
Data-Driven Construction of Hierarchical Matrices with Nested

Bases

Difeng Cai∗ Hua Huang † Edmond Chow† Yuanzhe Xi∗

Abstract

Hierarchical matrices provide a powerful representation for significantly reducing the com-
putational complexity associated with dense kernel matrices. For general kernel functions,
interpolation-based methods are widely used for the efficient construction of hierarchical matri-
ces. In this paper, we present a fast hierarchical data reduction (HiDR) procedure with O(n)
complexity for the memory-efficient construction of hierarchical matrices with nested bases where
n is the number of data points. HiDR aims to reduce the given data in a hierarchical way so
as to obtain O(1) representations for all nearfield and farfield interactions. Based on HiDR,
a linear complexity H2 matrix construction algorithm is proposed. The use of data-driven
methods enables better efficiency than other general-purpose methods and flexible computation
without accessing the kernel function. Experiments demonstrate significantly improved memory
efficiency of the proposed data-driven method compared to interpolation-based methods over a
wide range of kernels. Though the method is not optimized for any special kernel, benchmark
experiments for the Coulomb kernel show that the proposed general-purpose algorithm offers
competitive performance for hierarchical matrix construction compared to several state-of-the-
art algorithms for the Coulomb kernel.

1 Introduction

In various applications, the pairwise interaction between two objects is characterized by a non-
local kernel function. A system of n objects then gives rise to a n-by-n dense kernel matrix.
Such matrices arise frequently in integral equations [22, 40, 41], astrophysics [4], statistics [26, 18],
machine learning [7, 23], etc. A computational challenge is that the naive computational or storage
cost associated with the dense kernel matrix is at least O(n2). For the Coulomb kernel and its
variants, pioneering work such as the Fast Multipole Method (FMM) [40, 41, 28] and the Barnes-Hut
algorithm [4] use multilevel approximation to successfully reduce the cost to linear or quasilinear
complexity. These techniques were later generalized into the powerful algebraic framework of
hierarchically low-rank matrices [33, 32, 9, 30] for efficiently approximating general dense kernel
matrices with nearly optimal computational cost. Two widely used classes of hierarchical matrices
are H matrices and H2 matrices. The H matrix yields an O(n log n) representation and the H2

matrix yields an optimal O(n) representation for approximating the kernel matrix and computing
the matrix-vector multiplication. For dense kernel matrices, the efficient construction of these
hierarchical representations associated with general kernels remains a challenging problem. In this

∗Department of Mathematics, Emory University, Atlanta, GA 30322 (dcai7@emory.edu, yxi26@emory.edu). The
research of Difeng Cai and Yuanzhe Xi is supported by NSF award OAC 2003720 and RTG Grant DMS-2038118.

†School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332
(huangh223@gatech.edu, echow@cc.gatech.edu). The research of Hua Huang and Edmond Chow is supported by
NSF award OAC 2003683.

1

ar
X

iv
:2

20
6.

01
88

5v
1

 [
m

at
h.

N
A

]
 4

 J
un

 2
02

2

paper, we address this issue for the H2 matrix representation. For general kernels, interpolation-
based methods are often adopted as a black-box tool used in hierarchical matrix construction.
However, as will be demonstrated in later sections, the use of interpolation nodes (or points outside
the given dataset) may lead to loss of accuracy. We present a general-purpose data-driven framework
for hierarchical matrix construction, that resolves these issues and offers improved efficiency.

Given a set of points and a kernel function, hierarchical matrix construction starts with an
adaptive partitioning of the data. The partitioning can be encoded by a tree structure in which
each node represents a subset generated in the adaptive partitioning procedure. For example,
the root node corresponds to the entire set of n points and its children nodes correspond to the
subsets generated from the first partitioning of the dataset. For hierarchical matrix construction,
directly compressing the submatrix corresponding to a pair of nodes/subsets will be inefficient,
since one of the subsets may contain O(n) points (see Figure 1(a)) and the total cost for all such
pairs will be at least O(n2). We propose to first process the tree-structured data to obtain a
reduced representation in which each node only corresponds to a small subset with O(1) points
while the farfield corresponds to O(1) points as well. These O(1) subsets are called representor
sets in [6]. See Figure 1(b). Using representor sets, the multilevel compression of the kernel
matrix can be rapidly computed. To achieve optimal efficiency, we design a hierarchical data
reduction procedure with computational cost of O(n). Different from existing approaches, the
procedure operates entirely on the given data without accessing the kernel function and no algebraic
compression is performed. Hence the approach is termed data-driven. We show how to incorporate
hierarchical data reduction in hierarchical matrix construction to obtain a fast algorithm for general
kernels. Numerical experiments demonstrate the competitive performance of the new method in
terms of generality, memory use, speed, and accuracy.

(a) Left: the farfield (shown in blue) of the
orange box contains O(n) points. Right: the
O(n) points are reduced to a subset of O(1)
points. (For another orange box, the farfield
is different and the reduced subset is generally
a different set of points.)

approximate
column basis

(b) The kernel matrix is shown, highlighting
the interaction between points in the orange
region and points in its farfield. The arrows
point to columns corresponding to the points
selected in the O(1) subset. These columns
form an approximate basis for the farfield.

Figure 1: Farfield data reduction as a way to construct an approximate column basis for the farfield
block row in the kernel matrix

The rest of the manuscript is organized as follows. Section 2 reviews hierarchical matrix struc-
tures and existing methods for constructing hierarchical matrices. Section 3 introduces the hier-
archical data reduction algorithm. Based on this hierarchical data reduction, the complete hier-
archical matrix construction is presented in Section 4. Section 5 presents numerical experiments
to investigate different data reduction techniques. Numerical results for the proposed data-driven
hierarchical matrix construction are given in Section 6. Concluding remarks are drawn in Section
7.

2

The notation used in this paper is listed below.

• |x− y| denotes the Euclidean distance between x and y in Rd;

• diam(X) denotes the diameter of set X, i.e., max
x,y∈X

|x− y|;

• dist(X1, X2) denotes the distance between sets X1 and X2, i.e. min
x∈X1,y∈X2

|x− y|;

• card(X) denotes the cardinality of set X.

• X∗ denotes a representor set of X.

2 Review of Hierarchical Matrix Representations

Given a kernel function κ(x, y) and a dataset X = {x1, . . . , xn}, the associated kernel matrix is
defined by

K = [κ(xi, xj)]
n
i,j=1.

Dense kernel matrices are ubiquitous and arise in various applications, where the kernel function
measures the interaction between objects. In Coulombic N-body simulations, κ(x, y) = 1

|x−y| . In

boundary integral equations, κ(x, y) can take very different forms, including Φ(x, y), ∇vyΦ(x, y),
where Φ(x, y) denotes the fundamental solution of the underlying differential operator and vy
denotes the unit outer normal at y on the boundary. In certain structured matrix computations
such as those involving Cauchy and Cauchy-like matrices, κ(x, y) is taken as 1

x−y with x, y ∈ C. In

statistics and machine learning, κ(x, y) is often taken as the Gaussian kernel e−|x−y|
2

or the Laplace
kernel e−|x−y|. A major computational bottleneck in these applications lies in the O(n2) cost in
storing the dense matrix K and performing operations such as matrix-vector multiplication.

To avoid the high cost in forming K explicitly, hierarchically low-rank matrix representations
are used to approximate K. The hierarchical representation is based on the fact that K can be
partitioned into blocks in a hierarchical fashion and many blocks are numerically low rank. Low-
rank factors are computed for the blocks and are stored in the hierarchical representation to replace
original dense blocks. Two widely used hierarchical representations are H and H2 [33, 9, 31, 30].
The H matrix representation in general has a complexity of O(n log n) in space while H2 has
the optimal complexity of O(n). The matrix-vector multiplication can be computed in O(n log n)
complexity for H matrices and in O(n) complexity for H2 matrices, which is much more efficient
than directly multiplying K by a vector.

We review the mathematical description of hierarchical matrices in Section 2.1. Existing meth-
ods for constructing the hierarchical matrices are discussed in Section 2.2.

2.1 Hierarchical matrix representations

In the following, we review the general algebraic framework of H and H2 matrices.
Given a dataset X = {xi}ni=1 in Rd, one builds a tree structure by recursively partitioning X

spatially until no more than m = O(1) points are contained in each partitioned subset. The tree
encodes the subsets of X generated by the adaptive partitions. Namely, the root node is associated
with X and its children nodes are associated with subsets of X created by the first partition.
Inductively, each node is associated with a non-empty subset of X. For node i, we denote by Xi

the subset associated with that node. Hence Xroot = X. An illustration is given in Figure 2.

3

Figure 2: Adaptive partition of the dataset (left), label (at center) for each subset (middle) and
the associated partition tree (right).

The tree structure automatically yields a blockwise partition of the matrix K. See Figure 3
for an example with data points lying inside an interval. We define Ki,j = [κ(x, y)]x∈Xi

y∈Xj

. Block

Ki,j is approximated by a low-rank factorization if (i, j) satisfies an admissiblity condition that
requires Xi and Xj to be separated from each other to some extent. For example, the pair (i, j) is
considered admissible if

diam(Xi) + diam(Xj) ≤ 2τ |ai − aj | (1)

for some τ ∈ [0, 0.7], where ai denotes the center of the box associated with Xi in the partition.
The admissiblity condition in (1) is used in [44, 15]. The parameter τ , often called the separation
ratio [44], controls how separated the two subsets are. Smaller τ implies better separation and the
value 0.7 can be replaced by other values less than 1 (but not close to one). For any admissible
(i, j), the corresponding submatrix Ki,j is called an admissible block. An admissible block is also
referred as a farfield block. Non-admissible blocks are referred as nearfield blocks. For a subset
Xi ⊂ X, the union of all Xj that are separated from Xi in the sense of (1) is called the farfield of
Xi. Points that are not in the farfield of Xi constitute the nearfield of Xi. In hierarchical matrices,
each admissible block is approximated by a low rank factorization,

Ki,j ≈ UiBi,jV
T
j

where Ui, Vj are column and row basis matrices, and Bi,j is called a coupling matrix. The maximum
column size of all basis matrices Ui and Vj is the approximation rank for K. A larger approximation
rank yields a more accurate approximation. For each node i, the interaction list of i consists of nodes
j such that Xj is well-separated from Xi but for the parent p of j, Xp is not well-separated from
Xi. The interaction list specifies the blockwise partition of the matrix in which each admissible
block has a low-rank approximation. For example, in Figure 3, the interaction list of node 4 is
{6, 7}; the interaction list of node 10 is {8, 12, 13}; The number of elements in any interaction list
is bounded by the so-called sparsity constant csp, which is independent of n. The blockwise low-
rank representation yields the H matrix structure, which stores all nearfield blocks and low-rank
factors Ui, Bi,j , Vj . H matrices generally admit O(n log n) storage complexity. The more refined
H2 structure requires the basis matrices to be nested. The nested bases property states that, if
node p has children c1, . . . , ck, then there exist transfer matrices Rci , Wci such that

Up =

Uc1Rc1
...

UckRck

 , Vp =

Vc1Wc1
...

VckWck

 .
See Figure 4 for an illustration. The sizes of the transfer matrices are equal to r if rank-r factoriza-
tions are used for approximations to admissible blocks. In practice, one uses r = O(1) independent
of n. Due to the nested bases property, only basis matrices Ui, Vi associated with leaf nodes need

4

to be stored in an H2 representation, in addition to all transfer matrices (whose row and column
sizes are O(1)) and nearfield blocks. This results in O(n) storage cost.

2 3

7654

98 151413121110

1
7654

4

5

6

7

8 1514131211109

9

8

10

11
12
13

14
15

level 3 level 4 level 5 level 6

Figure 3: Hierarchical matrix structure for 1D problem (left to right): tree (only top 4 levels are
plotted), admissible blocks (colored) at levels 3,4,5,6 and all admissible blocks (colored) in the
kernel matrix

=

=

10

12

12

24 25

48 49 50 51

10

20 21

40 41 42 43

98 151413121110

Figure 4: Admissible block (10,12) and nested bases

Note that the above complexity estimates for storing hierarchical representations assume that
the low-rank factors have already been computed. In practice, computing these hierarchical low-
rank factors is usually the most costly step, compared to applying the hierarchical representation
to a vector. Extensive research has focused on the efficient computation of the hierarchical repre-
sentation. We review several state-of-the-art methods in Section 2.2.

2.2 General-purpose methods

For an n-by-n kernel matrix K associated with a general kernel function κ(x, y), the hierarchi-
cal matrix representation can be computed in linear or quasilinear time with a variety of tech-
niques, including interpolation [33, 30], adaptive cross approximation (ACA) [5, 6], hybrid cross
approximation (HCA) [8], SMASH [15], etc. These methods work for general kernels (for example,
non-symmetric, non-translationally-invariant). For special kernel functions, such as fundamental
solutions of certain elliptic partial differential equations (PDEs), layer potentials in integral equa-
tions, Coulomb interactions in electrostatics, analytic methods such as the fast multipole method
[40, 41, 28, 44, 19] and its variants [1, 45] can be used to construct a hierarchical matrix represen-
tation efficiently.

When constructing the hierarchical matrix with nested bases, one needs to compute basis ma-
trices Ui, Vi for submatrices KXiYi that account for the interaction between Xi with O(1) points
and its entire farfield Yi with O(n) points (see Figure 1(a)). In order to achieve O(n) optimal
complexity for building the hierarchical representation, each basis matrix Ui (as well as Vi) must
be computed with O(1) complexity. This requires that the matrix KXiYi , which is O(1)-by-O(n)
in size, must not be formed. For general kernels, a widely used technique to construct a column
basis matrix Ui in O(1) complexity is based on interpolation. For KXiYi , interpolating the kernel

5

function κ(x, y) at r nodes Q = {q1, . . . , qr}:

κ(x, y) ≈
r∑

i=1

κ(qi, y)Li(x)

yields a rank-r approximation:
KXiYi ≈ UiKQYi , (2)

where Li is the Lagrange polynomial corresponding to node qi and Ui = [Lk(x)]x∈Xi
k=1:r

. Due to

its generality and efficiency in computing Ui, this interpolation method is used in a number of
general-purpose hierarchical matrix algorithms, e.g. [33, 9, 8, 15].

Another way of finding column basis matrix for KXiYi is through subset selection [6, 25]. The
column basis matrix is chosen as the submatrix corresponding to a judiciously chosen O(1) subset
Y ∗i from Yi. Similar to interpolation, subset selection can be applied to general kernel functions. The
reference [6] presents an efficient hierarchical scheme to select representor sets for all nodes using
two steps: top-down and bottom-up. The cost of the algorithm in [6] is dominated by computing
farfield representor sets in the top-down step. Computing representor sets for all nodes i leads to
O(n log n) complexity for a balanced tree with O(log n) levels. The total complexity of the resulting
hierarchical matrix construction is O(n log n), instead of the optimal O(n) complexity achieved by
interpolation-based methods. However, compared to using interpolation nodes (which are generally
outside the given dataset), selecting subsets directly from the dataset is more memory-efficient for
low-rank approximation. See Section 6 for a detailed discussion.

3 Fast Hierarchical Data Reduction (HiDR)

To facilitate the fast construction of hierarchically low rank representations, we propose an efficient
preprocessing scheme to reduce the tree-structured data so that each node in the partition tree
induces O(1) cost in the subsequent hierarchical matrix construction process. Specifically, let Xi

be the set of points corresponding to node i and Yi be the farfield of Xi. The data reduction aims
to find representor sets X∗i ⊂ Xi with O(1) points and Y ∗i ⊂ Yi with O(1) points for each node i.
Note that a naive data reduction for Yi with O(n) points into a subset of evenly spaced points as
shown in Figure 1 will lead to O(n) computational complexity. The cost can be reduced to O(1)
with a carefully designed hierarchical procedure presented in Section 3.1.

We present the hierarchical data reduction algorithm in Section 3.1 and verify that it scales
linearly with the size of the data in Section 3.2. Several algorithms for performing data reduction
are discussed in Section 3.3.

3.1 Linear complexity hierarchical data reduction

The fast HiDR consists of two traversals of the tree: bottom-up and top-down. The O(1) representor
set X∗i for Xi is computed in the bottom-up pass and the O(1) farfield representor set Y ∗i for Yi
is computed in the top-down pass. A building block for the hierarchical scheme is a DataReduct

subroutine that takes the form:
DataReduct(X, k)→ X∗,

where X∗ is a subset (representor set) of the input X and k is a parameter that specifies the size
of X∗. There are several options for the subroutine DataReduct to obtain X∗ from X. A detailed
discussion is presented in Section 3.3. Given a set of points, the subroutine selects a subset of
evenly spaced points whose size is bounded by a prescribed constant and scales linearly with the

6

size of the input data. The HiDR is designed such that the input dataset for DataReduct is always
O(1) in size.

Figure 5: Bottom-up pass of the tree: representor sets X∗i are first computed for nodes i at the
deepest level and then upper levels. Nodes with X∗i computed are wiped out. The three trees from
left to right correspond to the 1st, 3rd, 5th configurations in Figure 6.

In the bottom-up sweep, starting from leaf nodes i, each Xi contains O(1) points and thus the
data reduction from Xi to X∗i induces O(1) cost only. After children nodes have been processed,
we define for each parent p an intermediate set Sp as the union of reduced sets X∗i for all its
children i. The representor set X∗p is obtained by applying data reduction to the intermediate
set Sp. Since each parent has at most C children (C = 2, 4, 8 for binary tree, quadtree, octree,
respectively) and each X∗i is O(1) in size, the intermediate set Sp is always O(1) in size. Thus the
cost of computing the representor set for p is always O(1). Recursively, all non-root nodes can be
processed in O(1) complexity in the bottom-up procedure (see Figure 5). Figure 6 shows the data
reduction to generate X∗i from the lowest level to upper levels of the tree constructed in Figure 2
where each X∗i contains 2 points.

Figure 6: Fast hierarchical data reduction: bottom-up pass. Each Xi is reduced to X∗i such that
X∗i contains at most 2 points. The 1st, 3rd, 5th arrows correspond to the subroutine DataReduct

for the boxes at the bottom level of the tree, where points in red are output of DataReduct. The
2nd, 4th arrows correspond to merging children boxes and going up in the tree.

In the top-down sweep, starting from the top nodes i in the tree with non-empty interaction
list, we define the intermediate set Ti as the union of Yp (p denotes the parent of i) and X∗j for all
nodes j in the interaction list of i. The representor set Y ∗i for the farfield Yi of Xi is computed
by applying data reduction to the intermediate set Ti. Since the cardinality of the interaction list
of i is bounded by the sparsity constant csp, which is O(1), and each X∗j is already O(1) in size,
we see that Ti only contains O(1) points and consequently computing Y ∗i has O(1) cost. Once
parent nodes have been processed, we define the intermediate set Ti for each child i as the union
of all X∗j from its interaction list and Y ∗p from its parent p. From this definition, Ti is also O(1) in
size. Similar to the above, the representor set Y ∗i is then obtained by applying data reduction to
Ti. Recursively, each reduced farfield representation Y ∗i can be computed in O(1) complexity via
the top-down procedure. Figure 7 shows the top-down data reduction for farfield to generate Y ∗i
(circled), as i goes from a node near the root node to a leaf node. In Figure 7, each Y ∗i contains at
most 4 points only.

The HiDR algorithm is summarized in Algorithm 1. In practice, the cost of HiDR is lower than

7

Figure 7: Fast hierarchical data reduction: top-down pass. For each X∗i in an orange box, the
blue region contains the entire farfield, where each representor set Y ∗i (circled) contains at most 4
points.

the hierarchical low-rank compression. HiDR reduces the computational cost of the subsequent
hierarchical matrix construction.

3.2 Complexity analysis

In this section, we show that Algorithm 1 (HiDR) has linear complexity with respect to the number
of points in X.

Theorem 3.1. For the given dataset X that contains n points, let T be a partition tree for X,
in which each leaf node corresponds to a subset of X with O(1) points and the sparsity constant
csp = O(1). Then the complexity of Algorithm 1 is O(n).

Proof. We first analyze the complexity in the bottom-up pass. Since for each leaf node i, Xi

contains O(1) points, the DataReduct for Xi has (1) cost. We next prove by induction that the
cost for each nonleaf node is also O(1). For a nonleaf node i, assume that for each child c, X∗c
contains O(1) points. Then the intermediate set Si in Line 10 of Algorithm 1 contains O(1) points
because i has O(1) children and X∗c contains O(1) points for each child c. Consequently, the cost
of DataReduct applied to Si is O(1). This shows that the cost to obtain X∗i is also O(1). From the
induction, we conclude that the cost for each node is O(1) and each reduced subset X∗i has O(1)
points.

Now we analyze the complexity for the top-down pass. First note that each Y ∗i has at most O(1)
points according to the construction. Consequently, each Ti in Line 18 of Algorithm 1 contains at
most O(1) points because the interaction list of i contains at most csp = O(1) nodes and each X∗j
has O(1) points. This implies that the DataReduct of Ti to generate Y ∗i has O(1) complexity.

Overall, we see that for each node i, the associated total cost to compute X∗i and Y ∗i is O(1).
Since there are O(n) nodes in the tree, the total cost for all nodes is O(n). This completes the
proof of the theorem.

3.3 Data reduction methods

In this section, we provide several algorithms for performing data reduction. The goal is to select
a subset of Xi and of Yi such that the selected subsets preserve the geometry of Xi and Yi. For
an input set X, the subroutine takes the simple form: DataReduct(X,k) → X∗ with X∗ ⊂ X the
selected subset whose size is controlled by the parameter k = O(1). Note that DataReduct only
depends on the input data and is independent of any kernel function. It has been shown in [17] that
the choice of the subset is essential for the accuracy and robustness of the low rank approximation.
According to the results in [17, 16], a subset evenly distributed over the containing set can offer
an improved approximation robustness and accuracy over one that is not. The methods below
can be used to generate such a subset efficiently. Many of them rely on a reference set with good

8

Algorithm 1 Hierarchical data reduction (HiDR)

Input: The adaptive partition tree T for dataset X, the collection of subsets Xi for all leaf nodes
i, prescribed maximum size r1 of X∗i and maximum size r2 of Y ∗i
Output: Reduced representations X∗i and Y ∗i for all nodes i

1: for all i ∈ T do
2: Y ∗i = ∅, Si = ∅
3: if i is a leaf node then
4: Si = Xi

5: end if
6: end for
7: for each level (from bottom to top) do
8: for all i at this level do
9: if i is a parent then

10: Si =
⋃

c∈ch(i)

X∗c with ch(i) the set of children of node i

11: end if
12: X∗i = DataReduct(Si,r1)
13: end for
14: end for
15: for each level (from top to bottom) do
16: for all i at this level do
17: if i has non-empty farfield then
18: Ti = Y ∗p

⋃
X∗j over all j in the interaction list of i (p denotes the parent of i)

19: Y ∗i =DataReduct(Ti,r2)
20: end if
21: end for
22: end for
23: return X∗i , Y ∗i for all nodes i ∈ T

uniformity, such as a uniform tensor grid. In addition to a tensor grid, it was shown recently that
deep neural networks can be used to generate distributions with good uniformity [10].

We briefly review some of the existing data reduction methods below. An empirical comparison
of these methods for the low-rank approximation of kernel matrices is presented in Section 5.2.

Farthest point sampling. Given X and a target size k for the reduced subset S of X, farthest
point sampling (FPS) constructs S in a sequential manner. S is initialized with one point only. Then
FPS searches for a point in X\S that is farthest from S and adds the point to S. This procedure
is repeated until S reaches size k. FPS generates evenly distributed subsets and has been widely
used in computational geometry [24, 39, 42]. FPS was recently proposed for computing low rank
approximations [16].

Volume-based data reduction. Volume based data reductions choose a subset S of X via a
reference grid Q with O(1) points inside the computational domain. For example, Q can be chosen
as a tensor grid (cf. [6]) inside the rectangular domain that encloses the data. S is chosen to be
the collection of points in X that are closest to each point in Q.

9

Surface-based data reduction. Following the same idea as the volume-based method, we can
also use a reference set Q based on surfaces constructed from the given data X. In the surface-
based method, we define Q as the union of points distributed on surfaces near the boundary of
the computational domain. For example, we can construct ellipsoids centered at the center of a
rectangular domain that encloses X. The principal semi-axes of the ellipsoids are chosen to be equal
to γ times the width of the rectangular domain in each dimension, where γ > 0 is a hyperparameter.
In Section 5.2, we use three ellipsoids with γ = 0.3, 0.6, 1.2.

Anchor net method. The anchor net method [17] is a newly proposed subset selection method
based on approximating the geometry of the given dataset with low discrepancy subsets. For low-
rank approximation, the anchor net method is shown to achieve a good time-accuracy trade-off in
practice and is particularly efficient for high-dimensional data (cf. [17, 16]).

4 Data-driven Hierarchical Matrix Construction

In this section, we first show how to extract a low-rank factorization instantly for an admissible
block after the prepossessing procedure HiDR in Section 4.1 and then present an algorithm with
O(n) complexity (Algorithm 2) for constructing an H2 matrix representation in Section 4.2. We
analyze the computational complexity of Algorithm 2 in Section 4.3. The proposed method enjoys
the following features:

a) black-box general-purpose (kernel independent) construction of the hierarchical low rank format;

b) optimal O(n) complexity, where n is the number of points in the given dataset;

c) better efficiency for data from complex geometry compared to general-purpose approaches as
well as specialized kernel-dependent techniques.

4.1 Approximating the entire farfield KXiYi

In this section, we show how to derive a low-rank approximation for the entire farfield KXiYi based
on the representor sets X∗i , Y

∗
i returned by Algorithm 1.

When computing an approximate column basis for KXiYi , Xi contains O(1) points and its entire
farfield Yi contains O(n) points for the leaf node i (see Figure 1). In order for the entire algorithm
to have linear complexity, the column basis matrix of KXiYi must be computed in O(1) complexity.

We first apply strong rank-revealing QR (SRRQR) factorization [29] to the submatrix KXiY ∗i
:

KXiY ∗i
= P

[
I
G

]
KX̂iY ∗i

, (3)

where P is a permutation matrix, ||G||max is bounded by a prescribed constant, and X̂i is a subset
of Xi with O(1) points. Then the column basis matrix is chosen as Ui = P [I;GT]T and the low-rank
approximation for the entire farfield reads

KXiYi ≈ P
[
I
G

]
KX̂iYi

. (4)

For notational convenience, we denote the procedure in (3)-(4) for computing an approximate
column basis for KXiYi by

getBasis(KXiYi) = (Ui, X̂i), (5)

10

where Ui := P [I;GT]T is the computed column basis and X̂i ⊂ Xi. Note that the kernel matrix
KXiYi is never formed because the input of “getBasis” is the kernel function and the subsets Xi, Y

∗
i .

The cost to obtain Ui and X̂i from (5) is O(1) as the matrix KXiY ∗i
is O(1)-by-O(1). Also notice

that
card(X̂i) ≤ rank(KXiY ∗i

) ≤ card(Y ∗i) = O(1). (6)

Thus, X̂i always contains O(1) points.
As we shall see in Section 6, the column basis Ui derived from KXiY ∗i

can yield better accuracy
than analytic methods such as interpolation.

4.2 Computing hierarchical matrices with nested bases using HiDR

Hierarchical matrices with nested bases, e.g. H2 matrices, can offer optimal O(n) complexity in
time and space when approximating an n-by-n kernel matrix. A black-box hierarchical matrix
construction proposed in [15] works for general kernel functions and allows for arbitrary low-rank
compression techniques. In this section, we show that the hierarchical data reduction (HiDR)
can be incorporated naturally into the construction of H2 matrix representations via the general
framework proposed in SMASH [15]. SMASH employs a bottom-up procedure that recursively
applies rank-revealing factorization to the initial basis matrix (with O(1) entries) for each node
in the tree. In [15], the initial basis matrices are constructed via either interpolation or analytic
expansion of the kernel function. In this section, we leverage representor sets produced by HiDR
in Algorithm 1 to construct the initial basis matrices.

The full data-driven construction is presented in Algorithm 2. The algorithm automatically
determines the approximation parameters r1, r2 for HiDR in Algorithm 1 according to the approx-
imation tolerance ε prescribed by the user. The idea here is to apply the low-rank approximation
in (4) to the artificial kernel matrix KZ1Z2 where Z1, Z2 ⊂ Rd are well-separated subsets (in the
sense of (1)) of O(1) random points. The parameters r1, r2 are chosen adaptively by increasing
from r1 = r2 = 1 to a point such that the approximation error to KZ1Z2 is smaller than 10−2ε.
More sophisticated techniques like a posteriori error estimation (cf. [12, 13, 14, 11]) can also be
studied to estimate the approximation error. After the parameters are determined, Algorithm 1
first applies hierarchical data reduction to X associated with tree T to obtain representor sets.
Then the hierarchical matrix representation can be computed rapidly by following the SMASH H2

construction and using KXiY ∗i
as the initial basis matrix for each leaf node i.

We perform numerical experiments in Section 6 to demonstrate that the new data-driven method
improves the matrix approximation accuracy of interpolation-based SMASH algorithm [15]. More-
over, the cost of hierarchical data reduction is smaller than the subsequent hierarchical matrix
compression.

4.3 Complexity analysis

Theorem 4.1. For the given dataset X with n points, let T be a partition tree for X, in which
each leaf node corresponds to a subset of X with O(1) points and the sparsity constant csp = O(1).
Then the complexity of Algorithm 2 is O(n).

Proof. Algorithm 2 follows the H2 construction in SMASH [15] with an additional hierarchical data
reduction (HiDR) in Line 3. According to Theorem 3.1, HiDR has O(n) complexity. Thus to prove
the O(n) complexity of Algorithm 2, it suffices to show that the cost per node is O(1) in Lines
11–12.

11

We first show that X̄
(row)
i and X̄

(col)
i contain at most O(1) points. If i is a leaf node, then

according to the definition in Line 7, X̄
(row)
i = X̄

(col)
i = Xi contain O(1) points. If i is a parent

node, then after all children of i have been updated, X̄
(row)
i and X̄

(col)
i can be written as

X̄
(row)
i =

⋃
c is a child of i

X̂(row)
c , X̄

(col)
i =

⋃
c is a child of i

X̂(col)
c .

Since the number of children for every node is bounded from above by a constant, and every subset

X̂c contains O(1) points according to (6), we see that X̄
(row)
i and X̄

(col)
i contain O(1) points. This

implies that the complexity in Line 12 is at most O(1) for all i.
Next we analyze the complexity in Line 11. Since Y ∗i contains O(1) points only, it follows that

in Line 11, the input matrices K
X̄

(row)
i Y ∗i

and KT

Y ∗i X̄
(col)
i

have O(1) rows and columns. Consequently,

performing “getBasis” in Line 11 only takes O(1) time.
Now we conclude that the total complexity in Lines 11–12 is O(1). Therefore, the total com-

plexity for Algorithm 2 is O(n).

5 Data Reduction and Low Rank Approximation

In this section, we investigate different data reduction techniques for low rank approximation.
Section 5.1 presents an example to reveal a drawback of methods that rely on points outside
the given dataset (such as interpolation nodes or random points) for computing the low-rank
approximation to kernel matrices. In Section 5.2, we compare the performance of the data reduction
methods of Section 3.3 for low-rank approximation.

5.1 Drawback of using points outside the given data for irregular datasets

Interpolation nodes, random points, or in general points outside the given dataset are commonly
used in low-rank approximation to obtain approximate column basis efficiently without forming the
original kernel matrix. Since these points are created artificially (not part of the given data), we call
these points virtual points. For given data X and Y , virtual points are constructed in rectangular
domains ΩX and ΩY that cover X and Y , respectively, and the kernel matrix associated with these
virtual points is used to compute the low-rank approximation.

One issue of of using virtual points is that it may lead to an incorrect approximation to the
kernel matrix. This is because the virtual points lie outside the original data, and the kernel matrix
involving these virtual points may have a very different spectrum from that of the kernel matrix to
be approximated. Thus methods using virtual points may not be robust for approximating general
low-rank kernel matrices. To illustrate the issue, we use the “nJ” dataset as illustrated in Figure
8(a), where X contains 120 points in ΩX = [−2.5, 2.5] × [0, 3.75] and Y contains 150 points in
ΩY = [0, 5.13]× [16.25, 23.84]. We consider the smooth kernel function

κ(x, y) =
√

1 + 100|x− y + a|2

with a = [0, 20]T . The same issue also arises for other kernels such as Gaussians. The corresponding
kernel matrix KXY (120-by-150) has rapidly decaying singular values as shown in Figure 9 (dashed
line). Consequently, KXY can be approximated very well by a low-rank matrix.

Now consider KX1Y1 , with X1 being 2000 random points selected in ΩX and Y1 being 2000
random points selected in ΩY . The singular values of KX1Y1 are an approximation to the continuous

12

singular values of the problem in (7). The computed singular values of KX1Y1 are also plotted in
Figure 9. It can be seen that the singular values of KX1Y1 do not decay rapidly, compared to KXY .

Now consider KX2Y2 , where X2 and Y2 are 10×10 Chebyshev points in ΩX and ΩY , respectively.
Like KX1Y1 , this matrix does not have singular values that decay as rapidly as those of KXY , and
therefore an algebraic compression of KX2Y2 will not be an effective approximation for KXY .

-2 0 2 4
0

5

10

15

20

25

X
Y

(a) Dataset X, Y

-2 0 2 4
0

5

10

15

20

25

X
Y
X1

Y1

(b) 2000 random
points in ΩX , ΩY

-2 0 2 4
0

5

10

15

20

25

X
Y

X
2

Y
2

(c) 10 × 10
Chebyshev points
in ΩX , ΩY

Figure 8: Dataset X,Y and different types of “virtual points” within ΩX and ΩY .

0 50 100 150
10-15

10-10

10-5

100

105

Figure 9: Distinct singular value patterns for kernel matrices with original data X × Y and virtual
points Xi × Yi (i = 1, 2) of Figure 8: singular values of KXY (120-by-150), KX1Y1 (2000-by-2000),
KX2Y2 (100-by-100). For KX1Y1 , the largest 150 singular values are plotted.

Mathematical explanation. Employing a continuous treatment of the matrix approximation
problem ignores the geometry of the discrete dataset. This can be problematic in general as the
continuous problem may have entirely different spectral properties compared to the matrix. It is
even possible that the kernel function is undefined at virtual points. For the model problem in

13

Figure 8, the matrix KX1Y1 with virtual points X1, Y1 is related to the following integral operator:

T : L2(ΩX) :→ L2(ΩY), (Tf)(x) :=

∫
ΩX

κ(x, y)f(y)dy. (7)

The singular values of KX1Y1 (with X1 and Y1 chosen as described above) approximate the singular
values (up to a scaling constant) of the integral operator [2, 35, 43, 38, 3, 18]. These singular values
do not decay rapidly like those of KXY . In essence, we see that virtual points methods treat the
matrix approximation as a continuous problem and thus ignore the geometry of the discrete data.
When the continuous problem differs substantially from the original discrete problem (kernel matrix
approximation), the performance of methods that utilize virtual points can be very unsatisfactory.

5.2 Comparison of data reduction methods

In this section, we perform experiments to compare the performance of the four data reduc-
tion methods in Section 3.3: farthest point sampling (‘FPS’), volume-based reduction (‘Volume’),
surface-based reduction (‘Surface’), anchor net method (‘AnchorNet’). These methods operate on
the dataset and do not require any kernel function.

Experiment setup We consider low-rank approximation to the kernel matrix KXY , where X
(198 points) and Y (1577 points) are well-separated subsets from a dinosaur manifold as shown in
Figure 10. The diameter of X is 58.21, and the distance between X and Y is 21.275. We test three
different kernel matrices KXY corresponding to the kernel functions below:

1

|x− y|
, e−

|x−y|2
900 , |x− y|11.

To obtain the low-rank approximation, we first perform data reduction for Y , and then build the
factorization as described in Section 4.1 using (3) and (4). The low-rank approximation error is
measured by the relative matrix approximation error in the 2-norm.

The error plots for three different kernels are shown in Figure 11. For each plot, the horizontal
axis denotes the number of points selected by the data reduction method, namely the size of
the subset Y ∗ ⊂ Y . Each curve shows how the low-rank approximation error for a specific data
reduction method decays as we increase the size of Y ∗. We see that ‘Volume’ and ‘AnchorNet’ offer
the best performance and are almost indistinguishable from each other in performance across all
three kernels. ‘Surface’ achieves similar performance for the first two kernels but is slightly worse
than ‘Volume’ and ‘AnchorNet’ for the third kernel. The farthest point sampling ‘FPS’ performs
well but is not as accurate as the other three methods for the same number of selected points for
all kernels tested.

6 Numerical experiments

We present a series of numerical experiments in this section to illustrate the performance of the
proposed data-driven construction in Algorithm 2. The code for the algorithm is available on
GitHub1. The performance of the proposed data-driven hierarchical matrix construction is shown
in Section 6.1, inlcuding linear scaling, generality for various kinds of kernels, and the efficiency
of hierarchical data reduction for varying kernel parameters. Comparison to the state-of-the-art
special-purpose methods for the Coulomb kernel is presented in Section 6.2. Comparison to the

1https://github.com/scalable-matrix/H2Pack/tree/sample-pt-algo

14

https://github.com/scalable-matrix/H2Pack/tree/sample-pt-algo

Figure 10: Section 5.2 dataset: X and Y well-separated

0 50 100 150
size of reduced set

10-8

10-6

10-4

10-2

100

ap
pr

ox
im

at
io

n
er

ro
r

FPS
Volume
Surface
AnchorNet

0 50 100 150
size of reduced set

10-6

10-4

10-2

100

ap
pr

ox
im

at
io

n
er

ro
r

FPS
Volume
Surface
AnchorNet

0 50 100 150
size of reduced set

10-15

10-10

10-5

100

ap
pr

ox
im

at
io

n
er

ro
r

FPS
Volume
Surface
AnchorNet

Figure 11: Comparison of data reduction methods for low-rank approximation to KXY with dataset
X × Y in Figure 10 and different kernels k(x, y) on top of each plot

widely used general-purpose method (interpolation) for various kernels is presented in Section 6.3.
For the data-driven hierarchical construction, volume-based data reduction is used. For experiments
in Section 6.1 and Section 6.2, we use one compute node on the Georgia Tech PACE-Hive cluster.
This node has two sockets and 192 GB DDR4 memory. Each socket has an Intel Xeon Gold 6226
12-core processor.

The approximation error is measured by the relative matrix-vector product error: ||Kz−K̃z||
||z|| ,

where K̃ denotes the hierarchical approximation to the kernel matrix K and z is a standard normal
random vector. || · || denotes the 2-norm.

6.1 Data-driven construction: scaling, generality, once-for-all HiDR

This section has three objectives: (1) test the complexity of the proposed data-driven approach in
Section 6.1.1, including the hierarchical data reduction (HiDR) and the resulting hierarchical matrix
construction; (2) illustrate the generality of the data-driven approach by testing different kernels in
Section 6.1.2; (3) apply HiDR once and use the representor sets to construct hierarchical matrices
for various types of kernels, including Gaussian kernels with different bandwidths in Section 6.1.3.

6.1.1 Scaling test for different datasets

Datasets Three datasets are used: cube, 3-sphere, Dino. The “cube” dataset contains random
samples from the uniform distribution in the unit cube [0, 1]3. The “Dino” dataset is used in [15]
and is illustrated in Figure 12. It consists of points distributed on a dinosaur-shaped surface in
three dimensions. The “3-sphere” dataset (see Figure 12) consists of random points distributed on

15

the surface of three intersecting unit spheres whose centers form an equilateral triangle with side
length close to 1. Roughly the same number of points is sampled from each sphere. Let n denote
the number of points in the dataset. For the first three synthetic datasets, we test for n from 105

to 1.6× 107. For the Dino dataset, since the size of the original data is fixed, we sample n points
randomly and vary n from 104 to 1.5× 105.

Figure 12: 3-sphere (left) and Dino (right) datasets

The kernel function is chosen to be the Coulomb kernel 1
|x−y| and the approximation error

is 10−6 for each test. Figure 13 shows the timings for hierarchical data reduction (‘HiDR’), H2

matrix construction (‘build’), the resulting matrix-vector multiplication (‘matvec’) with respect to
n, respectively. All timings scale linearly with n and the hierarchical data reduction (‘HiDR’) has
a much lower cost than the subsequent hierarchical matrix construction (‘build’). The low cost of
data reduction and the kernel independence make the data-driven approach suitable for the case
when the kernel matrix changes frequently due to changes in the data or kernel function.

105 106

number of points n

10-2

10-1

100

101

tim
e(

s)

Cube

HiDR
build
matvec
O(n)

105 106

number of points n

10-2

10-1

100

101

tim
e(

s)

3-sphere

HiDR
build
matvec
O(n)

104 105

number of points n

10-3

10-2

10-1

100

tim
e(

s)

Dino

HiDR
build
matvec
O(n)

Figure 13: Section 6.1.1 experiment: Timings of HiDR, H2 build, matvec for n-by-n Coulomb
kernel matrices with three datasets in R3

6.1.2 Scaling test for different kernels

In this section, we test the proposed data-driven algorithm for the kernel functions in Table 1. We
show that the general data-driven algorithm is scalable for different types of kernel functions for
the same approximation accuracy. The “3-sphere” dataset is used.

For each kernel function, we measure the time cost of the proposed algorithm as the size of data
n increases. The three types of costs - hierarchical data reduction, hierarchical matrix construction,

16

Table 1: Kernel functions used in the experiments in Section 6.1. Here κ1(x, x) = 0.

κ1(x, y) κ2(x, y) κ3(x, y) κ4(x, y)
1
|x−y| exp(−|x− y|2) cos(x · y) exp

(
− 1

1−0.1|x−y|2

)

matrix-vector multiplication - correspond to the three plots in Figure 14.
In Figure 14, each plot shows the timing for all four kernels. The relative error for each case is

10−6. It is easily seen from Figure 14 that each cost scales linearly with data size n. The algorithm
is able to maintain accuracy for different types of kernel functions.

6.1.3 HiDR once for all

In this experiment - called “HiDR once for all” - we perform HiDR on the dataset to obtain
representor sets and then use the representor sets to construct hierarchical matrix representation
for the different kernel functions in Table 1 and Gaussian kernels with different bandwidths. The key
here is that, for a fixed compression level, HiDR is only performed once and the same representor
sets are used for all kernels.

Figure 15 shows the approximation error of the hierarchical matrix with respect to the average
size of farfield representor sets Y ∗i . Different error curves correspond to approximations to different
kernels. We see that by increasing the size of the farfield representor sets, the matrix approximation
error is reduced effectively for all kinds of kernel functions. Since HiDR is only applied once, the
precomputation cost is almost negligible when amortized over multiple kernels. The accuracy as
seen from Figure 15 justifies the data-driven construction with the efficient kernel-independent
HiDR. We see that the data-driven approach is particularly useful when hierarchical matrices for
different kernel functions or kernel parameters need to be computed.

In applications like Gaussian processes, the bandwidth parameter for the Gaussian kernel is
unknown and is determined by an iterative algorithm. Therefore, the bandwidth changes constantly,
thus the kernel function. This makes existing hierarchical matrix constructions inefficient because
the entire hierarchical algorithm needs to be run from scratch every time the bandwidth changes.
The proposed data-driven approach, however, performs data reduction only once and no matter
what the bandwidth is, the hierarchical matrix representation can be constructed rapidly based
on the computed representor sets. It can be seen from Figure 15(right) that for a wide range
of bandwidth values, the approximation error decays effectively as more points are used in the
representor sets. The nearly zero approximation error for the bandwidth L = 0.01 is due to the
fact that the admissible block is almost a zero matrix as exp(−|x − y|2/0.012) ≈ 0 when x and y
are away from each other.

Overall, it can be seen from the experiments that the data-driven approach serves as a black-
box tool for rapidly computing hierarchical matrices for general kernel functions. It is especially
efficient in the situation when multiple kernel functions need to be approximated.

6.2 Comparison to special-purpose methods for the Coulomb kernel

In this section, we compare the new general-purpose data-driven (‘DD’) construction to several
optimized packages for the Coulomb kernel κ(x, y) = 1

|x−y| , for example, FMM3D2[21], PVFMM

2https://fmm3d.readthedocs.io/en/latest/

17

105 106

number of points n

10-3

10-2

10-1

100

T
im

e(
s)

 fo
r

H
iD

R

1
(x,y)

2
(x,y)

3
(x,y)

4
(x,y)

O(n)

105 106

number of points n

10-3

10-2

10-1

100

T
im

e(
s)

 fo
r

H
2 m

at
rix

 c
on

st
ru

ct
io

n

1
(x,y)

2
(x,y)

3
(x,y)

4
(x,y)

O(n)

105 106

number of points n

10-2

10-1

100

T
im

e(
s)

 fo
r

m
at

-v
ec

1
(x,y)

2
(x,y)

3
(x,y)

4
(x,y)

O(n)

Figure 14: Section 6.1.2 scaling test for kernels in Table 1: CPU time for HiDR (left), hierarchical
matrix construction (middle), matrix-vector multiplication (right)

0 20 40 60 80 100 120 140
average size of farfield representor set

10-10

10-8

10-6

10-4

10-2

100

re
la

tiv
e

er
ro

r

1(x,y)

2(x,y)

3(x,y)

4(x,y)

0 20 40 60 80 100 120 140
average size of farfield representor set

10-15

10-10

10-5

100

re
la

tiv
e

er
ro

r

L=0.01
L=0.1
L=1
L=10
L=100

Figure 15: Section 6.1.3: perform HiDR only once to obtain representor sets and then use them
to construct hierarchical matrices for multiple kernels: matrix approximation error vs average size
of farfield representor sets Y ∗i . Left: kernels in Table 1; Right: Gaussian kernel exp(−|x− y|2/L2)
with different bandwidth L = 10k with k = −2,−1, 0, 1, 2

18

[36], and Proxy Surface method (cf. [37, 20, 27]) implemented in H2Pack [34]. These methods are
specialized for the Coulomb kernel to offer better efficiency in practice than the interpolation-based
methods for constructing H2 matrices.

DD, FMM3D, PVFMM and H2Pack are compiled using Intel C/C++/Fortran compiler v19.0.5
with optimization flags “-xHost -O3”. Intel MKL 19.0.5 is used in all tested libraries to perform
general matrix-vector and matrix-matrix multiplications. DD, H2Pack, and FMM3D use one thread
per CPU core and 24 cores on one computing node. PVFMM uses MVAPICH2 2.3.2 as the MPI
backend and uses one MPI process with 24 cores on one computing node.

We use the same datasets as in Section 6.1. For every method, the total time is computed as

total time = precomputation + H2 construction + matrix-vector multiplication.

FMM3D and proxy surface method do not have precomputation, while PVFMM and DD require
precomputation. For DD, the precomputation refers to HiDR.

Timings for precomputation, hierarchical build, matvec, are shown in Figure 16, Figure 17,
Figure 18, respectively. The total time is shown in Figure 19. The relative error (in 2-norm) for
each test is 10−6.

From Figure 16, we see that the proposed hierarchical data-reduction (HiDR) requires signif-
icantly lower precomputation cost compared to PVFMM. This is due to the fact that the kernel
matrix is never accessed in HiDR and no algebraic compression is computed. Moreover, we see
from Figure 16 that the advantage of the data-driven method becomes more obvious for irregular
data from a manifold, such as 3-sphere and Dino. It can be seen that PVFMM has almost constant
cost independent of the size of the dataset n. This is because PVFMM treats matrix compression
as a continuous problem (thus independent of the size of data) and the precomputation involves
solving integral equations on spheres to facilitate the farfield compression.

From Figure 17, we see that FMM3D outperforms other methods in hierarchical construction.
This is because, unlike other methods, FMM3D does not compute and store a hierarchical matrix
representation. Instead, it computes the hierarchical representation when performing matrix-vector
multiplication. The other methods have similar performance, where no single method performs
significantly better than others across all datasets. It should be noted that, for methods with
precomputation, the hierarchical construction time can be further reduced at the expense of more
precomputation time. In principle, more time spent in precomputation could yield faster hierar-
chical construction.

For matvec, Figure 18 shows that the data-driven method and proxy surface method achieve
similar performance that is in general better than FMM3D and PVFMM. FMM3D is significantly
slower than other methods due to the on-the-fly hierarchical construction. For data sampled from
a manifold, PVFMM is outperformed by DD and Proxy Surface. The results in Figure 18 justify
the efficiency of the hierarchical matrix representation built from the fast HiDR in Figure 16.

For the total computation time, as can be seen from Figure 19, we see that Proxy Surface
provides the best performance overall, followed by DD. The advantage of DD is more evident for
data from a manifold, e.g. 3-sphere, Dino. In general, we see that the data-driven method leads to
a lot more computational savings when data is sampled from a low-dimensional manifold.

It should be emphasized that the Proxy Surface method is a specialized method optimized for
the Coulomb kernel to offer superior efficiency, while DD is a general-purpose approach that can
be applied to a variety of kernel functions (cf. Table 1). Unlike the special-purpose methods, no
analytic property of the kernel function is used in the data-driven hierarchical construction. It is
nonetheless possible to design specialized data-driven algorithms for the kernel function of interest
to improve efficiency. Overall, we conclude from the results in Figure 19 that the data-driven

19

method, as a black-box tool for hierarchical matrix computations, also offers excellent efficiency for
special kernels without utilizing any specific property of the kernel.

105 106

number of points n

10-2

10-1

100

pr
ec

om
pu

ta
tio

n
tim

e(
s)

Cube

PVFMM
HiDR
O(n)

105 106

number of points n

10-2

10-1

100

pr
ec

om
pu

ta
tio

n
tim

e(
s)

3-sphere

PVFMM
HiDR
O(n)

104 105

number of points n

10-3

10-2

10-1

100

pr
ec

om
pu

ta
tio

n
tim

e(
s)

Dino

PVFMM
HiDR
O(n)

Figure 16: Section 6.2 experiment: Precomputation time of PVFMM and DD for approximating
n-by-n Coulomb kernel matrices with datasets Cube, 3-sphere, Dino

105 106

number of points n

10-2

10-1

100

hi
er

ar
ch

ic
al

 b
ui

ld
 a

fte
r

pr
ec

om
pu

ta
tio

n(
s)

Cube

FMM3D
PVFMM
Proxy Surface
DD
O(n)

105 106

number of points n

10-2

10-1

100

hi
er

ar
ch

ic
al

 b
ui

ld
 a

fte
r

pr
ec

om
pu

ta
tio

n(
s)

3-sphere

FMM3D
PVFMM
Proxy Surface
DD
O(n)

104 105

number of points n

10-3

10-2

10-1

100

hi
er

ar
ch

ic
al

 b
ui

ld
 a

fte
r

pr
ec

om
pu

ta
tio

n(
s)

Dino

FMM3D
PVFMM
Proxy Surface
DD
O(n)

Figure 17: Section 6.2: Hierarchical construction time (after precomputation) of FMM3D, PVFMM,
Proxy Surface and DD for approximating n-by-n Coulomb kernel matrices with datasets Cube, 3-
sphere, Dino

6.3 Memory efficiency

In this section, we illustrate the memory efficiency of the proposed data-driven approach by com-
paring it to interpolation-based hierarchical matrix construction. We test the two general-purpose
methods for the different kernel functions listed in Table 1. The “3-sphere” dataset is used with
n = 20000 points.

In Figure 20, we plot the approximation error vs the memory use for each method and each
kernel function. The memory use is measured by the cost for storing the hierarchical representation
derived by the respective method. The high memory use of interpolation-based construction is
clearly seen from the plots. In three dimensions, the number of interpolation nodes is k3 if k
interpolation nodes are used in each dimension. This number may exceed the size of the admissible
block to be approximated. We found that, in practice, to achieve moderate to high approximation
accuracy, a large number of interpolation nodes is needed. The proposed data-driven method, on the
other hand, significantly reduces the memory needed to achieve a certain approximation accuracy.
Equivalently, we can also conclude that, for the same approximation rank and memory requirement,
the data-driven method is able to provide a much more accurate hierarchical representation than
the one derived from interpolation. For large scale data, the memory efficiency of data-driven

20

105 106

number of points n

10-3

10-2

10-1

100

101

m
at

rix
-v

ec
to

r
m

ul
tip

lic
at

io
n

tim
e(

s)

Cube

FMM3D
PVFMM
Proxy Surface
DD
O(n)

105 106

number of points n

10-3

10-2

10-1

100

101

m
at

rix
-v

ec
to

r
m

ul
tip

lic
at

io
n

tim
e(

s)

3-sphere

FMM3D
PVFMM
Proxy Surface
DD
O(n)

104 105

number of points n

10-4

10-3

10-2

10-1

100

m
at

rix
-v

ec
to

r
m

ul
tip

lic
at

io
n

tim
e(

s)

Dino

FMM3D
PVFMM
Proxy Surface
DD
O(n)

Figure 18: Section 6.2: Matrix-vector multiplication time of FMM3D, PVFMM, Proxy Surface and
DD for approximating n-by-n Coulomb kernel matrices with datasets Cube, 3-sphere, Dino

105 106

number of points n

10-1

100

to
ta

l t
im

e(
s)

Cube

FMM3D
PVFMM
Proxy Surface
DD
O(n)

105 106

number of points n

10-1

100

to
ta

l t
im

e(
s)

3-sphere

FMM3D
PVFMM
Proxy Surface
DD
O(n)

104 105

number of points n

10-2

10-1

100

to
ta

l t
im

e(
s)

Dino

FMM3D
PVFMM
Proxy Surface
DD
O(n)

Figure 19: Section 6.2: Total construction time of FMM3D, PVFMM, Proxy Surface and DD for
approximating n-by-n Coulomb kernel matrices with datasets Cube, 3-sphere, Dino

21

construction would be even more prominent.

500 1000 1500 2000
memory use(MB)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

re
la

tiv
e

er
ro

r

interpolation
data-driven

500 1000 1500 2000
memory use(MB)

10-10

10-8

10-6

10-4

10-2

re
la

tiv
e

er
ro

r

interpolation
data-driven

500 1000 1500 2000
memory use(MB)

10-10

10-8

10-6

10-4

10-2

100

re
la

tiv
e

er
ro

r

interpolation
data-driven

500 1000 1500 2000
memory use(MB)

10-8

10-6

10-4

10-2

re
la

tiv
e

er
ro

r

interpolation
data-driven

Figure 20: Section 6.3 experiment: error vs memory use of interpolation-based and data-driven
constructions for approximating the four kernel matrices (Table 1) with the 3-sphere dataset

7 Conclusion

We proposed general-purpose data-driven hierarchical matrix construction accelerated by a novel
hierarchical data reduction (HiDR). The algorithm first computes a reduced data representation fol-
lowing the tree structure and then performs the hierarchical low-rank compression. Different from
all existing methods, HiDR entirely operates on the given dataset, without accessing the kernel func-
tion or kernel matrix. The complexity of the whole data-driven construction is linear with respect
to the data size. Compared to general-purpose methods such as interpolation, the new data-driven
framework requires less memory for the same matrix approximation accuracy. For special kernels
like the Coulomb kernel, the general data-driven method, as a black-box approach, demonstrates
competitive performance when compared to specialized methods optimized for the Coulomb kernel.
The data-driven approach yields low computational cost and is particularly efficient for data sam-
pled from low-dimensional manifolds. Future work includes extending the data-driven framework
to the efficient construction of hierarchical matrices for high dimensional data in machine learning
applications. One appealing feature is that, when constructing hierarchical matrices for different
kernel functions associated with the same dataset, HiDR only needs to be performed once, which
significantly reduces the total computational cost. Additionally, the data driven procedure can be
optimized towards the special kernel function under consideration. In the current presentation, we
focus on providing a general approach, which could be useful for general-purpose library for acceler-
ating kernel matrix computations with hierarchical matrix representations. Possible improvements
for special kernel functions will be investigated at a future date.

References

[1] C. R. Anderson. An implementation of the fast multipole method without multipoles. SIAM
J. Sci. Statist. Comput., 13(4):923–947, 1992.

[2] K. E. Atkinson. The numerical solution of the eigenvalue problem for compact integral oper-
ators. Transactions of the American Mathematical Society, 129(3):458–465, 1967.

[3] K.E. Atkinson. Convergence rates for approximate eigenvalues of compact integral operators.
SIAM Journal on Numerical Analysis, 12(2):213–222, 1975.

[4] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm. Nature, 324:446–
449, December 1986.

22

[5] M. Bebendorf. Approximation of boundary element matrices. Numer. Math., 86(4):565–589,
2000.

[6] M. Bebendorf and R. Venn. Constructing nested bases approximations from the entries of
non-local operators. Numer. Math., 121(4):609–635, 2012.

[7] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[8] S. Börm and L. Grasedyck. Hybrid cross approximation of integral operators. Numer. Math.,
101(2):221–249, 2005.

[9] S. Börm, L. Grasedyck, and W. Hackbusch. Introduction to hierarchical matrices with appli-
cations. Eng. Anal. Bound. Elem., 27(5):405–422, 2003.

[10] D. Cai. Physics-Informed Distribution Transformers Via Molecular Dynamics and Deep Neural
Networks. preprint, https://ssrn.com/abstract=4028725.

[11] D. Cai and Z. Cai. Hybrid a posteriori error estimators for conforming finite ele-
ment approximations to stationary convection-diffusion-reaction equations. arXiv preprint
arXiv:2107.06341.

[12] D. Cai and Z. Cai. A hybrid a posteriori error estimator for conforming finite element approx-
imations. Computer Methods in Applied Mechanics and Engineering, 339:320 – 340, 2018.

[13] D. Cai, Z. Cai, and S. Zhang. Robust equilibrated a posteriori error estimator for higher order
finite element approximations to diffusion problems. Numerische Mathematik, 144(1):1–21,
2020.

[14] D. Cai, Z. Cai, and S. Zhang. Robust equilibrated error estimator for diffusion problems:
mixed finite elements in two dimensions. Journal of Scientific Computing, 83(1):1–22, 2020.

[15] D. Cai, E. Chow, L. Erlandson, Y. Saad, and Y. Xi. SMASH: Structured matrix approximation
by separation and hierarchy. Numerical Linear Algebra with Applications, 25(6):e2204, 2018.

[16] D. Cai, E. Chow, and Y. Xi. Data-driven Linear Complexity Low-rank Approximation of
General Kernel Matrices: A Geometric Approach. preprint, 2022.

[17] D. Cai, J. G. Nagy, and Y. Xi. Fast Deterministic Approximation of Symmetric Indefinite
Kernel Matrices with High Dimensional Datasets. SIAM J. Matrix Anal. Appl., accepted.

[18] D. Cai and P. S. Vassilevski. Eigenvalue problems for exponential-type kernels. Computational
Methods in Applied Mathematics, 20(1):61–78, 2020.

[19] D. Cai and J. Xia. A stable matrix version of the fast multipole method: stabilization strategies
and examples. Electron. Trans. Numer. Anal., 54:581–609, 2021.

[20] Hongwei Cheng, Zydrunas Gimbutas, Per-Gunnar Martinsson, and Vladimir Rokhlin. On the
compression of low rank matrices. SIAM Journal on Scientific Computing, 26(4):1389–1404,
2005.

[21] Hongwei Cheng, Leslie Greengard, and Vladimir Rokhlin. A fast adaptive multipole algorithm
in three dimensions. Journal of computational physics, 155(2):468–498, 1999.

23

https://ssrn.com/abstract=4028725

[22] D. Colton and R. Kress. Integral equation methods in scattering theory. Pure and applied
mathematics. Wiley, 1983.

[23] Dennis Decoste and Bernhard Schölkopf. Training invariant support vector machines. Machine
learning, 46(1-3):161–190, 2002.

[24] Yuval Eldar, Michael Lindenbaum, Moshe Porat, and Yehoshua Y Zeevi. The farthest point
strategy for progressive image sampling. IEEE Transactions on Image Processing, 6(9):1305–
1315, 1997.

[25] L. Erlandson, D. Cai, Y. Xi, and E. Chow. Accelerating parallel hierarchical matrix-vector
products via data-driven sampling. In 2020 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), pages 749–758, 2020.

[26] Bengt Fornberg and Grady Wright. Stable computation of multiquadric interpolants for all
values of the shape parameter. Computers & Mathematics with Applications, 48(5-6):853–867,
2004.

[27] Adrianna Gillman, Patrick M. Young, and Per-Gunnar Martinsson. A direct solver with o(n)
complexity for integral equations on one-dimensional domains. Frontiers of Mathematics in
China, 7(2):217–247, 2012.

[28] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys.,
73:325–348, 1987.

[29] M. Gu and S. C. Eisenstat. Efficient algorithms for computing a strong rank-revealing QR
factorization. SIAM J. Sci. Comput., 17(4):848–869, 1996.

[30] W. Hackbusch. Hierarchical Matrices: Algorithms and Analysis. Springer Series in Computa-
tional Mathematics. Springer Berlin Heidelberg, 2015.

[31] W. Hackbusch and S. Börm. H2-matrix approximation of integral operators by interpolation.
Appl. Numer. Math., 43(1):129–143, 2002.

[32] W. Hackbusch, B. N. Khoromskij, and R. Kriemann. Hierarchical matrices based on a weak
admissibility criterion. Computing, 73(3):207–243, 2004.

[33] W. Hackbusch, B.N. Khoromskij, and S.A. Sauter. On H2-matrices. In Hans-Joachim Bun-
gartz, Ronald H. W. Hoppe, and Christoph Zenger, editors, Lectures on Applied Mathematics,
pages 9–29. Springer, Berlin, 2000.

[34] H. Huang, X. Xing, and E. Chow. H2Pack: High-performance H-2 matrix package for ker-
nel matrices using the proxy point method. ACM Transactions on Mathematical Software
(TOMS), 47(1):1–29, 2020.

[35] H. B. Keller. On the accuracy of finite difference approximations to the eigenvalues of differ-
ential and integral operators. Numerische Mathematik, 7(5):412–419, 1965.

[36] D. Malhotra and G. Biros. Pvfmm: A parallel kernel independent fmm for particle and volume
potentials. Communications in Computational Physics, 18(3):808–830, 2015.

[37] P.G. Martinsson and V. Rokhlin. A fast direct solver for boundary integral equations in two
dimensions. J. Comput. Phys., 205(1):1–23, 2005.

24

[38] J.E. Osborn. Spectral approximation for compact operators. Mathematics of computation,
29(131):712–725, 1975.

[39] Gabriel Peyré and Laurent D Cohen. Geodesic remeshing using front propagation. Interna-
tional Journal of Computer Vision, 69(1):145–156, 2006.

[40] V. Rokhlin. Rapid solution of integral equations of classical potential theory. Journal of
Computational Physics, 60(2):187–207, 1985.

[41] V. Rokhlin. Rapid solution of integral equations of scattering theory in two dimensions. Journal
of Computational Physics, 86(2):414–439, 1990.

[42] Thomas Schlömer, Daniel Heck, and Oliver Deussen. Farthest-point optimized point sets with
maximized minimum distance. In Proceedings of the ACM SIGGRAPH Symposium on High
Performance Graphics, pages 135–142, 2011.

[43] A. Spence. Error bounds and estimates for eigenvalues of integral equations. Numerische
Mathematik, 29(2):133–147, 1978.

[44] X. Sun and N.P. Pitsianis. A matrix version of the fast multipole method. SIAM Rev.,
43(2):289–300, 2001.

[45] L. Ying, G. Biros, and D. Zorin. A kernel-independent adaptive fast multipole algorithm in
two and three dimensions. J. Comput. Phys., 196(2):591–626, 2004.

25

Algorithm 2 Data-driven (DD) HiDR-based H2 matrix construction

Input: Dataset X, kernel function κ(x, y), approximation tolerance ε, separation ratio τ , maximum
number of points q for a leaf node
Output: H2 matrix representation

1: Apply adaptive partitioning to X to generate the partition tree T with at most q points for
each leaf node and obtain subsets Xi for all leaf nodes i

2: Determine approximation parameters r1, r2 from ε
3: Apply HiDR in Algorithm 1 with approximation parameters r1, r2 to obtain O(1) representor

sets X∗i and Y ∗i for all nodes i ∈ T
4: for all i ∈ T do
5: Define X̄

(row)
i = X̄

(col)
i = ∅

6: if i is a leaf node then
7: define X̄

(row)
i = X̄

(col)
i = Xi

8: end if
9: end for

10: for all non-root i ∈ T from bottom level to top level do

11: Apply getBasis(K
X̄

(row)
i Y ∗i

) to obtain Ui, X̂
(row)
i and getBasis(KT

Y ∗i X̄
(col)
i

) to obtain Vi, X̂
(col)
i

12: Update X̄
(row)
p = X̄

(row)
p ∪ X̂(row)

i and X̄
(col)
p = X̄

(col)
p ∪ X̂(col)

i , where p is the parent of i
13: end for
14: Define the H2 column and row basis matrices: U = {Ui}leaf i, V = {Vi}leaf i, transfer matrices

R = {Ri},W = {Wi}:Rc1
...
Rck

 = Ui,

Wc1
...

Wck

 = Vi, if i has children c1, . . . , ck,

coupling matrices B = {Bi,j}:

Bi,j =

KX̂
(row)
i X̂

(col)
j

, if (i, j) is admissible

KXiXj otherwise

15: return H2 representation: U, V,R,W,B

26

	1 Introduction
	2 Review of Hierarchical Matrix Representations
	2.1 Hierarchical matrix representations
	2.2 General-purpose methods

	3 Fast Hierarchical Data Reduction (HiDR)
	3.1 Linear complexity hierarchical data reduction
	3.2 Complexity analysis
	3.3 Data reduction methods

	4 Data-driven Hierarchical Matrix Construction
	4.1 Approximating the entire farfield KXi Yi
	4.2 Computing hierarchical matrices with nested bases using HiDR
	4.3 Complexity analysis

	5 Data Reduction and Low Rank Approximation
	5.1 Drawback of using points outside the given data for irregular datasets
	5.2 Comparison of data reduction methods

	6 Numerical experiments
	6.1 Data-driven construction: scaling, generality, once-for-all HiDR
	6.1.1 Scaling test for different datasets
	6.1.2 Scaling test for different kernels
	6.1.3 HiDR once for all

	6.2 Comparison to special-purpose methods for the Coulomb kernel
	6.3 Memory efficiency

	7 Conclusion

