, momentum and energy

conservation, denoted as

Tc(f) = f1 +w ⋆ T w

ε (f̃2). (3.23)

We call the proposed truncation (3.23) the conservative truncation. The following proposition

guarantees that the local conservation of mass, momentum, and kinetic energy density of f is

preserved in the proposed truncation procedure of Tc(f).

Proposition 3.3. Tc(f) has the same discrete charge, current and kinetic energy density as

f .

Proof. With Proposition 3.2, it is sufficient to show that w ⋆ T w
ε (f̃2) has zero charge, current

and kinetic energy density. Since f̃2 is orthogonal to N with respect to the weighted inner

product (3.15), and its truncation is performed in the same inner product space, T w
ε (f̃2) is

also orthogonal to N , i.e.

〈T w

ε (f̃2), g〉w = 0, g = 1, v, v2,

i.e. w ⋆ T w
ε (f̃2) has zero discrete charge, current and kinetic energy density.

Next we establish the local conservation of mass and momentum in the low rank tensor ap-

proach with the conservative truncation (3.23). Since the full algorithm (without truncation) does

not have energy conservation property, the low rank tensor scheme does not preserve energy con-

servation. If the associated full-rank method is able to locally preserve the energy density, so will

the corresponding the low rank method with the proposed conservative truncation.

Proposition 3.4. (Local mass and momentum conservation of the low rank tensor approach with

conservative truncation.) If the discrete differential operators Dx, Dv employed are conservative,
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i.e., can be written in a flux difference form, and linear, i.e., can preserve linear relations, then

the proposed low rank method with an SSP multi-step time integrator preserves the mass and

momentum locally; that is the schemes for ρn and Jn, from integrating the scheme on fn, are

consistent and conservative discretization of the macroscopic moment equations (2.7)-(2.8).

Proof. Without loss of generality, we prove the proposition for the low rank method with the

forward Euler time integrator for simplicity. By taking discrete moments of (3.6) and from (3.16),

we derive the discrete evolution equations for the charge density ρ and current density J in R
Nx ,

ρn+1,∗ = ρn −∆tDx(J
n), (3.24)

Jn+1,∗ = Jn −∆t(Dx(σ
n)− ρn ⋆En), (3.25)

where we have used the fact that Dx and Dv are linear, and the summation by parts

〈DvU
(2)
l ,v〉 = −〈U(2)

l ,1v〉 (3.26)

holds by assuming the basis U
(2)
l , l = 1, . . . , rn, vanishes at the boundary. Combining (3.24)-(3.25)

with the property of the conservative truncation from Proposition 3.3, we have

ρn+1 = ρn+1,∗ = ρn −∆tDx(J
n), (3.27)

Jn+1 = Jn+1,∗ = Jn −∆t(Dx(σ
n)− ρn ⋆En), (3.28)

which are consistent and conservative discretization of the macroscopic moment equations (2.7)-

(2.8).

Remark 3.5. If a WENO finite difference discretization is employed for Dv, then the local con-

servation of momentum cannot be guaranteed. This is because the WENO discretization does not

satisfy the summation by parts property (3.26). A WENO finite difference discretization can be

employed for Dx for local conservation.

Remark 3.6. If only the mass conservation is desired, then we can modify the subspace N =

span{1v} for projection; similarly, if only the mass and momentum conservation is desired, we let

N = span{1v,v}. We denote the corresponding projections as P1 and P2, respectively, and denote

the projection to N = span{1v ,v,v2} as P3. Numerical performances of different projection

operators will be assessed in the Section 5 for numerical experiments.
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Remark 3.7. The choice of weight function w(v) can affect the performance. In particular, if the

weight function does not have sufficient decay, then the solution may not be close enough to zero at

the boundary of the velocity domain, and large error could be incurred. On the other hand, when

rescaling f2 by dividing w, small weights at the boundary can introduce numerical instability.

Finally, the proposed conservative truncation algorithm is summarized in the Algorithm 1.

Algorithm 1: The conservative truncation procedure for the 1D1V VP system.

• Input: the pre-compressed low rank solution at time tn+1:

fn+1,∗ =
r∗∑

l=1

C∗
l U

(1),∗
l ⊗U

(2),∗
l .

• Output: the compressed low rank solution fn+1 with the same density, current density, and
kinetic energy functions as fn+1,∗.

1. Compute ρn+1, Jn+1, κn+1 of fn+1,∗ from (3.16).

2. Compute Mn+1 by (3.21) from ρn+1, Jn+1, κn+1.

3. Compute f1 from (3.20).

4. Perform the truncation of f2 by (3.22).

5. Update the compressed low rank solution by (3.23).

4 2D2V Vlasov-Poisson system by the HT format

We extend the proposed conservative algorithm to the 2D2V case by the HT format. Below, we

briefly review the fundamentals of the HT format for efficiently representing tensors in d dimensions,

and the low rank tensor method with the HT format for solving the 2D2V VP system (2.1).

ft + v1fx1 + v2fx2 + E1fv1 + E2fv2 = 0, (4.1)

where the electric field (E1, E2) is solved from the coupled Poisson’s equation. The macroscopic

equations can be obtained from taking moments of (4.1) in the form of (2.7)-(2.9).

4.1 HT format for high order tensors

We denote the dimension index D = {1, 2, . . . , d} and define a dimension tree T which is a binary

tree containing a subset α ⊂ D at each node. Furthermore, T has D as the root node and

13



{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}
(a)

B(1,2,3,4)

B(1,2)

U(1) U(2)

B(3,4)

U(3) U(4)

(b)

Figure 4.1: Dimension tree T to express fourth-order tensors in the HT format.

{1}, {2}, . . . , {d} as the leaf nodes. Each non-leaf node α has two children nodes denoted as αl

and αr with α = αl
⋃

αr and αl
⋂

αr = ∅. For example, the dimension tree T given in Figure 4.1

can be used to approximate f(x1, x2, v1, v2) in (4.1) in the HT format. The efficiency of the HT

format lies in the nestedness property [19]: for a non-leaf node α with two children nodes αl, αr,

then

range(M(α)(a)) ⊂ range(M(αl)(a)⊗M(αr)(a)), (4.2)

which implies that there exists a third order tensor B(α) ∈ R
rαl

×rαr×rα , known as the transfer

tensor, such that

U
(α)
lα

=

rαl∑

lαl
=1

rαl∑

lαr=1

B
(α)
lαl

,lαr ,lα
U

(αl)
lαl

⊗U
(αr)
lαr

, lα = 1, . . . , rα. (4.3)

In other words, the frame vectors at the parent node can be recovered by those at the two children

nodes αl, αr with the transfer tensor. By recursively making use of (4.3), a tensor in the HT format

stores a frame at each leaf node and a third order transfer tensor at each non-leaf node based on a

dimension tree. Denote r = {rα}α∈T as the hierarchical ranks. The storage of the HT format scales

as O(dr3 + drN), where r = max r. If r is reasonably low, then the HT format avoids the curse

of dimensionality. In summary, the HT format is fully characterized by the three key components,

including a dimension tree, frames at leaf nodes and transfer tensors at non-leaf nodes, see Figure

4.1 for the data layout.

4.2 A conservative low rank tensor method in HT for the 2D2V VP system

We follow the low rank tensor method for updating the 2D2V VP solution in [17], but propose to

perform a conservative hierarchical HOSVD truncation with preservation of charge, current and

14



kinetic energy density. We assume at each time step, the solution f is expressed as the fourth

order tensor in the HT format with dimension tree T together with frames U(1),U(2),U(3),U(4)

at four leaf nodes, corresponding to directions x1, x2, v1, v2, respectively, and transfer tensors

B(1,2,3,4),B(1,2),B(3,4), see Figure 4.1. In particular,

f =

r12∑

l12=1

r34∑

l34=1

B
(1,2,3,4)
l12,l34

U
(1,2)
l12

⊗U
(3,4)
l34

, (4.4)

with

U
(1,2)
l12

=

r1∑

l1=1

r2∑

l2=1

B
(1,2)
l1,l2,l12

U
(1)
l1

⊗U
(2)
l2

, l12 = 1, . . . , r12, (4.5)

and

U
(3,4)
l34

=

r3∑

l3=1

r4∑

l4=1

B
(3,4)
l3,l4,l34

U
(3)
l3

⊗U
(4)
l4

, l34 = 1, . . . , r34. (4.6)

Further, the electric field E1 and E2 are represented in the second order HT format.

Now we are ready to formulate a conservative HT truncation of VP solutions in a low rank

tensor format. We denote pre-compressed solution f in the HT format as in (4.4). The idea of the

conservative truncation is similar to the 1D1V case. We first introduce a weighted inner product

space for f ,g ∈ R
Nv1×Nv2

〈f ,g〉w = hv1hv2

Nv1∑

j1=1

Nv2∑

j2=1

fj1,j2gj1,j2wj1,j2 , (4.7)

where hv1 and hv2 are the mesh size for the v1 and v2 grids, respectively. Here

w
.
= w(1) ⊗w(2) ∈ R

Nv1×Nv2 , w(1) ∈ R
Nv1 ,w(2) ∈ R

Nv2 , (4.8)

where w(1), w(2) are vectors as point values of the weight function w(v) = exp(− v2

2 ) at correspond-

ing v1 and v2 grids. Then we seek a decomposition f = f1 + f2, where f1 comes from the rescaling

and orthogonal projection of f with respect to the weighted inner product (4.7) onto the subspace

N .
= span{1v1⊗v2 ,v1 ⊗ 1v2 ,1v1 ⊗ v2,v

2
1 ⊗ 1v2 + 1v1 ⊗ v2

2} (4.9)

for the conservation of mass, momentum and kinetic energy density, see Proposition 4.1 below for

details. For further discussion, we also introduce a standard inner product for f ,g ∈ R
Nv1×Nv2

〈f ,g〉 = hv1hv2

Nv1∑

j1=1

Nv2∑

j2=1

fj1,j2gj1,j2 . (4.10)
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Proposition 4.1. Let f1 come from the scaling and orthogonal projection of rescaled f with respect

to the weighted inner product (4.7) onto the subspace (4.9), in a similar spirit to the 1D1V case

(3.19). Assume f is written in the low rank HT format (4.26). f1 can be represented in low rank

HT format (consistently with the subscript 1 in the notations),

f1 = P̃ (f)
.
=

4∑

l12=1

4∑

l34=1

(B
(1,2,3,4)
1 )l12,l34(U

(1,2)
1 )l12 ⊗ (U

(3,4)
1 )l34 , (4.11)

=

(4.13)

4∑

k=1

(U
(1,2)
1 )k ⊗ (U

(3,4)
1 )k, (4.12)

where we introduce the notation of P̃ as the scaled orthogonal projection. The specifications of the

frame vectors and transfer tensors are outlined below.

• For f1, the hierarchical ranks are r12 = r34 = 4, r3 = r4 = 3. r1 and r2 are the same as those

for f .

• The transfer tensor, B
(1,2,3,4)
1 , of size 4× 4, is an identity matrix,

B
(1,2,3,4)
1 = I4×4. (4.13)

(U
(3,4)
1 )k, k = 1, . . . , 4, is constructed from an orthonormal set of basis {V1, · · ·V4} in the

v1 − v2 dimensions defined in (4.27). We have r3 = r4 = 3 and

(U
(3,4)
1 )k =

3∑

l3=1

3∑

l4=1

(B
(3,4)
1 )l3,l4,k(w

(1) ⋆ (U
(3)
1 )l3)⊗ (w(2) ⋆ (U

(4)
1 )l4) (4.14)

with w(1) and w(2) the same as in (4.8). The frame vectors for node 3 are

(U
(3)
1 )1 =

1

c1
1v1 , (U

(3)
1 )2 =

1

c2
v1, (U

(3)
1 )3 =

1

c3
(v2

1 − c1v1), (4.15)

where c =
〈1v1 ,v

2
1〉w

〈1v1 ,1v1〉w
is the orthogonalization constant of the basis, and cl, l = 1, 2, 3 are

normalization constants for the corresponding basis of 1v1 , v1 and v2
1 − c1v1 . We have the

same frame vectors for the node 4 but for v2, assuming that the weight function and domain

in v2 is the same as v1,

(U
(4)
1 )1 =

1

c1
1v2 , (U

(4)
1 )2 =

1

c2
v2, (U

(4)
1 )3 =

1

c3
(v2

2 − c1v2) (4.16)

The transfer tensor B
(3,4)
1 is a tensor of size 3×3×4. It has zero elements, except the following

specification for (B
(3,4)
1 )l3,l4,l34

(B
(3,4)
1 )1,1,1 = (B

(3,4)
1 )2,1,2 = (B

(3,4)
1 )1,2,3 = 1, (B

(3,4)
1 )3,1,4 = (B

(3,4)
1 )1,3,4 =

1√
2
. (4.17)
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• (U
(1,2)
1 )k, k = 1, · · · 4, is in the following form,

(U
(1,2)
1 )k =

r1∑

l1=1

r2∑

l2=1

(B
(1,2)
1 )l1,l2,k(U

(1)
1 )l1 ⊗ (U

(2)
1 )l2 , (4.18)

with the same frame vectors as f on the leaf nodes 1 and 2, meaning that U
(1)
1 and U

(2)
1 are

the same as U(1) and U(2), respectively. B
(1,2)
1 , of size r1 × r2 × 4, has its elements as,

(B
(1,2)
1 )l1,l2,k =

r12∑

l12=1

r34∑

l34=1

B
(1,2)
l1,l2,l12

Sk,l34B
(1,2,3,4)
l12,l34

, k = 1, · · · 4, (4.19)

with r12, r34 and transfer tensors B(1,2) and B(1,2,3,4) from the HT representation of f , and

Sk,l34 = 〈U(3,4)
l34

,Vk〉, k = 1, · · · 4, (4.20)

where U
(3,4)
l34

, l34 = 1, . . . , r34, is the frame tensor for node (3, 4) of f . The inner product in

the sense of (4.10) can be evaluated in a dimension-by-dimension manner.

Finally f1 has the same discrete macroscopic charge, current and kinetic energy density as with f ,

which are denoted as ρ, J1, J2, and κ. The discrete macroscopic charge, current and kinetic energy

density of f1 are

ρ = (c1)
2(U

(1,2)
1 )1 = (c1)

2
∑

l1,l2

(B
(1,2)
1 )l1,l2,1U

(1)
l1

⊗U
(2)
l2

, (4.21)

J1 = c1c2(U
(1,2)
1 )2 = c1c2

∑

l1,l2

(B
(1,2)
1 )l1,l2,2U

(1)
l1

⊗U
(2)
l2

, (4.22)

J2 = c1c2(U
(1,2)
1 )3 = c1c2

∑

l1,l2

(B
(1,2)
1 )l1,l2,3U

(1)
l1

⊗U
(2)
l2

, (4.23)

κ =
1√
2
c1c3(U

(1,2)
1 )4 + cρ =

1√
2
c1c3

∑

l1,l2

(B
(1,2)
1 )l1,l2,4U

(1)
l1

⊗U
(2)
l2

+ cρ. (4.24)

They are the same as those of f , which can be obtained by the HT tensor contraction

Ü
ρ

J1

J2

κ

ê

=
∑

l12

∑

l34

B
(1,2,3,4)
l12,l34

≤

U
(3,4)
l34

,

Ü
1v1⊗v2

v1 ⊗ 1v2
1v1 ⊗ v2
1
2v

2
1 ⊗ 1v2 +

1
21v1 ⊗ v2

2

êº

U
(1,2)
l12

,

=
∑

l12

∑

l34

B
(1,2,3,4)
l12,l34

Ü
S1,l34(c1)

2

S2,l34c1c2
S3,l34c1c2
S4,l34c1c3

1√
2
+ S1,l34(c1)

2c

ê

U
(1,2)
l12

. (4.25)
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Proof. We first scale f by w in (4.8)

f̃ =

r12∑

l12=1

r34∑

l34=1

B
(1,2,3,4)
l12,l34

U
(1,2)
l12

⊗ 1

w
⋆U

(3,4)
l34

. (4.26)

Let Ũ
(3,4)
l34

.
= 1

w
⋆U

(3,4)
l34

, where ⋆ is the element-wise multiplication in the corresponding dimensions.

Then we perform the orthogonal projection of f̃ onto the subspace of (4.9) to obtain f̃1. Finally we

rescale back to f1 = w ⋆ f̃1.

To perform the orthogonal projection, the orthogonalization of basis in (4.9) gives the frame

vectors for the node 3 and 4 as specified in (4.15) and the transfer tensor B
(3,4)
1 as specified in

(4.17). This gives a set of orthonormal basis of (U
(3,4)
1 )l, l = 1, 2, 3, 4. We denote them as Vl,

l = 1, 2, 3, 4,

V1 = (U
(3)
1 )1 ⊗ (U

(4)
1 )1, V2 = (U

(3)
1 )2 ⊗ (U

(4)
1 )1

V3 = (U
(3)
1 )1 ⊗ (U

(4)
1 )2, V4 =

1√
2
(U

(3)
1 )3 ⊗ (U

(4)
1 )1 +

1√
2
(U

(3)
1 )1 ⊗ (U

(4)
1 )3. (4.27)

To perform the orthogonal projection to (4.9), only the bases of node (3, 4) are affected. In partic-

ular, let P(3,4) be the projection operator at the node (3, 4), then

P(3,4)f̃ = P(3,4)
r12∑

l12=1

r34∑

l34=1

B
(1,2,3,4)
l12,l34

U
(1,2)
l12

⊗ 1

w
⋆U

(3,4)
l34

=

r12∑

l12=1

r34∑

l34=1

B
(1,2,3,4)
l12,l34

U
(1,2)
l12

⊗
Å
P(3,4)(

1

w
⋆U

(3,4)
l34

)

ã
, (4.28)

where

P(3,4)(
1

w
⋆U

(3,4)
l34

) = P(3,4)Ũ
(3,4)
l34

=

4∑

k=1

〈Ũ(3,4)
l34

,Vk〉wVk
.
=

4∑

k=1

Sk,l34Vk, (4.29)

with

Sk,l34 = 〈Ũ(3,4)
l34

,Vk〉w = 〈 1
w

⋆U
(3,4)
l34

,Vk〉w = 〈U(3,4)
l34

,Vk〉. (4.30)

Plug (4.29) into (4.28),

P(3,4) f̃ =

r12∑

l12=1

r34∑

l34=1

B
(1,2,3,4)
l12,l34

U
(1,2)
l12

⊗ (

4∑

k=1

Sk,l34Vk),

=

r12∑

l12=1

r34∑

l34=1

B
(1,2,3,4)
l12,l34

Ñ
r1∑

l1=1

r2∑

l2=1

(U
(1)
l1

⊗U
(2)
l2

)B
(1,2)
l1,l2,l12

é
⊗ (

4∑

k=1

Sk,l34Vk),
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B
(1,2,3,4)
1 in (4.13)

B
(1,2)
1 in (4.19)

U(1) U(2)

B
(3,4)
1 in (4.17)

U
(3)
1 in (4.15) U

(4)
1 in (4.16)

Figure 4.2: The data layout of f1. Here U(1) and U(2) are the same as those vector frames for f .

=

4∑

k=1












r1∑

l1=1

r2∑

l2=1

Ñ
r12∑

l12=1

r34∑

l34=1

B
(1,2,3,4)
l12,l34

B
(1,2)
l1,l2,l12

Sk,l34

é

︸ ︷︷ ︸
.
=(B

(1,2)
1 )l1,l2,k

(U
(1)
l1

⊗U
(2)
l2

)












⊗Vk, (4.31)

=

4∑

k=1

Ñ
r1∑

l1=1

r2∑

l2=1

(B
(1,2)
1 )l1,l2,k(U

(1)
l1

⊗U
(2)
l2

)

é
⊗Vk, (4.32)

where we let (B
(1,2)
1 )l1,l2,k as specified in (4.19), and

(U
(1,2)
1 )k

.
=

Ñ
r1∑

l1=1

r2∑

l2=1

(B
(1,2)
1 )l1,l2,k(U

(1)
l1

⊗U
(2)
l2

)

é
(4.33)

as in (4.18).

The macroscopic charge, momentum and energy density of f1, (4.21)-(4.24) can be derived, from

the form of f1 in (4.12), the form of U
(1,2)
1 in (4.33), and

1v1⊗v2 = (c1)
2V1, v1 ⊗ 1v2 = c1c2V2, 1v1 ⊗ v2 = c1c2V3,

1

2
v2
1 ⊗ 1v2 +

1

2
1v1 ⊗ v2

2 =
1√
2
c1c3V4 + c(c1)

2V1,

which is due to (4.27). The agreement of macroscopic charge, momentum and energy density of f

and f1 is a direct consequence of manipulation of equalities in (4.18), (4.19), (4.25) and orthonormal

property of the basis in U
(3,4)
1 .

Once the orthogonal projection is performed, f1 stays untouched for the truncation. As with

the 1D1V case, we will perform HOSVD to truncate the remainder f2
.
= f − f1. If a standard

HT truncation is directly applied to f2, unlike the 1D1V case the conservation property cannot be
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guaranteed. Below, we elaborate and investigate such an issue, and further develop a conservative

projection procedure after the HT truncation to ensure charge, current and kinetic energy density

conservation.

We start with a brief description of a naive weighted hierarchical HOSVD truncation procedure,

as a direct analog of the 1D1V case. First, we scale f2 according to the weights and define f̃2 =

1√
w

⋆ f2. Note that the rescaling is computed dimension-by-dimension. The standard hierarchical

HOSVD root-to-leaf truncation with threshold ε is applied to f̃2 and Tε(f̃2) is obtained. Finally, f2
is defined as

f2 =
√
w ⋆ Tε(f̃2). (4.34)

The issue with such procedure is the loss of macroscopic conservation in the root-to-leaf truncation.

In particular, the HT truncation Tε(f̃2) can be represented as, see [14],

Tε(f̃2) = (π1 ⊗ π2 ⊗ π3 ⊗ π4)(π12 ⊗ π34) f2, (4.35)

where πα denotes the orthogonal projection on the subspace spanned by r̃α leading left singular

vectors {Ũ(α)
i }r̃αi=1 of the matricization M(α)(f2). However, the bases at node (3, 4) are no longer

orthogonal to {V1, V2, V3, V4} in (4.27) due to the truncation π3 and π4 at leaf nodes. Hence f2

as in (4.34) may have nonzero charge, current and kinetic energy density, breaking the conservation

property. To fix the issue, we propose to apply the operator (I− P̃ ), to
√
w ⋆ Tε(f̃2) to ensure zero

charge, current and kinetic energy density of truncated f2. Here P̃ is the same as that specified in

(4.11) in Proposition 4.1. We introduce the following notation,

‹Tε(f2) .
= (I − P̃ )

Ä√
w ⋆ Tε(f̃2)

ä
. (4.36)

Finally, the conservative HT truncation of f is done as follows

Tc(f)
.
= f1 + ‹Tε(f2). (4.37)

The following proposition is a straightforward consequence from the orthogonal projection.

Proposition 4.2. ‹Tε(f2) has zero charge density, zero current density, and zero kinetic energy

density. Hence, Tc(f) preserves the charge, current, and kinetic energy densities (ρ, J1, J2, κ) of

the original f .
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Proof. The zero charge, current and kinetic energy density is a direct consequence of the I − P̃

projection operator. From this fact, together with from Proposition 4.1, Tc(f) preserves the charge,

current, and kinetic energy densities (ρ, J1, J2, κ) of the original f .

Proposition 4.3. (Local mass and momentum conservation for the 2D2V VP system.) If the

discrete differential operators Dx, Dv employed are conservative, i.e., can be written in a flux dif-

ference form, and linear, i.e., can preserve linear relations, then the proposed low rank method with

an SSP multi-step time integrator preserves the mass and momentum locally; that is the schemes

for ρ, J1, J2, from integrating the scheme on fn, are consistent and conservative discretization of

the macroscopic moment equations (2.7)-(2.8).

Proof. The proof is based on a conservative and linear discretization of the discrete differential

operators Dx, Dv employed and from the conservative truncation procedure as proposed above.

The details are similar to that of Proposition 3.4 and hence omitted for brevity.

Remark 4.4. To ensure the local conservation, f1 should not be further compressed. In the numer-

ical simulation, we still truncate f1 at nodes (1, 2) with threshold 10−15 to remove the redundancy

from the add basis procedure. Thus the local conservation property is preserved on the same scale

of machine precision, i.e. 10−15.

We summarized the conservative truncation procedure as Algorithm 2 below for the 2D2V VP

solution.
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Algorithm 2: The conservative truncation procedure for the 2D2V VP solution.

• Input: the pre-compressed low rank solution f in the HT format with dimension tree given
in Figure 4.1 (a) and the associated data including the frame tensors U(1), U(2), U(3), and
U(4) at nodes (1), (2), (3), and (4), respectively, and transfer tensors B(1,2), B(3,4), and
B(1,2,3,4) at nodes (1, 2), (3, 4), and (1, 2, 3, 4), respectively.

• Output: the compressed low rank solution Tc(f) in the HT format with the same charge,
current, and kinetic energy density functions as f .

1. Compute the rescaled orthogonal projection to obtain f1 = P̃ (f), in the HT format with

data layout in Figure 4.2. The transfer tensor B
(1,2,3,4)
1 is the identity matrix of size 4× 4,

(B
(1,2)
1 )l12 is a matrix of size r1 × r2 × 4 from (4.19), and B

(3,4)
1 is a matrix of size 3× 3× 4

from (4.17), with the frame tensors U
(1)
1 = U(1), U

(2)
1 = U(2), U

(3)
1 and U

(3)
1 from (4.15)

and (4.16) respectively. At the end of this step, we truncate node (1, 2) of f1 with threshold

10−15 to remove redundant basis in U
(1,2)
1 .

2. Perform the HOSVD truncation, together with an orthogonal projection operator, to
f2

.
= f − f1 to ensure zero charge, current and energy densities:

(a) Compute f2 = f − f1, and scale it to obtain f̃2 =
1√
w
⋆ f2.

(b) Apply the standard HOSVD truncation to f̃2, and apply rescaling to obtain√
w ⋆ Tε(f̃2).

(c) Apply I− P̃ to
√
w ⋆ Tε(f̃2) to obtain ‹Tε(f2), i.e. (4.36), with the same P̃ operator as in

the previous step.

3. Update the compressed low rank solution Tc(f) = f1 + ‹Tε(f2) from (4.37).

5 Numerical results

In this section we present a collection of numerical examples to demonstrate the efficacy of the

proposed conservative low rank tensor method for simulating the VP system. In the simulations,

fifth order upwind finite difference methods are employed for spatial discretization, together with

a second order SSP multi-step method denoted by SSPML2 for temporal discretization. The

numerical solutions of high dimensions are represented in the HT format [18]. We also compare the

proposed conservative low rank methods against the nonconservative version in terms of efficiency

and ability to conserve the physical invariants. Unless otherwise noted, we let the weight function

w(v) = exp(− |v|2
2 ).
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5.1 1D1V Vlasov-Poisson system

Example 5.1. (Weak Laudau damping.) We consider the weak Landau damping test with initial

condition

f(x, v, t = 0) =
1√
2π

(1 + α cos (kx)) exp

Å
−v2

2

ã
, (5.1)

where α = 0.01 and k = 0.5.

The computational domain is set to be [0, Lx] × [−Lv, Lv] with Lx = 2π/k and Lv = 6. We

set ε = 10−5 for truncation. In Figure 5.3, we report the time histories of the electric energy and

numerical ranks of the solutions computed by the conservative and non-conservative methods for

comparision. It is observed that both methods are able to predict the correct damping rate of the

electric energy, and meanwhile, the numerical ranks of the conservative method are bigger than

those of the non-conservative counterpart. In Figure 5.4, the time histories of the relative deviation

of total mass, momentum and energy are plotted. The conservative method is found to be able to

conserve the total mass and momentum up to machine precision regardless of the mesh size used. As

mentioned above, the proposed conservative method cannot conserve the total energy, as the time

integrator employed is not energy conserving. With the mesh refinement, the conservarion error of

total energy decreases. Meanwhile, the non-conservative method can conserve the total mass and

energy up to the magnitude of truncation threshold ε, but the total momentum is conserved to the

machine precision, which is attributed to the symmetry of the solution in the velocity direction.

Noteworthy, though both methods cannot conserve the total energy, the conservative one does a

better job in energy conservation compared to the non-conservative counterpart, and it is because

that the kinetic energy is preserved in the truncation.

Example 5.2. (Strong Laudau damping.) We consider the strong Landau damping test with the

initial condition (5.1) and a bigger perturbation parameter α = 0.5.

Two truncation thresholds ε = 10−3, 10−4 are used to compare the performance of the proposed

conservative method with the non-conservative one. In Figure 5.2, we report the time evolution of

the electric energy together with the ranks of the numerical solutions for ε = 10−3. We observe that

the conservative method is able to capture correctly the nonlinear dynamics of the strong Landau

damping as opposed to the non-conservative method. This is because the truncation error due to

the large threshold used greatly pollutes the accuracy for the non-conservative method, while by
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Figure 5.3: Example 5.1. The time evolution of the electric energy (a, c) and the rank of the
numerical solutions (b, d). Conservative method (a, b) and non-conservative method (c, d). ε =
10−5.

design the conservative method exactly conserves the mass and momentum densities in the low

rank setting. Such conservation help resolve the nonlinear Vlasov dynamics with a relatively large

truncation threshold. As observed in Figure 5.6, the conservative method can conserve the total

mass and momentum up to the machine precision regardless of the mesh size used. Again, the energy

conservation is not observed, but the conservation error decreases with mesh refinement, which is

not the case for the non-conservative method. Then we consider a smaller truncation threshold

ε = 10−4, and the truncation error is reduced accordingly. Both methods generate consitent results

as plotted in Figure 5.7. As with the weak case, the conservative method has slightly larger ranks

than the non-conservative method. We have a similar observation of the methods in conserving the

invariants in Figure 5.8, as that in Figure 5.6.

Example 5.3. (Bump on tail.) In this example, we simulate the bump-on-tail test with the initial
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Figure 5.4: Example 5.1. The time evolution of relative deviation of total mass (a, d), absolute
total momentum (b, d), and relative deviation of total energy (c, f). Conservative method (a, b,
c) and non-conservative method (d, e, f). ε = 10−5.

condition

f(x, v, t = 0) = (1 + α cos (kx))

Å
np exp

Å
−v2

2

ã
+ nb exp

Å
−(v − u)2

2vt

ãã
, (5.2)

where α = 0.04, k = 0.3, np =
9

10
√
2π
, nb =

2
10

√
2π
, u = 4.5, vt = 0.5.

In the simulation, we set ε = 10−4 for truncation. The weight function w(v) = exp(− v2

3 ) is

chosen for the conservative method. Note that unlike the previous Landau damping examples,

the solution of bump on tail does not have the symmetry. In Figure 5.9, we report the time

evolution of the electric energy as well as the ranks of the solutions. Consistent numerical results

are observed. In Figure 5.10, we plot the time evolution of the relative deviation of the total mass,

momentum and energy for both methods. The non-conservative method is able to conserve the

invariants on the scale of the truncation threshold. Note that the exact momentum conservation

is not observed as expected. Meanwhile, the conservative method is able to conserve the total

mass and momentum up to the machine precision and has smaller conservation errors of total

energy compared to the non-conservative method. Note that the conservation error of the total

momentum increases after t = 15 for the conservative method with the coarse mesh size 32 × 64
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Figure 5.5: Example 5.2. The time evolution of the electric energy (a, c) and the rank of the
numerical solutions (b, d). Conservative method (a, b) and non-conservative method (c, d). ε =
10−3.

which is ascribed to the boundary error. In Figure 5.11, we report the contour plots of the solutions

by the two methods. The numerical solutions are observed to qualitatively match each other. Last,

we test the performance of projector PN with different subspaces N as discussed in Remark 3.6. In

particular, we denote by P1, P2 and P3 the orthogonal projectors with the weighted inner product

(3.15) onto the subspaces span{1v}, span{1v ,v}, span{1v,v,v2}, respectively. In Figure 5.12, we

plot the time evolution of the electric energy, ranks, total mass, total momentum, and total energy

of the solutions from the conservative method with P1, P2 and P3. The three methods generate

consistent results for the time evolution of the electric energy, and the ranks are comparable. By

construction all three methods can conserve the total mass, and the methods with P2 and P3 can

conserve the total momentum. Further, the method with P3 does the best job in conserving the

total energy as P3 preserves the kinetic energy for truncation.
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Figure 5.6: Example 5.2. The time evolution of relative deviation of total mass (a, d), absolute
total momentum (b, e), and relative deviation of total energy (c, f). Conservative method (a, b, c)
and non-conservative method (d, e, f). ε = 10−3.

5.1.1 2D2V Vlasov-Poisson system

Example 5.4. (Weak Landau damping.) We consider the 2D2V weak Landau damping, the dy-

namics of which is similar to the 1D1V case. The initial condition is

f(x,v, t = 0) =
1

(2π)d/2

(

1 + α

d∑

m=1

cos (kxm)

)

exp

Å
−|v|2

2

ã
, (5.3)

where d = 2, α = 0.01, and k = 0.5.

We set the computation domain as [0, Lx]
2 × [−Lv, Lv ]

2, where Lx = 2π
k and Lv = 6, and

the truncation threshold ε = 10−5. We simulate the problem with both conservative and non-

conservative methods, and the solutions are represented in the fourth order HT format. In Figures

5.13-5.14, we report the time evolution of the electric energy, hierarchical ranks of the numerical

solution, relative deviation of total mass and energy together with absolute total momentum J1

and J2. It is observed that both methods are able to predict the damping rate of the electric

energy. Furthermore, the conservative method is able to conserve the total mass and momentum

J1 and J2 up to the machine precision and enjoys better total energy conservation compared to the
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Figure 5.7: Example 5.2. The time evolution of the electric energy (a, c) and the ranks of the
numerical solutions (b, d). Conservative method (a, b) and non-conservative method (c, d). ε =
10−4.

non-conservative counterpart. On the other hand, the hierarchical ranks of the solution from the

conservative method, especially r1 and r2, are larger than that from the non-conservative method.

This is because f1 is constructed without compression to guarantee the local conservation (in fact f1

is truncated with threshold 10−15 in the simulation), and then the solution tensor is not compressed

in the x direction.

Example 5.5. We consider the 2D2V two-stream instability with initial condition

f(x,v, t = 0) =
1

2d(2π)d/2

(

1 + α

d∑

m=1

cos (kxm)

)
d∏

m=1

Å
exp

Å
−(vm − v0)

2

2

ã
+ exp

Å
−(vm + v0)

2

2

ãã
,

(5.4)

where d = 2, α = 0.001, v0 = 2.4, and k = 0.2.

The computation domain is set as [0, Lx]
2 × [−Lv, Lv]

2, where Lx = 2π
k and Lv = 8, and the

truncation threshold is set as ε = 10−5. In Figures 5.15-5.16, respectively for conservative and
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Figure 5.8: Example 5.2. The time evolution of relative deviation of total mass (a, d), absolute
total momentum (b, e), and relative deviation of total energy (c, f). Conservative method (a, b, c)
and non-conservative method (d, e, f). ε = 10−4.

non-conservative methods, we report the time evolution of the electric energy, hierarchical ranks

of the numerical solution, relative deviation of total mass and energy together with absolute to-

tal momentum J1 and J2. The observation is similar to the previous example that the proposed

conservative method is able to conserve the total mass and momentum, and meanwhile, the hier-

archical ranks of the solution tensor from the conservative method are larger than that from the

non-conservative counterpart.

6 Conclusion

In this paper, we proposed a conservative truncation procedure for a low-rank tensor approach for

performing a grid-based Vlasov simulations. The basic idea is initialized in the 1D1V setting, and

is further developed to the 2D2V setting with the HT tensor decompositions. The newly developed

conservative low rank tensor algorithm is theoretically proved to be a locally conservative scheme to

the macroscopic equations for charge and current densities, and is numerically verified to globally

conserve the total charge and current. Further development of the low rank tensor algorithm with
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Figure 5.9: Example 5.3. The time evolution of the electric energy (a, c) and the ranks of the
numerical solutions (b, d). Conservative method (a, b) and non-conservative method (c, d). ε =
10−4.

local energy conservation is subject to our future work.
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Figure 5.12: Example 5.3. Comparison of projections P1, P2, P3 of the proposed conservative low
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Figure 5.13: Example 5.4. Conservative low rank method. The time evolution of electric energy
(a), hierarchical ranks of the xnumerical solution of mesh size Nx × Nv = 64 × 128 (b), relative
deviation of total mass (c), absolute total momentum J1 (d), absolute total momentum J2 (e), and
relative deviation of total energy (f). ε = 10−5. In (b), r12 and r34 are close, r1 and r2 are close,
and r3 and r4 are close.
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Figure 5.14: Example 5.4. Non-conservative low rank method. The time evolution of electric
energy (a), hierarchical ranks of the numerical solution of mesh size Nx × Nv = 64 × 128 (b),
relative deviation of total mass (c), absolute total momentum J1 (d), absolute total momentum J2
(e), and relative deviation of total energy (f). ε = 10−5. In (b), r12 and r34 are close. r1, r2, r3,
and r4 are close.
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Figure 5.15: Example 5.5. Conservative low rank method. The time evolution of the electric energy
(a), hierarchical ranks of the numerical solutions (b), relative deviation of total mass (c), absolute
total momentum J1 (d), absolute total momentum J2 (e), and relative deviation of total energy
(f). ε = 10−5.
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Figure 5.16: Example 5.5. Non-conservative low rank method. The time evolution of electric energy
(a), hierarchical ranks of the numerical solutions (b), relative deviation of total mass (c), absolute
total momentum J1 (d), absolute total momentum J2 (e), and relative deviation of total energy
(f). ε = 10−5.
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