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We consider a vibrational system control problem over a finite time horizon.
The performance measure of the system is taken to be p-mixed H2 norm which
generalizes the standard H2 norm. We present an algorithm for efficient calculation
of this norm in the case when the system is parameter dependent and the number
of inputs or outputs of the system is significantly smaller than the order of the
system. Our approach is based on a novel procedure which is not based on solving
Lyapunov equations and which takes into account the structure of the system. We
use a characterization of the H2 norm given in terms of integrals which we solve
using adaptive quadrature rules. This enables us to use recycling strategies as well
as parallelization. The efficiency of the new algorithm allows for an analysis of
the influence of various system parameters and different finite time horizons on the
value of the p-mixed H2 norm. We illustrate our approach by numerical examples
concerning an n-mass oscillator with one damper.
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1. Introduction

The topic of this paper are vibrational systems, a class of systems which models oscillating
physical systems. We are interested in those systems where the vibrations are unwanted and
where one wants to design a system which reduces or minimizes the effects of a particular type
of vibratory disturbance.
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More precisely, we deal with a linear vibrational system given by the following matrix
algebraic-differential equation:

G =


Mẍ+ Cẋ+Kx = B2u,

x(0) = x0, ẋ(0) = ẋ0,

w =

[
E1x
E2ẋ

]
.

(1)

Here the mass matrix M and the stiffness matrix K are real, symmetric positive definite
matrices of order n ∈ N. The damping matrix C is real positive definite matrix and it is
given as a sum of the internal damping matrix Cint (which is predefined) and the external
damping matrix Cext (which is subject to a design choice), that is C = Cint + Cext. The
internal damping Cint is usually taken to be a small multiple of the so called critical damping,
that is, Cint = αCcrit, for some α > 0, where the critical damping Ccrit is (see, e.g., [41, 32, 44])
given by

Ccrit = 2M1/2
√

M−1/2KM−1/2M1/2. (2)

The external damping matrix describes the (passive) dampers of the system. In our case it will
depend on positive real parameters vi, i = 1, . . . , q, q ≪ n, (so called viscosities) and matrices
corresponding to the positions of the dampers.
The vector function x : [0,∞) → Rn contains the state variables and x0, ẋ0 are the initial

data. System disturbances are denoted by the vector function u : [0,∞) → Rm and the matrix
B2 ∈ Rn×m. The output or the measurement vector function w is determined by the output
matrices E1, E2 ∈ Rk×n.
The problem of determining the optimal damping matrix Cext which will ensure optimal

evanescence of the state x from (1) is well studied. There is a vast literature in this field of
research and this optimization problem has been intensively considered in the last two decades,
see, e.g., [8, 12, 30, 37, 44, 32, 41, 14]. The minimization of vibrations was also intensively
studied in engineering and applied mathematics. Here, we list only a couple of references:
[4, 33, 35, 17, 26, 22].
For damping optimization there exist several optimization criteria depending on different

application areas. An overview of such criteria can be found, e.g., in [44] or [29]. From the
control theory perspective for the optimization criteria the H2 or H∞ norms can be used.
Within this setting, several authors considered model order reduction approaches in order to
determine the optimal damping parameters efficiently; for more details see [36, 7, 1, 10]. Some
criteria are based on eigenvalues, such as spectral abscissa criterion (for more details, see, e.g.,
[20, 31, 45]), while other criteria are based on the total energy of the system, such as the total
average energy. Total average energy was considered widely in the last two decades, see, e.g.,
[42, 43, 40, 38, 14, 30]. In [8, 9] the authors considered dimension reduction techniques that
allowed efficient calculation of the total average energy.
In all the aforementioned papers, the time horizon of the system (1) was taken to be infinite.

We are interested in the case of the finite time horizon, i.e. we study the system (1) in the time
interval [0, T ], T < ∞. The infinite time horizon case is a natural choice in the cases when
the vibration occurs over a longer period of time or the system is perpetually disturbed. But
in the case of short duration phenomena such as earthquakes, finite time horizon is a much
more suitable choice. From the mathematical point of view, the infinite time horizon leads
to a computationally simpler optimization criterion, which is a very important aspect when
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designing the optimal damping structure. Hence if the finite time T is large enough, it makes
sense to choose T = ∞ even though this might lead to a (usually slightly) suboptimal design.
But if the finite time is sufficiently small (but not too small as to render the design problem
infeasible) then the choice T = ∞ is not viable and so the finite time horizon problem is the
one that merits a closer investigation.

Our choice of the optimization criterion will be based on the p–mixed H2 norm, which was
investigated in [32] where the authors considered performance measure that takes into account
the total average energy, and also the H2 norm of the system. This criterion contains both the
H2 norm and the total average energy criteria as the special cases and takes into account both
the initial data as well as external disturbances. This criterion will be also used in this paper
as well, but instead of the infinite time horizon, we will consider the finite one. In particular,
the p-mixed H2 norm of a system for the finite time horizon can be calculated by

TraceE⊤E

(∫ T

0
eAtZeA

⊤t dt

)
,

where the matrix A comes from the linearization of the system (1), the matrix Z encodes the
information about dangerous external forces and initial conditions, and the matrix E is given
in terms of output matrices E1, E2. We will introduce this criterion in more details in the next
section.
This objective function can be calculated directly using the following formula:

Trace (X − eATXeA
⊤T ), where X is such that AX +XA⊤ = −Z. (3)

We would like to emphasize that the use of formula (3) requires, besides solving Lyapunov
equation, also calculating the matrix exponential, for more details see, e.g. [15, 3, 28, 23, 25].
The technique we develop can also be used in a more general setting of the finite horizon H2

control in the case when the number of sensors and actuators is small, the system is parameter-
dependent and one needs to calculate the appropriate H2 norm for a large number of different
parameters.
We do not pursue this line of research here to make the exposition less technical. Moreover

our approach consists of two main parts; the offline part where we calculate matrices that do
not depend on viscosities and the online part in which we organize calculations in such a way
so that recycling of computationally demanding parts can be achieved efficiently.
One can also consider a model order reduction oriented approach for the finite time horizon

problem which will result in a model of reduced order. This can be applied even for a large-
scale systems, see, e.g. [24, 34, 27] where authors considered model order reduction for a finite
time horizon. However, when the order of a system is reduced, then our new approach can
again be employed for an efficient calculation of the p–mixed H2 system norm.
Throughout the paper we will use the following notation. The symbol ∥ · ∥ denotes the

standard vector norm or matrix 2-norm, depending on the context. If p and q are vectors, like
in many programming languages including Julia or Matlab, the notation A(p, q) will denote
the submatrix of A obtained by intersection of rows determined with elements of vector p and
columns determined with elements of vector q. Similarly, i : k : j denotes the vector of integers
from i to j with increments of k. For integers j and k, we denote by δj,k the Kronecker delta
symbol, i.e. δj,k = 1 if j = k, otherwise δj,k = 0. Also, for a matrix A and a scalar s, s − A
denotes the matrix sI −A.
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The paper is structured as follows. The finite time horizon p–mixed H2 norm is introduced
in section 2. In section 3 we first derive formulae for auxiliary vectors xj . Then, in subsection
3.2, we investigate the case of one-dimensional damping and derive final formula for the finite
time horizon p–mixed H2 norm. Using the derived formulae we present an approach for an
estimation of the finite time horizon p–mixed H2 norm in section 4. In particular, in subsection
4.1 we analyse estimation of the integration interval which is used in our algorithm for the
calculation of the finite time horizon p–mixed H2 norm presented in subsection 4.2. In section
5 we illustrate the efficiency of the new approach through numerical experiments.

2. Finite time horizon p–mixed H2 norm

2.1. Preliminaries

Differential equation in (1) can be transformed to the first order system in the phase space.
For that purpose let Φ be a matrix which simultaneously diagonalizes M and K, that is

Φ⊤MΦ = I,Φ⊤KΦ = Ω2 = diag(ω2
1, . . . , ω

2
n), (4)

where positive numbers ω1, ω2, . . . , ωn are undamped eigenfrequencies of the system, i.e. square
roots of the eigenvalues corresponding to the system with C = 0 (that is, the eigenvalues of
Q(λ) = λ2M − K). In this case the matrix Φ diagonalizes the internal damping matrix
defined by (2), that is Φ⊤CintΦ = νΩ, for ν > 0, with ν = 2α. Now, using the substitutions
y1 = ΩΦ−1x and y2 = Φ−1ẋ, the differential equation in (1) can be written as

ẏ = Ay +Bu, y(0) = y0, (5)

where

A =

[
0 Ω
−Ω −νΩ−D

]
, B =

[
0

Φ⊤B2

]
, y =

[
y1
y2

]
, (6)

with D = Φ⊤CextΦ. The output is determined by

w = Ey with E =

[
E1ΦΩ

−1 0
0 E2Φ

]
.

Here y0 contains the corresponding transformation of the initial data, see, e.g. [12, 44, 41].
This is the so-called modal representation of the system (1).

The solution of (1) hence can be written as

w(t) = EeAty0 + E

∫ t

0
eA(t−τ)Bu(τ) dτ. (7)

Let the parameter p satisfy 0 ≤ p ≤ 1. The p–mixed H2 norm of a system G, denoted by
∥G∥2,p, is defined as

∥G∥22,p = (1− p)∥G∥22 + p∥G∥22,hom. (8)

In (8) ∥·∥2 denotes the standard H2 norm given by

∥G∥22 =
1

2π

∫ ∞

−∞
Trace(Ĝ(iω))∗Ĝ(iω)) dω,
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where Ĝ denotes the transfer function of the system G, i.e. the Laplace transform of the
mapping u 7→ w. It can be shown, see e.g. [18], that the formula for ∥G∥2 in the time domain
is given by

∥G∥22 = Trace

(∫ ∞

0
E⊤eAtBB⊤eA

⊤tE dt

)
.

With ∥·∥2,hom, in (8), we denote the H2 norm of the corresponding homogeneous (u = 0)
system given by

∥G∥22,hom =

∫
∥y0∥2=1

∫ ∞

0
∥w(t; y0)∥2 dt dσ

(7)
=

∫
∥y0∥2=1

y⊤0

(∫ ∞

0
eA

⊤tE⊤EeAt dt

)
y0 dσ,

where σ is an averaging (surface) measure on the unit sphere R2n. More precisely, for a given
measure in R2n, the corresponding surface measure σ is given by the Minkowski–Steiner formula
[19]. Both ∥·∥2 and ∥·∥2,hom can be expressed in terms of solutions of Lyapunov equations; for
details see [32]. The p–mixed H2 norm can be calculated as (see [32, eq. (14)]):

Trace(E⊤EX), where X is such that AX +XA⊤ = −pZσ − (1− p)BB⊤, (10)

where the matrix Zσ depends on the choice of averaging measure σ on the set of unit initial
data.

2.2. Definition of the finite time horizon p–mixed H2 norm

The Lyapunov equation in (10) occurs, in both the H2 term and the homogeneous H2 term,

from the integrals in the time domain of the form
∫∞
0 eAt · eA⊤t dt. It is easy to see that in the

case of the finite time horizon the formula corresponding to (10) is

Trace

(
E⊤E

∫ T

0
eAt(pZσ + (1− p)BB⊤)eA

⊤t dt

)
. (11)

It is well known and used frequently in computations that such an expression again can be
written in terms of a Lyapunov equation, and so the last expression can be written as (see,
e.g., [3, 15, 32])

Trace
(
E⊤EX̃

)
, (12)

where X is such that AX̃ + X̃A⊤ = eAT (pZσ + (1− p)BB⊤)eA
⊤T − pZσ − (1− p)BB⊤.

Indeed, the function X(t) = eAt(pZσ + (1 − p)BB⊤)eA
⊤t is the solution of the Cauchy

problem
˙̃X(t) = AX̃(t) + X̃(t)A⊤, X̃(0) = pZσ + (1− p)BB⊤,

and by integrating the differential equation from 0 to T we obtain

X̃(T )− X̃(0) = A

∫ T

0
X̃(t) dt+

∫ T

0
X̃(t) dtA⊤.

If we denote by X the solution of the Lyapunov equation

AX +XA⊤ = −pZσ − (1− p)BB⊤,
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it is easy to see that X̃ = X − eATXeA
⊤T , hence (12) can be written as

Trace
(
E⊤E

(
X − eATXeA

⊤T
))

, (13)

where X is such that AX +XA⊤ = −pZσ − (1− p)BB⊤. By duality, (13) is equivalent to

Trace
(
(pZσ + (1− p)BB⊤)

(
X − eATXeA

⊤T
))

, (14)

where X is such that A⊤X +XA = −E⊤E.
Although (14) is much easier to compute than directly (11) in the case of one system, we

will show that in some instances (11) has an advantage. More precisely, if E has a simple
structure, Zσ and B are low rank matrices and the goal is to compute (11) (or (14)) for a
large number of external low rank damping matrices Cext, which is a frequent situation when
optimizing Cext, the expression 11 can be used to construct an efficient algorithm for such a
task.
In the sequel we will consider the typical case when

E⊤E =
1

2
I and pZσ + (1− p)BB⊤ = Z, (15)

with Z =

[
pZ1 0
0 Z1

]
and Z1 =

[
Ir 0
0 0

]
. (16)

Indeed, when modeling vibrational systems, the matrix B2 is usually designed as a band–
pass filter where only the dangerous frequencies are passed through. In terms of the modal
representation (5)-(6), this would mean that B2 has the form B2 = Z1, where the dangerous
frequencies are ω1, . . . , ωr. Typically r is a much smaller number than n which will also
be beneficial for our approach. For the dangerous frequencies we choose those which have
a significant influence on the behavior of the system, e.g., those that may lead to system
resonances. In damping applications it is typical to only damp dangerous frequencies, hence
our choice of the matrix B2. The measure σ typically is chosen in such a way that it attenuates
initial data which are not dangerous. In particular, the surface measure can be chosen in such
a way that it is generated by the Lebesgue measure on the subspace spanned by the vectors
[xi, 0]

⊤ and [0, xi]
⊤, i = 1, . . . , r, where xi are the eigenvectors of ωi, and on the rest of R2n

is generated by the Dirac measure concentrated at zero. Then, in the modal representation
we obtain Zσ = cdiag(Z1, Z1), where the constant c > 0 only depends on the dimension.
This corresponds to ignoring the initial data spanned by non-dangerous frequencies. Since
the squared L2 norm of the output, ∥w∥22, typically corresponds to the energy of the whole
system, in the modal representation we obtain E⊤E = 1

2I. See [32, Section 4] for the detailed
explanation. Hence, by appropriate scaling, we obtain (15)-(16). Moreover, in the case when
∥w∥22 equals the energy corresponding to dangerous frequencies, we obtain E⊤E = 1

2Z, which
can be also covered by our procedure; see (1) below.

Therefore, our goal is to efficiently calculate

Trace

(∫ T

0
eAtZeA

⊤t dt

)
, (17)

with A given in (6) and Z given in (16).
Our technique is not limited to this particular choice of matrices B2, E1, E2 and the measure

σ. As long as the corresponding matrix pZσ +(1− p)BB⊤ is of low rank and the matrix E⊤E
has a simple structure, one can construct a similar procedure. We limit our attention to this
particular case to not overburden the paper with technicalities.
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3. Derivation of the formula for the finite time horizon p–mixed H2

norm

In this section we use (17) directly to obtain a formula for the finite time horizon p–mixed H2

norm. For the purpose of the further structured calculations, we will use the fact that A can
be written as

A =

[
0 Ω
−Ω −νΩ−D

]
=

[
0 Ω
−Ω −νΩ

]
−
[
0 0
0 D

]
= A0 −A1. (18)

Using the fact that the matrix exponential function is the inverse Laplace transform of the
corresponding resolvent, we have

Trace

(∫ T

0
eAtZeA

⊤t dt

)
=

∫ T

0
Trace((

√
ZeA

⊤t)⊤(
√
ZeA

⊤t)) dt

=
2n∑

j,k=1

∫ T

0

(
(
√
ZeA

⊤t)j,k

)2
dt

=

2n∑
j,k=1

∫ T

0

(
1

2πi

(√
Z

∫ +i∞

−i∞
eλt(λ−A⊤)−1 dλ

)
j,k

)2

dt

=

2n∑
j,k=1

∫ T

0

(
1

2π

(∫ +∞

−∞
eist

√
Z(is−A⊤)−1 ds

)
j,k

)2

dt.

Due to the structure of the matrix Z, the summation index of j goes from 1 to r and from
n+ 1 to n+ r, so we obtain

Trace

(∫ T

0
eAtZeA

⊤t dt

)
=

p

4π2

r∑
j=1

2n∑
k=1

∫ T

0

(∫ +∞

−∞
hjk(t, s) ds

)2

dt

+
1

4π2

n+r∑
j=n+1

2n∑
k=1

∫ T

0

(∫ +∞

−∞
hjk(t, s) ds

)2

dt, (20)

where
hjk(t, s) = (cos st+ i sin st)e⊤j (is−A⊤)−1ek, (21)

and ej denotes the j−th canonical vector in Cn, C2n, Rn or R2n, depending on the context.

Remark 1. Note that if we would have chosen E⊤E = 1
2Z, then the sums in (20) would be

given by p
∑r

j,k=1+
∑n+r

j,k=n+1 and hence the Algorithm 1 from subsection (4.2) can be easily
modified to cover this case as well.

To construct an efficient algorithm for the calculation of the last sum, we will carefully
study the terms e⊤j (is − A⊤)−1ek using the structure of the matrix A, distinguishing those
terms which do not depend on the Cext.

We calculate

(is−A⊤)−1 = (is−A⊤
0 +A1)

−1 =
(
(is−A⊤

0 )(I + (is−A⊤
0 )

−1A1)
)−1

=
(
I + (is−A⊤

0 )
−1A1

)−1
(is−A⊤

0 )
−1,
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hence

e⊤j (is−A⊤)−1ek = e⊤j

(
I + (is−A⊤

0 )
−1A1

)−1
(is−A⊤

0 )
−1ek

=
(
(I + (is−A⊤

0 )
−1A1)

−⊤ej

)⊤
(is−A⊤

0 )
−1ek

=
(
(I +A1(is−A0)

−1)−1ej
)⊤

(is−A⊤
0 )

−1ek.

Let xj = (I + A1(is − A0)
−1)−1ej i.e. (I + A1(is − A0)

−1)xj = ej . Let xj = [x1j x2j ]
⊤. Note

that e⊤j (is − A⊤)−1ek is a scalar product of two vectors, vector xj depends on s, viscosities

and damping positions and vector (is−A⊤
0 )

−1ek depends only on s. Moreover, we would like
to derive a formulae for xj which will be considered in the next subsection.

3.1. Calculation of the vectors xj

From

is−A0 =

[
is −Ω
Ω is+ νΩ

]
we obtain

(is−A0)
−1 =

[
(νΩ+ is)L(s) ΩL(s)

−ΩL(s) isL(s)

]
,

where
L(s) =

(
Ω2 + isνΩ− s2

)−1
= F (s)− iG(s), (24)

where matrices F (s) and −G(s) are real and imaginary part of matrix L(s). Since the matrix
Ω2 + isνΩ − s2 is a diagonal complex matrix, its inverse can be calculated directly. Now we
have

I +A1(is−A0)
−1 =

[
I 0
0 I

]
+

[
0 0
0 D

] [
(νΩ+ is)L(s) ΩL(s)

−ΩL(s) isL(s)

]
=

[
I 0

−DΩL(s) I + isDL(s)

]
.

For 1 ≤ j ≤ r we obtain

x1j = ej , (I + isDL(s))x2j = DΩL(s)ej

and for n+ 1 ≤ j ≤ n+ r
x1j = 0, (I + isDL(s))x2j = ej−n.

In the following proposition we obtain the formulae for the real and imaginary parts of complex
vectors x2j , for j = 1 . . . , r, n+1, . . . , n+ r, in terms of the solutions of real linear systems (26)
and (27).

Proposition 1. Let matrix L(s) be given as in (24) and let x2j = xℜj + ixℑj , with xℜj , x
ℑ
j ∈ Rn.

Then systems (I + isDL(s))x2j = DΩL(s)ej, for 1 ≤ j ≤ r, and (I + isDL(s))x2j = ej−n, for
n+ 1 ≤ j ≤ n+ r, are equivalent to the following systems[

I −s (I + sDG(s))−1 DF (s)

0 s2DF (s) (I + sDG(s))−1 DF (s) + I + sDG(s)

] [
xℜ
j

xℑ
j

]
=

[
(I + sDG(s))−1 DΩF (s)ej

−sDF (s) (I + sDG(s))−1 DΩF (s)ej −DΩG(s)ej

]
, (26)

8



[
I −s (I + sDG(s))−1 DF (s)

0 s2DF (s) (I + sDG(s))−1 DF (s) + I + sDG(s)

] [
xℜ
j

xℑ
j

]
=

[
(I + sDG(s))−1 ej−n

−sDF (s) (I + sDG(s))−1 ej−n

]
, (27)

respectively.

Proof of this proposition is given in Appendix A.
In the next subsection we analyse formulae for the case of one-dimensional damping which

will allow us to construct an efficient procedure for the calculation of the finite time horizon
p–mixed H2 norm.

3.2. The case of one-dimensional damping

The systems of linear equations given above can be solved in a more general setting. But in
this paper, to reduce the technicalities, we only treat the particular case when there is just
one damper of dimension one, and the only parameter is its viscosity. The procedure can
be straightforwardly extended to the multi-parameter case in the case of a small number of
parameters. Then the damping matrix D has the following form

D = Φ⊤CextΦ = vΦ⊤ee⊤Φ = γUU⊤, (28)

where the vector e encodes the position of the damper. The parameter γ > 0 is a product of
viscosity parameter v and the 2-norm of the matrix Φ⊤ee⊤Φ and vector U ∈ Rn×1 determines
the geometry of the damping position.
In the following proposition we give explicit solution of the equations (26)-(27) in terms of

the parameter γ that determines the viscosity parameter.

Proposition 2. Let q = 1 and assume that U and γ define damping matrix D as in (28).
Furthermore, let g(s) = U⊤G(s)U =

∑n
j=1 u

2
jgj(s) and f(s) = U⊤F (s)U =

∑n
j=1 u

2
jfj(s),

where fj(s) and gj(s), for j = 1, . . . , n are diagonal elements of F (s) and G(s) given by (24),
respectively. Then, the solution of (26) is given by (1 ≤ j ≤ r)

xℑj (s) = a(s, γ)U, (29)

xℜj (s) =

(
γfj(s)ujωj

1 + sγg(s)
+

sγf(s)

1 + sγg(s)
a(s, γ)

)
U, (30)

where

a(s, γ) = −γujωj×

× gj(s) + sγ (f(s)fj(s) + 2g(s)gj(s)) + s2γ2g(s) (f(s)fj(s) + g(s)gj(s))

1 + 3sγg(s) + s2γ2 (3g(s)2 + f(s)2) + s3γ3g(s) (g(s)2 + f(s)2))
, (31)

and the solution of (27) is given by (n+ 1 ≤ j ≤ n+ r)

xℑj (s) = b(s, γ)U, (32)

xℜj (s) = ej−n +

(
−sγuj−ngj−n(s)

1 + sγg(s)
+

sγf(s)

1 + sγg(s)
b(s, γ)

)
U, (33)

where

b(s, γ) = −sγuj−n
fj−n(s) + sγ(g(s)fj−n(s)− f(s)gj−n(s))

(1 + sγg(s))2 + (sγf(s))2
. (34)
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Proof of this proposition is given in Appendix A.
Obviously, xℜj and xℑj depend on s but not on t and sometimes, to emphasise this, we write

xℜj (s) and xℑj (s).
The following proposition gives formulae for hjk(t, s) defined by (21), which are our main

target in light of (20).

Proposition 3. Let all assumptions from (2) hold. Then, for hjk(t, s), defined by (21), we
have the following formulae.
For 1 ≤ j ≤ r and 1 ≤ k ≤ n we have

hjk(t, s) = 2 cos st ·
(
(νωkfk(s) + sgk(s)) δj,k + ωk

(
fk(s)(x

ℜ
j )k + gk(s)(x

ℑ
j )k

))
.

For 1 ≤ j ≤ r and n+ 1 ≤ k ≤ 2n we have

hjk(t, s) = 2 cos st ·
(
−ωk−nfk−n(s)δj,k−n + sgk−n(s)(x

ℜ
j )k−n − sfk−n(s)(x

ℑ
j )k−n

)
.

For n+ 1 ≤ j ≤ n+ r and 1 ≤ k ≤ n we have

hjk(t, s) = 2 cos st ·
(
ωk

(
fk(s)(x

ℜ
j )k + gk(s)(x

ℑ
j )k

))
.

For n+ 1 ≤ j ≤ n+ r and n+ 1 ≤ k ≤ 2n we have

hjk(t, s) = 2s cos st ·
(
gk−n(s)(x

ℜ
j )k−n − fk−n(s)(x

ℑ
j )k−n

)
.

Proof of this proposition is given in Appendix A.
Finally, using derived explicit formulae for hjk we are able to write a formula for the finite

time horizon p–mixed H2 norm, that is, we calculated all the ingredients of the formula (20).
In this section we only considered formulae for the one-parameter case, meaning that U ∈

Rn×q is a vector. These formulae can be extended straightforwardly to the multi-parameter
case, which can still be used for an efficient p-mixed H2 norm calculation as long as we have
a small number of parameters, meaning q ≪ n. In general, the matrix U would contain
q > 1 columns, and the Sherman–Morrison–Woodbury formula would include the inverses
of q × q matrices. The obtained formulae would have a similar structure, which would lead
to an algorithm of the same structure as the one given in 1. We have considered only the
one-parameter case to simplify the exposition, as in the general case the formulae are more
complicated.

Now, in the next section we explain how to use the quadrature rule in order to calculate an
approximation of the expression above.

4. Estimation of the integrals

Our approach is based on a numerical integration of a very structured and oscillatory function.
This is a widely investigated field and overview of some methods can be found in [16, 21, 13]. In
order to be able to recycle data and use our formulae efficiently we will use Gauss quadrature
rule for the integration with respect to time and adaptive Simpson rule (see, e.g., [21]) for the

10



highly oscillatory part. In particular, we will use the following estimate for (20)

Trace

(∫ T

0
eAtZeA

⊤t dt

)
≈ p

4π2

r∑
j=1

2n∑
k=1

nt∑
α=1

ηα

 ns∑
β=1

ζβhjk(tα, sβ)

2

+
1

4π2

n+r∑
j=n+1

2n∑
k=1

nt∑
α=1

ηα

 ns∑
β=1

ζβhjk(tα, sβ)

2

, (35)

where {(tα, ηα)}nt
α=1 are the nodes and weights for the integral over the time variable t and

{(sβ, ζβ)}ns
β=1 are the nodes and weights for the integral over the frequency variable s.

For the estimation of
∫ +∞
−∞ hjk(t, s) ds we will use combination of Simpson rule and adaptive

Simpson rule for the highly oscillatory part. First we estimate the indefinite integral by its
finite approximation∫ +∞

−∞
hjk(t, s) ds = 2

∫ 0

−∞
hjk(t, s) ds ≈ 2

∫ 0

−Smax

hjk(t, s) ds.

In the next subsection we will derive an upper bound which shows how large parameter Smax

should be.

4.1. Estimation of the integration interval

Since the leading term in our integral is e⊤j (is − A⊤)−1ek, for j = 1, . . . , r, n + 1, . . . , n + r,
k = 1, . . . , 2n, we will try to determine efficiently how large (and small) values of the parameter
s should be considered. Assume that the parameter γ is taken from the range [0, γmax] and let
ωmax = max {ω1, . . . , ωn} .

By using the structure of the matrix A given by (18) we have

(is−A⊤)−1 =
(
I + (is−A⊤

0 )
−1A1

)−1
(is−A⊤

0 )
−1.

When ∥(is− A⊤
0 )

−1A1∥ < 1 we have that I + (is− A⊤
0 )

−1A1 is a non-singular matrix and we

have ∥
(
I + (is−A⊤

0 )
−1A1

)−1 ∥ ≤
(
1− ∥(is−A⊤

0 )
−1A1∥

)−1
. If we use that ∥A1∥ ≤ γ, we get

∥(is−A⊤)−1∥ ≤ ∥(is−A⊤
0 )

−1∥
1− γ∥(is−A⊤

0 )
−1∥

. (36)

We want to evaluate the norm of the matrix (is−A⊤
0 )

−1, for which it is sufficient to calculate
the eigenvalues of the matrix (is−A⊤

0 )
−1(−is−A0)

−1. Since

(is−A⊤
0 )

−1(−is−A0)
−1 = (s2 + is(A⊤

0 −A0) +A⊤
0 A0)

−1

=

[
s2 +Ω2 −2isΩ− νΩ2

2isΩ− νΩ2 s2 + (1 + ν2)Ω2

]−1

,

it is sufficient to investigate the eigenvalues of B−1, where

B =

[
s2 + ω2 −2isω − νω2

2isω − νω2 s2 + (1 + ν2)ω2

]
.

11



We have

det(B − λI) = (s2 + ω2 − λ)(s2 + ω2 + ν2ω2 − λ)− (2isω − νω2)(−2isω − νω2) = 0.

We can write this as
µ(µ+ ν2ω2)− (ν2ω4 + 4s2ω2) = 0,

for µ = s2 + ω2 − λ. This is the quadratic equation in the variable µ and the solutions are
given by

µ1,2 =
−ν2ω2 ±

√
ν4ω4 + 4(ν2ω4 + 4s2ω2)

2
.

Hence the eigenvalues of matrix B are given by

λ1,2 =
ν2ω2 ∓

√
ν4ω4 + 4(ν2ω4 + 4s2ω2)

2
+ s2 + ω2.

If we want ∥(is−A⊤
0 )

−1∥ < δ for some tolerance δ > 0, we must have

1√
λ1,2

< δ ⇒ λ1,2 ≥
1

δ2
,

for all ω = ω1, . . . , ωn. Note that

λ1,2 ≥
ν2ω2 − ν2ω2 − 2νω2 − 4sω

2
+ s2 + ω2 = (s− ω)2 − νω2.

To obtain ∥(is − A⊤)−1∥ < ε for a tolerance ε > 0, note that from (36) it follows that it is
sufficient to have

∥(is−A⊤
0 )

−1∥ ≤ ε

1 + γε
.

Now we can take δ = ε
1 + γε , so it follows

(s− ω)2 − νω2 ≥ (1 + γε)2

ε2

which implies

s2 − 2ωs+ (1− ν)ω2 − (1 + γε)2

ε2
≥ 0.

This is a quadratic inequality in the variable s which is satisfied for all s for which we have

s ≥ ω +

√
νω2 +

(1 + γε)2

ε2
.

Hence the inequality ∥(is−A⊤)−1∥ < ε will be satisfied if we take

Smax = ωmax +

√
νω2

max +
(1 + γmaxε)2

ε2
. (37)

In order to better illustrate the dependence on parameters ωmax and γmax and the tolerance ε,
we can also use the following, slightly worse, bound

Smax ≥ (1 +
√
ν)ωmax +

1

ε
+ γmax.
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4.2. Algorithm for the calculation of the finite time horizon p–mixed H2 norm

To take into account the oscillating nature of the function we integrate, we divide the integra-
tion interval in two parts

2

∫ 0

−Smax

hjk(t, s) ds = 2

(∫ −S1

−Smax

hjk(t, s) ds+

∫ 0

−S1

hjk(t, s) ds

)
.

In the first integral on the right hand side we will use the standard Simpson rule because this
integral does not oscillate as highly as the second one. In the second integral on the right hand
side we will use the adaptive Simpson rule since the considered function is highly oscillatory
on that segment. Moreover, adaptive Simpson is appropriate for our implementation since we
use that the number of nodes is a power of 2 and therefore recycling can be done easily.
Algorithm for the calculation of the finite time horizon p–mixed H2 norm defined by (35) is

given by Algorithm 1.

4.2.1. Algorithm description

The Algorithm 1 consists of two parts; the offline and the online part.
First, we give more details regarding the offline part. In the offline part, we use the fact

that some intermediate calculations can be effectively stored in matrices that do not depend on
viscosity, and therefore, they can be calculated only once. In particular, in the offline part, we
prepare the matrix of the type Rns×nt which entries are cos(sitl), i = 1, . . . , ns, l = 1, . . . , nt.
Also, we prepare matrices of the type Rns×n with rows being the diagonal elements of matrices
F (si) and G(si), i = 1, . . . , ns. As entries of these matrices do not depend on the viscosities
they can be calculated in the offline part.
In the online part we organize calculations in such a way that we can recycle computation-

ally demanding parts. First, we define tensors xℑ, xℜ ∈ Rns×2r×n, where xℑ(si, j, :) = xℑj (si)

and xℜ(si, j, :) = xℜj (si), for i = 1, . . . , ns and j = 1, . . . , r, n + 1, . . . , n + r. Here xℑj (si) and

xℜj (si) are defined in (29) - (33).
Then, in the most computationally demanding part of the algorithm line 11 - line 14, for

every k = 1, . . . , 2n and j = 1, . . . , r, n+ 1, . . . , n+ r, we calculate the terms hjk(tl, si) (whose
formulae are derived in subsection 3.2) and we also use recycling for the parts that do not
depend on time variable.
For the computation of the integral in line 12 we use the standard Simpson rule, hence we

calculate the terms hjk(tl, si), i = 1, . . . , ns1 , l = 1, . . . , nt.
For the integral in line 13 we start from the initial mesh of integration nodes (initially, we

have 2b0 nodes). Here, we are using the adaptive Simpson approach, which means that we
pick iteratively denser meshes until we reach the prescribed tolerance tol. In this process, we
recycle previously calculated function values hjk(t, s) to accelerate computations. Moreover,
when the difference between the nodes reaches the maximal number of segment subdivisions
(determined by the parameter 2bmax), the current approximation on the segment is accepted.
We emphasize that in the steps 11, 12 and 13 we benefit greatly from recycling. Recycling of
the data from the offline part is made easier by the use of the adaptive approach, as we use
the equidistant mesh with the number of nodes of the form 2l.

Remark 2. The algorithms have been implemented in Julia (see [11]). Julia low level pro-
gramming enables efficient implementation comparable with standard BLAS routines. In Julia
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Algorithm 1 Algorithm for the calculation of the finite time horizon p–mixed H2 norm

Require: system matrices: M (mass matrix), K (stiffness matrix), Cext (external damping);
system parameters: ν (determines Cint);
tolerances tols (tolerance for Smax), tol (integration tolerance);
the finite time horizon p–mixed H2 norm parameters: p ∈ [0, 1] (determine the target
norm), r (number of undamped frequencies that need to be damped), T (defines time
horizon);
nt (number of nodes for the integration by t);
v1, v2, . . . vnv (nv considered viscosities);
bmax and b0 (maximum and initial number of nodes for adaptive Simpson rule for second
integral is n2 = 2bmax and 2b0);
n1 (number of nodes for the first integral, ns = n1 + n2 is total number of nodes for
integration by s);
S1 (limit for integration by variable s of first integral);

Ensure: Estimation of (17)
Offline part:

1: Determine Smax such that equality (37) holds.
2: Determine equidistant nodes s1, . . . , sn1 ∈ [−Smax,−S1], sn1+1, . . . , sns ∈ [−S1, 0] for inte-

gration by s.
3: Determine nodes t1, . . . , tnt ∈ [0, T ] and weights for integration by t.
4: Compute cos(sitl) for every node si, i = 1, . . . , ns and tl, l = 1, . . . , nt.
5: Compute matrices F (si) and G(si) from (24) for all nodes si, i = 1, . . . , ns.
6: Compute f(si) and g(si) defined in Proposition 2 for all nodes si, i = 1, . . . , ns.

Online part:
7: for considered viscosities v1, v2, . . . vnv do
8: Compute vectors xℑj (si) and xℜj (si) from (29)-(33) for all nodes si, i = 1, . . . , ns and all

j = 1, . . . , r, n+ 1, . . . , n+ r .
9: for j = 1 : r, n+ 1 : n+ r do

10: for k = 1 : 2n do
11: Evaluate functions hjk on a given grid (si, tl) using formulae from subsection (3.2)

while recycling parts which are time-independent.
12: Use the Simpson rule to compute

∫ −S1

−Smax
hjk(t, s) ds.

13: Use the adaptive Simpson rule to compute
∫ 0
−S1

hjk(t, s) ds.

14: Use the quadrature rule to compute
∫ T
0

(∫ Smax

−Smax
hjk(t, s) ds

)2
dt.

15: end for
16: end for
17: end for
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we were able to efficiently implement standard and adaptive Simpson quadratures, including
nested loops with simple operations. Of course, efficiency strongly depends on the number of
nodes tj and si and on how much recycling is used. Therefore, in the offline phase, we have
prepared data needed for the calculation of the target value. Then we have used adaptive Simp-
son approach for the calculation of the integral over the variable s. The main reason for that
is that it allows an implementation of adaptive quadrature that uses equidistant nodes, while
on the same time we can recycle data obtained from previous steps as well as the data prepared
in the offline part.

4.2.2. Algorithm parallelization

The most demanding parts of our algorithm can be parallelized and therefore our approach
can be additionally accelerated. Here we would like to emphasize where we have used Julia’s
multithreading environment. In particular, we have used the macro threads. First, in the
offline phase we have used the macro threads in line 4 and line 5 since this part includes
generation of matrices with rows which are diagonal elements of matrices F (si) and G(si) for
all nodes si (that do not depend on the time nodes), while we also form a matrix that stores
values cos(sitl), for all nodes si, i = 1, . . . , ns and all nodes tl, l = 1, . . . , nt, which depends on
the time nodes as well.

Furthermore, the main benefit from parallelization comes from acceleration of the online
part. In particular, we have used the macro threads in the inner loop for calculating the
tensors xℑ and xℜ. Also, the inner loop over k depends on the dimension n, so lines 11 - 14
have been calculated using the macro threads.

We would like to emphasize the benefit from using Algorithm 1 compared to the approach
that calculates Lyapunov equation given by (3). In the next section, we will calculate the
number of floating point operations needed for one evaluation of p–mixed H2 norm for both
approaches.

4.3. Complexity analysis

An alternative approach for the calculation of the finite time horizon p–mixedH2 norm uses the
formula 3 and we will call it a Lyapunov based approach. This approach requires calculation of
the Lyapunov equation and calculation of the matrix exponential. This means that Lyapunov
based approach needs nvO(n3) floating point operations for calculation of p–mixed H2 norm
for nv different viscosities.

This Lyapunov based approach can be accelerated by using model order reduction techniques
as we mentioned in the introduction, but also it can be accelerated by using the low rank
structure that appears in our case. In particular, the objective function can be calculated
using an approach that is based on function calculation using low-rank updates; see, e.g.,
[5, 6]. This can be applied by calculating the matrix exponential function and by solving the
Lyapunov equation given by 3. Comparison with this approach is not given since we do not
have relevant implementation of this approach. Moreover, we would like to emphasize that
when the finite horizon T is changed, the Lyapunov equation 3 does not need to be solved
again, but the matrix exponential function needs to be calculated repeatedly. On the other
hand, our approach includes formulae constructed in such a way so that the most expensive
part (from the calculation point of view) can be recycled. Below we give more details on the
complexity of our approach.
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In the analysis of the complexity of Algorithm 1, we will separately study the online and the
offline part. Moreover, there are two levels of offline parts. One includes certain complexity
that does not depend even on the external damping and therefore can be done only once
for all viscosities, damping positions and different time horizons. Main cost within this part
comes from the simultaneous diagonalization defined by (4) that requires O(n3) (floating point)
operations, but only once. Note that the simultaneous diagonalization is always necessary if
the internal damping is defined in terms of the critical damping in (2). Then, once the damping
positions are fixed, we can evaluate Algorithm (1) as follows

• Offline

preparation of offline data includes line 1 - line 6 that requires: nsO(n) operations

• Online, for each viscosity line 8 - line 14 include

line 8 that requires: nsO(rn) operations

for all j and k we have line 11 - line 14 where

line 11 requires: O(nsn) operations

line 12 requires: O(ntn1) operations

line 13 requires: O(ntn2) operations

line 14 requires: O(nt) operations

This means that line 11 - line 14 require nsO(rn) + ntnsO(rn) + nsO(rn2) floating point
operations.
Taking all into account, we can conclude that p–mixed H2 norm for nv different viscosities

can be calculated by Algorithm 1 using nvnsO(rn2) floating point operations excluding the
possible computational cost of the simultaneous diagonalization (4), which is independent on
the choice of all parameters except matrices M and K. In particular, it does not depend on
the parameters T , p, and the choice of the external damping matrix Cext and so the cost can
be taken as negligible in the framework of optimization or online simulation. Moreover, our
estimation on the required number of floating point operations depends on ns which does not
depend directly on n.

Here we would like to emphasize that in our approach when parameter T , which defines the
time horizon, is changed we can use recycling on that level too. In particular, line 11 is the
most demanding step in the algorithm but it does not depend on the time nodes. Moreover,
when T is slightly changed we need to evaluate Algorithm 1 for very small nt while all the
data that do not depend on time nodes can be recycled. From the complexity perspective this
means that the floating point operations from line 8 and line 11 now belong to the offline part.
Taking all this into account we obtain that calculation of p–mixed H2 norm for nT different
time horizons can be calculated by Algorithm 1 using

nsO(rn) + nsO(rn2) + nTntnsO(rn)

floating point operations. In contrast, Lyapunov based approach needs nTO(n3) floating point
operations for the calculation of p–mixed H2 norm for nT different time horizons.

This analysis shows that we can efficiently analyze the influence of different final times T
on the p–mixed H2 norm. Therefore, one approach for practical determination of a good final
time T could be based on the determination of T for which the p–mixed H2 norm stagnates.
In the next section, we will illustrate this in an numerical example.
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5. Numerical experiments

In this section, we present numerical examples in order to illustrate the behaviour of the
p-mixed H2 norm for different choices of the finite time horizon T and advantages of our ap-
proach compared with the Lyapunov based approach. Computations have been carried out
on a workstation with 64-bit Linux operating system and with an AMD®Ryzen Threadrip-
per™processor with 64 CPUs, 128 threads and 256 GB DDR4 RAM. Moreover, for the sake of
time comparison on a standard computer, in Example 2, computations have also been tested
on a laptop with Intel®Core™i7-9750H processor with 6 CPUs, 12 threads, 8 GB RAM and
64-bit version of Windows. Numerical experiments are performed using Julia [11], on the work-
station we have used Version 1.6.3 with 32 threads, while on the laptop we have used Version
1.6.0 with 6 threads.

Example 1. We consider an n-mass oscillator or oscillator ladder with one damper, shown
in Figure 1, which describes the mechanical system of n masses and n + 1 springs. Similar
models were considered e.g. in the papers [9], [32], [39] and the book [44].

In this example, we are interested in analyzing the external damping that significantly influ-
ences the system. To this end, we are considering effective viscosity, i.e. the threshold value
after which the finite time horizon p–mixed H2 norm drops significantly. We noticed through
numerical experiments that such a value exists for all systems we have considered. Since in
this example we take small n, we use the Lyapunov based approach.

Figure 1: The n-mass oscillator with one grounded damper

For such a mechanical system the mathematical model is given by (1), where the mass and
stiffness matrices are

M = diag(m1,m2, . . . ,mn),

K =


k1 + k2 −k2
−k2 k2 + k3 −k3

. . .
. . .

. . .

−kn−1 kn−1 + kn −kn
−kn kn + kn+1

 .

We choose matrices B2, E1 and E2 such that (15) holds. Such matrices can be determined
directly from our system matrices and more details can be found in [32, Section 4].
We will consider the following configuration

n = 200; kj =
n

2
, ∀j; mj =

{
n−2j
10 , j = 1, . . . , n4 ,

n
4
+j

10 , j = n
4 + 1, . . . , n.
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We will consider one damper, but the damping position will be changed, so the external
damping is defined by (28) and the internal damping Cint is defined as in (2), with α = 0.005.
In this example for the illustration and comparison purposes we will consider four different
damping positions, that is, we will consider that vector e from (28), that encodes damping
positions, is equal to ei where i = 10, 80, 110, 160.

We consider damping of 1% smallest eigenfrequencies of the system which means that we
have r = n

100 = 2 and parameter p that defines p–mixed H2 norm is taken to be 0.5.
In this example we will show the influence of the parameter T in (17), that is the influence

of the time horizon in the p–mixed H2 norm. This influence is shown on (2).

Figure 2: (Example 1) The influence of the integration time on the magnitude of the effective
viscosity for dimension n = 200 and for four different damping positions. By effective
viscosity we mean the threshold value after which the finite time horizon p–mixed
H2 norm drops significantly. The computation is done using the workstation.

As is to be expected, for very small times T it is hard to achieve significant damping effects,
therefore a very large viscosity is needed to significantly reduce the finite time horizon p–mixed
H2 norm, which is usually physically infeasible. On the other hand, when T is increased we
observe major decay in effective viscosities for all considered damping positions. This means
that for moderate times T effective viscosities vary within the appropriate values, and for large
times T the curve is close to the case T = ∞. Of course, it is hard to state what do we mean
by moderate T , but exactly this decay gives us this information. In this example, from our
analysis we can observe that relevant time horizon with reasonable effective viscosity starts at
around 1.

Example 2. In this example we will have the same configuration as in the previous example,
but with the dimension n = 2000. We have calculated an approximation of the finite time
horizon p–mixed H2 norm by using Algorithm 1 with the following initial requirements:

tol = 10−5, nt = 20,

nv = 20, n1 = 599,

S1 = ωn/25, b0 = 8,

bmax = 12, tols = 0.05,

and we consider the following viscosities v1 = 75, v2 = 150, . . . , v20 = 1500.
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As in the previous example, we have used p = 0.5 and we would like to damp 1% of the
undamped eigenfrequencies, which means that r = 20, while internal damping is determined
using α = 0.005. Here, from the similar numerical analysis as in the previous example, we can
conclude that T should be larger than 1, and therefore in the continuation of this example we
illustrate the efficiency of our approach for T = 2. Moreover, the influence of T is significant
and with our approach we can efficiently calculate the finite time horizon p–mixed H2 norm
for several values of T , since the major computational cost taken care of in the offline part.

To present comparison with a Lyapunov based approach, we will calculate the finite time
horizon p–mixed H2 norm with new approach and compare it with the Lyapunov based approach
that uses the formula (3). Here Lyapunov based approach is implemented in such a way that
we solve Lyapunov equation and matrix exponential directly. In particular, in Julia the matrix
exponential is calculated using one of the most widely used method based on [25], while the
algorithm for solving the Lyapunov equation is based on LAPACK routines that uses direct
solvers for Lyapunov equation. For more details see, e.g. [15, 3, 28, 23, 2]. Therefore we can
use this value as the exact solution. Figure 3 presents the average relative error for these two
approaches for 20 equidistant viscosities, from 75 to 1500, and shows the average relative error
for all considered damping positions ei, where i = 100, 200, . . . , 1900. Then, for four different
damping positions, that is for e = ei, where i = 200, 800, 1100, 1600, Figure 4 shows the relative
error for these two approaches for all 20 equidistant viscosities. We can see that our approach
for given tolerances results with satisfactory accuracy.

Figure 3: (Example 2) The average relative error for 20 equidistant viscosities from 75 to 1500,
for the calculation of the finite time horizon p–mixed H2 norm using Algorithm 1,
compared with the Lyapunov based approach, for 19 different damping positions.
The computation is done using the workstation.

For a time comparison, first we have used a laptop to calculate the finite time horizon p–
mixed H2 norm, using Algorithm 1 and using Lyapunov based approach. For four different
damping positions given in Figure 4, average acceleration factor is 2.5.

This can be improved by the efficient usage of tensor structures that arise in Algorithm
1 which is illustrated in Figure 5. In particular, Figure 5 presents the time required for the
calculation of the finite time horizon p–mixed H2 norm using Algorithm 1 and the time required
for the Lyapunov based approach.

Current implementation uses the benefit of large number of threads available on the work-
station. Thus, it is optimized for better usage of multithreading environment, and this is also
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Figure 4: (Example 2) The relative error for the calculation of the finite time horizon p–mixed
H2 norm using Algorithm 1, compared with the Lyapunov based approach, for four
different damping positions and 20 equidistant viscosities from 75 to 1500. The
computation is done using the workstation.

Figure 5: (Example 2) The time required for the calculation of the finite time horizon p–mixed
H2 norm using Algorithm 1 compared to the time required for the Lyapunov based
approach, for 19 different damping positions. The computation is done using the
workstation.
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confirmed in numerical tests. In particular, on the workstation an average acceleration factor
for four considered damping positions presented on Figure 4 is 12.2.

Example 3. In this example, we consider the mechanical system shown in Figure 6, consisting
of three rows of d masses and d+ 1 springs which are, on the left-hand side, connected to the
fixed base. Springs in each row have the same stiffness equal to k1, k2 and k3. On the right-
hand side, they are connected to one additional mass, which is connected to the fixed base with
a spring of stiffness k4. Similar models were considered in the paper [8].

Figure 6: (3d+ 1)-mass oscillator with one damper

For such a mechanical system the mathematical model is given by (1), where the mass and
stiffness matrices are

M = diag(m1,m2, . . . ,mn),

K =


K1 −κ1

K2 −κ2
K3 −κ3

−κ1 −κ2 −κ3 k1 + k2 + k3 + k4

 , with

Ki = ki


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

 , κi =


0
0
...
0
ki

 , i = 1, 2, 3.

We have the following configuration

d = 800; kj =


800, j = 1,

600, j = 2,

700, j = 3;

mj =



1000− 2j, j = 1, . . . , d2 ,

j − 200, j = d
2 + 1, . . . , d,

j + 100, j = d+ 1, . . . , 2d,

n− 2j, j = 2d+ 1, . . . , 3d,

2000, j = n = 3d+ 1.

We will consider here one damper with a different damping geometry compared to the previous
example. Damper will be located between two masses in different rows and we will consider six
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different damping positions. The corresponding vectors e from (28), denoted by ei are given by

(ei)j =


1, j = i

−1, j = i+ d

0, otherwise

, j = 1, . . . , n, (38)

for i = 20, 320, 620, 920, 1220, 1520. The internal damping Cint is defined as in (2), with
α = 0.005.
As in previous examples, we consider damping of approximately 1% smallest eigenfrequencies

of the system, that is r = 24, and parameter p that defines p–mixed H2 norm is taken to be
0.5. We have calculated an approximation of the finite time horizon p–mixed H2 norm by using
Algorithm 1 with the following initial requirements:

tol = 10−7, nt = 20,

nv = 20, n1 = 799,

S1 = ωn/15, b0 = 10,

bmax = 14, tols = 0.05,

and we consider the following viscosities: v1 = 10, v2 = 210, v3 = 410, . . . , v20 = 3810. We
illustrate the efficiency of our approach for T = 15.

To present comparison with a Lyapunov based approach, as in the previous example, we will
calculate the finite time horizon p–mixed H2 norm with the new approach and compare it with
the Lyapunov based approach based on the formula (3). For all six damping positions defined by
(38), Figure 7 shows the relative error for these two approaches for all 20 viscosities, from 10
to 3810. We can see that our approach for given tolerances results with satisfactory accuracy.

Figure 7: (Example 3) The relative error for the calculation of the finite time horizon p–mixed
H2 norm using Algorithm 1, compared with the Lyapunov based approach, for six
different damping positions and 20 equidistant viscosities between 10 and 3810. The
computation is done using the workstation.

For a time comparison, Figure 8 presents the time required for calculating the finite time
horizon p–mixed H2 norm using Algorithm 1 and the time required for the Lyapunov based
approach.

Here we obtain that an average acceleration factor for six considered damping positions
presented on Figure 7 is 5.4.
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Figure 8: (Example 3) The time required for calculating the finite time horizon p–mixed H2

norm using Algorithm 1 compared to the time required for the Lyapunov based
approach, for six different damping positions. The computation is done using the
workstation.

A limitation of the proposed method is that with this method, one can not efficiently reach
very high accuracies. More accurate approximations may be significantly costlier, which makes
this method not feasible for specific applications where high accuracy is needed. However,
regarding typical vibrational systems, it is unrealistic to expect that the viscosity needs to be
calculated with an accuracy greater than 10−3, as typical damping devices can not be that
precisely calibrated. Thus, with the proposed method, we can obtain satisfactory accuracy for
damping purposes with a significant time speed-up with respect to the standard approaches.
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[7] P. Benner, P. Kürschner, Z. Tomljanović, and N. Truhar. Semi-active damping optimiza-
tion of vibrational systems using the parametric dominant pole algorithm. Z. Angew.
Math. Mech., 96(5):604–619, 2016.
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system. Systems & Control Letters, 53:187–194, 2004.

[15] B.N. Datta. Numerical Methods for Linear Control Systems. Elsevier Academic Press,
London, UK, 2004.

[16] A. Deaño, D. Huybrechs, and A. Iserles. Computing Highly Oscillatory Integrals. Philadel-
phia : Society for Industrial and Applied Mathematics, 2018.

[17] C. Du and L. Xie. Modeling and control of vibration in mechanical systems. CRC press,
2016.

[18] G. E Dullerud and F. Paganini. A course in robust control theory: a convex approach.
Springer Science & Business Media, 2013.

[19] Herbert Federer. Geometric measure theory. Springer, 1969.

[20] P. Freitas and P. Lancaster. The optimal value of the spectral abscissa for a system of
linear oscillators. SIAM J. Matrix Anal. Appl., 21(1):195–208, 1999.

[21] W. Gautschi. Orthogonal Polynomials: Computation and Approximation. Numerical
Mathematics and Scientific Computation. Clarendon Press, 2004.

[22] W.K. Gawronski. Advanced Structural Dynamics and Active Control of Structures.
Springer, New York, USA, 2004.

[23] G. H. Golub and C. F. VanLoan. Matrix Computations. The Johns Hopkins University
Press, 4rd edition, 2013.

[24] P. Goyal and M. Redmann. Time-limited H2 -optimal model order reduction. Applied
Mathematics and Computation, 355:184–197, 2019.

24



[25] N. J. Higham. The squaring and scaling method for the matrix exponential revisited.
SIAM Journal on Matrix Analysis and Applications, 26(4):1179–1193, 2005.

[26] D.J. Inman. Vibration with control. John Wiley & Sons, 2 edition, 2017.
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[36] Z. Tomljanović, C. Beattie, and S. Gugercin. Damping optimization of parameter depen-
dent mechanical systems by rational interpolation. Advances in Computational Mathe-
matics, 44(6):1797–1820, 2018.

[37] N. Truhar. An efficient algorithm for damper optimization for linear vibrating systems
using Lyapunov equation. J. Comput. Appl. Math., 172(1):169–182, 2004.
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[39] N. Truhar, Z. Tomljanović, and M. Puvača. Approximation of damped quadratic eigen-
value problem by dimension reduction. Applied mathematics and computation, 347:40–53,
2019.
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6. Conclusions

We considered a control problem for damped vibrational systems where the performance mea-
sure of the system is chosen to be p-mixed H2 norm over the finite time horizon. The algorithm
presented in the paper offers an efficient calculation of this norm in the case when the system
is dependent on one parameter and the number of inputs or outputs of the system is signif-
icantly smaller than the order of the system. This approach can be extended to the case of
the multi-parameter setting as well as for other parameter-dependent systems where an effi-
cient calculation of finite time horizon H2 norm is needed. In future work we will extend this
approach also to the optimal control problems for damped vibrational systems and also other
problems in control theory.

A. Proofs of Propositions 1, 2 and 3

Proof of Proposition 1. For matrix L(S), we have

L(s) = diag(l1(s), . . . , ln(s))

= diag

(
1

ω2
1 − s2 + isνω1

, . . . ,
1

ω2
n − s2 + isνωn

)
= F (s)− iG(s).

For 1 ≤ j ≤ r we have[
I + sDG(s) −sDF (s)
sDF (s) I + sDG(s)

] [
xℜj
xℑj

]
=

[
DΩF (s)ej
−DΩG(s)ej

]
.

For n+ 1 ≤ j ≤ n+ r we have[
I + sDG(s) −sDF (s)
sDF (s) I + sDG(s)

] [
xℜj
xℑj

]
=

[
ej−n

0

]
.

It is easy to see from the construction of G(s) and the assumption on D that the matrix
I + sDG(s) is always non-singular. If we multiply this systems from the left by the matrix[

(I + sDG(s))−1 0

−sDF (s) (I + sDG(s))−1 I

]
,

we obtain the stated result.
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Proof of Proposition 2. First, by using the Sherman–Morrison–Woodbury formula (see, e.g.,
[23]) we obtain

(I + sDG(s))−1 = I − sU

(
1

γ
+ sU⊤G(s)U

)−1

U⊤G(s).

Note that U⊤G(s)U ∈ R so the inverse on the right hand side is trivial to solve,

(I + sDG(s))−1 = I − sγ

1 + sγg
UU⊤G(s).

With this, (26) and (27) becomeI − sγ
1 + sγg(s)

UU⊤F (s)

0 s2γ2UU⊤F (s)(I − sγ
1 + sγg(s)

UU⊤G(s))UU⊤F (s) + I + sγUU⊤G(s)

[xℜj
xℑj

]

=


γ

1 + sγg(s)
UU⊤ΩF (s)ej

−(
sγ2f(s)

1 + sγg(s)
UU⊤ΩF (s) + γUU⊤ΩG(s))ej

 ,

I − sγ
1 + sγg(s)

UU⊤F (s)

0 s2γ2UU⊤F (s)(I − sγ
1 + sγg(s)

UU⊤G(s))UU⊤F (s) + I + sγUU⊤G(s)

[xℜj
xℑj

]

=

[
(I − sγ

1 + sγg(s)
UU⊤G(s))ej−n

−(sγUU⊤F (s) + s2γ2f(s)UU⊤G(s))ej−n

]
.

Note that since we know that (26) and (27) have unique solutions, it follows that the (2, 2)
entry in the matrix on the left hand side is non-singular. As the (2, 2) entry in the matrix on
the left hand side is

s2γ2UU⊤F (s)

(
I − sγ

1 + sγg(s)
UU⊤G(s)

)
UU⊤F (s) + I + sγUU⊤G(s)

= I + sγU

(
U⊤G(s) + sγU⊤F (s)

(
I − sγ

1 + sγg(s)
UU⊤G(s)

)
UU⊤F (s)

)
= I + sγU

(
U⊤G(s) +

sγf(s)

1 + sγg(s)
U⊤F (s)

)
,

we have
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(
I + sγU

(
U⊤G(s) +

sγf(s)

1 + sγg(s)
U⊤F (s)

))−1

= I − sU

(
1

γ
+ s

(
U⊤G(s) +

sγf(s)

1 + sγg(s)
U⊤F (s)

)
U

)−1

×

×
(
U⊤G(s) +

sγf(s)

1 + sγg(s)
U⊤F (s)

)
= I − sU

(
1

γ
+ sg(s) +

s2γf(s)2

1 + sγg(s)

)−1(
U⊤G(s) +

sγf(s)

1 + sγg(s)
U⊤F (s)

)
= I − sγ

(1 + sγg(s))2 + (sγf(s))2

(
(1 + sγg(s))UU⊤G(s) + sγf(s)UU⊤F (s)

)
.

Now, the formulae (29)-(33) follow by direct calculation.

Proof of Proposition 3. First, for 1 ≤ k ≤ n we obtain

(is−A⊤
0 )

−1ek =

[
(νωk + is)lk(s)ek

ωklk(s)ek

]
,

and for n+ 1 ≤ k ≤ 2n we obtain

(is−A⊤
0 )

−1ek =

[
−ωk−nlk−n(s)ek−n

islk−n(s)ek−n

]
,

where lk(s) = fk(s)− igk(s), for k = 1, . . . , n.
For 1 ≤ j ≤ r and 1 ≤ k ≤ n we obtain

e⊤j (is−A⊤)−1ek = (νωk + is)lk(s)e
⊤
j ek + ωklk(s)

(
x2j
)⊤

ek

= (νωk + is)(fk(s)− igk(s))e
⊤
j ek + ωk(fk(s)− igk(s))

(
x2j
)⊤

ek

= (νωkfk(s) + sgk(s)) δj,k + ωk

(
fk(s)(x

ℜ
j )k + gk(s)(x

ℑ
j )k

)
+ i
(
(sfk(s)− νωkgk(s))δj,k + ωk

(
fk(s)(x

ℑ
j )k − gk(s)(x

ℜ
j )k

))
,

for n+ 1 ≤ j ≤ n+ r and 1 ≤ k ≤ n we obtain

e⊤j (is−A⊤)−1ek = ωklk(s)
(
x2j
)⊤

ek = ωk(fk(s)− igk(s))
(
x2j
)⊤

ek

= ωk

(
fk(s)(x

ℜ
j )k + gk(s)(x

ℑ
j )k

)
+ iωk

(
fk(s)(x

ℑ
j )k − gk(s)(x

ℜ
j )k

)
,

for 1 ≤ j ≤ r and n+ 1 ≤ k ≤ 2n we obtain

e⊤j (is−A⊤)−1ek = −ωk−nlk−n(s)e
⊤
j ek−n + islk−n(s)

(
x2j
)⊤

ek−n

= −ωk−n(fk−n(s)− igk−n(s))e
⊤
j ek−n + is(fk−n(s)− igk−n(s))

(
x2j
)⊤

ek−n

= −ωk−nfk−n(s)δj,k−n + sgk−n(s)(x
ℜ
j )k−n − sfk−n(s)(x

ℑ
j )k−n

+ i
(
ωk−ngk−n(s)δj,k−n + sfk−n(s)(x

ℜ
j )k−n + sgk−n(s)(x

ℑ
j )k−n

)
,
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and for n+ 1 ≤ j ≤ n+ r and n+ 1 ≤ k ≤ 2n we obtain

e⊤j (is−A⊤)−1ek = islk−n(s)
(
x2j
)⊤

ek−n = is(fk−n(s)− igk−n(s))
(
x2j
)⊤

ek−n

= s
(
gk−n(s)(x

ℜ
j )k−n − fk−n(s)(x

ℑ
j )k−n

)
+ is

(
fk−n(s)(x

ℜ
j )k−n + gk−n(s)(x

ℑ
j )k−n

)
.

Now we take into account that the inner integral has a real value (see, e.g., [13]), so we just
need to calculate its real part. Thus, the function hjk defined by (21) satisfies

hjk(t, s) = 2 cos st · ℜ(e⊤j (is−A⊤)−1ek).

The result now follows directly by taking real parts in the formulae given above.
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