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Abstract

In this paper, we propose a direct probing method for the inverse problem involving the
Eikonal equation. For the point-source Eikonal equation, the viscosity solution represents the
least travel time of wave fields from the source to the point at the high-frequency limit. The cor-
responding inverse problem is to determine the inhomogeneous wave-speed distribution from the
first-arrival time data at the measurement surfaces corresponding to distributed point sources.
We analyze the Eikonal inverse problem and show that it is highly ill-posed. Then we develop
a direct probing method that incorporates the solution analysis of the Eikonal equation and
several aspects of the velocity models. When the wave-speed distribution has a small variation
from the homogeneous medium, we reconstruct the inhomogeneous wave-speed distribution us-
ing the filtered back projection method. For the high-contrast media, we assume a background
medium and develop an adjoint-based back projection method to identify the variations of the
medium from the assumed background.

1 Introduction

The Eikonal equation plays an important role in a wide range of applications such as geometrical
optics, seismic imaging, and computer vision. It results from the substitution of the ray series
solution into the elastic equation of motion [1, 2, 3], and the leading term in the high-frequency
limit gives the P- and S-particle motions and travel times. The point-source Eikonal equation
computes the first arrival (traveling) time from the source to a location. The corresponding inverse
problem, Eikonal tomography, is defined as using first arrival time data corresponding to a set
of distributed point sources observed at the surface to reconstruct the wave speed of the medium
[4, 5, 6]. In the high-frequency regime, the slowness is inversely proportional to the wave speed of
the medium. In the low-frequency regime, one can introduce a frequency-dependent correction term
to the Eikonal equation, and obtain a WKB reconstruction of the inhomogeneous velocity medium.
That is, the velocity field reconstruction modeled by the Eikonal equation actually estimates an
effective slowness function (not simply defined by the wave speed), which is accurate only in the
high-frequency regime. The inverse problem for the Eikonal equation is based on the mathematical
ideology that the first travel time can be computed by the Eikonal equation given the wave speed.
The first-arrival travel-time data also corresponds to the phase measurement for the Helmholtz
equation in the high-frequency regime. Once the inhomogeneous velocity field is reconstructed, one
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can recover the amplitude data of the solution to the Helmholtz equation with the reconstructed
inhomogeneous medium.

The Eikonal tomography problem is highly ill-posed in general. Our objective is to develop
a two-step direct probing method that incorporates several aspects of Eikonal models and the
solution analysis of the Eikonal equation. We propose an effective and efficient reconstruction
algorithm for the inhomogeneous medium utilizing the traveling time data or phase data of the
transmission wave. The algorithm is motivated by the relationship between fanbeam tomography
and Eikonal tomography, i.e., the observation that the linearization of the Eikonal equation for the
homogeneous background media reduces to the straight lines ray tracing, which can be modeled by
the line integrals of fanbeam transformation.

To efficiently calculate the inverse fanbeam transform in the two-step direct probing method
that we propose, we present a filtered back projection algorithm. In various diagnostic imaging
modalities, parallel projection and fan-beam projection are two common acquisition geometries,
and the parallel projection is computed as the Radon transform. We present an algorithm for the
inverse fanbeam transform in Section 4 by extending the filtered back projection algorithm for the
inverse Radon transform. The method is based on the inverse radon transform theory [7, 8, 9]. It
consists of the adjoint fanbeam transform and the regularized ramp filter of the difference between
measurement data and a background solution of the Eikonal equation. It is shown and analyzed
that for the low-contrast media, our proposed two-step direct probing method works very well and
obtains a very sharp reconstruction.

For the high-contrast media, we assume a background medium and apply the adjoint-based back
projection method to identify variations of the medium from the assumed background. In order to
compute the back projection, we use the adjoint equation corresponding to the assumed background
medium. That is, we compute the direction field of the Eikonal equation at the assumed background
to derive the adjoint transform of the linearized forward transform. We mollify the direction field
via regularization for the high contrast or discontinuous background medium to achieve a more
robust back projection, which is a more stable numerical method than the ray-tracing method
[10, 11, 12].

To solve the ill-posed traveltime tomography problem, traditional methods are mostly based on
ray-tracing, which involves tracing the ray path by computing the solutions to the ray equations
[13]. There have also been alternate approaches that avoid explicit ray tracing. Sei and Symes [4, 5]
utilize an adjoint-state method for traveltime tomography based on paraxial eikonal equations, and
in [6], the Eikonal tomography is formulated as a constrained optimization problem, then the
adjoint equation-based gradient method is developed for the reconstruction of the inhomogeneous
medium. Various improved variational method has been proposed [14, 15, 16]. Our contribution
and innovation are that we develop a direct sampling method to remedy the ill-posedness of the
Eikonal inverse problem and to develop efficient and effective probing algorithms. We show that the
linearization of the Eikonal equation at the homogeneous medium reduces to the fanbeam (cone)
transform. We then develop the filtered back projection method of the fanbeam inverse tomography
problems to probe the inhomogeneous velocity field for a low contrast media. Next, we develop
a direct probing method for high contrast cases with assumed background and the compute the
back projection by the adjoint equation for the linearized Eikonal operator. Our method can
also be applied to different geometrical and bio-medical tomography. We improve and extend the
application of computational tomography to wave media inverse problems. As done for the inverse
medium problem [17, 18], our reconstruction can serve as an initialization of optimization-based
reconstruction methods to improve the reconstruction and remedy the numerical ill-posedness and
complexity.

The rest of the paper is structured as follows. In Section 2 we introduce the Eikonal equation
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as a model of scattering problems and its relation to the fanbeam tomography. We analyze the
approximation error of using fanbeam model to approximate the Eikonal model. The analysis leads
to the algorithm to transform Eikonal measurements to fanbeam sinogram, and then solve the
better-posed inverse fanbeam problem. In Section 3, we introduce the pre-filtered back projection
method for fanbeam tomography and apply it to Eikonal tomography. In Section 4, we introduce
the adjoint operator of the linearized Eikonal equation and analyze the adjoint equation. In Section
5 we present our numerical tests and demonstrate the effectiveness of the proposed algorithm.

2 Eikonal Equation and inverse Eikonal problem

In this section, we review the derivation of the Eikonal equation, illustrate the ill-posedness of the
inverse Eikonal problem, and introduce the fan beam tomography as a linearization of the inverse
Eikonal problem. Consider a bounded Lipschitz domain Ω ⊂ R2 and the Eikonal equation

|∇u(x)| = f(x), u(x0) = 0, (2.1)

where f ≥ 1 denotes the slowness function. The unique viscosity solution [19, 20, 21] of (2.1) given
f ∈ W 1,∞(Ω) denotes the least travel-time from the source x0 to an arbitrary point connected
by a shortest ray-path. In general, solutions to an Eikonal equation are not unique and define
the secondary reflection from the medium. In this work, we only consider the first-arrival based
traveltime tomography, that is, given both the first-arrival travel-time measurements u(x) on the
boundary Γ = ∂Ω and the location of the point source x0, the goal is to reconstruct the slowness
function f inside the domain.

2.1 High-frequency limit of time harmonic wave equation

The Eikonal equation can be derived from the wave equation. Consider the following wave equation

utt − v2(x)∆u = 0.

Taking the Fourier transform in t, one obtains the time-harmonic equation:

∆ψ +
ω2

v2(x)
ψ = 0, (2.2)

where ω denotes the frequency. Now assuming that ψ(x, ω) is a solution to (2.2) of the form

ψ(x, ω) = A(x, ω)eiωφ(x,ω),

one can calculate the component of the Laplacian operator for each spatial axis j:

∂2
jψ = (∂2

jA+ 2iω∂jA∂jφ+ iAω∂2
jφ−Aω2(∂jφ)2)eiωφ.

Substituting this into the Helmholtz equation (2.2), we have

(|∇φ|2 − 1

v2
)− i

ω
(

2

A
∇A · ∇φ+ ∆φ)− 1

ω2A
∆A = 0. (2.3)

Note that in the high frequency limit when ω → ∞, the first term dominates and leads to the
Eikonal equation,

|∇φ|2 =
1

v(x)2
:= (f(x))2. (2.4)

3



Thus the Eikonal equation is a phase (only) approximation of the Helmholtz equation for sufficiently
large frequency, and the approximation is fundamentally valid only in this limit. This implies that
the Eikonal equation (and many other ray-tracing techniques) may only be used when variations
in velocity are negligible on spatial scales that are comparable to the wavelengths of the propa-
gating waves. Ordering terms in the equation (2.3) with respect to real and imaginary parts and
multiplying the second term on the lefthand sidze by Aω/i, one obtains the transport equation:

2∇A · ∇φ+A∆φ = 0,

or equivalently,
∇ · (|A|2∇φ) = 0.

From the real part of the equation (2.3) we obtain the frequency-dependent Eikonal equation:

|∇φ(x, ω)|2 =
1

v(x)2
+

1

ω2

∆A(x, ω)

A(x, ω)
, (2.5)

which is different from (2.4) with a correction term related to the frequency ω.
If one considers the Helmholtz equation (2.5) with inhomogeneous refractive index, then the

information of the inhomogeneity can be recovered from the effective slowness function f on the
righthand side of equation (2.5). That is, solving this inverse Eikonal problem is an approximation
of the inverse medium problem using phase-only data φ for the high-frequency regime.

2.2 Ill-posedness of Eikonal inverse problem

The Eikonal inverse problem is severely ill-posed as the slowness function cannot be uniquely
determined given the measured travel time on the boundary. This fact can be illustrated with one
concrete example. Consider a subdomain Ω0 = (−0.5, 0.5) × (−0.5, 0.5) ⊂ Ω, source x0 = (0,−1),
and a slowness function f satisfying

f(x) =

{
f0 x ∈ Ω0

1 otherwise,
(2.6)

where f0 is a constant number. Then, we have the value of solution u to the Eikonal equation (2.1)
on Γ1 = {x = (x1, x2) : x2 = 1} is given by

u(x) =


√

(|x1| − 0.5)2 + 0.25 + 1 +
√

2
2 x1 ∈ (−0.5, 0.5)√

(|x1| − 0.5)2 + 2.25 +
√

2
2 0.5 ≥ |x1| ≥ 2,

regardless of the value of f0 as long as f0 ≥ c > 0 is sufficiently large. One will observe the same
phenomenon with point sources distributed along the boundary of Ω and measurement collected
on the boudary Γ. Thus the value of f0(x) for x ∈ (−0.5, 0.5)× (−0.5, 0.5) can not be determined
from the measurement u|Γ. We will numerically illustrate the ill-posedness in Example 1.

2.3 Eikonal equation and Fanbeam transform

In this subsection, we analyze the Eikonal equation to illustrate that the inverse Eikonal prob-
lem can be approximated by the inverse Fanbeam transform when the slowness function f has a
small variation from the homogeneous background. Then we will propose an algorithm for the
reconstruction of the slowness function f .
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Let u be the viscosity solution to the Eikonal equation (2.1) with f ∈ W 1,∞(Ω). Let u be the
viscosity solution to the Eikonal equation (2.1) with the constant background slowness function,
that is, u solves

|∇u(x)| = 1, u(x0) = 0.

Then
u(x) = |x− x0|

defines the shortest time to travel from x0 to x in a homogeneous medium. We linearize the left
hand side of the Eikonal equation (2.1) at u, and denote its solution by u1, i.e.,

|∇u|+ ~d(x) · (∇u1 −∇u) = f, (2.7)

where ~d(x) := x−x0
|x−x0| . We further denote ~d⊥(x) :=

−(x2−x02,x1−x01)
|x−x0| . Introduce the characteristic of

(2.7):

Γθ =

{
x = (x1, x2) :

x2 − x0
2

x1 − x0
1

= tan θ

}
,

where x0 = (x0
1, x

0
2). Denoting p := u1 − u in (2.7), we obtain that for x = (x1, x2) on the

measurement surface Γ,

p(x) =

∫
Γθx

(f − 1) dγ, (2.8)

where θx satisfies tan θx =
x2−x02
x1−x01

. It can be observed that p(x) defines the fanbeam transform of

the function f − 1. Therefore, the boundary measurement of the solution u1 to the linearization of
Eikonal equation at the solution u can be formulated as the fanbeam transform of the inhomogeneity.
Note that the approximation (2.7) is effective and accurate if the contrast |f − 1| is small.

Although (2.8) is a convenient formula to reconstruct f , one can only collect the measurement
of the Eikonal solution u instead of the solution u1 to the linearized formulation (2.7). The formula
(2.8) motivates us to consider the difference between the solution u to the Eikonal equation and the
solution to the corresponding Fanbeam transform problem. Assume that there exists a fanbeam
solution v corresponding to the slowness function f , i.e., v solves

~d · ∇v = f.

We shall analyze the difference between the viscosity solution u to the Eikonal solution and the
fanbeam solution v. It follows the definition that

~d · ∇(v − u) = f − 1,

thus
~d · ∇(v − u) = f − 1 + ~d · ∇(u− u) := p1. (2.9)

The following theorem provides a useful estimate of the difference between the viscosity solution u
and u.

Theorem 1. The viscosity solution u to the Eikonal equation (2.1) with f ∈W 1,∞(Ω) satisfies

|∇u−∇u|2 = |f − 1|2 + (H(∇u−∇u),∇u−∇u),

where H ∈ R2×2 ≥ 0 is defined by

H =

 ξ2
2 −ξ1ξ2

−ξ1ξ2 ξ2
1

 , ξ = (ξ1, ξ2) = t∇u+ (1− t)∇u for some 0 ≤ t ≤ 1. (2.10)
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Proof. We first note that given f ∈W 1,∞(Ω), there exists a unique viscosity solution u ∈W 1,∞(Ω)
to the Eikonal equation, and the solution map is continuous. There holds that

|∇u| − |∇u| = ~d · (∇u−∇u) + p1 (2.11)

and there exists some 0 ≤ t ≤ 1 such that

p1 =
1

2
(H(∇u−∇u),∇u−∇u) ≥ 0, (2.12)

with H ∈ R2×2 defined by (2.10). As u is the solution to the Eikonal equation, we also have

f − 1 = |∇u| − |∇u|.

Together with (2.11), one obtains
~d · ∇u = f − p1. (2.13)

It is noted that
|∇u−∇u|2 = |∇u|2 − |∇u|2 − 2~d · (∇u−∇u),

and
|f |2 − 1 = |f − 1|2 + 2(f − 1).

Together with (2.11) we have the estimate

|∇u−∇u|2 = |f − 1|2 + (H(∇u−∇u),∇u−∇u).

Note that the term (H(∇u−∇u),∇u−∇u) defined with (2.10) is equal to |~d⊥ · (∇u−∇u)|2
when t = 0 (at ∇u). If we assume that |f − 1| is sufficiently small, then |∇u − ∇u|2 − (H(∇u −
∇u),∇u−∇u) can be approximated by |~d · (∇u−∇u)|2. Thus the following corollary on ∇u−∇u
and the function p1 follows the theorem:

Corollary 1. Assume that

|∇u−∇u|2 − (H(∇u−∇u),∇u−∇u) ≥ (1− δ)2 |~d · (∇u−∇u)|2, (2.14)

then
|∇u−∇u|2 ≤ |f − 1|2 + δ (f − 1) and p1 ≤ δ (f − 1).

One can further deduce the L1 estimate of p1 ≥ 0 by integrating along the characteristic Γθ,∫
Γ
(u− u)dγ =

∫
θ

∫
Γθ

(f − 1 + p1) dγ dθ.

It then follows that

‖p1‖L1(Ω) =

∫
θ

∫
Γθ

p1 dγ dθ =

∫
Γ
(u− u) dγ −

∫
θ

∫
Γθ

(f − 1) dγ dθ.

Recall that the fanbeam solution v satisfies

~d · ∇(v − u) = p1,
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which leads to
‖v − u‖L1(Ω) ≤ C ‖p1‖L1(Ω) (2.15)

for some constant C. Under the assumption in Corollary 1, the estimate (2.15) indicates that the
fanbeam solution v approximates the Eikonal solution u well when f − 1 is sufficiently small.

Using formula (2.13), now we propose a two-step procedure for the fanbeam-based reconstruc-
tion method of f . As the fanbeam inverse problem is a better-posed problem compared to the
Eikonal inverse problem that is ill-posed as discussed in Subsection 2.2, we propose to ’transform’
measurement from the Eikonal inverse problem to the fanbeam problem by a two-step approach,
and we will further develop a direct filtered-back projection method in Section 3 for the fanbeam
inverse problem within this approach. The approach consists of two steps: first, based on (2.13), we
apply the inverse fanbeam transform with measurement of Eikonal solution uk at Γ corresponding
to source xk0 to obtain an estimate f̂ of f ; next, we solve the Eikonal equation with the correspond-
ing point source condition and f̂ to derive an approximation v̂k of the Eikonal solution uk, and
plug v̂k into (2.9) to compute p̂k. Summing p̂k over k and adding this correction term to f̂ , we
arrive at the approximated slowness function. This process can be formulated as Algorithm 1.

Algorithm 1 Algorithm for inverse Eikonal problem

1: For each point source xk0 (k = 1, 2, ...,m), denote the Eikonal solution corresponding to the
unknown slowness function f by uk and collect measurement pk := uk|Γ on the surface Γ := ∂Ω.
Compute the Eikonal solution uk = |x−xk0| corresponding to the constant background slowness

function, and denote its value on the boundary Γ by pk0. Compute ~dk0 = ∇uk
|∇uk| .

2: Apply the inverse Fanbeam transform with data pk to compute f̂ .
3: Solve the Eikonal equation

|∇v̂k| = f̂ , v̂k(xk) = 0

for v̂k.
4: Let p̂k = |∇v̂k| − 1− ~dk0 · (∇v̂k −∇uk) and compute approximated slowness function

f = f̂ +
m∑
k=1

p̂k.

3 Radon transform and filtered back projection method

In this section, we introduce a filtered back projection (FBP) method for the inverse Radon trans-
form, which motivates the algorithm for the inverse fanbeam transform in the next section. For a
function f contained in a compact set Ω ⊂ R2, the Radon transform R of the function f is given
by

Rf(α, t) :=

∫
x·α=t

f(x)dxL =

∫ ∞
−∞

f(tα1 − uα2, tα2 + uα1) du,

where α = (α1, α2) ∈ S1, x := (x1, x2) ∈ R2, and t = x · α represents a hyperplane with normal
direction α and distance t to the origin. The adjoint transform R∗ defined on g ∈ L∞(S1,R1) is
given by

R∗g(x1, x2) =

∫
S1

g(α,x · α) dα.
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One can compute the inverse Radon transform R−1 with the following formula [9]:

R−1p = R∗H∂tp(α, t),

where H denotes the Hilbert transform, i.e., for a function F , the Hilbert transform of F can be
defined explicitly as

HF := lim
ε→0

∫ ∞
ε

F (t+ p)− F (t− p)
2p

dp.

Denoting the Fourier transform by F , one obtains the filter step given by

Φp = F−1(|ν|F) = H∂tp(α, t) = (−∆t)
1/2p(α, t)

for each angle and the Laplacian ∆t in t, where ν is the variable in the frequency domain and the
fractional Laplacian is defined as in [22]. Now we propose the filtered inverse Radon transform
defined by

f = R∗S p(α, t), (3.1)

where the scaling filter S is defined by

S = (−∆t)
1/2(c−∆t)

−1, (3.2)

and c > 0 denotes the regularization parameter which is selected according to the noise level.
It is noted that this regularized filtered back projection method can be extended to the general

case. Consider a general inverse problem for determining the source f from measurement y governed
by the equation

Af = y

for a closed, densely defined linear operator A : X → Y , where X and Y denote two Hilbert spaces.
Denote the range of A by R(A) and define the graph norm of y ∈ R(A) by

‖y‖2A = (y, (AA∗ + cP )−1y)Y ,

where (, )Y is the natural inner product of the Hilbert space Y and P is a positive self-adjoint
operator. We can further define an inner product (, )A:

(x, y)A = (x, (AA∗ + c P )−1y)Y .

Since
(y,Ax)A = (y, (AA∗ + c P )−1Ax)Y ,

we define an space adjoint operator A† of A : X → R(A) by

A† = A∗(AA∗ + c P )−1.

If c = 0, the corresponding A† satisfies

AA†y = y, y ∈ R(A).

Thus, A† defines the filtered back projection operator.
Conversely, define the graph norm of R(A∗) ⊂ X by ‖f‖A∗ := ‖Af‖ and the corresponding

inner product (·, ·)A∗ in R(A∗) is defined by

(f, g)A∗ := (Af,Ag)Y .

8



Then
A† = A∗(AA∗)−1 on R(A)

defines the adjoint operator of A : R(A∗)→ Y , since

(y,Af)Y = (AA†y,Af)Y = (A†y, f)A∗ .

For the specific problem, Radon transform, we have

(−∆s)
1/2 = (AA∗)−1.

4 Inverse fanbeam transform

In this section, we extend the algorithm for the inverse Radon transform in Section 3 to the inverse
fanbeam transform. Let DR denote a disk containing a bounded domain Ω and S1

R = ∂DR. For a
function f contained in Ω ⊂ R2, the fanbeam transform is defined by

R̃f(θ,x0) =

∫
Ω
f(x)δ((x− x0) · α) dx =

∫
f(x0 + uθ) du (4.1)

where δ denotes the dirac delta function, θ ∈ S1 and x0 := (x0,1, x0,2) denotes the point source
distributed on S1

R. Then the adjoint transform is given by

(R̃∗p)(x) =

∫
S1
R

p(arctan(
x2 − x0,2

x1 − x0,1
),x0) dx0. (4.2)

To extend the back projections algorithms for the Radon transform to the fanbeam transform,
we let T be the coordinate transform from the Radon transform to the Fanbeam transform, see [23]
for this procedure of extension with different algorithms. With the coordinate transform operator,
we deduce that

R̃R̃∗ = (TR)(TR)∗ = TRR∗T ∗

is block diagonal, since RR∗ is anglewise (−∆s)
−1/2 diagonal. Then we propose the direct probing

method for the inverse fan beam transform based on (3.1)–(3.2):

f = R̃∗S p, (4.3)

where p denotes the measurement of fanbeam transform, R̃∗ denotes the adjoint transform defined
by (4.2), and S denotes the scaling filter defined in (3.2).

Remark 1. • When only limited-angle measurement is available, one can interpolate the limited-
angle sinogram data by a (periodic cubic) spline in α, then the inverse fanbeam method (4.3)
can be applied.

• The algorithm for the inverse Fanbeam problem can be extended to other problems with fan-
beam geometry.
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5 Assumed background and adjoint based back projection

The inverse fanbeam transform is an efficient approximation of Eikonal tomography when the
slowness distribution has a small variation from the homogeneous background. For the high-
contrast media, since the linearization approach is no longer accurate, we extend our algorithm by
utilizing priori information of the high-contrast background in this section.

Assume that the unknown slowness distribution f ∈ W 1,∞(DR) contained in Ω is close to a
given background f ∈W 1,∞(DR), and let u ∈W 1,∞(DR) be the viscosity solution to

|∇u| − f = 0, u(x0) = 0.

The linearized equation at u of the Eikonal equation (2.1) is

~d0 · ∇(u1 − u) = f − f, (5.1)

where ~d0 = ∇u
|∇u| . Denoting the operator on the lefthand side of (5.1) by

E(u1 − u) := ~d0 · ∇(u1 − u), (5.2)

one can rewrite the linearized equation as

E(u1 − u) = f − f.

Consider the value of solutions on the boundary Γ, p1 := u1|Γ and p := u|Γ. There holds that

p1 − p = TΓE
−1(f − f) := A(f − f),

where TΓ denotes the trace operator from W 1,∞(DR) to C(Γ). The adjoint operator A∗ of A can
be computed by

A∗ = (TΓE
−1)∗ = (E∗)−1T ∗Γ ,

then λ := A∗(p1 − p) = (E∗)−1T ∗Γ(p1 − p) is an approximation of f − f . It follows (5.2) that

(Eu, λ) = (~d0 · ∇u, λ) = −(∇ · (~d0λ), u) + (n · ~d0λ, u)Γ,

where (·, ·)Γ denotes the L2 inner product on Γ and n denotes the outer normal direction on Γ. By
the definition of λ, one can also deduce

(Eu, λ) = (u,E∗λ) = (u, T ∗Γ(p1 − p)) = (u, p1 − p)Γ.

These two equations above indicate that

∇ · (~d0 λ) = 0, n · ~d0λ|Γ = p1 − p. (5.3)

When the difference between f and f is small, the linearized solution p1 is also close to the mea-
surement p := u|Γ of the Eikonal solution u, then the filtered back projection algorithm 1 can be
extended to the inverse Eikonal problem corresponding to a high contrast medium by solving the
adjoint equations. The extended approach is presented as Algorithm 2.

Note that when solving the adjoint equation (5.3), one can multiply φ on both sides to deduce
the variational formulation

(−∇ · (~d0λ), φ) = (λ, ~d0 · ∇φ)− (n · ~d0λ, φ)Γ = 0. (5.4)
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If we take φ satisfying ~d0 · ∇φ = λ in this formulation, we obtain

‖λ‖2L2(Ω) = (n · ~d0λ, φ)Γ.

Thus, (5.4) admits a weak solution λ ∈ L2(Ω). Also, one can define the solution as

λ = exp(

∫
(∇ · ~d0) dt)q,

where we assume ~d is Lipschitz and ~x(t) is the backward characteristic curve defined by ODE:

d

dt
x(t) = ~d(x(t)), x(T ) = x ∈ Γ.

Then the well-poshness of (5.3) is shown if ~d0 is sufficiently smooth, say ~d0 ∈ (W 1,∞(Ω))2. In
general, ~d0 can be very singular, thus in our proposed algorithm we first apply a Gaussian filter to
regularize ~d0 and then consider the viscous dual equation

∇ · (~d0 · ∇λ) = ε∆λ,

which corresponds to the viscous Eikonal equation

−|∇u|+ f + ε∆u = 0.

Algorithm 2 Algorithm for inverse Eikonal problem with high-contrast background

1: For each point source xk0 (k = 1, 2, ...,m), measure the first arrival time (i.e. solution uk

to the Eikonal equation) on the boundary Γ corresponding to the unknown slowness f , and
denote the measurement as pk. Given the background slowness function f (which may be high
contrast profile), compute the Eikonal solution uk corresponding to f and denote its value on

the boundary Γ by pk. Compute ~dk0 = ∇uk
|∇uk| .

2: Solve the following equation for each k to deduce λk:

ε∆λk −∇ · (λk ~dkα) = 0 in Ω,

n · ~dkαλk = pk − pk on Γ,
(5.5)

where ~dkα is deduced by applying Gaussian filter to ~dk0.
3: Sum λk over k as the reconstruction of f − f .

6 Numerical findings and discussions

In this section, we present several numerical findings and carry out a series of implementations
to illustrate the robustness and efficiency of the proposed algorithms. In the following examples,
the slowness function f is supporte in a square domain Ω2 = [−0.5, 0.5] × [−0.5, 0.5] contained
in the circular domain Ω = B(0, 0.75). For each velocity model, the boundary measurements
corresponding to several point sources respectively are collected on the boundary Γ of the circular
domain Ω for the reconstruction. Both the set of point sources and the set of measured points are
equally distributed on Γ. We shall call these measurements the Eikonal sinogram as an analogue
of the sinogram for the Radon transform. The synthetic boundary measurements are computed
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with the fast switching method with mesh size h = 0.01. The noisy measurements are generated
by adding a stationary additive Gaussian random noise to the exact boundary measurements:

ps(θ, x0) = pe(θ, x0) + ε ·maxθ(pe) · ξ, (6.1)

where pe denotes the exact data, ξ follows the standard normal distribution, and ε denotes the
relative noise level.

6.1 Numerical findings

We shall illustrate the ill-posedness of the Eikonal inverse tomography numerically in this subsec-
tion. In Example 1-3, the measurement corresponding to 18 sources are collected at 153 points on
the boundary.

Example 1. Consider the velocity model (2.6) in Section 2. We compare the measurements corre-
sponding to the velocity models with different magnitudes in this example, that is, we measure the
solution of the Eikonal equation on the boundary with different f0 in the velocity model (2.6).

The experiments verify that the measured sinograms with f0 = 1.5 and f0 = 2 are the same.
Thus we numerically verify that the Eikonal tomography is severely ill-posed as the same mea-
surements are collected on the boundary for certain scenarios regardless of the value of contrast.

Example 2. In this example, we present the fanbeam sinogram and the FBP reconstruction for
the velocity model with two inclusions of size 0.2 × 0.2 with different contrast, located respectively
at positions (−0.20,−0.20) and (0.20,−0.10).

Although the exact slowness inside the inclusion centered at (0.20,−0.10) is larger than the
other one, the difference is not correctly reflected in the reconstruction. This implies that only
the profile of the velocity can be reconstructed for the high-contrast medium due to the ill-posed
nature of the problem.

Example 3. Now we present the fanbeam sinogram and the Eikonal sinogram for the same ve-
locity model with four small inclusions of size 0.1 × 0.1, centered at (−0.25,−0.25), (0.30,−0.35),
(0.25, 0.35), and (−0.20, 0.20) as shown in 6(a). The slowness inside the inclusions is 1.5 and the
background slowness is 1.

In previous sections we consider the inverse fanbeam transform as an efficient approximation
of Eikonal tomography when the slowness distribution is close to the homogeneous background.
The fanbeam sinogram can be considered as the line integrals of wave amplitude attenuation for
straight ray-paths connecting the point sources and the measurement surface, while for the velocity
model with inhomogeneity, the ray-paths can depend strongly on the unknown wave speeds, and
thus the resulting Eikonal sinogram displays similar but different patterns to fanbeam sinogram, as
shown in 6(b) and 6(c). Therefore it is necessary to filter and refine the back projection methods
as in our proposed algorithm. This velocity model will be revisited in example 4 to examine the
performance of the reconstruction algorithm.

6.2 Two-step FBP method

Now we implement the algorithm 1 on two velocity models to demonstrate the efficiency and
accuracy of the proposed two-step direct probing method. The measurement corresponding to 18
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(a) Slowness function f with f0 = 1.1 (b) Eikonal sinogram (c) FBP reconstruction

(d) Slowness function f with f0 = 1.5 (e) Eikonal sinogram (f) FBP reconstruction

(g) Slowness function f with f0 = 2 (h) Eikonal sinogram (i) FBP reconstruction

Figure 1: Example 1. Comparison of the sinograms and reconstructions corresponding to the
velocity models with different magnitudes.

(a) Slowness function f (b) Eikonal sinogram (c) FBP reconstruction

Figure 2: Example 2. Reconstruction of velocity model with two inclusions of different contrast.
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(a) Slowness function f (b) Fanbeam sinogram (c) Eikonal sinogram

Figure 3: Example 3. Comparison of the fanbeam sinogram and the Eikonal measurement.

sources is collected at 153 points on the boundary for the reconstruction in Example 4, and the
measurement corresponding to 36 sources collected at 153 points is required for the reconstruction
in Example 5.

Example 4. We consider the velocity model in Example 3, which contains four inclusions in
the homogeneous background with the slowness f = 1.5 inside the inclusions and f = 1 in the
background.

It is observed that although the Eikonal sinogram and the fanbeam sinogram displays different
patterns, the reconstruction with the FBP method from the Eikonal sinogram can provide a quite
accurate indicator of the locations of these four inclusions. The overall profile stands out clearly
and agrees well with the exact velocity model. The refinement step does not significantly improve
the reconstruction when the size of inclusions is relatively small. With the presence of 5% noise
in measurement, the FBP method still leads to satisfying reconstruction. Hence the proposed
algorithm is tolerant with respect to data noise.

Example 5. In this example, the velocity model with a ring-shaped square inclusion is examined
as shown in Fig. 5(a). The outer and inner side lengths of the ring-shaped inclusion are 0.6 and
0.5, and the inclusion is centered at (0, 0). The slowness is taken to be f = 1.05 inside the region
and f = 1 as the background. The reconstruction with the exact data and noisy data with 5% noise
are presented.

Such ring-shaped inclusions are relatively challenging to recover, yet the overall profile stands
clearly in the reconstruction 5(b) of the FBP method. It can be observed that the refinement step
enhances the reconstruction and exhibits a clear ring structure which agrees excellently with the
exact velocity model. Our probing method remains stable with respect to noise in the data.

6.3 Inhomogeneous velocity field of high contrast with assumed background

Now we examine the filtered back projection method 2 with assumed background on two velocity
models. For the reconstruction, the measurement corresponding to 18 sources are collected at 153
points on the boundary with 1% noise.

Example 6. Consider the velocity model with a large rectangular nonhomogeneous regions in the
assumed background. The assumed f satisfies f = 1.1 inside the large obstacle of size 0.65 × 0.45
centered at (−0.125,−0.025) and f = 1 in the background as shown in 6(b). We are interested
in resolving the two small rectangular shaped obstacles of size 0.1 × 0.1 located at (0.20, 0) and
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(a) Slowness function f (b) FBP with exact measurement (c) Reconstruction after refinement

(d) Slowness function f (e) FBP with noisy measurement (f) Reconstruction after refinement
with noisy measurement

Figure 4: Example 4. Reconstructions of discontinuous slowness function with exact and noisy
measurement with noise level 5%

(−0.25,−0.25) as shown in Fig. 6(a). The slowness function inside these two small obstacles is
taken to be 1.05 and 1.15 respectively.

As one of the inclusions is within the large obstacle in the assumed background while the
other one is outside of the obstacle, it is relatively hard to detect their locations precisely without
the information of the assumed background due to the ill-posed nature of the inverse Eikonal
tomography. From Fig. 6(c), we can see that both small inclusions are well separated, and their
locations are recovered pretty satisfactorily with the presence of 10% noise in the measurement.

Example 7. In this example we consider the velocity model with the assumed background to be a
continuous function 7(b). The exact model in 7(a) is different from the assumed background in the
regions marked with a white rectangle.

The exact model of our interest has high contrast with variations of different scales, thus it is
difficult to recover the regions related to small scales within the regions marked with white rectangle.
We can observe from the reconstruction in 7(c) that the two inclusions are well separated and the
locations captured agrees well with the exact velocity model upon noting the 10% data noise.
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