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Abstract

Conservation and consistency are fundamental properties of dis-
cretizations of systems of hyperbolic conservation laws. Here, these
concepts are extended to the realm of iterative methods by formally
defining locally conservative and flux consistent iterations. These con-
cepts are of both theoretical and practical importance: Based on re-
cent work by the authors, it is shown that pseudo-time iterations using
explicit Runge-Kutta methods are locally conservative but not neces-
sarily flux consistent. An extension of the Lax-Wendroff theorem is
presented, revealing convergence towards weak solutions of a tempo-
rally retarded system of conservation laws. Each equation is modified
in the same way, namely by a particular scalar factor multiplying the
spatial flux terms. A technique for enforcing flux consistency, and
thereby recovering convergence, is presented. Further, local conserva-
tion is established for all Krylov subspace methods, with and without
restarts, and for Newton’s method under certain assumptions on the
discretization. Thus it is shown that Newton-Krylov methods are lo-
cally conservative, although not necessarily flux consistent. Numerical
experiments with the 2D compressible Euler equations corroborate the
theoretical results. Further numerical investigations of the impact of
flux consistency on Newton-Krylov methods indicate that its effect is
case dependent, and diminishes as the number of iterations grow.

Keywords: Iterative methods, Conservation laws, Lax-Wendroff theorem,
Pseudo-time iterations, Newton-Krylov methods

1 Introduction

Conservation laws arise ubiquitously in the modelling of physical phenomena
and their discretizations remain the subject of intense research. Fundamen-
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tal properties of successful schemes include conservation, consistency and
convergence. These concepts are well defined for both space and time dis-
cretizations; explicit and implicit.

Implicit discretizations typically result in a large, sparse systems of non-
linear equations to be solved in each time step. The solution is usually
approximated through the application of iterative methods; see e.g. [2,
Chapters 5 & 6]. Yet, discussions about conservation, consistency and con-
vergence (in the sense of grid refinement) for schemes involving iterative
methods are rare. In [9, 1], studys were conducted of particular implicit
finite volume schemes applied to the steady Euler equations, solved using
a variety of modified Newton-type methods. The results indicate that the
choice of iterative method has a significant impact on the convergence of
the scheme. Based on these results, a study of similar schemes applied to
the Reynolds-Averaged Navier-Stokes (RANS) equations were carried out
in [10], where it was found that the less performant methods violate mass
conservation.

In [4], the authors considered general finite volume discretizations of 1D
scalar conservation laws, discretized in time with the implicit Euler method.
Global (i.e. mass) conservation was proven for many methods, including
pseudo-time iterations, Krylov subspace methods, Newton’s method and cer-
tain multigrid techniques. On the other hand, the Jacobi and Gauss-Seidel
iterations were shown to violate mass conservation in general, corroborating
the observations in [10]. A stronger notion is that of local conservation, de-
fined formally below, which loosely means that mass is not only conserved
but also not teleported. This notion is important for physical correcteness,
and allows to prove extensions of the Lax-Wendroff theorem [12], thus giv-
ing a much stronger mathematical backing of such nonlinear schemes. In
[4], a start was made in this vein for pseudo-time iterations. It was shown
that in case of convergence, the resulting scheme converges to a solution of a
conservation law, where the flux is multiplied by a scheme dependent factor,
unless particular care is taken. We say that the iterative method lacks flux
consistence, which manifests as a temporal retardation.

Throughout this article, we work with systems of conservation laws. Af-
ter introducing relevant notation and terminology, we formally define locally
conservative and flux consistent iterative methods in 2. We extend the re-
sults on pseudotime iterations from [4] in 3, while considering a large class
of implicit Runge-Kutta (RK) methods in place of Euler’s method. As it
turns out, even for systems flux inconsistency manifests through a scheme
dependent scalar factor. Thus, a method to enforce flux consistency, first
introduced in [4], applies here too.

The second focus of this work is local conservation of the important class
of Newton-Krylov methods. In 4, we first prove that Newton’s method is
both locally conservative and flux consistent under certain assumptions on
the spatial discretization and when solving all linear systems exactly. We
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can thus establish that if there are problems with conservation within an
implicit solver using Newton’s method, they stem from the iterative solver
for the linear systems. Secondly, by relating Krylov subspace methods to
pseudo-time iterations, local conservation is shown also for these in 5. This
subsequently leads to a proof of local conservation for Newton-Krylov meth-
ods.

Numerical examples corroborate the theoretical findings in 6. We further
explore the impact of flux consistency on Newton-Krylov methods by apply-
ing the aforementioned technique for ensuring flux consistency of pseudo-
time iterations. The results indicate that role of flux consistency is case
dependent, and that its effect diminishes as the number of iterations grow.

2 Preliminaries

This section introduces relevant notation and the theoretical background
upon which the remaining paper rests.

2.1 Notation

Scalar quantities are denoted by letters in normal font. Vectors and matrices
are bold, with vectors being lower case and matrices upper case. Vectors
and matrices of several different dimensions are treated in the manuscript:

• We consider systems ofm conservation laws. Vectors in R
m are written

with an underline e.g. u.

• We consider s-stage explicit Runge-Kutta methods. Vectors in R
s are

written with a right-pointing arrow, e.g.
→

b, and similarly for matrices
in R

s×s.

• We consider s̃-stage implicit Runge-Kutta methods. Vectors in R
s̃ are

written with a left-pointing arrow e.g.
←

b, and similarly for matrices in
R
s̃×s̃.

• Vectors whose dimension is the product of the dimensions listed above
are written with a combination of attributes, e.g.

↔

x ∈ R
s̃s,
→

y ∈ R
sm,

↔

z ∈ R
s̃sm.

• Vectors representing quantities on spatial grids are expressed in a bold
sans serif font, e.g.

u⊤ = (. . . , ui−1, ui, ui+1, . . . ).

This notation is combined with the accents above if the evaluated
quantity in question is a vector. Thus, a vector of m-element vectors
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is represented as

u⊤ = (. . . ,u⊤
i−1,u

⊤
i ,u

⊤
i+1, . . . ).

Matrices operating on these vectors are denoted similarly with capital
letters and are constructed block-diagonally:

A = blkdiag(. . . ,Ai−1,Ai,Ai+1, . . . ).

• A flux function that takes (p+q+1) arguments, e.g. f
i+ 1

2

(ui−p, . . . ,ui+q),

is sometimes denoted with the abbreviated argument f
i+ 1

2

(u).

2.2 Conservation laws and the Lax-Wendroff theorem

Consider the system of 1D conservation laws

ut + f
x
= 0, u(x, 0) = u0(x), x ∈ Ω, t > 0. (1)

Here, u(x, t), f , u0 ∈ R
m. Throughout, it is assumed that (1) is posed either

as a Cauchy problem or on a periodic domain. Under these circumstances,
the quantity

∫

Ω udx is conserved. A space-time discretization of (1) that
discretely mimics this property is said to be globally conservative.

We consider discretizations of (1) that may be expressed in the form

un+1
i − un

i

∆t
+

1

∆x

(

f
i+ 1

2

− f
i− 1

2

)

= 0, i = . . . ,−1, 0, 1, . . . (2)

Here, un
i ≈ u(xi, tn) ≡ u(i∆x, n∆t). In this paper we consider implicit

discretizations and therefore restrict our attention to numerical fluxes of the
type

f
i+ 1

2

≡ f
i+ 1

2

(un+1) = f
i+ 1

2

(un+1
i−p , . . . ,u

n+1
i+q ),

where p and q are nonnegative integers with p + q > 0. Throughout, it is
assumed that these numerical fluxes are consistent:

Definition 1. The numerical flux f
i+ 1

2

(u) = f
i+ 1

2

(ui−p, . . . ,ui+q) is said

to be consistent with f(u) if it it Lipschitz continuous in each argument and

if f
i+ 1

2

(u, . . . ,u) = f(u).

The concept of local conservation will be central in the remainder. It
applies to explicit and implicit discretizations alike:

Definition 2. A discretization of (1) that can be expressed in the form (2)
is said to be locally conservative.
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Local conservation is a useful property for both physical and mathemat-
ical reasons (1). It enforces that solution components leaving one compu-
tational cell necessarily enter the neighbouring one. Conservation of ”total
mass”,

∑

i∆xun
i is thereby ensured, in analogy with the continuous prob-

lem (i.e. global conservation). Further, it is an essential ingredient in the
ubiquitous Lax-Wendroff theorem.

The Lax-Wendroff theorem applies to the Cauchy problem for (1) and
considers locally conservative discretizations with consistent numerical flux.
If the numerical solution of such a scheme converges to a function u in the
limit of vanishing ∆x and ∆t, the theorem provides sufficient conditions for
u to be a weak solution of the conservation law (1) [13, Chapter 12]. More
precisely, consider a sequence of grids (∆xℓ,∆tℓ) such that ∆xℓ,∆tℓ → 0
as ℓ → ∞. Let U ℓ(x, t) denote the piecewise constant function that takes
the solution value un

i in (xi, xi+1]× (tn−1, tn] on the ℓth grid. We make the
following assumptions:

Assumption 1.

1. There is a function u(x, t) such that over every bounded set Ω = [a, b]×
[0, T ] in x-t space,

‖U ℓ(x, t)− u(x, t)‖1,Ω → 0 as ℓ → ∞.

2. For each T ≥ 0 there is a constant R > 0 such that the total variation

TV (U ℓ(·, t)) < R for all 0 ≤ t ≤ T, ℓ = 1, 2, . . .

The Lax-Wendroff theorem can then be stated as follows:

Theorem 1. Consider a sequence of grids (∆xℓ,∆tℓ) such that ∆xℓ,∆tℓ →
0 as ℓ → ∞. Suppose that the numerical flux f

i± 1

2

in (2) is consistent with

f and that 1 is satisfied. Then, u(x, t) is a weak solution of (1).

1 is not strictly speaking necessary for the Lax-Wendroff theorem. Both
conditions can be relaxed somewhat. Indeed, the original proof due to Lax
and Wendroff instead assumes that U ℓ converges boundedly almost every-
where to u [12].

The discretization (2) is implicit, hence the solution generally must be
approximated using iterative methods. Since we are interested in the con-
vergence properties of schemes involving iterative methods, the concepts of
local conservation and consistency must be extended to this setting. To this
end, we propose the following definition:

Definition 3. Suppose that the solution to (2) is approximated by a se-

quence of iterates u
(k)
i , k = 0, . . . , N and set un+1 = u

(N)
i . If there is a
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numerical flux function h
(N)

i+ 1

2

such that the approximate numerical solution

un+1 satisfies

un+1
i − un

i

∆t
+

1

∆x

(

h
(N)

i+ 1

2

− h
(N)

i− 1

2

)

= 0, i = . . . ,−1, 0, 1, . . . (3)

then the iterative method is said to be locally conservative. If h
(N)

i+ 1

2

further

satisfies 1, then the iterative method is said to be flux consistent.

3 Conservation and consistency of pseudo-time it-

erations

In order to approximate the solution of the nonlinear system (2) using
pseudo-time iterations, we introduce a pseudo-time derivative,

∂ui

∂τ
+ g

i
(u) = 0, ui(0) = u0i , i = . . . ,−1, 0, 1, . . .

where the nonlinear function g
i
is given by

g
i
(u) =

ui − un
i

∆t
+

1

∆x

(

f
i+ 1

2

(u)− f
i− 1

2

(u)
)

. (4)

Several different methods are available for iterating in pseudo-time [19, 3].

Herein, we use an s-stage explicit Runge-Kutta (ERK) method. Let (
→

A,
→

b,
→

c)
denote the coefficient matrix and vectors of the ERK method. We denote the
kth pseudo-time iterate by u

(k)
i . The subsequent iterate u

(k+1)
i is computed

from u
(k)
i as

u
(k+1)
i = u

(k)
i −∆τk

s∑

j=1

bjgi

(

U
(k)
j

)

, i = . . . ,−1, 0, 1, . . . (5)

where the stage vectors U
(k)
j , j = 1, . . . , s have elements

U
(k)
jι

= u(k)
ι −∆τk

j−1
∑

l=1

aj,lgι

(

U
(k)
l

)

, ι = i− p, . . . , i+ q. (6)

As previously, p and q determine the bandwidth of the finite volume stencil.
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3.1 Systems of conservation laws

In [4] the scalar version (i.e. m = 1) of (1) was considered. There, it was
shown that the scheme (5)–(6) preserves the local conservation of the space-
time discretization. Further, an extension of the Lax-Wendroff theorem was
provided that incorporates a fixed number N of pseudo-time iterations.

Here, we present two theorems that generalize the results in [4] to systems
of conservation laws (i.e. m ≥ 1). We define a step in physical time by

setting un+1
i = u

(N)
i . Throughout, u

(0)
i = un

i is chosen as initial guess.

Recall that the stability function φ(z) of an RK method (
→

A,
→

b,
→

c) is given
by

φ(z) = 1 + z
→

b⊤(
→

I − z
→

A)−1→1, (7)

where
→

I is the s× s identity matrix and
→

1 ∈ R
s is the vector of all ones; see

e.g. [21, Chapter IV.3]. The stability region of the RK method is defined as
the subset of the complex plane for which |φ(z)| < 1.

The proofs of the following theorems are very similar to those presented
for the scalar case in [4]. The details are therefore omitted. The following
is a generalization to systems of conservation laws, which also allows each
pseudo-time step to be taken with different ERK methods.

Theorem 2. Choose the initial guess u
(0)
i = un

i . Apply N pseudo-time
iterations to (2), where the kth iteration is performed with an ERK method

(
→

Ak,
→

bk,
→

ck) with stability function φk(z) and pseudo-time step ∆τk. Let
µk = ∆τk/∆t for k = 0, . . . , N − 1. The pseudo-time iterations are locally
conservative with numerical flux

h
(N)

i+ 1

2

=

N−1∑

k=0

(

µk

→

b⊤k (
→

I + µk

→

Ak)
−1 ⊗ I

)
(

N−1∏

l=k+1

φl(−µl)

)

→

f
(k)

i+ 1

2

. (8)

Here, I is the m×m identity matrix and

→

f
(k)

i+ 1

2

=
(

f⊤

i+ 1

2

(

U
(k)
1

)

, . . . ,f⊤

i+ 1

2

(

U(k)
s

))⊤

∈ R
sm.

The numerical flux is consistent with cf(u), where

c ≡ c(µ0, . . . , µN−1) = 1−
N−1∏

l=0

φl(−µl). (9)

Thus, pseudo-time iterations are flux consistent if and only if c = 1.
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Remark 1. The product in (8) is empty when k = N − 1. To handle this
case we use the convention

N−1∏

l=N

φl(−µl) = 1.

Proof. The proof is step by step the same as those of [4, Lemma 3 & Theorem

2]. The only changes necessary are to replace
→

A by
→

A ⊗ I, and to swap

each multiplication of the form
→

1φ, where φ is a scalar, to a corresponding

Kronecker product
→

1⊗ φ.

2 reveals that pseudo-time iterations are locally conservative but not
necessarily flux consistent, as characterized by the scalar c in (9). To remove
the inconsistency, it suffices to make a single iteration with any explicit RK
method for which φl(−µl) = 0. In [4] it was suggested to iterate once with
the explicit Euler method, choosing ∆τ0 = ∆t so that µ0 = 1. The stability
function is φ(−µ0) = 1−µ0, hence φ(−1) = 0. This rids the iterative method
of its flux inconsistency and the remaining iterations can be made with any
other ERK method as preferred. Numerical experiments in [4] showed that
enforcing flux consistency can have a profound impact on the convergence
of the pseudo-time iterations.

The coefficient c causes the numerical fluxes in (8) to be consistent with
the modified system of conservation laws

ut + c(µ0, . . . , µN−1)fx
= 0. (10)

Note that c affects all components of the system identically. An interpreta-
tion of its presence is that the pseudo-time iterations alter the rate of flow
of time. Defining the modified time tc = ct it follows that ut = cutc so that
utc

+f
x
= 0. Hence, tc rather than t is the governing time variable in (10).

Convergent pseudo-time iterations require that the pseudo-time steps
are restricted to the stability domain of the explicit RK method, at least
for most of the iterations. Thus, the product in (9) is generally taken over
factors bounded by unity, and consequently c ≤ 1. Thus, tc represents a time
retardation, i.e. time flows slower in (10) than in the original conservation
law (1). This is in line with the experimental observations made in [4].

3.2 Higher order implicit Runge-Kutta methods

Let us return to the system of conservation laws (1) and introduce a spatial
semi-discretization

ut +
1

∆x

(

f
i+ 1

2

(u)− f
i− 1

2

(u)
)

= 0. (11)
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If the implicit Euler method is used to discretize (11) in time, then (2)
is recovered. However, suppose that we instead wish to discretize in time
using an s̃-stage implicit Runge-Kutta (IRK) method with Butcher matrix

and vectors (
←

A,
←

b,
←

c). The resulting scheme can be expressed as

U
(j)
i = un

i − ∆t

∆x

s̃∑

l=1

←

ajl

(

f
i+ 1

2

(U(j))− f
i− 1

2

(U(j))
)

, j = 1, . . . , s̃,

un+1
i = un

i − ∆t

∆x

s̃∑

j=1

←

bj

(

f
i+ 1

2

(U(j))− f
i− 1

2

(U(j))
)

.

(12)

Define the quantities

←

U i =
(

U
(1),⊤
i , . . . ,U

(s̃),⊤
i

)⊤

∈ R
s̃m,

←

f
i+ 1

2

(
←

U) =
(

f⊤

i+ 1

2

(U(1)), . . . ,f⊤

i+ 1

2

(U(s̃))
)⊤

∈ R
s̃m.

Then, (12) can be reformulated as

←

U i =
←

1⊗ un
i − ∆t

∆x

(
←

A⊗ I
)(
←

f
i+ 1

2

(
←

U)−
←

f
i− 1

2

(
←

U)
)

,

un+1
i = un

i − ∆t

∆x

(
←

b⊤ ⊗ I
)(
←

f
i+ 1

2

(
←

U)−
←

f
i− 1

2

(
←

U)
)

,

(13)

where
←

1 is the vector of ones in R
s̃.

We seek an approximation of the solution un+1
i . To this end we must

find an approximate solution of the nonlinear equation system in the second
line of (13). Rewriting this equation as

←

U i −
←

1⊗ un
i

∆t
+

1

∆x

(
←

A⊗ I
)(
←

f
i+ 1

2

(
←

U)−
←

f
i− 1

2

(
←

U)
)

=
←

0, (14)

we see that it is of precisely the same form as the discretization (2), although

with
←

U i taking the place of un+1
i ,

←

1⊗ un
i replacing un

i and (
←

A⊗ I)
←

f
i+ 1

2

in

place of f
i+ 1

2

. Thus, if pseudo-time iterations are used to approximate a

solution, then 2 applies and we can immediately conclude that the resulting
scheme can be written in the conservative form

←

U i −
←

1⊗ un
i

∆t
+

1

∆x

(
←

h
(N)

i+ 1

2
−
←

h
(N)

i− 1

2

)

=
←

0, (15)
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where the numerical flux is given by

←

h
(N)

i+ 1

2
=

N−1∑

k=0

(

µk

→

b⊤(
→

I + µk

→

A)⊗
←

A⊗ I
)
(

N−1∏

l=k+1

φl(µl)

)

↔

f
(k)

i+ 1

2

,

and
↔

f
(k)

i+ 1

2

=

(
←

f
⊤
(
←

U
(k)

1

)

, . . . ,
←

f
⊤
(
←

U
(k)

s

))⊤

.

At this point we note that if the scheme is such that a vector
←

v exists,
satisfying

←

v⊤
←

A =
←

b⊤,
←

v⊤
←

1 = 1, (16)

then the second line in (13) can be evaluated by left-multiplying the first
line by

←

v⊤ ⊗ I. In other words, it follows that

un+1
i =

(
←

v⊤ ⊗ I
)
←

U i. (17)

If we adopt this principle and use it to compute un+1
i based on the approxi-

mation of
←

U i obtained by applying pseudo-time iterations to (14), then the
resulting scheme is conservative:

Theorem 3. Apply N pseudo-time iterations to the stage equations (14)
with the same assumptions as in 2. Suppose that a vector

←

v exists that
satisfies conditions (16) and compute un+1

i using (17). Then the pseudo-
time iterations are locally conservative with the numerical flux

h
(N)

i+ 1

2

=

N−1∑

k=0

(

µk

→

b(
→

I + µk

→

A)⊗
←

b⊤ ⊗ I
)
(

N−1∏

l=k+1

φ(µl)

)

↔

f
(k)

i+ 1

2

. (18)

The numerical flux is consistent with c(µ0, . . . , µN−1)f . Thus, the pseudo-
time iterations are flux consistent if and only if c = 1.

Proof. Local conservation with the flux (18) follows from left-multiplying

(14) by
(
←

v⊤ ⊗ I
)
and using (16) to conclude that

(
←

v⊤ ⊗ I
)
(
←

1 ⊗ un
i ) = un

i .

Consistency with cf follows from the fact that
←

b⊤
←

1 = 1 for every consistent
RK method.

It should be noted that we cannot find a vector
←

v that satisfies condi-
tions (16) for all IRK methods. For example, the implicit midpoint rule

is given by (
←

A,
←

b,
←

c) = (1, 1/2, 1/2). Thus, the first condition in (16) gives
←

v = 1/2 whereas the second one gives
←

v = 1, both of which cannot be
satisfied. However, we remark that the important class of IRK methods
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associated with Summation-By-Parts (SBP) methods all have such a
←

v by
construction [5, 14]. This is a broad class of methods with the ability to
preserve L2-type estimates of the solution to systems of differential equa-
tions [15] and encompass the ubiquitous Radau IA and IIA and Lobatto
IIIC methods [16] as special cases. For further details about the theoretical
and practical aspects of SBP methods for time marching, see [20] and the
references therein.

A generalization of the Lax-Wendroff theorem can be obtained if we
restrict ourselves to considering a fixed number of iterations on a sequence
of ever finer grids:

Theorem 4. Consider a sequence of grids (∆xℓ,∆tℓ) such that ∆xℓ,∆tℓ →
0 as ℓ → ∞. Fix N independently of ℓ, set u

(0)
i = un

i . Apply N pseudo-time
iterations to the conservative discretization (2), or to the stage equations
(6) followed by the RK step (5). Let ∆τk,ℓ/∆tℓ = µk,ℓ = µk be constants
independent of ℓ for each k = 0, . . . , N − 1. Suppose that the numerical flux
f
i± 1

2

in (2) is consistent with f and that 1 is satisfied. Then, u(x, t) is a

weak solution of the conservation law (10).

Proof. The proof is identical to that of [4, Theorem 3], with the same changes
as those in the proof of 2.

4 Newton’s method

We now return to the nonlinear system (2), or equivalently to the implicit
Runge-Kutta stage equations in (13) and consider Newton’s method, which
replaces the nonlinear system with a sequence of linear ones. The solution to
each linear system can then be approximated using pseudo-time iterations,
or more commonly,using a Krylov subspace method.

In this section we limit our attention to the case when the numerical
flux is bivariate, i.e. when f

i+ 1

2

= f̂(ui,ui+1) for some function f̂(θ,φ). It

will be convenient to split the flux into a symmetric (or convective) and an
anti-symmetric (or dissipative) component;

f̂ = f̂ (+)+f̂ (−), f̂ (+)(θ,φ) = f̂ (+)(φ,θ), f̂ (−)(θ,φ) = −f̂ (−)(φ,θ).

Any bivariate function can be expressed in this way by setting

f̂ (+)(θ,φ) =
1

2
(f̂(θ,φ) + f̂(φ,θ)), f̂ (−)(θ,φ) =

1

2
(f̂(θ,φ)− f̂(φ,θ)).

By anti-symmetry, the dissipative component satisfies f̂ (−)(u,u) = 0. Con-
sistency of the numerical flux is therefore equivalent to consistency of the
convective component.

11



In the following subsections, we demonstrate that Newton’s method is
locally conservative and flux consistent when bivariate fluxes are used. To
simplify the presentation, we begin by proving these results for scalar con-
servation laws. The extension to systems is straightforward but notationally
complicated. We therefore postpone this to a separate subsection.

4.1 Scalar conservation laws

Consider the scalar conservation law

ut + fx = 0,

posed on a periodic spatial domain and adjoined with appropriate initial
data. Let f̂ (±)(θ, φ) be a consistent bivariate numerical flux. Without
loss of generality we may assume that the flux is either symmetric or anti-
symmetric. The analysis will proceed in the same way in both cases and
we may thereafter form linear combinations of such fluxes as we like. We
discretize with a finite volume method,

un+1
i − uni

∆t
+

f̂ (±)(un+1
i , un+1

i+1 )− f̂ (±)(un+1
i−1 , u

n+1
i )

∆x
= 0. (19)

The discretization (19) may equivalently be expressed in vector form as

un+1 − un

∆t
+

1

∆x
(Q(∓) ◦ F(±)(un+1))1 = 0. (20)

The dimensions of the vectors and matrices match the number of cells in the
computational grid. Here, ◦ denotes the Hadamard product. The elements
of the matrix F(±)(u) are given by (F(±))ij = f̂ (±)(ui, uj) and Q(∓) is given
by

Q(∓) =










0 1 . . . ∓1
∓1 0 1

∓1 0 1
...

. . . 1
1 0 ∓1 0










.

We define the function g(v) as

g(v) :=
v − un

∆t
+

1

∆x
(Q(∓) ◦ F(±)(v))1. (21)

Newton’s method applied to the nonlinear system (20) is then given by

g′(v(k))∆v + g(v(k)) = 0, v(k+1) = v(k) +∆v, (22)

12



where g′ is the Jacobian of g. An explicit expression for g′ is given in [6,

Theorems 2.1 & 5.1]. Let f̂
(±)
φ = ∂f̂ (±)/∂φ and introduce the matrix F

(±)
φ (v)

with elements (F
(±)
φ )ij = f̂

(±)
φ (vi, vj). Defining the matrix

∂F(±)(v) := Q(∓) ◦ F(±)
φ (v)− diag(1⊤(Q(∓) ◦ F(±)

φ (v))),

the Jacobian is given by g′(v(k)) = ∆t−1I + ∆x−1∂F(±)(v(k)). This is a
tridiagonal matrix, which we may explicitly write as

g′(v(k)) =

tri



∓
f̂
(±)
φ (v

(k)
i , v

(k)
i−1)

∆x
,
1

∆t
−

f̂
(±)
φ (v

(k)
i−1, v

(k)
i )∓ f̂

(±)
φ (v

(k)
i+1, v

(k)
i )

∆x
,
f̂
(±)
φ (v

(k)
i , v

(k)
i+1)

∆x





Inserting this expression for g′(v(k)) into (22) and collecting terms leads to
a system of equations of the form

v
(k+1)
i − uni

∆t
+

1

∆x

(

h
(k+1)

i+ 1

2

− h
(k+1)

i− 1

2

)

= 0, i = . . . ,−1, 0, 1, . . . , (23)

where the numerical flux function h
(k+1)

i+ 1

2

is given by

h
(k+1)

i+ 1

2

= f̂
(±)
φ (v

(k)
i , v

(k)
i+1)∆vi+1 ± f̂

(±)
φ (v

(k)
i+1, v

(k)
i )∆vi + f̂ (±)(v

(k)
i+1, v

(k)
i ). (24)

Theorem 5. Choose v
(0)
i = uni and suppose that g′(u1) is nonsingular for

any non-zero scalar u. Then Newton’s method, applied to the discretization
(20), is locally conservative and flux consistent.

Proof. Setting un+1
i = v

(k+1)
i in (23) shows that Newton’s method applied

to (20) is locally conservative. To establish flux consistency, let v(k) and un

both be given as u1 for some nonzero scalar u and some k (e.g. k = 0).

Observe that, by the consistency of f̂ (±), we have (F(+)(u1))ij = f(u) and

(F(−)(u1))ij = 0. Consequently, Q(+) ◦ F(−)(u1) = 0 and Q(−) ◦ F(+)(u1) =

f(u)Q(−). Since Q(−)1 = 0 it therefore follows from (21) that g(u1) = 0.
Since g′(u1) is nonsingular by assumption, (22) implies that ∆v = 0. Thus,
from (24) we have

h
(k+1)

i+ 1

2

= f̂
(±)
φ (u, u) · 0± f̂

(±)
φ (u, u) · 0 + f̂ (±)(u, u) = f̂ (±)(u, u),
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the latter of which is consistent by assumption. Note that h
(k+1)

i+ 1

2

exclu-

sively depends on the current iterate v(k+1) via ∆v and is therefore a linear
function. The numerical flux is thus Lipschitz continuous, hence consistent.

Finally, since any bivariate function can be written as a linear combi-
nation of symmetric and anti-symmetric components, the argument above
extends by linearity to arbitrary bivariate numerical fluxes.

4.2 Systems of conservation laws

We now return to the system of conservation laws (1) and the discretization
(2), which may correspond either to the implicit Euler method or to the
stage equations of a higher order RK method. The analysis proceeds very
similarly to the scalar case, although we are now dealing with a flux function
f : Rm 7→ R

m. Suppose that the corresponding numerical flux is of the form

f̂ (±)(θ,φ) = (f̂
(±)
1 (θ,φ), . . . , f̂ (±)

m (θ,φ))⊤,

where each f̂
(±)
ℓ , ℓ = 1, . . . ,m, is bivariate, consistent and either symmetric

or anti-symmetric.
This time, Newton’s method is given by

g′(v(k))∆v + g(v(k)) = 0, v(k+1) = v(k) +∆v, (25)

where we define g(v) as

g(v) : =
v − un

∆t
+

1

∆x
((I ⊗Q(∓)) ◦ F(±)(v))1

=
v − un

∆t
+

1

∆x






(Q(∓) ◦ F1)1
...

(Q(∓) ◦ Fm)1




 .

(26)

Here we have introduced the matrix F(±) = F
(±)
1 ⊕· · ·⊕F

(±)
m with (F

(±)
ℓ )ij =

f̂
(±)
ℓ (vi,vj). We denote the partial derivatives of the numerical fluxes as

f̂
(±)
ℓ,φκ

= ∂f̂
(±)
ℓ /∂φκ and define the matrices F

(±)
ℓ,φκ

(v) with elements (F
(±)
ℓ,φκ

)ij =

f̂
(±)
ℓ,φκ

(vi,vj). Finally we obtain

∂F
(±)
ℓ,φκ

(v) := Q(∓) ◦ F(±)
ℓ,φκ

(v)− diag(1⊤
(

Q(∓) ◦ F(±)
ℓ,φκ

(v)
)

).

In [6], the Jacobian g′(v(k)) is shown to be given by

g′(v(k)) =
I

∆t
+

1

∆x







∂F
(±)
1,φ1

(v(k)) . . . ∂F
(±)
1,φm

(v(k))
...

. . .
...

∂F
(±)
m,φ1

(v(k)) . . . ∂F
(±)
m,φm

(v(k))






.
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This is a block matrix formed by m2 submatrices, each tridiagonal as in the
scalar case (although the off-diagonal blocks do not depend on ∆t). If we
write ∆v = (∆v⊤1 , . . . ,∆v⊤m)⊤ and collect terms, then the Newton iteration
(25) takes the form

v(k+1) − un

∆t
+

1

∆x







∂F
(±)
1,φ1

(v(k)) . . . ∂F
(±)
1,φm

(v(k))
...

. . .
...

∂F
(±)
m,φ1

(v(k)) . . . ∂F
(±)
m,φm

(v(k))












∆v1
...

∆vm






+
1

∆x






(Q(∓) ◦ F(±)
1 (v(k)))1
...

(Q(∓) ◦ F(±)
m (v(k)))1




 = 0.

Looking at the ith row of the ℓth block in this linear system we find that
the scheme once again may be expressed on the locally conservative form

v
(k+1)
ℓi

− unℓi
∆t

+
1

∆x

(

h
(k+1)

ℓi+
1

2

− h
(k+1)

ℓi−
1

2

)

= 0, i = . . . ,−1, 0, 1, . . . , (27)

where ℓ = 1, . . . ,m. The numerical flux is given by

h
(k+1)

ℓi+
1

2

=
m∑

κ=1

(

f̂
(±)
ℓ,φκ

(v(k)
κi

,v(k)
κi+1

)∆vκi+1
± f̂

(±)
ℓ,φκ

(v(k)
κi+1

,v(k)
κi

)∆vκi

)

+f̂
(±)
ℓ (v

(k)
ℓi+1

,v
(k)
ℓi

).

Further, if g′(u⊗1) is nonsingular for any vector u with non-zero elements,
then by the same argument as in the scalar case, the numerical flux is
consistent. We may thus conclude:

Theorem 6. Choose v
(0)
ℓi

= unℓi for each i and ℓ = 1, . . . ,m and suppose

that g′(u⊗1) is nonsingular for any vector u with non-zero elements. Then

Newton’s method, applied to the discretization (26), is locally conservative
and flux consistent.

Motivated by the conservation and flux consistency of Newton’s method
we conjecture that under conditions similar to 1, the numerical approxima-
tion converges to a weak solution of the original conservation law (1). In 6
we present numerical results supporting this conjecture.

The solution ∆v to the linear systems arising within Newton’s method
will in practice be approximated using a second iterative method. If we for
this purpose consider pseudo-time iterations, then by the conservation and
flux consistency of Newton’s method, 2 applies. The only change necessary
is to choose the initial guess ∆u(0) as the null-vector. We summarize these
observations in the following:

15



Theorem 7. Apply K iterations of Newton’s method to the implicit scheme
(2) with initial guess v(0) = un. Approximate the solution to the linear sys-
tem in the jth Newton iteration using Nj pseudo-time iterations with ERK

methods and initial guess ∆u(0) = 0. The Newton-pseudo-time iterations
are locally conservative with numerical fluxes consistent with cf , where

c = 1−

∑K
j Nj−1
∏

l=0

φl(−µl). (28)

Proof. Since Newton’s method is locally conservative and flux consistent,
the result is a direct consequence of 2.

5 Krylov subspace methods

Krylov subspace methods are a more common choice than pseudo-time it-
erations for approximating the solutions of the linear systems arising within
Newton’s method. The goal of this section is to establish local conservation
of Krylov subspace methods, and thereby also of Newton-Krylov methods,
by relating them to pseudo-time iterations.

Let us consider a system of linear conservation laws and a correponding
linearly implicit discretization in the form (2). Due to the linearity of the
numerical flux, there is a matrix D such that the scheme can be expressed
as (

I

∆t
+

D

∆x

)

︸ ︷︷ ︸

M

un+1 =
un

∆t
︸︷︷︸

d

.

We assume that M is an invertible matrix.
By definition, the (k + 1)st iteration of a Krylov subspace method finds

an approximate solution w(k+1) to Mu = d such that w(k+1) − w(0) ∈
Kk+1(M, r(0)). The Krylov subspace Kk+1(M, r(0)) is defined as

Kk+1(M, r(0)) := span({r(0),Mr(0), . . . ,Mkr(0)}), (29)

and r(0) = d − Mw(0) is the initial residual. In other words, there are
coefficients α0, . . . , αk such that

w(k+1) = w(0) +

(
k∑

ℓ=0

αℓM
ℓ

)

r(0). (30)

We will now show that all Krylov subspace methods are locally conser-
vative. To this end, we first establish a connection between Krylov subspace
methods and pseudo-time iterations with explicit RK methods:
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Lemma 8. Let w(k+1) denote the (k + 1)st iterate of a Krylov subspace
method. There exists an ERK method with s = k + 1 stages such that
the first iterate u(1) of a pseudo-time iteration using this method satisfies
u(1) = w(k+1).

Proof. We prove the lemma in two steps: The first step is to show that

u(1) − u(0) ∈ Kk+1(M, r(0))

when u(0) = w(0). In other words, a single pseudo-time iteration with a (k+
1)-stage explicit RK methods yields an approximation from the appropriate

Krylov subspace. The second step is to choose (
→

A,
→

b,
→

c) for the Runge-Kutta
method such that the coefficients α0, . . . , αk in (30) are recovered.

For the first step, recall that pseudo-time iterations approximate solu-
tions to the steady state problem

uτ = d−Mu =: r(u), u(0) = u(0).

A single iteration with an explicit RK method is obtained as

→

U =
→

1⊗ u(0) +∆τ(
→

A⊗ I)
→

R(
→

U),

u(1) = u(0) +∆τ(
→

b⊤ ⊗ I)
→

R(
→

U),
(31)

where
→

R(
→

U) = ((d−MU1)
⊤, . . . , (d−MUs)

⊤)⊤ = (
→

1⊗ d)− (
→

I ⊗M)
→

U.

Inserting
→

U from (31) into the latter expression leads to

→

R(
→

U) = (
→

1⊗ d)− (
→

I ⊗M)
[
→

1⊗ u(0) +∆τ(
→

A⊗ I)
→

R(
→

U)
]

= (
→

1⊗ d)− (
→

1⊗Mu(0))−∆τ(
→

A⊗M)
→

R(
→

U)

= (
→

1⊗ r(0))−∆τ(
→

A⊗M)
→

R(
→

U).

Solving for
→

R(
→

U) results in

→

R(
→

U) =
[
→

I ⊗ I+∆τ(
→

A⊗M)
]−1

(
→

1⊗ r(0)).

Inserting this expression into u(1) from (31) yields

u(1) = u(0) +∆τ(
→

b⊗ I)
[
→

I ⊗ I+∆τ(
→

A⊗M)
]−1

(
→

1⊗ r(0))

= u(0) +M−1

(

∆τ(
→

b⊗M)
[
→

I ⊗ I+∆τ(
→

A⊗M)
]−1

(
→

1⊗ I)

)

r(0).
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We identify the paranthesised portion of this expression as I − φ(−∆τM),
where φ(z) is the stability function of the RK method. Thus,

u(1) = u(0) +M−1(I− φ(−∆τM))r(0). (32)

Now, φ(z) is a polynomial of degree s = k + 1 and from (7) we see that its
constant term is 1. Hence, M−1(I− φ(−M)) is a polynomial in M of degree

k. Consequently, u(1) − u(0) ∈ Kk+1(M, r(0)), which completes the first step
of the proof.

For the second step we must find an explicit RK method whose stability

polynomial satisfies z−1(1 − φ(−z)) =
∑k

ℓ=0 αℓz
ℓ. We do not require this

RK method to be accurate or even consistent; it suffices that it exists.
Consider the (k + 1)-stage explicit RK method defined by the Butcher

tableau

0 0

c1 −a 0

c2 −a 0
...

. . .
. . .

ck −a 0

b0 b1 . . . bk−1 bk

By direct computation we can verify that (
→

I − z
→

A)−1 is a lower triangular
Toeplitz matrix with elements (−az)ℓ on the ℓth subdiagonal (ℓ = 0 being
the main diagonal and ℓ = k being the bottom left element). From (7), the
stability function of this method is therefore

φ(z) = 1 + z

k∑

i=0

k∑

j=i

bj(−az)i.

Consequently we are looking for coefficients bj that satisfy the relation

1− φ(−z)

z
=

k∑

i=0

k∑

j=i

bj(az)
i =

k∑

ℓ=0

αℓz
ℓ.

Matching exponents of z, this amounts to solving the triangular system







1 1 . . . 1 1
0 1 . . . 1 1

. . .

0 0 . . . 0 1















b0
b1
...
bk








=








a−0α0

a−1α1
...

a−kαk








.
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This system is uniquely solvable for any coefficients αℓ, ℓ = 0, . . . , k and
a 6= 0. Hence, an explicit RK method can always be found such that a
single pseudo-time iteration reproduces the (k + 1)th Krylov vector when

the initial guess is given by u(0) = w(0).

With 8 established, the following is a direct consequence of 2:

Theorem 9. With the initial guess w(0) = un, Krylov subspace methods
applied to the locally conservative linear discretization (2) are locally con-
servative.

Proof. For any iteration of any Krylov subspace method, 8 shows that there
is an equivalent explicit RK method that yields the same numerical solution
in one pseudo-time iteration. By 2, all explicit RK methods are locally
conservative, hence so are Krylov subspace methods.

We do not know what the coefficients α0, . . . , αk are and consequently
we cannot identify a corresponding RK method. Further, each αj will in
general change with every iteration. We can therefore not know a priori if
a given Krylov subspace method is flux consistent. We can also not apply
the extension of the Lax-Wendroff theorem in 4 since αj in general will not
remain constant upon grid refinement.

On the other hand, 9 suggests that we can apply one pseudo-time iter-
ation with the explicit Euler method prior to applying the Krylov subspace
method in order to enforce consistency, without violating local conservation.
Further yet, since 2 is indifferent to the RK method used in previous iter-
ations, we can conclude that 9 also applies to restarted Krylov methods,
with each restart corresponding to a pseudo-time iteration with its own RK
method. In fact, local conservation will be retained even if we swap Krylov
method mid-solve, or if we mix Krylov subspace methods and pseudo-time
iterations.

Finally we note that 9 together with 6 implies that Newton-Krylov meth-
ods are locally conservative:

Theorem 10. Apply Newton’s method to the implicit scheme (2) with initial

guess v(0) = un. Approximate the solution to the each linear system within
the Newton iterations using any Krylov subspace method with initial guess
∆w(0) = 0. Then the Newton-Krylov iterations are locally conservative.

Proof. Since Newton’s method is locally conservative and flux consistent by
6, the result is a direct consequence of 9.
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6 Numerical experiments

As target problem for the experiments in this section we use the 2D com-
pressible Euler equations,







ρ
ρu
ρv
ρE







t

+







ρu
ρu2 + p
ρuv

(ρE + p)u







x

+







ρv
ρuv

ρv2 + p
(ρE + p)v







y

= 0, (33)

posed on the domain (x, y) ∈ (−5, 15] × (−5, 5]. Here, ρ, u, v,E and p re-
spectively denote density, horizontal and vertical velocity components, total
energy per unit mass and pressure. The pressure is related to the other
variables through the equation of state

p = (γ − 1)ρe,

where γ = 1.4 and e = E − (u2 + v2)/2 is the internal energy density. The
domain is taken to be periodic in both spatial coordinates. The setting is
the isentropic vortex problem [17] with initial conditions

ρ0 =

(
1− ǫ2(γ − 1)M2

∞

8π2
exp (r)

) 1

γ−1

,

u0 = 1− ǫy

2π
exp (r/2),

v0 =
ǫx

2π
exp (r/2),

p0 =
ργ0

γM2
∞

,

where r = 1 − x2 − y2. Here, ǫ = 5 is the circulation and M∞ = 0.5 is the
Mach number. As the solution evolves in time, the initial vortex propagates
in the horizontal direction with unit speed.

This problem does not adhere to the assumptions made throughout the
paper since it is posed in 2D. Nevertheless, we will see shortly that the
theoretical results presented so far appear to hold also in this setting.

6.1 Convergence tests

Pseudo-time iterations: SSPRK3

We begin by corroborating the extension of the Lax-Wendroff theorem pre-
sented in 4. With implicit Euler used in time, experimental verification of
this theorem was provided in [4]. However, 3 implies that the result holds

20



also when other implicit RK methods are used in time, so long as they fulfill
condition (16).

In the following experiments we discretize the Euler equations in space
using finite volumes with central fluxes and the three-stage Lobatto IIIC
method in time. This fully implicit RK method satisfies (16) with the vector
←

v = (0, 0, 1)⊤. The simulations are run to time t = 0.1 with space and time
grids satisfying by ∆y = ∆x/2 and ∆t = ∆x/4. In each time step, the
discrete solution is approximated using three pseudo-time iterations using
the explicit strong stability preserving method SSPRK3 from [18]. The

pseudo-time steps are chosen to be ∆τi = ∆t/
√
i, i = 1, 2, 3. The stability

function of SSPRK3 is given by

φ(z) = 1 + z + z2/2 + z3/6.

4 therefore predicts that the solution of the scheme, if convergent, ap-
proaches the solution to a modified conservation law with modification con-
stant

c(µ0, µ1, µ2) = 1− φ(µ0)φ(µ1)φ(µ2) ≈ 0.9101.

For this particular problem, the presence of c causes a corresponding reduc-
tion of the vortex propagation speed. 1a shows the L2-error in the density
component of the solution, as measured with respect to the exact solution of
the original system of conservation laws (33) and that of the modified ver-
sion. Clearly the numerical solution approaches the solution of the modified
equations, not the original ones.

Shown also is the error, measured with respect to the original conserva-
tion law, of the same scheme but where flux consistency has been enforced
using a single pseudo-time iteration with explicit Euler and µ = 1. As
expected, this ensures convergence towards the correct solution.

Newton-SSPRK3

We now repeat the experiment but add two Newton iterations per time
step. The solutions to the linear systems are then approximated using the
same three pseudo-time iterations as before. In addition to the discretization
described previously, we also perform the experiment with a different one: In
space, the entropy conservative and kinetic energy preserving finite volume
scheme of Chandrashekar [7] is used and in time, the two-stage Radau IIA
method, which satisfies (16) with the vector

←

v = (0, 1)⊤.
7 suggests that the resulting schemes are consistent with a modified

system of conservation laws with modification constant

c = 1− (φ(µ0)φ(µ1)φ(µ2))
2 ≈ 0.9919.
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Rather than computing the Jacobian explicitly, it is approximated using
finite differences such that for any two vectors u and v,

g′(u)v ≈
g(u+ ǫv)− g(u)

ǫ
, ǫ =

10−7

‖v‖ . (34)

Although an extension of the Lax-Wendroff theorem incorporating Newton’s
method is not yet available, 1b indicates convergence towards the solution
of the modified equations, not of the original ones. Once again, this is
remedied by enforcing flux consistency with a single explicit Euler iteration.
Here, the errors corresponding to the two different space-time discretizations
are similar enough that the lines are on top of each other.

(a) SSPRK3 (b) Newton-SSPRK3

Figure 1: Density error upon grid refinement for the compressible Euler
equations. Convergence is seen towards the modified conservation laws
(Modified), not the original ones (Original), unless flux consistency is en-
forced (Consistent). (a) Pseudo-time iterations using SSPRK3. (b) New-
ton’s method with SSPRK3 as subsolver for the linear systems.

Newton-Krylov: Fixed iterations

Newton-Krylov methods are a more common choice of solver than Newton
with pseudo-time iterations. 10 establishes that they are all locally con-
servative. Conceivably, a Lax-Wendroff type result might be available for
these methods, although we have not presented one here. It is of interest to
explore experimentally if convergence is observed, and if so, towards what
solution.

We repeat the previous experiment, this time with the three-stage Lo-
batto IIIC method in time and Chandrashekar’s finite volume scheme in
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space, but replace SSPRK3 with GMRES. Here we consider four cases: Us-
ing one Newton and one Krylov iteration per time step (N1K1); one New-
ton and two Krylov iterations (N1K2); one Newton iteration with GMRES
run to a tolerance of 10−14 (N1), i.e. effectively with ’exact’ linear solves;
Newton-GMRES run until the Newton residual is smaller than 10−15 (Ex-
act), i.e. effectively with ’exact’ nonlinear solves. 2a shows the error with
respect to the original conservation law of the four schemes. The errors for
N1K2, N1 and the exact solver are on top of each other, suggesting that the
discretization dominates the error. The numerical solutions appear to con-
verge to the correct solution. However, N1K1 displays a different behaviour,
suggesting that the iteration error dominates. The error curve appears to
flatten as the grid is refined, although it cannot be deduced whether it will
continue towards zero or if it reaches a plateau. Thus, it remains unclear if
GMRES is flux consistent.

Newton-Krylov: Tolerance

In practice, the number of Newton iterations will not be preset but rather
governed by a relative and/or an absolute tolerance. Here, we set both of
these to a value tol and once again explore the convergence behaviour. To set
the tolerances of the GMRES iterations we follow the procedure described by
Eisenstat and Walker [8] with parameters γ = ηmax = 0.9; see [11, Chapter
6] for details. The density errors using tol ∈ {10−3, 10−4, 10−5} are shown
in 2b.

Two distinct phenomena can be observed: Firstly, when tol = 10−5,
the convergence behaviour changes from one similar to the exact solver in
2a to one resembling N1K1. Thus, the error is seen to change from being
discretization dominated to being iteration dominated as the grid is refined.
With tol = 10−4 the iteration error appears to dominate throughout.

Secondly, when tol = 10−3 the error eventually stops converging. This
behavior is explained by the observation that with a fixed tolerance, the
initial guess will be a sufficiently accurate approximation of the solution if
∆t is small enough. In that case, the Newton and GMRES iterations are
terminated without updating the solution.

6.2 Acceleration experiments

In [4], numerical experiments were performed indicating that considerable
efficiency gains can be made with pseudo-time iterations by enforcing flux
consistency. It is not clear whether Newton-Krylov methods are flux con-
sistent. It is therefore worthwhile exploring if enforced flux consistency
leads to efficiency gains also in this case. We use the tolerance governed
Newton-GMRES solver with the Eisenstat-Walker procedure and compare
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(a) Fixed iterations (b) Tolerance

Figure 2: Density error upon grid refinement for the compressible Euler
equations. (a) The number of iterations is fixed: One Newton and one
GMRES iteration per time step (N1K1); One Newton and two GMRES
iterations (N1K2); one Newton with a nearly exact linear solver (N1); nearly
exact Newton-GMRES (Exact). (b) Tolerance governed Newton-GMRES
with the Eisenstat-Walker procedure.

the standard solver with one where flux consistency is enforced with explicit
Euler before each call to GMRES.

In this experiment we use Chandrashekar’s finite volume scheme with the
implicit Euler method in time to compute a single time step with ∆t = 0.1.
The running cost of the two solvers is measured in terms of the number of
evaluations of the full space discretization. Each Newton iteration requires a
single such evaluation; see (22). Each GMRES iteration also needs a single
function evaluation during the computation of the approximate Jacobian
matrix-vector product (34).

The kth pseudo-time step with explicit Euler applied within the jth
Newton iteration takes the form

∆u(k+1) −∆u(k)

∆τk
+ g′(v(j))∆u(k) + g(v(j)) = 0.

Consider the case k = 0 and recall from 7 that local conservation follows
if the initial guess is ∆u(0) = 0. Thus, enforcing flux consistency by one
pseudo-time iteration with explicit Euler simply amounts to setting ∆u(1) =
−∆tg(v(j)). This single function evaluation is already computed within
Newton’s method, hence flux consistency comes at no additional cost. In
fact, the only change necessary to the solver is to alter the initial guess for
GMRES from ∆w(0) = 0 to ∆w(0) = −∆tg(v(j)).

Three cases with different CFL numbers are considered. 3a shows the
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number of function evaluations required to reach a particular residual ‖g(v(j))‖,
where the L2-norm is used. 3b shows the function evaluations distributed
accross the Newton iterations. In all cases, the flux consistent initial guess
(dotted lines) reduces the number of necessary iterations for residuals greater
than roughly 10−3, compared to the regular solver (solid lines). However, for
smaller residuals the situation varies with the CFL number. At the smallest
CFL, flux consistency remains beneficial even for finer tolerances. However,
for the largest CFL the opposite trend is seen.

A possible explanation for these observations is that the explicit Euler
method introduces significant errors to the numerical solution when the CFL
number is large. Its stability region is small, hence problems with large CFL
numbers are unsurprising. It is possible to find other explicit Runge-Kutta
methods that enforce flux consistency, in principle with much larger stability
regions. However, such methods will necessarily have more stages and thus
impart additional costs on the solver.

Finally we note that at the smallest tolerances, no discernable differ-
ence is seen between the two solvers. Presumably this happens because
flux consistency is achieved, either exactly or very nearly, by the standard
Newton-GMRES solver when the tolerance is small and the number of iter-
ations is large. In conclusion, whether enforced flux consistency is beneficial
for Newton-GMRES is case dependent.

(a) (b)

Figure 3: Efficiency study for Newton-GMRES with standard (solid lines)
and flux consistent (dotted lines) initial guesses. (a) Function evaluations
needed to reach a given residual. (b) Function evaluations per Newton
iteration.
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7 Conclusions

In this paper, the concepts of locally conservative and flux consistent itera-
tive methods have been introduced and shown to be of both theoretical and
practical interest. Based on earlier work in [4], it was shown that pseudo-
time iterations using explicit Runge-Kutta methods are locally conservative
but not necessarily flux consistent, when applied to conservative discretiza-
tions of finite volume-type with a broad class of implicit Runge-Kutta meth-
ods. For 1D problems, an extension of the Lax-Wendroff theorem reveals
convergence towards weak solutions of a temporally retarded system of con-
servation laws. Each equation is modified in the same way, namely by a
particular scalar factor multiplying the spatial flux terms. Flux consistency,
and thereby convergence, is recovered through a technique based on using
the explicit Euler method.

Local conservation has further been established for all Krylov subspace
methods, with and without restarts, as well as for Newton’s method un-
der the assumption of bivariate fluxes. Thus it follows that Newton-Krylov
methods are locally conservative, although not necessarily flux consistent.
Numerical experiments with the 2D compressible Euler equations suggest
that the role enforced flux consistency is case dependent. Its effect dimin-
ishes as the number of GMRES iterations grow, presumably because flux
consistency is achieved automatically.
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oretical and practical aspects of space-time DG-SEM implementations,
arXiv preprint arXiv:2201.05800, (2022).

[21] G. Wanner and E. Hairer, Solving ordinary differential equations
II, Springer Berlin Heidelberg, 1996.

28


	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Conservation laws and the Lax-Wendroff theorem

	3 Conservation and consistency of pseudo-time iterations
	3.1 Systems of conservation laws
	3.2 Higher order implicit Runge-Kutta methods

	4 Newton's method
	4.1 Scalar conservation laws
	4.2 Systems of conservation laws

	5 Krylov subspace methods
	6 Numerical experiments
	6.1 Convergence tests
	6.2 Acceleration experiments

	7 Conclusions

