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Abstract. We present an efficient matrix-free point spread function (PSF) method for approxi-
mating operators that have locally supported non-negative integral kernels. The PSF-based method
computes impulse responses of the operator at scattered points, and interpolates these impulse re-
sponses to approximate entries of the integral kernel. To compute impulse responses efficiently, we
apply the operator to Dirac combs associated with batches of point sources, which are chosen by
solving an ellipsoid packing problem. The ability to rapidly evaluate kernel entries allows us to con-
struct a hierarchical matrix (H-matrix) approximation of the operator. Further matrix computations
are then performed with fast H-matrix methods. This end-to-end procedure is illustrated on a blur
problem. We demonstrate the PSF-based method’s effectiveness by using it to build preconditioners
for the Hessian operator arising in two inverse problems governed by partial differential equations
(PDEs): inversion for the basal friction coefficient in an ice sheet flow problem and for the initial
condition in an advective-diffusive transport problem. While for many ill-posed inverse problems the
Hessian of the data misfit term exhibits a low rank structure, and hence a low rank approximation
is suitable, for many problems of practical interest the numerical rank of the Hessian is still large.
The Hessian impulse responses on the other hand typically become more local as the numerical rank
increases, which benefits the PSF-based method. Numerical results reveal that the preconditioner
clusters the spectrum of the preconditioned Hessian near one, yielding roughly 5×–10× reductions
in the required number of PDE solves, as compared to classical regularization-based preconditioning
and no preconditioning. We also present a comprehensive numerical study for the influence of various
parameters (that control the shape of the impulse responses and the rank of the Hessian) on the
effectiveness of the advection-diffusion Hessian approximation. The results show that the PSF-based
method is able to form good approximations of high-rank Hessians using only a small number of
operator applications.
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1. Introduction. We present an efficientmatrix-free point spread function (PSF)
method for approximating operators A : L2(Ω) → L2(Ω)′ that have locally supported
non-negative integral kernels. Here, Ω ⊂ Rd is a bounded domain, and L2(Ω)′ is
the space of real-valued continuous linear functionals on L2(Ω). By “non-negative
integral kernel,” we mean that entries of A’s integral kernel are non-negative num-
bers; this is not the same as positive semi-definiteness of A. Such operators appear,
for instance, as Hessians in optimization and inverse problems governed by partial
differential equations (PDEs) [14, 20, 47], Schur complements in Schur complement
methods for solving partial differential equations and Poincare-Steklov operators in
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(a) One impulse response batch (b) Local mean displacement invariance

Fig. 1: (1a) One batch, ηb, of normalized impulse responses, ϕx, that arise from ap-
plying A to a weighted sum of scattered point sources (see Section 5.2). Here, A is the
ice sheet inverse problem data misfit Gauss-Newton Hessian described in Section 7.
Black stars are point source locations. Shading shows the magnitude of the normal-
ized impulse responses (darker means larger function values). Dashed gray ellipses
are estimated impulse response support ellipsoids based on the moment method in
Section 4.1. The large circle is ∂Ω. (1b) Illustration of impulse responses, ϕx and
ϕx′ , corresponding to points x and x′. The operator A is locally mean displacement
invariant (Section 4.2) if ϕx(y) ≈ ϕx′ (y − µ(x) + µ(x′)) when x is close to x′. Here,
µ(z) denotes the mean (center of mass) of ϕz.

domain decomposition methods (e.g., Dirichlet-to-Neumann maps) [16, 67, 73], co-
variance operators in spatial statistics [17, 36, 37, 56], and blurring operators in imag-
ing [22, 60]. Here, “matrix-free” means that we may apply A and its transpose1, AT ,
to functions,

(1.1) u 7→ Au and w 7→ ATw,

via a black box computational procedure, but cannot easily access entries of A’s
integral kernel. Evaluating the maps in (1.1) may require solving a subproblem that
involves PDEs, or performing other costly computations.

The idea of the proposed method, which we refer to throughout the paper as
the “PSF-based method,” is to use impulse response interpolation to form a high
rank approximation of A using a small number of operator applications. The impulse
response, ϕx, associated with a point, x, is the Riesz representation2 of the linear func-
tional that results from applying A to a delta distribution (i.e., point source, impulse)
centered at x. We compute batches of impulse responses by applying A to weighted
sums of delta distributions associated with batches of points scattered throughout the
domain (see Figure 1a). Batches of impulse responses may be thought of intuitively
as sets of “columns” of the kernel (Figure 2). To choose the batches, we form ellipsoid
estimates for the supports of all ϕx via a moment method (Figure 3) that involves
applying AT to a small number of polynomials (see Section 4.1). We then use a greedy

1Recall that AT : L2(Ω) → L2(Ω)′ is the unique operator satisfying (Au) (w) =
(
ATw

)
(u) for

all u,w ∈ L2(Ω), where Au ∈ L2(Ω)′ is the result of applying A to u ∈ L2(Ω), and (Au) (w) is the
result of applying that linear functional to w ∈ L2(Ω), and similar for operations with AT .

2Recall that the Riesz representative of a functional ρ ∈ L2(Ω)′ with respect to the L2 inner
product is the unique function ρ∗ ∈ L2(Ω) such that ρ(w) = (ρ∗, w)L2(Ω) for all w ∈ L2(Ω).
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Fig. 2: Left: Matrix created by evaluating the integral kernel Φ for A (Equation 3.1)
at all pairs of mesh vertices. This illustration is for the integral kernel in Equation 7.4.
Dark colors indicate large entries and light colors indicate small entries. Rows and
columns are ordered according to a kd-tree hierarchical clustering. Right: Impulse
responses associated with points x1, x2 ∈ Ω, shown by the two dotted vertical lines.
Intuitively, one may think of impulse responses as “columns” of the integral kernel.

Fig. 3: Left: Impulse response moments. Scaling factor (V ), mean (µ), and covariance
(Σ). For each point x ∈ Ω, the quantity V (x) is the integral of ϕx over Ω, µ(x) is the
location that ϕx is centered at, and Σ(x) is a matrix with eigenvectors and eigenvalues
that characterize the width of the support of ϕx about µ(x) (see Section 4.1). Right:
Ellipsoid support for an impulse response. This ellipsoid is the set of points within
τ standard deviations of the mean of the Gaussian distribution with mean µ(x) and
covariance Σ(x). The scaling factor V (x) characterizes the magnitude of ϕx.

ellipsoid packing algorithm (Figure 4) to maximize the number of impulse responses
per batch. Then we interpolate translated and scaled versions of these impulse re-
sponses to approximate entries of the operator’s integral kernel (Figure 5). Adding
more batches yields impulse responses at more points, increasing the approximation
accuracy at the cost of one operator application per batch (Figure 6).

The PSF-based method we propose is loosely based on “product convolution”
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Fig. 4: Illustration of the process to compute one impulse response batch. Impulse
response moments are first used to form ellipsoid shaped estimates of the supports
of impulse responses (Equation 4.6). Then, an ellipsoid packing problem is solved
to choose batches of non-overlapping support ellipsoids (Section 5.1). Finally, A
is applied to a Dirac comb associated with the points xi, which correspond to the
ellipsoids (Section 5.2). The process is repeated to form more batches.

Fig. 5: Left: H-matrix structure for Φ. Computing an entry of this matrix requires
evaluating the integral kernel, Φ(y, x), at a pair of points (y, x) ∈ Ω × Ω. Center:
Kernel evaluation points x and y (black circles), sample points for the approximation
(light gray and black dots), and the kn sample points, x′, that are nearest to x (black
dots). Right: Known impulse response at x′. Using radial basis function interpolation,
the desired kernel entry is approximated as a weighted linear combination of translated
and scaled versions of impulse responses at the points x′ (Section 5.3).

Fig. 6: Relative error, ||Φ(·, x)− Φ̃(·, x)||/||Φ(·, x)||, in the approximation of the “col-
umn” of the integral kernel associated with x, using 5 (left), 10 (center) and 20 (right)
impulse response batches. Sample points are indicated by black dots. The error asso-
ciated with the point x is the shade of the image at location x, with white indicating
zero error and black indicating 100% error. At the sample points, the error is zero.
The further the point x is from the sample points, the larger the error. Adding more
batches yields a more accurate approximation.
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(PC) approximations, which are approximations of an operator by weighted sums
of convolution operators with spatially varying weights. PC and PSF methods have
a long history dating back several decades. We note the following papers (among
many others) in which the convolution kernels are constructed from sampling impulse
responses of the operator to scattered point sources: [1, 5, 12, 27, 29, 30, 32, 60, 78]. For
background on PC and PSF methods, we recommend the following papers: [23, 28, 35].
The proposed PSF-based method improves upon existing PC and PSF methods in
the following ways: (1) While PC and PSF approximations are typically based on
an assumption of local translation invariance, the method we propose is based on a
more general assumption we call “local mean displacement invariance” (Section 4.2
and Figure 1b), which improves the interpolation of the impulse responses. (2) In
our previous work [5], we chose point sources in an adaptive grid via a sequential
procedure; the refinements to the adaptive grid were chosen to maximally reduce
the error at each step. However, in that work each point source required a separate
operator application, making the previous method expensive when a large number of
impulse responses is desired. In this paper, we use a new moment method (Section
4.1) which permits computation of many impulse responses (e.g., 50) per operator
application. We are inspired by resolution analysis in seismic imaging, in which AT is
applied to a random noise function, and the width of the support of ϕx is estimated to
be the autocorrelation length of the resultant function near x [31, 74]. The moment
method that we use estimates the support of ϕx more accurately than random noise
probing in resolution analysis, at the cost of the additional constraint that A has a
non-negative integral kernel. (3) The PSF-based method we propose never evaluates
computed impulse responses outside of their domain of definition. This eliminates
“boundary-artifact” errors (see [5, Section 1.1]) that plague conventional PC and
PSF methods.

The ability to rapidly approximate entries of A’s integral kernel allows one to
approximate discretized versions of A using the full arsenal of tools for matrix ap-
proximation that rely on fast access to matrix entries. In this work, we form a
hierarchical matrix [13, 42] approximation of a discretized version of A. H-matrices
are a compressed matrix format in which the rows and columns of the matrix are
re-ordered, then the matrix is recursively subdivided into blocks in such a way that
many off-diagonal blocks are low rank, even though the matrix as a whole may be high
rank. H-matrix methods permit us to perform matrix-vector products cheaply, and
perform other useful linear algebra operations that cannot be done easily using the
original operator. These operations include matrix-matrix addition, matrix-matrix
multiplication, matrix factorization, and matrix inversion. The work and memory
required to perform these operations for an N × N H-matrix with rank kh blocks
scales as O

(
kahN log(N)b

)
where a, b ∈ {0, 1, 2, 3} are constants which depend on the

type of H-matrix used and the operation being performed [40][52, Section 2.1].

2. Why we need more efficient approximations of high rank Hessians.
While the PSF-based method proposed in this paper may be used to approximate any
operator that has a locally supported non-negative integral kernel, we are primarily
motivated by approximation of high-rank Hessians in distributed parameter inverse
problems governed by PDEs. In this section, we provide a brief background on this
topic, and explain why existing Hessian approximation methods are not satisfactory.

In distributed parameter inverse problems governed by PDEs, one seeks to infer
an unknown spatially varying parameter field from limited observations of a state
variable that depends on the parameter implicitly through the solution of a PDE.
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Conventionally, the inverse problem is formulated using either a deterministic frame-
work [9, 76], or a Bayesian probabilistic framework [49, 70, 72]. In the deterministic
framework, one solves an optimization problem to find the parameter that best fits
the observations, subject to appropriate regularization [25, 76]. In the probabilistic
framework, Bayes’ theorem combines the observations with prior information to form
a posterior distribution over the space of all possible parameter fields, and computa-
tions are performed to extract statistical information about the parameter from this
posterior. The Hessian of the objective function with respect to the parameter in the
determinstic optimization problem and the Hessian of the negative log posterior in
the Bayesian setting are equal or approximately equal under typical noise, regulariza-
tion, and prior models, so we refer to both of these Hessians as “the Hessian.” The
Hessian consists of a data misfit term (the data misfit Hessian), which depends on
a discrepancy between the observations and the associated model predictions, and a
regularization or prior term (the regularization Hessian) which does not depend on
the observations. For more details on the Hessian, see [4, 38, 75].

Hessian approximations and preconditioners are highly desirable because the Hes-
sian is central to efficient solution of inverse problems in both the deterministic and
Bayesian settings. When solving the deterministic optimization problem with Newton-
type methods, the Hessian is the coefficient operator for the linear system that must
be solved or approximately solved at every Newton iteration. Good Hessian precondi-
tioners reduce the number of iterations required to solve these Newton linear systems
with the conjugate gradient method [66]. In the Bayesian setting, the inverse of the
Hessian is the covariance of a local Gaussian approximation of the posterior. This
Gaussian distribution can be used directly as an approximation of the posterior, or it
can be used as a proposal for Markov chain Monte-Carlo methods for drawing samples
from the posterior. For instance, see [50, 62] and the references therein.

Owing to the implicit dependence of predicted observations on the parameter,
entries of the Hessian are not easily accessible. Rather, the Hessian may be applied to
a vector via a computational process that involves solving a pair of forward and adjoint
PDEs which are linearizations of the original PDE [38, 63]. The most popular matrix-
free Hessian approximation methods are based on low rank approximation of either the
data misfit Hessian, or the data misfit Hessian preconditioned by the regularization
Hessian, e.g., [15, 19, 33, 62, 68]. Krylov methods such as Lanczos or randomized
methods [18, 44] are typically used to construct these low rank approximations by
applying the Hessian to vectors. Using these methods, the required number of Hessian
applications (and hence the required number of PDE solves) is proportional to the
rank of the low rank approximation. Low rank approximation methods are justified
by arguing that the numerical rank of the data misfit Hessian is insensitive to the
dimension of the discretized parameter. This means that the required number of
PDE solves remains the same as the mesh used to discretize the parameter is refined.
However, in many inverse problems of practical interest the numerical rank of the
data misfit Hessian, while mesh independent, is still large, which makes it costly to
approximate the Hessian using low rank approximation methods [7, 15, 48].

Examples of inverse problems with high rank data misfit Hessians include large-
scale ice sheet inverse problems [45, 48], advection dominated advection-diffusion in-
verse problems [2][34, Chapter 5], high frequency wave propagation inverse prob-
lems [15], inverse problems governed by high Reynolds number flows, and more gen-
erally, all inverse problems in which the observations highly inform the parameter.
The eigenvalues of the data misfit Hessian characterize how informative the data are
about components of the parameter in the corresponding eigenvector directions, hence
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more informative data leads to larger eigenvalues and a larger numerical rank [3][4,
Section 1.4 and Chapter 4]. Roughly speaking, the numerical rank of the data mis-
fit Hessian is the dimension of the subspace of parameter space that is informed by
the data. The numerical rank of the regularization preconditioned data misfit Hes-
sian may be reduced by increasing the strength of the regularization, but this throws
away useful information: components of the parameter that could be learned from
the observations would instead be reconstructed based on the regularization [6, Sec-
tion 4][76, Chapters 1 and 7]. Hence, low rank approximation methods suffer from a
predicament: if the data highly inform the parameter and the regularization is chosen
appropriately, then a large number of operator applications are required to form an
accurate approximation of the Hessian using low rank approximation methods. High
rank Hessian approximation methods are thus needed.

Recently there have been improvements in matrix-free H-matrix construction
methods in which an operator is applied to structured random vectors, and the re-
sponse of the operator to those random vectors is processed to construct an H-matrix
approximation [54, 55, 57, 58, 59]. These methods (which we do not use here) have
been used to approximate Hessians in PDE constrained inverse problems [7, 45]. Al-
though these methods are promising, the required number of operator applications is
still large (e.g., hundreds to thousands). For example, using the method in [55], the
required number of operator applies to construct an H1 matrix with hierarchical rank
r for problems in a 2D domain discretized with a regular grid is #levels · 64 · (r + c),
where #levels is the depth of the hierarchical partitioning, r is the rank of the blocks
(hierarchical rank), and c is an oversampling parameter (see [55, Section 2.4]). On a
64×64 grid with depth 4, hierarchical rank 10, and oversampling parameter c = 5, this
works out to 4 ·64 ·(10+5) = 3840 operator applies. In Section 7.3, we see numerically
that the randomized hierarchical off-diagonal low rank (HODLR) method in [58] re-
quires hundreds to thousands of matrix-vector products to construct approximations
of the integral kernel for a blur problem example with modest (e.g., 10%) relative er-
ror. Matrix-free H-matrix construction is currently an active area of research, hence
these costs may decrease as new algorithms are developed. In this paper, we also
form an H-matrix approximation. However, to reduce the required number of oper-
ator applications, we first form a PSF approximation of the data misfit Hessian by
exploiting locality and non-negative integral kernel properties, then form the H-matrix
using classical techniques. Using this two stage approach, we reduce the number of
operator applications to a few dozen at most.

Not all data misfit Hessians satisfy the local non-negative integral kernel prop-
erties. We note, in particular, that the wave inverse problem data misfit Hessian
and Gauss-Newton Hessian have a substantial proportion of negative entries in their
integral kernels. In this case more specialized techniques have been developed using,
eg., pseudodifferential operator theory [21, 71], and sparsity in the wavelet domain
[46]. However, many data misfit Hessians of practical interest do satisfy the local
non-negative integral kernel properties (either exactly or approximately), and the
PSF-based method we propose is targeted at approximating these Hessians.

3. Preliminaries. Let Ω ⊂ Rd be a bounded domain (typically d = 1, 2, or 3).
We seek to approximate integral operators A : L2(Ω) → L2(Ω)′ of the form

(3.1) (Au)(w) :=
∫

Ω

∫

Ω

w(y)Φ(y, x)u(x)dxdy.
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The linear functional Au ∈ L2(Ω)′ is the result of applying A to u ∈ L2(Ω), and the
scalar (Au) (w) is the result of applying that linear functional to w ∈ L2(Ω). The
integral kernel, Φ : Ω× Ω → R, exists but is not easily accessible. In this section we
describe how to extend the domain of A to distributions, which allows us to define
impulse responses (Section 3.1), we then state the conditions on A that the PSF-based
method requires (Section 3.2), and detail finite element discretization (Section 3.3).

3.1. Distributions and impulse responses. The operator A may be applied
to distributions3 if Φ is sufficiently regular. Given ρ ∈ L2(Ω)′, let ρ∗ ∈ L2(Ω) denote
the Riesz representative of ρ with respect to the L2(Ω) inner product. We have

(Aρ∗) (w) =
∫

Ω

∫

Ω

w(y)Φ(y, x)ρ∗(x)dx dy(3.2a)

=

∫

Ω

w(y)

∫

Ω

Φ(y, x)ρ∗(x)dx dy =

∫

Ω

w(y)ρ (Φ(y, ·)) dy,(3.2b)

where Φ(y, ·) denotes the function x 7→ Φ(y, x). Now let D(Ω) ⊂ L2(Ω) be a suitable
space of test functions and let ρ : D(Ω) → R be a distribution. In this case, ρ∗ may
not exist, so the derivation in (3.2) is not valid. However, if Φ is sufficiently regular
such that the function y 7→ ρ (Φ(y, · )) is well-defined for almost all y ∈ Ω, and if
this function is in L2(Ω), then the right hand side of (3.2b) is well-defined. Hence, we
define the application of A to the distribution ρ to be the right hand side of (3.2b).
We denote this operator application by “Aρ∗,” even if ρ∗ does not exist.

Let δx denote the delta distribution4 (i.e., point source, impulse) centered at the
point x ∈ Ω. The impulse response of A associated with x is the function ϕx : Ω → R,

(3.3) ϕx := (Aδ∗x)∗ ,

that is formed by applying A to δx (per the generalized notion of operator “appli-
cation” defined above), then taking the Riesz representation of the resulting linear
functional. Using (3.2b) and the definition of the delta distribution, we see that ϕx
may also be written as the function ϕx(y) = Φ(y, x).

3.2. Required conditions. We focus on approximating operators that satisfy
the following conditions:

1. The kernel Φ is sufficiently regular so that ϕx is well-defined for all x ∈ Ω.
2. The supports of the impulse responses ϕx are contained in localized regions.
3. The integral kernel is non-negative5 in the sense that

Φ(y, x) ≥ 0 for all (y, x) ∈ Ω× Ω.

The PSF-based method may still perform well if these conditions are relaxed slightly.
It is acceptable if the support of ϕx is not perfectly contained in a localized

region (violating Assumption 2), so long as the bulk of the “mass” of ϕx is contained
in a localized region. In principle, the PSF-based method can be applied even if the
impulse responses are widely dispersed. However, in this case only a small number of
impulse responses can be computed per batch, which means more batches, and hence
more operator applies, are needed to form an accurate approximation.

3I.e., generalized functions such as the Dirac delta distribution. See, for example, [8, Chapter 5].
4Recall that the delta distribution δx : D(Ω) → R is defined by δx(w) = w(x) for all w ∈ D(Ω).
5Note that having a non-negative integral kernel is different from positive semi-definiteness. The

operator A need not be positive semi-definite to use the PSF-based method, and positive semi-definite
operators need not have a non-negative integral kernel.
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Fig. 7: Illustration of the influence of negative numbers in the integral kernel on the
robustness of the ellipsoid estimates for the supports of impulse responses. Left two
columns: Blur kernel given in Equation 7.4. Right two columns: Ricker wavelet-type
kernel given by Φ(y, x) = (1 − aγ) exp (−γ/2), where γ = (y − x)TΣ−1(y − x), and
Σ = diag (0.0025, 0.01). Ordered from top to bottom, the results are obtained with
a ∈ {1.0, 20.0, 27.0} for the left two columns, and a ∈ {0.0, 0.23, 0.249} for the right
two columns. Columns 1 and 3: impulse responses with estimated support ellipsoids
indicated by the black ellipses. Red and blue represent positive and negative numbers
in the integral kernel, respectively. Columns 2 and 4: one-dimensional slice along the
horizontal line indicated in the two-dimensional plots. The dashed gray line is at zero.

If there are negative numbers in the integral kernel (violating Assumption 3), the
ellipsoid estimation procedure may incur errors or fail, leading to poor performance
or failure of the PSF-based method. In Figure 7 we investigate the robustness of the
ellipsoid support estimation procedure to violations of Assumption 3. We study two
integral kernel examples, both of which are parameterized by a quantity that controls
how negative the kernels are. We make the following observations:

• The larger and more numerous the negative numbers are, the more inaccurate
the ellipsoid support estimate is.

• The further away from the center of the ellipsoid the negative numbers are,
the more influence they have on the quality of the ellipsoid support estimate.
This is because moment formulas (Equations 4.2 and 4.3) assign more weight
to entries in the kernel that are further from the center.

• Negative numbers affect the ellipsoid estimation method more if they are
isolated, and less if they are balanced by nearby positive numbers.

• As kernels become more negative, the ellipsoid estimation performs well up
to a certain threshold that depends on the spatial distribution of negative
and positive entries. After that threshold is crossed, the estimation rapidly
transitions to performing poorly and ultimately failing.
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For the kernel in the left two columns of Figure 7, negative numbers are interspersed
with positive numbers, allowing us to include a large amount of negative numbers
before the ellipsoid estimation fails. For the kernel in the right two columns, the
ellipsoid estimate fails with tiny amounts of negative numbers because the negative
numbers are far away from the mean and not balanced by positive numbers at similar
distances and angles. In the bottom two rows, we see the aforementioned threshold
effect, in which the ellipsoid estimation method rapidly transitions from performing
reasonably well to performing poorly with only a small change to the integral kernel.

3.3. Finite element discretization. In computations, functions are discretized
and replaced by finite-dimensional vectors, and operators mapping between infinite-
dimensional spaces are replaced by operators mapping between finite-dimensional
spaces. In this paper we discretize the functions that A and AT are applied to using
continuous finite elements satisfying the Kronecker property (defined below). With
minor modifications, the PSF-based method could be used with more general finite
element methods, or other discretization schemes such as finite differences or finite
volumes. These restrictions on discretization only apply to functions u that A and AT

are applied to. Other functions that arise internally during the process of computing
actions of A, such as state variables in a PDE that is solved in a subproblem, may be
discretized with any method.

Let ψ1, ψ2, . . . , ψN be a set of continuous finite element basis functions used to dis-
cretize the problem on a mesh with mesh size parameter h, let Vh := span (ψ1, ψ2, . . . , ψN )
be the corresponding finite element space under the L2 inner product, and let pi ∈ Rd,
i = 1, . . . , N be the Lagrange nodes associated with the functions ψi. We assume
that the finite element basis satisfies the Kronecker property, i.e., ψi(pi) = 1 and
ψi(pj) = 0 if i ̸= j. For uh ∈ Vh we write u ∈ Rm

M to denote the coefficient vector

for uh with respect to the finite element basis, i.e., uh(x) =
∑N

i=1 uiψi(x). Linear
functionals ρh ∈ V ′

h have coefficient dual vectors ρ ∈ Rm
M−1 , with entries ρi = ρh(ψi)

for i = 1, . . . ,m. Here, M ∈ RN×N denotes the sparse finite element mass matrix
which has entries Mij =

∫
Ω
ψi(x)ψj(x)dx for i, j = 1, . . . , N . The space RN

M is RN

with the inner product (u,w)M := uTMw, and RN
M−1 is the analogous space with

M−1 replacing M. Direct calculation shows that RN
M and RN

M−1 are isomorphic to Vh
and V ′

h as Hilbert spaces, respectively.
After discretization, the operator A : L2(Ω) → L2(Ω)′ is replaced by an op-

erator Ah : Vh → V ′
h, which becomes an operator A : RN

M → RN
M−1 under the

isomorphism discussed above. The PSF-based method is agnostic to the computa-
tional procedure for approximating A with A. What is important is that we do not
have direct access to matrix entries Aij . Rather, we have a computational proce-
dure that allows us to compute matrix-vector products u 7→ Au and w 7→ ATw,
and computing these matrix-vector products is costly. The PSF-based method mit-
igates this cost by performing as few matrix-vector products as possible. Of course,
matrix entries can be computed via matrix-vector products as Aij = (Aej)i, where
ej = (0, . . . , 0, 1, 0, . . . , 0)T is the length N unit vector with one in the jth coordinate
and zeros elsewhere. But computing the matrix-vector product ej 7→ Aej is costly,
and therefore wasteful if we do not use other matrix entries in the jth column of A.
Hence, methods for approximating A are computationally intractable if they require
accessing scattered matrix entries from many different rows and columns of A.

The operator Ah : Vh → V ′
h can be written in integral kernel form, (3.1), but

with Φ replaced by a slightly different integral kernel, Φh, which we do not know,
and which differs from Φ due to discretization error. Since the functions in Vh are
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continuous at x, the delta distribution δx is a continuous linear functional on Vh, which
has a discrete dual vector δx ∈ RN

M−1 with entries (δx)i = ψi(x) for i = 1, . . . , N .
Additionally, it is straightforward to verify that the Riesz representation, ρ∗h ∈ Vh,
of a functional ρ ∈ V ′

h has coefficient vector ρ∗ = M−1ρ. Therefore, the formula for
the impulse response from (3.3) becomes ϕx = (Ahδ

∗
x)

∗
= M−1AM−1δx, and the

(y, x) kernel entry of Φh may be written as Φh(y, x) = δTy ϕx = δTy M
−1AM−1δx.

Now define Φ ∈ RN×N to be the following dense matrix of kernel entries evaluated
at all pairs of Lagrange nodes:

(3.4) Φij := Φh(pi, pj).

Because of the Kronecker property of the finite element basis, we have δpi = ei. Thus,
we have Φh(pi, pj) =

(
M−1AM−1

)
ij
, which implies

(3.5) A = MΦM.

Broadly, we will construct an H-matrix approximation of A by forming an H-matrix
approximation of Φ, then multiplying Φ by M (or a lumped mass version of M) on
the left and right using H-matrix methods. Classical H-matrix construction methods
require access to arbitrary matrix entries Φij , but these matrix entries are not easily
accessible. The bulk of the PSF-based method is therefore dedicated to forming
approximations of these matrix entries that can be evaluated rapidly.

Lumped mass matrix. At the continuum level, Φ is assumed to be non-negative.
However, entries of Φ involve inverse mass matrices, which typically contain negative
numbers. We therefore recommend replacing the mass matrix, M, with a positive
diagonal lumped mass approximation. Here, we use the lumped mass matrix in which
the ith diagonal entry of the lumped mass matrix is the sum of all entries in the ith
row of the mass matrix. Other mass lumping techniques may be used.

4. Key innovations. In this section we present two key innovations that the
PSF-based method is based on. First, we define moments of the impulse responses,
ϕx, show how these moments can be computed efficiently, and use these moments
to form ellipsoid shaped a-priori estimates for the supports of the impulse responses
(Section 4.1). Second, we describe an improved method to approximate impulse
responses from other nearby impulse responses, which we call “normalized local mean
displacement invariance” (Section 4.2).

4.1. Impulse response moments and ellipsoid support estimate. The
impulse response ϕx may be interpreted as a scaled probability distribution because
of the non-negative integral kernel property. Let V : Ω → R,

(4.1) V (x) :=

∫

Ω

ϕx(y)dy,

denote the spatially varying scaling factor, and for i, j = 1, . . . , d define µ : Ω → Rd

and Σ : Ω → Rd×d as follows:

µi(x) :=
1

V (x)

∫

Ω

ϕx(y)y
i dy(4.2)

Σij(x) :=
1

V (x)

∫

Ω

ϕx(y)
(
yi − µi(x)

) (
yj − µj(x)

)
dy,(4.3)
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where µi(x) and yi denote the ith components of the vectors µ(x) and y, respectively,
and Σij(x) denotes the (i, j) entry of the matrix Σ(x). The quantities µ(x) ∈ Rd and
Σ(x) ∈ Rd×d are the mean and covariance of the normalized version of ϕx, respectively.

The direct approach to compute V (x), µ(x), and Σ(x) is to apply A to a point
source centered at x to obtain ϕx, per (3.3). Then one can post process ϕx to determine
V (x), µ(x), and Σ(x). However, this direct approach is not feasible because our
algorithm for picking sample points (Section 5.1 and Figure 4) needs to know V (x),
µ(x), and Σ(x) before we compute ϕx. Computing ϕx in order to determine V (x),
µ(x), and Σ(x) would be extremely computationally expensive, and defeat the purpose
of the PSF-based method, which is to reduce the computational cost by computing
impulse responses in batches. Fortunately, it is possible to compute V (x), µ(x), and
Σ(x) indirectly, for all points x ∈ Ω simultaneously, by applying AT to one constant
function, d linear functions, and d(d+1)/2 quadratic functions (e.g., 6 total operator
applications in two spatial dimensions and 10 in three spatial dimensions). This may
be motivated by analogy to matrices. If A ∈ RN×N is a matrix with ith column ai
and w ∈ RN , then

ATw =




aT1
...

aTN


w =



aT1 w
...

aTNw


 .

By computing one matrix-vector product ofAT withw, we compute the inner product
of each column of A with w simultaneously. The operator case is analogous, with ϕx
taking the place of a matrix column. We have

(4.4)
(
ATw

)∗
(x) =

∫

Ω

Φ(y, x)w(y)dy = (ϕx, w)L2(Ω) .

By computing one operator application of AT to w, we compute the inner product of
each ϕx with w, for all points x simultaneously.

Let C, Li, and Qij be the following constant, linear, and quadratic functions:

C(x) := 1, Li(x) := xi, Qij(x) := xixj

for i, j = 1, . . . , d. Using the definition of V in (4.1) and using (4.4), we have

V (x) =

∫

Ω

ϕx(y)C(y) dy = (ϕx, C)L2(Ω) =
(
ATC

)∗
(x).

Hence, we compute V (x) for all x simultaneously by applying AT to C. Analogous
manipulations show that µ(x) and Σ(x) may be computed for all points x simultane-
ously by applying AT to the functions Li and Qij , respectively. We have

V =
(
ATC

)∗
(4.5a)

µi =
(
ATLi

)∗
/V(4.5b)

Σij =
(
ATQij

)∗
/V − µi · µj(4.5c)

for i, j = 1, . . . , d. Here, u/w denotes pointwise division, (u/w) (x) = u(x)/w(x), and
u · w denotes pointwise multiplication, (u · w)(x) = u(x)w(x).

We approximate the support of ϕx with the ellipsoid

(4.6) Ex := {x′ ∈ Ω : (x′ − µ(x))TΣ(x)−1(x′ − µ(x)) ≤ τ2},
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where τ is a fixed constant (see Figure 3). The ellipsoid Ex is the set of points
within τ standard deviations of the mean of the Gaussian distribution with mean
µ(x) and covariance Σ(x), i.e., the Gaussian distribution which has the same mean
and covariance as the normalized version of ϕx. The quantity τ is a parameter that
must be chosen appropriately. The larger τ is, the larger the ellipsoid Ex is, and the
more conservative the estimate is for the support of ϕx. However, in Section 5.1 we
will see that the cost of the PSF-based method depends on how many non-overlapping
ellipsoids Ex we can “pack” in the domain Ω (more ellipsoids is better), and choosing
a larger value of τ means that fewer ellipsoids will fit in Ω. In practice, we find
that τ = 3.0 yields a reasonable balance between these competing interests, and use
τ = 3.0 in all numerical results, except for Figure 14, where we study the effects of
varying τ . The fraction of the “mass” of ϕx residing outside of Ex is less than 1/τ2

by Chebyshev’s inequality, though this bound is typically conservative.

4.2. Local mean displacement invariance. Let x and x′ be points in Ω that
are close to each other, and consider the following approximations:

ϕx(y) ≈ ϕx′(y)(4.7)

ϕx(y) ≈ ϕx′(y − x+ x′)(4.8)

ϕx(y) ≈ ϕx′ (y − µ(x) + µ(x′))(4.9)

ϕx(y) ≈ ϕx′ (y − µ(x) + µ(x′))V (x)/V (x′).(4.10)

These are four different ways to approximate an impulse response by a nearby impulse
response, with each successive approximation building upon the previous ones. The
PSF-based method uses (4.10), which is the most sophisticated. Approximation (4.7)
says that ϕx can be approximated by ϕx′ when x and x′ are close. Operators satisfy-
ing (4.7) can be well approximated via low rank CUR approximation. However, the
required rank in the low rank approximation can be large, which makes algorithms
based on (4.7) expensive. Operators that satisfy (4.8) are called “locally translation
invariant” because integral kernel entries Φ(y, x) for such operators are approximately
invariant under translation of x and y by the same displacement, i.e., x→ x+ h and
y → y + h. It is straightforward to show that if equality holds in (4.8), then A is
a convolution operator. Locally translation invariant operators act like convolutions
locally, and can therefore be well approximated by PC approximations.

Approximation (4.9) improves upon (4.7) and (4.8), and generalizes both. On one
hand, if (4.7) holds, then µ(x) ≈ µ(x′), and so (4.9) holds. On the other hand, trans-
lating a distribution translates its mean, so if (4.8) holds, then µ(x′)−µ(x) ≈ x′−x, so
again (4.9) holds. But approximation (4.9) can hold in situations where neither (4.7)
nor (4.8) holds. For example, because the expected value commutes with affine trans-
formations, (4.9) will hold when A is locally translation invariant with respect to a
translated and rotated frame of reference, while (4.8) will not. Additionally, (4.9)
generalizes to operators A : L2(Ω1) → L2(Ω2)

′ that map between function spaces on
different domains Ω1 and Ω2, and even operators that map between domains with
different spatial dimensions. In contrast, (4.8) does not naturally generalize to op-
erators that map between function spaces on different domains, because the formula
y − x + x′ requires vectors in Ω2 and Ω1 to be added together. We call (4.9) “local
mean displacement invariance,” and illustrate (4.9) in Figure 1b.

We use approximation (4.10), which is the same as (4.9), except for the factor
V (x)/V (x′). This factor makes the approximation more accurate if V (x) varies widely.
Approximation (4.10) is equivalent to (4.9), but with ϕx replaced by its normalized
version, ϕx/V (x). We call (4.10) normalized local mean displacement invariance.
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5. Operator approximation algorithm. Before presenting the technical de-
tails of the algorithm in Sections 5.1–5.5, we first provide an overview.

We use (4.5) to compute V , µ, and Σ by applying AT to polynomial functions.
Then we use (4.6) to form ellipsoid shaped estimates for the support of the ϕx’s,
without computing them (see Figure 3). This allows us to compute large numbers
of ϕxi

in “batches,” ηb (see Figures 1a and 4). We compute one batch, denoted ηb,
by applying A to a weighted sum of point sources (Dirac comb) associated with a
batch, Sb, of points xi scattered throughout Ω (Section 5.2). The batch of points,
Sb, is chosen via a greedy ellipsoid packing algorithm so that, for xi, xj ∈ Sb, the
support ellipsoid for ϕxi and the support ellipsoid for ϕxj do not overlap if i ̸= j
(Section 5.1). Because these supports do not overlap (or do not overlap much), we
can post process ηb to recover the functions ϕxi

associated with all points xi ∈ Sb.
With one application of A, we recover many ϕxi

(Section 5.2). The process is repeated
until a desired number of batches is reached.

Once the batches ηb are computed, we approximate the integral kernel Φ(y, x)
at arbitrary points (y, x) by interpolation of translated and scaled versions of the
computed ϕxi

(Section 5.3 and Figure 5). The key idea behind the interpolation is the
normalized local mean displacement invariance assumption discussed in Section 4.2.
Specifically, we approximate Φ(y, x) = ϕx(y) by a weighted linear combination of the

values V (x)
V (xi)

ϕxi
(y−µ(x)+µ(xi)) for a small number of sample points xi near x. The

weights are determined by radial basis function (RBF) interpolation.
The ability to rapidly evaluate approximate kernel entries Φ(y, x) allows us to

construct an H-matrix approximation, ΦH ≈ Φ, using the conventional adaptive
cross H-matrix construction method (Section 5.4). In this method, one forms low rank
approximations of off-diagonal blocks of the matrix by sampling rows and columns of
those blocks. We then convert ΦH into an H-matrix approximation AH ≈ A.

When A is symmetric positive semi-definite, AH may be non-symmetric and
indefinite due to errors in the approximation. In this case, one may optionally sym-
metrize AH , then modify it via low rank updates to remove erroneous negative ei-
genvalues (Section 5.5). The complete algorithm for constructing AH is shown in
Algorithm 1. The computational cost is discussed in Section 6.

Algorithm 1: Construct PSF H-matrix approximation

Input : Linear operator A, parameter nb
Output: H-matrix AH

1 Compute V, µ, and Σ (Equations (4.5) in Section 4.1)
2 for k = 1, 2, . . . , nb do
3 Choose a batch of sample points, Sk (Section 5.1)
4 Compute impulse response batch ηk by applying A to the Dirac comb for

Sk (Section 5.2)
5 Form H-matrix approximation ΦH of integral kernel (Sections 5.3 and 5.4)
6 Form H-matrix approximation AH of A (Section 5.4)
7 (optional) Modify AH to make it symmetric and remove negative

eigenvalues (Section 5.5)

5.1. Sample point selection via greedy ellipsoid packing. We choose sam-
ple points, xi, in batches Sk. We use a greedy ellipsoid packing algorithm to choose
as many points as possible per batch, while ensuring that there is no overlap between
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the support ellipsoids, Exi
, associated with the sample points within a batch.

We start with a finite set of candidate points X and build Sk incrementally with
points selected from X. For simplicity of explanation, here Sk and X are mutable
sets that we add points to and remove points from. First we initialize Sk as an empty
set. Then we select the candidate point xi ∈ X that is the farthest away from all
points in previous sample point batches S1∪S2∪· · ·∪Sk−1. Candidate points for the
first batch S1 are chosen randomly from X. Once xi is selected, we remove xi from
X. Then we perform the following checks:

1. We check whether xi is sufficiently far from all of the previously chosen points
in the current batch, in the sense that Exi ∩ Exj = {} for all xj ∈ Sk.

2. We make sure that V (xi) is not too small, by checking whether V (xi) >
ϵV Vmax. Here, Vmax is the largest value of V (xj) over all points q in the
initial set of candidate points, and ϵV is a small threshold parameter (we use
ϵV = 10−5).

3. We make sure that all eigenvalues of Σ(xi) are positive, and the aspect ratio of
Exi (square root of the ratio of the largest eigenvalue of Σ(xi) to the smallest)
is bounded by a constant 1/ϵΣ (we use 1/ϵΣ = 20). Negative integral kernel
entries due to discretization error can cause Σ(xi) to be indefinite or highly
ill-conditioned.

If xi passes these checks then we add xi to Sk. Otherwise we discard xi. This process
repeats until there are no more points in X. We repeat the point selection process to
construct several batches of points S1, S2, . . . , Snb

. For each batch, X is initialized as
the set of all Lagrange nodes for the finite element basis functions used to discretize
the problem, except for points in previous batches.

We check whether Exi
∩Exj

= {} in a two stage process. First, we check whether
the axis aligned bounding boxes for the ellipsoids intersect. This quickly rules out
intersections of ellipsoids that are far apart. Second, if the bounding boxes intersect,
we check if the ellipsoids intersect using the ellipsoid intersection test in [39].

5.2. Impulse response batches. We compute impulse responses, ϕxi
, in batches

by applying A to Dirac combs. The Dirac comb, ξk, associated with a batch of sam-
ple points, Sk, is the following weighted sum of Dirac distributions (point sources)
centered at the points xi ∈ Sk:

ξk :=
∑

xi∈Sk

δxi
/V (xi).

We compute the impulse response batch, ηk, by applying A to the Dirac comb:

(5.1) ηk := (Aξ∗k)∗ =
∑

xi∈Sk

ϕxi
/V (xi).

The last equality in (5.1) follows from linearity and the definition of ϕxi
in (3.3). Since

the points xi are chosen so that the ellipsoid Exi
that (approximately) supports ϕi,

and the ellipsoid Exj
that (approximately) supports ϕj do not overlap when i ̸= j,

we have (approximately)

(5.2) ϕxi
(z) =

{
ηk(z)V (xi), z ∈ Exi

0, otherwise

for all xi ∈ Sk. By applying the operator once, ξk 7→ (Aξ∗k)
∗
, we recover ϕxi

for every
point xi ∈ Sk.
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Each point source, δxi
, is scaled by 1/V (xi) so that the resulting scaled impulse

responses within ηk are comparable in magnitude. Without this scaling, the portion
of ϕxi

outside of Exi
, which we neglect, may overwhelm ϕxj

for a nearby point xj
if V (xi) is much larger than V (xj). Note that we are not in danger of dividing
by zero, because the ellipsoid packing procedure from Section 5.1 excludes xi from
consideration as a sample point if V (xi) is smaller than a predetermined threshold.

5.3. Approximate integral kernel entries. Here, we describe how to rapidly
evaluate arbitrary entries of an approximation to the integral kernel by performing
radial basis function interpolation of translated and scaled versions of nearby known
impulse responses. In Section 5.4 we use this procedure for rapidly evaluating kernel
entries to construct the H-matrix approximation of A.

Given (y, x) ∈ Ω× Ω, let zi := y − µ(x) + µ(xi) and define

(5.3) fi :=
V (x)

V (xi)
ϕxi (zi)

for i = 1, . . . , kn, where {xi}kn
i=1 are the kn nearest sample points to x, excluding

points xi for which zi /∈ Ω. Here, kn is a small user-defined parameter, e.g., kn = 10.
We find the kn nearest sample points to x by querying a precomputed kd-tree [11] of
all sample points. We check whether zi ∈ Ω by querying a precomputed axis aligned
bounding box tree (AABB tree) [26] of the mesh cells used to discretize the problem.

Note that ϕxi (zi) is well-defined because zi ∈ Ω, and V (x)
V (xi)

is well-defined because

the sample point choosing procedure in Section 5.1 ensures that V (xi) > 0. Per the
discussion in Section 4.2, we expect Φ(y, x) ≈ fi for i = 1, . . . , kn. The closer xi is to
x, the better we expect the approximation to be. We therefore approximate Φ(y, x)

by interpolating the (point,value) pairs {(xi, fi)}kn

i=1 at the point x. Interpolation is
performed using the following radial basis function [77] scheme:

(5.4) Φ(y, x) ≈ Φ̃(y, x) :=

kn∑

i=1

ci φ (∥x− xi∥) ,

where ci are weights, and φ(r) := exp

(
− 1

2

(
CRBF

r
r0

)2
)

is a Gaussian kernel radial

basis function. Here, r0 := diam
(
{xi}kn

i=1

)
is the diameter of the set of sample points

used in the interpolation, and CRBF is a user-defined shape parameter that controls
the width of the kernel function. The vector of weights, c = (c1, c2, . . . , ckn)

T , is found
as the solution to the kn × kn linear system

(5.5) Bc = f,

where B ∈ Rkn×kn , Bij := φ (∥xi − xj∥) , and f ∈ Rkn has entries fi from (5.3).
To evaluate fi, we check whether zi ∈ Exi

using (4.6). If zi /∈ Exi
, then zi is

outside the estimated support of ϕxi
, so we set fi = 0. If zi ∈ Exi

, we look up the
batch index b such that xi ∈ Sb, and evaluate fi via the formula fi = V (x)ηb (zi) ,
per (5.2). Note that zi is typically not a gridpoint of the mesh used to discretize
the problem, even if y, x, and xi are gridpoints. Hence, evaluating ηb (zi) requires
determining which mesh cell contains zi, then evaluating finite element basis functions
on that mesh cell. Fortunately, the mesh cell containing zi was determined as a side
effect of querying the AABB tree of mesh cells when we checked whether zi ∈ Ω.
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The shape parameter, CRBF, mediates a tradeoff between accuracy and stability.
Small CRBF is required for RBF interpolation with Gaussian kernels to achieve high
accuracy, but small CRBF also makes RBF interpolation less robust to errors or non-
smoothness in the function being interpolated. For our numerical results involving
Hessians in inverse problems governed by PDEs (Sections 7.1 and 7.2), high accuracy
is not required because the PSF-based method is used to construct a preconditioner.
Hence, for these Hessian approximations we use a conservative choice of CRBF = 3.0
to ensure robustness. For our numerical results for the blur problem example (Sec-
tion 7.3), we use a smaller value of CRBF = 0.5 so that the RBF interpolation accuracy
is not a limiting factor as we study convergence of the PSF-based method.

5.4. Hierarchical matrix construction. We form an H-matrix approximation
AH ≈ A by forming an H-matrix representation ΦH of Φ then multiplying Φ with
mass matrices M per (3.5) to form AH = MΦHM. Here, we use a diagonal lumped
mass matrix, so these matrix-matrix multiplications are trivial. If a non-diagonal
mass matrix is used, one may form an H-matrix representation of the mass matrix,
then perform the matrix-matrix multiplications in (3.5) using H-matrix methods. We
use H1 matrices in the numerical results, but any other H-matrix format could be
used instead. For more details on H-matrices, see [43].

We formΦH using the standard geometrical clustering/adaptive cross method im-
plemented within the HLIBpro software package [51]. For details about the algorithms
used for geometrical clustering, H-matrix construction, and H-matrix operations in
HLIBpro, we refer the reader to [13, 41, 52]. AlthoughΦ is a dense N×N matrix, con-

structing ΦH only requires evaluation of O(khN logN) kernel entries Φij = Φ̃(pi, pj)
(see [10]), and these entries are computed via the radial basis function interpolation
method described in Section 5.3. Here, kh is the rank of the highest rank block in the
H-matrix. We emphasize that the dense matrix Φ is never formed.

5.5. Symmetrizing and flipping negative eigenvalues (optional). In many
applications, one seeks to approximate an operator H = A+R, where A is a symmet-
ric positive semi-definite operator that we approximate with the PSF-based method
to form an H-matrix AH , and R is a symmetric positive definite operator that may
be easily converted to an H-matrix RH without using the PSF-based method. For
example, in inverse problems H is the Hessian, A is the data misfit term in the Hes-
sian which is dense and available only matrix-free, and R is the regularization term,
which is typically an elliptic differential operator that becomes a sparse matrix after
discretization.

The PSF-based approximationAH , and thereforeAH+RH , may be non-symmetric
and indefinite because of approximation error. This is undesirable because symmetry
and positive semi-definiteness are important properties which should be preserved if
possible. Also, lacking these properties may prevent one from using highly effective
algorithms to perform further operations involving AH+RH , such as using AH+RH

as a preconditioner in the conjugate gradient method.
We modify AH to make it symmetric and remove negative eigenvalues via the

following procedure. First, we symmetrize AH via Asym
H := 1

2

(
AH +AT

H

)
. Next,

we find negative eigenvalues and their corresponding eigenvectors for the generalized
eigenvalue problemAsym

H u = λRH using a Cayley shift-and-invert Krylov scheme [53].
We flip the signs of these eigenvalues to be positive instead of negative (i.e., λ→ |λ|)
by performing a low rank update toAsym

H . We observe that the eigenvectors associated
with large erroneous negative eigenvalues tend to be directions that are nevertheless
“important” to A, so flipping the eigenvalues instead of setting them to zero tends to
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Symbol Typical size Variable name
N 103–109 Number of finite element degrees of freedom
nb 1–25 Number of batches
kh 5–50 H-matrix rank
kn 5–15 Number of nearest neighbors for RBF interpolation
d 1–3 Spatial dimension
m 101–104 Total number of sample points (all batches)
|Si| 1–500 Number of sample points in the ith batch

Table 1: Symbols used for variables in computational cost estimates, and approximate
ranges for their sizes in practice.

yield better approximations. The primary computational task in the Cayley shift-and-
invert scheme is the solution of shifted linear systems of the form (Asym

H + µiRH)x =
b, for a small number of positive shifts µi. We solve these linear systems by factorizing
the matrices Asym

H + µiRH using fast H-matrix methods. We compute and flip all
eigenvalues λ < ϵflip which are less than some threshold ϵflip ∈ (−1, 0]. By choosing
ϵflip > −1, we ensure that the modified version of Asym

H + RH is positive definite.
Choosing ϵflip = 0 would remove all erroneous negative eigenvalues. However, this
is computationally infeasible if A has a large or infinite cluster of eigenvalues near
zero, a common situation for Hessians in ill-posed inverse problems. We therefore
recommend choosing ϵflip < 0. In our numerical results, we use ϵflip = −0.1.

6. Computational cost. The computational cost of the PSF-based method
may be divided into the costs to perform the following tasks: (1) Computing impulse
response moments and batches (Lines 1 and 4 in Algorithm 1); (2) Building the
H-matrix (Lines 5 and 6 in Algorithm 1); (3) Performing linear algebra operations
with the H-matrix. This may optionally include the symmetric positive semi-definite
modifications described in Section 5.5. In target applications, (1) is the dominant
cost because applying A to a vector requires an expensive computational procedure
such as solving a PDE, and (1) is the only step that requires applying A to vectors.
All operations that do not require applications of A to vectors are polylog linear (i.e.,
O(N log(N)b) for some b), and therefore scalable, in the size of the problem, N . We
now describe these costs in detail. For convenience, Table 1 lists variable symbols and
their approximate sizes.

(1) Computing impulse response moments and batches. Computing V , µ, and Σ
requires applying AT to 1, d, and d(d+ 1)/2 vectors, respectively. This works out to
3 applications of AT in one spatial dimension, 6 in two dimensions, and 10 in three
dimensions. Computing each ηi requires applying A to one vector, so computing
{ηi}nb

i=1 requires nb operator applications. In total, computing all impulse response
moments and batches therefore requires

1 + d+ d(d+ 1)/2 + nb operator applications.

In a typical application one might have d = 2 and nb = 5, in which case a modest 11
operator applications are required.

Computing the impulse response batches also requires choosing sample point
batches via the greedy ellipsoid packing algorithm described in Section 5.1. Choosing
the ith batch of sample points may require performing up to N |Si| ellipsoid intersec-
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tion tests, where |Si| is the number of sample points in the ith batch. Choosing all
of the sample points therefore requires performing at most

Nm ellipsoid intersection tests,

where m is the total number of sample points in all batches. The multiplicative
dependence of N with m is undesirable since m may be large, and reducing this cost
is possible with more involved computational geometry methods. However, from a
practical perspective, the cost of choosing sample points is small compared to other
parts of the algorithm, and hence such improvements are not pursued here.

(2) Building the H-matrix. Classical H-matrix construction techniques require
evaluating O(khN logN) matrix entries of the approximation [10], where kh is the H-
matrix rank, i.e, the maximum rank among the blocks of the H-matrix. To evaluate
one matrix entry, first one must find the kn nearest sample points to a given point,
where kn is the number of impulse responses used in the RBF interpolation. This is
done using a precomputed kd-tree of sample points, and requires O(kn logm) floating
point and logical elementary operations. Second, one must find the mesh cells that
the points {zi}kn

i=1 reside in. This is done using an AABB tree of mesh cells, and
requires O(kn logN) elementary operations. Third, one must evaluate finite element
basis functions on those cells, which requires O(kn) elementary operations. Finally,
the radial basis function interpolation requires solving a kn × kn linear system, which
requires O(k3n) elementary operations. Therefore, building the H-matrix requires

O
(
(khN logN)

(
kn logN + k3n

))
elementary operations.

(3) Performing linear algebra operations with the H-matrix. It is well known that
H-matrix methods for matrix-vector products, matrix-matrix addition, matrix-matrix
multiplication, matrix factorization, matrix inversion, and low rank updates require
performing O

(
kahN log(N)b

)
elementary operations, where a, b ∈ {0, 1, 2, 3} are con-

stants which depend on the type of H-matrix used and the operation being per-
formed [40][52, Section 2.1]. For our numerical results involving Hessians (Sections 7.1
and 7.2), we use one matrix-matrix addition to add the H-matrix approximation of
the data misfit term in the Hessian to the regularization term in the Hessian. Sym-
metrizing AH requires one matrix-matrix addition. Flipping negative eigenvalues to
be positive requires a handful (typically around 5) of matrix-matrix additions and
matrix factorizations to factor the required shifted linear systems, and a number of
factorized solves that is proportional to the number of erroneous negative eigenvalues.

In summary, computing all the necessary ingredients to evaluate kernel entries of
the PSF-based approximation requires a handful of operator applications (e.g., 6+nb
operator applications in two dimensions, or 10 + nb operator applications in three
dimensions, with nb typically in the range 1–25), plus comparatively cheap additional
overhead costs, most notably performing ellipsoid intersection tests while choosing
sample point batches. Once these ingredients are computed, no more operator appli-
cations (and thus PDE solves) are required, and approximate kernel entries can be
evaluated rapidly. Constructing the H-matrix from kernel entries requires a number
of elementary operations that scales polylog linearly in N . Using the H-matrix to
perform linear algebra operations also scales polylog linearly in N , though the details
of these costs depend heavily on the type of H-matrix and operation being performed.

7. Numerical results. We use the PSF-based method to approximate the New-
ton (or Gauss-Newton) Hessians in inverse problems governed by PDEs which model
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steady state ice sheet flow [64] (Section 7.1) and advective-diffusive transport of a
contaminant [63] (Section 7.2), and to approximate the integral kernel in a blur prob-
lem that is not based on PDEs (Section 7.3). These problems are described in detail
in their respective sections.

In both PDE-based inverse problems (Sections 7.1 and 7.2), to reconstruct the
unknown parameter fields, denoted q, the inverse problems are formulated as nonlinear
least squares optimization problems, whose objective functions consist of a data misfit
term (between the observations and model output) and a bi-Laplacian regularization
term following [75]. The regularization is centered at a constant function q0(x). To
mitigate boundary effects we use a constant coefficient Robin boundary condition as
in [65]. The parameters for the bi-Laplacian operator are chosen so that the Green’s
function of the Hessian of the regularization has a characteristic length of 0.25 of the
domain radius. For the specific setup, we refer the reader to [75, Section 2.2]. In all
numerical results we choose the regularization parameter (which controls the overall
strength of the regularization) using the Morozov discrepancy principle [76].

We solve the ice sheet inverse problem with an inexact Newton preconditioned
conjugate gradient (PCG) scheme and a globalizing Armijo line search [61]. The
Newton search directions, q̂, are obtained by solving

(7.1) Hq̂ = −g or Hgnq̂ = −g,

wherein we choose the initial guess as the discretization of the constant function q0.
Here, g, H and Hgn are the discretized gradient, Hessian, and Gauss-Newton Hes-
sian of the inverse problem objective function, respectively, evaluated at the current
Newton iterate. To ensure positive definiteness of the Hessian we use Hgn for the
first five iterations, and H for all subsequent iterations. The Newton iterations are
terminated when ∥g∥ < 10−6∥g0∥, where g0 is the gradient evaluated at the initial
guess. Systems (7.1) are solved inexactly using an inner PCG iteration, which is ter-
minated early based on the Eisenstat-Walker [24] and Steihaug [69] conditions. The
inverse problem governed by the advection-diffusion PDE is linear, hence Newton’s
method converges in one iteration. In this case the Newton linear system, (7.1), is
solved using PCG, using termination tolerances described in Section 7.2.

We use the framework described in this paper to generate Hessian precondition-
ers. We build H-matrix approximations, AH , of the data misfit Gauss-Newton Hessian
(the term in Hgn that arises from the data misfit). The approximations are indicated
by “PSF (nb)”, where nb is the number of impulse response batches used to build the
approximation. The Hessian of the regularization term is a combination of stiffness
and mass matrices, which are sparse. Therefore, we form H-matrix representations
of these matrices and combine them into an H-matrix approximation of the regular-
ization term in the Hessian, RH , using standard sparse H-matrix techniques. Then,
H-matrix approximations of the Gauss-Newton Hessian, Hgn ≈ H̃ := AH + RH ,

are formed by adding AH to RH using fast H-matrix arithmetic. We modify H̃ to
be (approximately) symmetric positive semi-definite via the procedure described in

Section 5.5. We factor H̃ using fast H-matrix methods, then use the factorization
as a preconditioner. We approximate Hgn rather than H because H more often has

negative values in its integral kernel. The numerical results show that H̃ is a good
preconditioner for both Hgn and H.

7.1. Example 1: Inversion for the basal friction coefficient in an ice
sheet flow problem. For this example, we consider a sheet of ice flowing down a
mountain (see Figure 8a). Given observations of the tangential component of the ice
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velocity on the top surface of the ice, we invert for the logarithm of the unknown
spatially varying basal friction Robin coefficient field, which governs the resistance
to sliding along the base of the ice sheet. The setup, which we briefly summarize,
follows [48, 64]. The region of ice is denoted by D ⊂ R3. The basal, lateral and top
parts of the boundary ∂D are denoted by Γb, Γl, and Γt, respectively. The governing
equations are the linear incompressible Stokes equations,

−∇ · σ(v, p) = f and ∇ · v = 0 in D,(7.2a)

σ(v, p)ν = 0 on Γt,(7.2b)

v · ν = 0 and T (σ(v, p)ν + exp (q) v) = 0 on Γb,(7.2c)

σ(v, p)ν + sv = 0 on Γl.(7.2d)

The solution to these equations is the pair (v, p), where v is the ice flow velocity field6

and p is the pressure field. Here, q is the unknown logarithmic basal friction field
(large q corresponds to large resistance to sliding) defined on the surface Γb. The
quantity f is the body force density due to gravity, s = 106 is a Robin boundary
condition constant, ν is the outward unit normal and T is the tangential projection
operator that restricts a vector field to its tangential component along the boundary.
We employ a Newtonian constitutive law, σ(v, p) = 2ηε̇(v)− Ip, where σ is the stress
tensor and ε̇(v) = 1

2

(
∇v +∇v⊤

)
is the strain rate tensor [48]. Here, η is the viscosity

and I is the identity operator. Note that while the PDE is linear, the parameter-to-
solution map, q 7→ (v, p), is nonlinear.

The pressure, p, is discretized with first order scalar continuous Galerkin finite
elements defined on a mesh of tetrahedra. The velocity, v, is discretized with second
order continuous Galerkin finite elements on the same mesh. The parameter q is
discretized with first order scalar continuous Galerkin finite elements on the mesh of
triangles that results from restricting the tetrahedral mesh to the basal boundary, Γb.
Note that Γb is a two-dimensional surface embedded in three dimensions due to the
mountain topography. The PSF-based method involves translating impulse responses.
Hence it requires either a flat domain, or a notion of local parallel transport. We
therefore generate a flattened version of Γb, denoted by Ω ⊂ R2, by ignoring the height
coordinate. The parameter q is viewed as a function on Γb for the purpose of solving
the Stokes equations, and as a function on Ω for the purpose of building Hessian
approximations and defining the regularization. The observations are generated by
adding multiplicative Gaussian noise to the tangential component of the velocity field
restricted to the top surface of the geometry. We use 5% noise in all cases, except for
Figure 9 and Table 3 where the noise is varied from 1% to 25% and the regularization is
determined by the Morozov discrepancy principle for each noise level. The true basal
friction coefficient and resulting velocity fields, which are obtained by solving (7.2),
are shown in Figure 8.

Table 2 shows the performance of the preconditioner for accelerating the solution
of the optimization problem to reconstruct q from observations with 5% noise. We
build the PSF (5) preconditioner in the third Gauss-Newton iteration, and reuse it for
all subsequent Gauss-Newton and Newton iterations. No preconditioning is used in
the iterations before the PSF (5) preconditioner is built. We compare the PSF-based
method with the most commonly used existing preconditioners: no preconditioning
(NONE), and preconditioning by the regularization term in the Hessian (REG). The

6We do not use bold to denote vector or tensor fields to avoid confusion with vectors that arise
from finite element discretizations, which are already denoted with bold.
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(a) Ice sheet model geometry

(b) qtrue (c) vtrue

Fig. 8: (Ice sheet) (8a) Bird’s eye view of the ice sheet discretized by a mesh of
tetrahedra. Color indicates the height of the base of the ice sheet (i.e., the mountain
topography). The radius of the domain is 104 meters, the maximum height of the
mountain is 2.1×103 meters, and the average thickness of the ice sheet is 250 meters.
(8b) True parameter, qtrue. (8c) True velocity, vtrue. Arrows indicate the direction of
vtrue and color indicates the magnitude of vtrue.

Fig. 9: (Ice sheet) The log basal friction parameter, with color scale as in Figure 8b,
computed from the PDE constrained optimization problem with noise levels: 25%
(left), 5.0% (middle), and 1.0% (right).

results show that using PSF (5) reduces the total number of Stokes PDE solves to 70,
as compared to 908 for regularization preconditioning and 308 for no preconditioning,
a reduction in cost of roughly 5×–10×. For problems with a larger physical domain
and correspondingly more observations, such as continental scale ice sheet inversion,
the speedup will be even greater. This is because the rank of the data misfit Hessian
will increase, while the locality of the impulse responses will remain the same. In
Figure 9 we show reconstructions for 1%, 5%, and 25% noise.



HIGH-RANK PSF HESSIAN APPROXIMATION 23

PSF (5) REG NONE

Iter #CG #Stokes ∥g∥ #CG #Stokes ∥g∥ #CG #Stokes ∥g∥
0 1 4 1.9e+7 3 8 1.9e+7 1 4 1.9e+7

1 2 6 6.1e+6 8 18 8.4e+6 2 6 6.1e+6

2 4 10 2.6e+6 16 34 4.1e+6 4 10 2.6e+6

3 2 6+22 6.9e+5 34 70 1.8e+6 14 30 6.9e+5

4 3 8 4.4e+4 52 106 5.6e+5 29 60 1.3e+5

5 5 12 2.2e+3 79 160 9.4e+4 38 78 1.0e+4

6 0 2 1.1e+1 102 206 6.5e+3 58 118 1.8e+2

7 — — — 151 304 1.2e+2 0 2 5.5e-1

8 — — — 0 2 2.9e-1 — — —

Total 17 70 — 445 908 — 146 308 —

Table 2: (Ice sheet) Convergence history for solving the Stokes inverse problem using
inexact Newton PCG to tolerance 10−6. Preconditioners shown are the PSF-based
method with five batches (PSF (5)) constructed at the third iteration, regularization
preconditioning (REG), and no preconditioning (NONE). Columns #CG show the
number of PCG iterations used to solve the Newton system for q̂. Columns ∥g∥ show
the l2 norm of the gradient at q. Columns #Stokes show the total number of Stokes
PDE solves performed in each Newton iteration. Under PSF (5) and in row Iter 3,
we write 6+ 22 to indicate that 6 Stokes solves were used during the standard course
of the iteration, and 22 Stokes solves were used to build the PSF (5) preconditioner.

0 200 400 600
10−13

10−9

10−5

10−1

j, CG iteration

‖x
j
−

x
‖/
‖x
‖

CG convergence

REG

NONE

PSF (1)

PSF (5)

PSF (25)

0 300 600 900 1,200
10−1

101

103

105

107

k, generalized eigenvalue #

λ
k

Generalized eigenvalues

Fig. 10: (Ice sheet) Left: Convergence history for solving Hx = b using PCG, where
b has i.i.d. random entries drawn from the standard Gaussian distribution and H is
evaluated at the solution of the inverse problem. Results in these figures are shown
for the PSF-based preconditioners with 1, 5, and 25 batches (PSF (1), PSF (5),
and PSF (25), respectively), regularization preconditioning (REG), and no precondi-
tioning (NONE). The preconditioner is constructed using Hgn. Right: Generalized

eigenvalues for generalized eigenvalue problem Huk = λkH̃uk. Here, H is the Hessian
and the matrices H̃ are the same Hessian approximations used in the left sub-figure,
with NONE corresponding to the identity matrix.
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noise COND(H̃−1H)

level REG NONE PSF (1) PSF (5) PSF (25)

25% 1.01e+3 2.96e+3 1.34e+0 1.30e+0 1.18e+0

11% 7.40e+3 1.05e+3 2.27e+0 1.55e+0 1.31e+0

5.0% 3.29e+4 4.96e+2 5.61e+0 3.06e+0 1.92e+0

2.2% 1.66e+5 8.89e+2 1.58e+1 8.07e+0 4.03e+0

1.0% 5.36e+5 1.61e+3 7.17e+1 1.93e+1 9.19e+0

Table 3: (Ice sheet) Condition number for H̃−1H for the PSF-based precondition-
ers with 1, 5, and 25 batches (PSF (1), PSF (5), and PSF (25), respectively), no
preconditioner (NONE) and regularization preconditioning (REG). All operators are
evaluated at the soutions of the inverse problems for their respective noise levels.

Next, we build PSF (1), PSF (5), and PSF (25) preconditioners based on the
Gauss-Newton Hessian evaluated at the converged solution q (note: k in PSF (k)
refers to the number of batches; this is not to be confused with the noise levels which
range over the same numerical values). We use PCG to solve a linear system with the
Hessian as the coefficient operator and a right hand side vector with random inde-
pendent and identically distributed (i.i.d.) entries drawn from the standard Gaussian
distribution. In Figure 10 (left) we compare the convergence of PCG for solving this
linear system using the PSF (1), PSF (5), PSF (25), REG, and NONE preconditioners.
PCG converges fastest with the PSF-based preconditioners, with PSF (25) converging
fastest, followed by PSF (5), followed by PSF (1), as expected. In Figure 10 (right) we

show the generalized eigenvalues for the generalized eigenvalue problem Hu = λH̃u.
The matrix H̃ is one of the PSF (1), PSF (5), or PSF (25) Gauss-Newton Hessian
approximations, the regularization Hessian (REG), or the identity matrix (NONE).
With the PSF-based preconditioners, the generalized eigenvalues cluster near one,
with more batches yielding better clustering.

In Table 3, we show the condition number of the preconditioned Hessian for noise
levels ranging from 1% to 25%. Note that the condition number using PSF-based
preconditioners is extremely small (ranging between 1 and 10) and relatively stable
over this range of noise levels. As expected, PSF (25) outperforms PSF (5), which
outperforms PSF (1). All PSF-based preconditioners outperform regularization and
no preconditioning by several orders of magnitude for all noise levels.

7.2. Example 2: Inversion for the initial condition in an advective-
diffusive transport problem. Here, we consider a time-dependent advection-diffusion
equation in which we seek to infer the unknown spatially varying initial condition,
q, from noisy observation of the full state at a final time, T . This PDE models
advective-diffusive transport in a domain Ω ⊂ Rd, which is depicted in Figure 11. In
this case, the state, c(x, t), could be interpreted as the concentration of a contami-
nant. The problem description below closely follows [63, 75]. The domain boundaries
∂Ω include the outer boundaries as well as the internal boundaries of the rectangles,
which represent buildings. The parameter-to-observable map F in this case maps an
initial condition q ∈ L2(Ω) to the concentration field at a final time, c(x, T ), through
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solution of the advection-diffusion equation given by

(7.3)

ct − κ∆c+ v · ∇c = 0 in Ω× (0, T ),

c(·, 0) = q in Ω,

κ∇c · ν = 0 on ∂Ω× (0, T ).

Here, κ > 0 is a diffusivity coefficient, ν is the boundary unit normal vector, and T > 0
is the final time. The velocity field, v : Ω → Rd, is computed by solving the steady-
state Navier-Stokes equations for a two dimensional flow with Reynolds number 50,
with boundary conditions v(x) = (0, 1) on the left boundary, v(x) = (0,−1) on the
right boundary, and v(x) = (0, 0) on the top and bottom boundaries, as in [63, Section
3]. We use a checkerboard image for the initial condition (Figure 11a) and add 5%
multiplicative noise to generate a synthetic observation at the final time, T . The
initial condition, velocity field, noisy observations, and reconstructed initial condition
are shown in Figure 11. We use κ = 3.2e−1 and T = 1.0 for all results, except for
Table 4 and Figure 12 where we vary κ and T .

In Table 4 we show the number of PCG iterations, j, required to solve the Newton
linear system to a relative error tolerance of ∥q̂ − q̂j∥ < 10−6∥q̂∥. The solution of
the Newton system to which we compare, q̂, is found via another PCG iteration with
a relative residual tolerance of 10−11. We show results for T ranging from 0.5 to 2.0
and κ ranging from 10−4 to 10−3 using the PSF-based preconditioners with 1, 5, and
25 batches, regularization preconditioning, and no preconditioning. The results show
that PSF-based preconditioning outperforms regularization preconditioning and no
preconditioning in all cases except one. The exception is T = 2.0 and κ = 1.0e−3,
in which PSF (1) performs slightly worse than regularization preconditioning but
better than no preconditioning. Adding more batches yields better results, and the
impact of adding more batches is more pronounced here than in the ice sheet example.
For example, in the mid-range values T = 1.0 and κ = 3.2e−4, PSF (1), PSF (5),
and PSF (25) require 1.3×, 2.3×, and 5.1× fewer PCG iterations, respectively, as
compared to no preconditioning, and exhibit greater improvements as compared to
regularization preconditioning. The PSF preconditioners perform best in the high
rank regime where T is small, which makes sense given that short simulation times
yield more localized impulse responses (see Figure 4). For example, for κ = 3.2e−4
using the PSF (5) preconditioner yields 140, 202, and 379 iterations for T = 0.5,
1.0, and 2.0, respectively. The performance of the PSF preconditioners as a function
of κ does not have as clear of a trend. Reducing κ makes the impulse responses
thinner and hence easier to fit in batches, but also increases the complexity of the
impulse response shapes, which may reduce the accuracy of the RBF interpolation.
The greatest improvements are seen for T = 0.5 and κ = 1e−3, for which PSF (25)
requires roughly 10× and 20× fewer PCG iterations than no preconditioning and
regularization preconditioning, respectively.

In Figure 13 (left) we show the convergence of PCG for solving Hx = b, where
b has i.i.d. random entries drawn from a standard Gaussian distribution. The pre-
conditioners used, H̃, are the PSF-based preconditioners with 1, 5, or 25 batches,
the regularization Hessian, and the identity matrix (i.e., no preconditioning). The re-
sults show that PCG converges fastest with the PSF-based preconditioners, with more
batches yielding faster convergence. In Figure 13 (right), we show the eigenvalues for

the generalized eigenvalue problem Hu = λH̃u, where the H̃ are the preconditioners
stated above. With the PSF-based preconditioners the eigenvalues cluster near one,
and more batches yields better clustering. With the regularization preconditioner the



26 N. ALGER, T. HARTLAND, N. PETRA, AND O. GHATTAS

(a) True q (b) v (c) Noisy observations (d) Reconstructed q

Fig. 11: (Advective-diffusive transport) (11a) True initial condition. (11b) Veloc-
ity field. Color indicates magnitude of velocity vector. (11c) Noisy observations of
concentration at the final time. (11d) Reconstructed initial condition.

κ REG NONE PSF (1) PSF (5) PSF (25)

1.0e-4 584 317 311 151 56
T = 0.5 3.2e-4 685 311 233 140 44

1.0e-3 702 324 122 71 33

1.0e-4 634 449 539 288 100
T = 1.0 3.2e-4 681 459 350 202 90

1.0e-3 574 520 266 260 208

1.0e-4 609 591 548 520 165
T = 2.0 3.2e-4 524 645 318 379 170

1.0e-3 349 786 381 262 158

Table 4: (Advective-diffusive transport) Number of PCG iterations required to solve
the Newton linear system to tolerance ||q̂j−q̂|| < 10−6||q̂||, where q̂j is the jth iterate,
and q̂ is the solution of the Newton linear system. Iteration counts are shown for a
variety of different diffusion parameters κ, simulation times T , and preconditioners.

trailing eigenvalues cluster near one, while the leading eigenvalues are amplified.

7.3. Example 3: Spatially varying blurring problem. Here, we define a
PDE-free spatially varying blur problem, in which the impulse response, ϕx, is a
bumpy blob that is centered near x, and is rotated and scaled in a manner that
depends on x (see Figure 2). This blur problem is used in Sections 1 and 3 to visually
illustrate various stages and aspects of the PSF-based method, and robustness (or lack
thereof) of the PSF-based method to violations of the non-negative kernel assumption
(Section 3.2). In this section, the blur problem is used to compare the PSF-based
method to hierarchical off-diagonal low rank (HODLR) and global low rank (GLR)
methods, to study convergence of the PSF-based method, and to investigate the effect
of the ellipsoid size parameter τ . The closed form expression for the integral kernel is
given by

Φ(y, x) = (1− af(y, x))g(x) exp

(
−1

2
(h(y, x)TC−1h(y, x)

)
,(7.4)

where f(y, x) = cos
(
h1(y, x)/

√
c1/2

)
sin

(
h2(y, x)/

√
c2/2

)
, with hi(y, x) the ith

component of R(θ(x))(y − x), with R(θ(x)) a two-dimensional rotation matrix by
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T = 0.5 T = 2.0

κ = 1.0e−4

κ = 1.0e−3

Fig. 12: (Advective-diffusive transport) Impulse responses for small and large diffusion
parameters κ and simulation times T .

0 200 400 600 800 1,000
10−11

10−8

10−5

10−2

j, CG iteration

‖x
j
−

x
‖/
‖x
‖

CG convergence

REG

NONE

PSF (1)

PSF (5)

PSF (25)

0 2,000 4,000 6,000 8,000

10−2

100

102

104

k, generalized eigenvalue #

λ
k

Generalized eigenvalues

Fig. 13: (Advective-diffusive transport) Left: Convergence history for solving Hx = b
using PCG, where b has i.i.d. random entries drawn from the standard Gauss-
ian distribution. Right: Generalized eigenvalues for generalized eigenvalue problem
Huk = λkH̃uk. Here, H is the Hessian and the preconditioner, H̃, is the PSF-based
approximation for 1, 5, or 25 batches (PSF (1), PSF (5), and PSF (25), respectively),
the regularization Hessian (REG), or the identity matrix (NONE).

angle θ(x) = (x1+x2)π/2, g(x) = x1(1−x1)x2(1−x2), and with C = L2 diag(c1, c2).
The constant L controls the width of the blob, and c1/c2 controls its aspect ratio. The
constant a represents deviation from a Gaussian. When a = 0, ϕx is a Gaussian, and
as a increases, ϕx becomes non-Gaussian. When a > 1, the integral kernel contains
negative values, which allows us to study the robustness of the PSF-based method to
violations of Assumption 3 (Section 3.2).

In Table 5 we compare the cost to approximate the blur kernel from Equation (7.4)
using the PSF-based method, the randomized HODLR (hierarchical off diagonal low
rank) method [58, 45] with 8 levels, and GLR (global low rank) approximation using
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Error tol. #applies PSF #applies HODLR #applies RSVD

20% 11 592 354
L = 1 10% 16 772 520

5% 22 924 674

20% 8 852 1316
L = 1/2 10% 9 1144 1916

5% 12 1404 2456

20% 7 932 2624
L = 1/3 10% 8 1264 3734

5% 8 1520 4660

Table 5: (Blur) Comparison of cost to approximate the blur kernel from Equation (7.4)
using the PSF-based method, the randomized HODLR (hierarchical off diagonal low
rank) method, and GLR (global low rank) approximation using randomized SVD.
The quantity L scales the width of the impulse responses, hence it influences the rank
of the operator. Large L means low rank, and small L means high rank. The second
column (“Error tol”) is the relative error in the approximation of the kernel measured

in the Frobenius norm, ||Φ− Φ̃||Fro/||Φ||Fro. The remaining three columns show the
number of operator applies required to achieve the given error tolerances, using the
PSF, HODLR, and GLR methods.

double-pass randomized SVD [44]. For these results we vary the quantity L to scale
the width of the impulse responses and hence the rank of the operator. For each case,
we calculate the relative error in the approximation of the kernel measured in the
Frobenius norm, ||Φ− Φ̃||Fro/||Φ||Fro and show the number of operator applications
required to achieve 20%, 10%, and 5% relative error by each method. The results
reveal superior performance of the PSF method as compared to the HODLR and
GLR methods for all cases. We note that as we increase the rank and decrease the
error tolerance, the performance of the HODLR and GLR methods deteriorates.

In Figure 14 we show the convergence of the PSF-based method on the blur kernel
as a function of the total number of impulse responses (left), and the number of batches
(right). We show convergence for several ellipsoid size parameters τ , ranging from 2.0–
4.0. The results in Figure 14 (left) show that the relative error decreases as constant×
(#impulse responses)

−1
suggesting linear convergence. The linear convergence stalls

at a limit that depends on τ . Increasing τ lowers this limit, allowing the PSF-based
method to achieve higher accuracy. In Figure 14 (right), the results show that before
this limit is reached, the convergence is faster for smaller τ in terms of the number
of batches. This is expected because smaller τ results in more impulse responses per
batch. Larger τ causes the PSF-based method to converge more slowly than smaller
τ , but with larger τ the PSF-based method stalls at a lower level of error than it does
with smaller τ (see, e.g., τ = 4.0 vs. τ = 2.5).

8. Conclusions. We presented an efficient matrix-free PSF-based method for
approximating operators with locally supported non-negative integral kernels. The
PSF-based method requires access to the operator only via application of the opera-
tor to a small number of vectors. The idea of the PSF-based method is to compute
batches of impulse responses by applying the operator to Dirac combs of scattered
point sources, then interpolate these impulse responses to approximate entries of the
operator’s integral kernel. The interpolation is based on a new principle we call “local
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Fig. 14: (Blur) Relative error for different ellipsoid size parameters, τ , vs. the total
number of impulse responses (left), and the number of batches (right). The dashed

gray lines show linear convergence rates, i.e., constant × (#impulse responses)
−1

on
the left, and constant×#batches−1 on the right.

mean displacement invariance,” which generalizes classical local translation invari-
ance. The ability to quickly approximate arbitrary integral kernel entries permits us
to form an H-matrix approximation of the operator. Fast H-matrix arithmetic is then
used to perform further linear algebra operations that cannot be performed easily with
the original operator, such as matrix factorization and inversion. The supports of the
impulse responses are estimated to be contained in ellipsoids, which are determined
a-priori via a moment method that involves applying the operator to a small number
of polynomial functions. Point source locations for the impulse response batches are
chosen using a greedy ellipsoid packing procedure, in which we choose as many im-
pulse responses per batch as possible, while ensuring that the corresponding ellipsoids
do not overlap. We applied the PSF-based method to approximate the Gauss-Newton
Hessians in an ice sheet flow inverse problem governed by a linear Stokes PDE, and
an advective-diffusive transport inverse problem governed by an advection-diffusion
PDE. We saw that preconditioners based on the PSF-based approximation cluster the
eigenvalues of the preconditioned Hessian near one, and allow us to solve the inverse
problems using roughly 5×–10× fewer PDE solves. For larger domains with more
observations, the rank of the data misfit Hessian will increase, while the locality of
impulse responses will remain the same. Hence, we expect the speedup will be even
greater for such problems. Although the PSF-based method is not applicable to all
Hessians, it is applicable to many Hessians of practical interest. For these Hessians,
the PSF-based method offers a data scalable alternative to conventional low rank ap-
proximation, due to the ability to form high rank approximations of an operator using
a small number of operator applications, and thus PDE solves.
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